1
|
Zbikowski A, Kowalczyk T, Kasparek P, Prohazka J, Sedlacek R, Ciborowski M, Cysewski D, Łukasiewicz K. Understanding PACS2 syndrome's pathomechanism by studying E209K and E211K mutations. Mamm Genome 2024:10.1007/s00335-024-10098-5. [PMID: 39738582 DOI: 10.1007/s00335-024-10098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
Collapse
Affiliation(s)
- Arkadiusz Zbikowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prohazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Łukasiewicz
- Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
2
|
Narongkiatikhun P, Choi YJ, Hampson H, Gotzamanis J, Zhang G, van Raalte DH, de Boer IH, Nelson RG, Tommerdahl KL, McCown PJ, Kanter J, Sharma K, Bjornstad P, Saulnier PJ. Unraveling Diabetic Kidney Disease: The Roles of Mitochondrial Dysfunction and Immunometabolism. Kidney Int Rep 2024; 9:3386-3402. [PMID: 39698345 PMCID: PMC11652104 DOI: 10.1016/j.ekir.2024.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are essential for cellular energy production and are implicated in numerous diseases, including diabetic kidney disease (DKD). Current evidence indicates that mitochondrial dysfunction results in alterations in several metabolic pathways within kidney cells, thereby contributing to the progression of DKD. Furthermore, mitochondrial dysfunction can engender an inflammatory milieu, leading to the activation and recruitment of immune cells to the kidney tissue, potentially perturbing intrarenal metabolism. In addition, this inflammatory microenvironment has the potential to modify immune cell metabolism, which may further accentuate the immune-mediated kidney injury. This understanding has led to the emerging field of immunometabolism, which views DKD as not just a metabolic disorder caused by hyperglycemia but also one with significant immune contributions. Targeting mitochondrial function and immunometabolism may offer protective effects for the kidneys, complementing current therapies and potentially mitigating the risk of DKD progression. This comprehensive review examines the impact of mitochondrial dysfunction and the potential role of immunometabolism in DKD. We also discuss tools for investigating these mechanisms and propose avenues for integrating this research with existing therapies. These insights underscore the modulation of mitochondrial function and immunometabolism as a critical strategy for decelerating DKD progression.
Collapse
Affiliation(s)
- Phoom Narongkiatikhun
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ye Ji Choi
- Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hailey Hampson
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jimmy Gotzamanis
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Guanshi Zhang
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ian H. de Boer
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Kalie L. Tommerdahl
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jenny Kanter
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kumar Sharma
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Petter Bjornstad
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pierre Jean Saulnier
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| |
Collapse
|
3
|
Choi YJ, Richard G, Zhang G, Hodgin JB, Demeke DS, Yang Y, Schaub JA, Tamayo IM, Gurung BK, Naik AS, Nair V, Birznieks C, MacDonald A, Narongkiatikhun P, Gross S, Driscoll L, Flynn M, Tommerdahl K, Nadeau KJ, Shah VN, Vigers T, Snell-Bergeon JK, Kendrick J, van Raalte DH, Li LP, Prasad P, Ladd P, Chin BB, Cherney DZ, McCown PJ, Alakwaa F, Otto EA, Brosius FC, Saulnier PJ, Puelles VG, Goodrich JA, Street K, Venkatachalam MA, Ruiz A, de Boer IH, Nelson RG, Pyle L, Blondin DP, Sharma K, Kretzler M, Bjornstad P. Attenuated kidney oxidative metabolism in young adults with type 1 diabetes. J Clin Invest 2024; 134:e183984. [PMID: 39436695 PMCID: PMC11645151 DOI: 10.1172/jci183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUNDIn type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism.METHODSYoung adults with T1D (n = 30) and healthy controls (HCs) (n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA-Seq, and spatial metabolomics to assess this relationship.RESULTSParticipants with T1D had significantly higher glomerular basement membrane (GBM) thickness compared with HCs. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HCs, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, and GBM, and lower insulin sensitivity and cortical oxidative metabolism.CONCLUSIONThese early structural and metabolic changes in T1D kidneys may precede clinical DKD.TRIAL REGISTRATIONClinicalTrials.gov NCT04074668.FUNDINGUniversity of Michigan O'Brien Kidney Translational Core Center grant (P30 DK081943); CROCODILE studies by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (P30 DK116073), Juvenile Diabetes Research Foundation (JDRF) (2-SRA-2019-845-S-B), Boettcher Foundation, Intramural Research Program at NIDDK and Centers for Disease Control and Prevention (CKD Initiative) under Inter-Agency Agreement #21FED2100157DPG.
Collapse
Affiliation(s)
- Ye Ji Choi
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gabriel Richard
- Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Fecherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Québec, Canada
| | - Guanshi Zhang
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Jeffrey B. Hodgin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dawit S. Demeke
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer A. Schaub
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian M. Tamayo
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Bhupendra K. Gurung
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Abhijit S. Naik
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carissa Birznieks
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexis MacDonald
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Phoom Narongkiatikhun
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Susan Gross
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lynette Driscoll
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maureen Flynn
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kalie Tommerdahl
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen J. Nadeau
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Viral N. Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tim Vigers
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Janet K. Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Kendrick
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, Netherlands
| | - Lu-Ping Li
- Radiology Department, Endeavor Health, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Pottumarthi Prasad
- Radiology Department, Endeavor Health, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Patricia Ladd
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Bennett B. Chin
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David Z. Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A. Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank C. Brosius
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Nephrology, The University of Arizona College of Medicine Tucson, Tucson, Arizona, USA
| | - Pierre Jean Saulnier
- University of Poitiers, INSERM, CHU Poitiers, Clinical Investigation Center CIC 1402, Poitiers, France
| | - Victor G. Puelles
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- III. Department of Medicine, University Medical Center Hamburg–Eppendorf, Hamburg, Germany
| | | | - Kelly Street
- Department of Biostatistics, University of Southern California, Los Angeles, California, USA
| | | | - Aaron Ruiz
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
- SygnaMap, Inc., San Antonio, Texas, USA
| | - Ian H. de Boer
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Laura Pyle
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Denis P. Blondin
- Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Fecherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Québec, Canada
| | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
4
|
Fu XT, Qie JB, Chen JF, Gao Z, Li XG, Feng SR, Dong EF, Shi YH, Tang Z, Liu WR, Zhang X, Huang A, Luo XM, Wu WX, Gao Q, Zhou J, Li T, Fan J, Ding ZB. Inhibition of SIRT1 relieves hepatocarcinogenesis via alleviating autophagy and inflammation. Int J Biol Macromol 2024; 278:134120. [PMID: 39074701 DOI: 10.1016/j.ijbiomac.2024.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Imbalanced Sirtuin 1 (SIRT1) levels may lead to liver diseases through abnormal regulation of autophagy, but the roles of SIRT1-regulated autophagy in hepatocellular carcinoma are still controversial. In this study, we found that SIRT1 mRNA and protein levels were upregulated in hepatocellular carcinoma, and high SIRT1 expression hinted an advanced stage and a poor prognosis. The differentially expressed proteins were significantly elevated in autophagy, cellular response to stress, and immune signaling pathways. In a thioacetamide-induced hepatocellular carcinoma mouse model, we found that SIRT1 expression was highly increased with increased autophagy and excessive macrophage inflammatory response. Next, we established a Hepa 1-6 cells and macrophage co-culture system in vitro to model the alteration of tumor microenvironment, and found that the medium from CCl4-treated or SIRT1-overexpressing Hepa 1-6 cells triggered the polarization of macrophage M1, and the culture medium derived from M1 macrophage promoted Hepa 1-6 cells growth and intracellular oxidative stress. The progression of liver fibrosis in the CCl4-induced liver fibrosis mouse model showed that inhibition of SIRT1 alleviated inflammatory response and ameliorated liver fibrosis. These findings suggest that SIRT1-regulated autophagy and inflammation are oncogenic in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jing-Bo Qie
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia-Feng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Gang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shan-Ru Feng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - En-Fu Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xuan-Ming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Wei-Xun Wu
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
5
|
Krzysiak TC, Choi YJ, Kim YJ, Yang Y, DeHaven C, Thompson L, Ponticelli R, Mermigos MM, Thomas L, Marquez A, Sipula I, Kemper JK, Jurczak M, Thomas G, Gronenborn AM. Inhibitory protein-protein interactions of the SIRT1 deacetylase are choreographed by post-translational modification. Protein Sci 2024; 33:e4938. [PMID: 38533551 DOI: 10.1002/pro.4938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 03/28/2024]
Abstract
Regulation of SIRT1 activity is vital to energy homeostasis and plays important roles in many diseases. We previously showed that insulin triggers the epigenetic regulator DBC1 to prime SIRT1 for repression by the multifunctional trafficking protein PACS-2. Here, we show that liver DBC1/PACS-2 regulates the diurnal inhibition of SIRT1, which is critically important for insulin-dependent switch in fuel metabolism from fat to glucose oxidation. We present the x-ray structure of the DBC1 S1-like domain that binds SIRT1 and an NMR characterization of how the SIRT1 N-terminal region engages DBC1. This interaction is inhibited by acetylation of K112 of DBC1 and stimulated by the insulin-dependent phosphorylation of human SIRT1 at S162 and S172, catalyzed sequentially by CK2 and GSK3, resulting in the PACS-2-dependent inhibition of nuclear SIRT1 enzymatic activity and translocation of the deacetylase in the cytoplasm. Finally, we discuss how defects in the DBC1/PACS-2-controlled SIRT1 inhibitory pathway are associated with disease, including obesity and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - You-Jin Choi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yong Joon Kim
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher DeHaven
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lariah Thompson
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan Ponticelli
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mara M Mermigos
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea Marquez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ian Sipula
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, Illinois, USA
| | - Michael Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Nandwani A, Rathore S, Datta M. LncRNA H19 inhibition impairs endoplasmic reticulum-mitochondria contact in hepatic cells and augments gluconeogenesis by increasing VDAC1 levels. Redox Biol 2024; 69:102989. [PMID: 38100882 PMCID: PMC10761920 DOI: 10.1016/j.redox.2023.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Inspite of exerting independent cellular functions, the endoplasmic-reticulum (ER) and the mitochondria also physically connect at specific sites termed mitochondria-associated ER membranes (MAMs) and these sites consist of several tethering proteins that play varied roles in diverse cellular processes. However, the regulation of these tethering proteins within the cell is relatively less studied. Here, we show that several MAM proteins are significantly altered in the liver during diabetes and among these, the lncRNA, H19 regulates the levels of VDAC1. Inhibition of H19 expression using H19 specific siRNA altered VDAC1, mitochondrial Ca2+ and oxygen consumption rate, ATP and ROS levels and enhanced ER and mitochondria coupling in Hepa 1-6 cells. While H19 inhibition did not impact lipid accumulation, levels of gluconeogenic genes were significantly increased. JNK-phosphorylation and IRS1-Ser307-phosphorylation were increased by H19 inhibition and this was associated with abrogation of insulin-stimulated AKT (Ser-473) phosphorylation and glucose uptake in Hepa 1-6 cells. While inhibition of VDAC1 expression using siRNAs and with metformin significantly rescued the effects of H19 inhibition, VDAC1 overexpression alone exerted effects similar to H19 inhibition, suggesting that VDAC1 increase mediates the adverse effects of H19. In-vivo H19 inhibition using specific siRNAs increased hepatic VDAC1, pJNK and pIRS1 (Ser307) levels and decreased AKT (Ser-473) phosphorylation in mice. These suggest an important role of the H19-VDAC1 axis in ER-mitochondria coupling and regulation of gluconeogenesis in the liver during diabetes.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Khairnar P, Kolipaka T, Pandey G, Phatale V, Shah S, Srinivasarao DA, Saraf S, Srivastava S. Nanosponge-mediated oligonucleotide delivery: A cutting-edge technology towards cancer management. J Drug Deliv Sci Technol 2024; 91:105226. [DOI: 10.1016/j.jddst.2023.105226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Liu S, Han S, Wang C, Chen H, Xu Q, Feng S, Wang Y, Yao J, Zhou Q, Tang X, Lin L, Hu L, Davidson AJ, Yang B, Ye C, Yang F, Mao J, Tong C, Chen J, Jiang H. MAPK1 Mediates MAM Disruption and Mitochondrial Dysfunction in Diabetic Kidney Disease via the PACS-2-Dependent Mechanism. Int J Biol Sci 2024; 20:569-584. [PMID: 38169625 PMCID: PMC10758092 DOI: 10.7150/ijbs.89291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Mitochondrial dysfunction in renal tubules, occurring early in the disease, is linked to the development of DKD, although the underlying pathways remain unclear. Here, we examine diabetic human and mouse kidneys, and HK-2 cells exposed to high glucose, to show that high glucose disrupts mitochondria-associated endoplasmic reticulum membrane (MAM) and causes mitochondrial fragmentation. We find that high glucose conditions increase mitogen-activated protein kinase 1(MAPK1), a member of the MAP kinase signal transduction pathway, which in turn lowers the level of phosphofurin acidic cluster sorting protein 2 (PACS-2), a key component of MAM that tethers mitochondria to the ER. MAPK1-induced disruption of MAM leads to mitochondrial fragmentation but this can be rescued in HK-2 cells by increasing PACS-2 levels. Functional studies in diabetic mice show that inhibition of MAPK1 increases PACS-2 and protects against the loss of MAM and the mitochondrial fragmentation. Taken together, these results identify the MAPK1-PACS-2 axis as a key pathway to therapeutically target as well as provide new insights into the pathogenesis of DKD.
Collapse
Affiliation(s)
- Shanshan Liu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shuai Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hongjun Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qiannan Xu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jihong Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xuanli Tang
- Department of nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Lin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Bing Yang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
9
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
10
|
Villar-Pazos S, Thomas L, Yang Y, Chen K, Lyles JB, Deitch BJ, Ochaba J, Ling K, Powers B, Gingras S, Kordasiewicz HB, Grubisha MJ, Huang YH, Thomas G. Neural deficits in a mouse model of PACS1 syndrome are corrected with PACS1- or HDAC6-targeting therapy. Nat Commun 2023; 14:6547. [PMID: 37848409 PMCID: PMC10582149 DOI: 10.1038/s41467-023-42176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder (NDD) caused by a recurrent de novo missense mutation in PACS1 (p.Arg203Trp (PACS1R203W)). The mechanism by which PACS1R203W causes PACS1 syndrome is unknown, and no curative treatment is available. Here, we use patient cells and PACS1 syndrome mice to show that PACS1 (or PACS-1) is an HDAC6 effector and that the R203W substitution increases the PACS1/HDAC6 interaction, aberrantly potentiating deacetylase activity. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi ribbon in hippocampal neurons and patient-derived neural progenitor cells (NPCs) to fragment and overpopulate dendrites, increasing their arborization. The dendrites, however, are beset with varicosities, diminished spine density, and fewer functional synapses, characteristic of NDDs. Treatment of PACS1 syndrome mice or patient NPCs with PACS1- or HDAC6-targeting antisense oligonucleotides, or HDAC6 inhibitors, restores neuronal structure and synaptic transmission in prefrontal cortex, suggesting that targeting PACS1R203W/HDAC6 may be an effective therapy for PACS1 syndrome.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jenea B Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Bradley J Deitch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Melanie J Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
11
|
Hur Y, Huynh J, Leong E, Dosanjh R, Charvat AF, Vu MH, Alam Z, Lee YT, Cabreros CC, Carroll EC, Hura GL, Wang N. The differing effects of a dual acting regulator on SIRT1. Front Mol Biosci 2023; 10:1260489. [PMID: 37711385 PMCID: PMC10499324 DOI: 10.3389/fmolb.2023.1260489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
SIRT1 is an NAD+-dependent protein deacetylase that has been shown to play a significant role in many biological pathways, such as insulin secretion, tumor formation, lipid metabolism, and neurodegeneration. There is great interest in understanding the regulation of SIRT1 to better understand SIRT1-related diseases and to better design therapeutic approaches that target SIRT1. There are many known protein and small molecule activators and inhibitors of SIRT1. One well-studied SIRT1 regulator, resveratrol, has historically been regarded as a SIRT1 activator, however, recent studies have shown that it can also act as an inhibitor depending on the identity of the peptide substrate. The inhibitory nature of resveratrol has yet to be studied in detail. Understanding the mechanism behind this dual behavior is crucial for assessing the potential side effects of STAC-based therapeutics. Here, we investigate the detailed mechanism of substrate-dependent SIRT1 regulation by resveratrol. We demonstrate that resveratrol alters the substrate recognition of SIRT1 by affecting the K M values without significantly impacting the catalytic rate (k cat). Furthermore, resveratrol destabilizes SIRT1 and extends its conformation, but the conformational changes differ between the activation and inhibition scenarios. We propose that resveratrol renders SIRT1 more flexible in the activation scenario, leading to increased activity, while in the inhibition scenario, it unravels the SIRT1 structure, compromising substrate recognition. Our findings highlight the importance of substrate identity in resveratrol-mediated SIRT1 regulation and provide insights into the allosteric control of SIRT1. This knowledge can guide the development of targeted therapeutics for diseases associated with dysregulated SIRT1 activity.
Collapse
Affiliation(s)
- Yujin Hur
- Department of Chemistry, San José State University, San José, CA, United States
| | - Johnson Huynh
- Department of Chemistry, San José State University, San José, CA, United States
| | - Emily Leong
- Department of Chemistry, San José State University, San José, CA, United States
| | - Reena Dosanjh
- Department of Chemistry, San José State University, San José, CA, United States
| | - Annemarie F. Charvat
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, United States
| | - My H. Vu
- Department of Chemistry, San José State University, San José, CA, United States
| | - Zain Alam
- Department of Chemistry, San José State University, San José, CA, United States
| | - Yue Tong Lee
- Department of Chemistry, San José State University, San José, CA, United States
| | | | - Emma C. Carroll
- Department of Chemistry, San José State University, San José, CA, United States
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ningkun Wang
- Department of Chemistry, San José State University, San José, CA, United States
| |
Collapse
|
12
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Cao Y, Zhang M, Li Y, Lu J, Zhou W, Li X, Shi H, Xu B, Li S. O-GlcNAcylation of SIRT1 Protects against Cold Stress-Induced Skeletal Muscle Damage via Amelioration of Mitochondrial Homeostasis. Int J Mol Sci 2022; 23:ijms232314520. [PMID: 36498847 PMCID: PMC9737900 DOI: 10.3390/ijms232314520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cold stress disturbs cellular metabolic and energy homeostasis, which is one of the causes of stress-induced illnesses. O-GlcNAcylation is a nutrient-sensing pathway involved in a myriad of cellular processes. It plays a key role in metabolic homeostasis. Nevertheless, a specific sensing mechanism linking skeletal muscle to O-GlcNAcylation in cold stress is unknown. In this study, O-GlcNAcylation of SIRT1 was targeted to explore the mechanism of skeletal muscle adaptation to cold stress. Ogt mKO aggravated skeletal muscle fibrosis induced by cold stress. At the same time, Ogt gene deletion accelerated the homeostasis imbalance and oxidative stress of skeletal muscle mitochondria induced by cold stress. In vitro results showed that inhibition of SIRT1's O-GlcNAcylation accelerated mild hypothermia induced mitochondrial homeostasis in mouse myogenic cells (C2C12 cells). However, overexpression of SIRT1's O-GlcNAcylation improved the above phenomena. Thus, these results reveal a protective role of OGT-SIRT1 in skeletal muscle's adaptation to cold stress, and our findings will provide new avenues to combat stress-induced diseases.
Collapse
Affiliation(s)
- Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ye Li
- Sheep Disease Laboratory, Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wanhui Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoshuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (B.X.); (S.L.)
| |
Collapse
|
14
|
Zang RX, Mumby MJ, Dikeakos JD. The Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) E209K Mutation Responsible for PACS-2 Syndrome Increases Susceptibility to Apoptosis. ACS OMEGA 2022; 7:34378-34388. [PMID: 36188273 PMCID: PMC9520720 DOI: 10.1021/acsomega.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional cytosolic membrane trafficking protein with distinct roles in maintaining cellular homeostasis. Recent clinical reports have described 28 individuals possessing a de novo PACS-2 E209K mutation that present with epileptic seizures and cerebellar dysgenesis. As the PACS-2 E209K missense mutation has become a marker for neurodevelopmental disorders, we sought to characterize its biochemical properties. Accordingly, we observed that the PACS-2 E209K protein exhibited a slower turnover rate relative to PACS-2 wild type (WT) upon cycloheximide treatment in 293T cells. The longer half-life of PACS-2 E209K suggests a disruption in its proteostasis, with the potential for altered protein-protein interactions. Indeed, a regulatory protein in neurodevelopment known as 14-3-3ε was identified as having an increased association with PACS-2 E209K. Subsequently, when comparing the effect of PACS-2 WT and E209K expression on the staurosporine-induced apoptosis response, we found that PACS-2 E209K increased susceptibility to staurosporine-induced apoptosis in HCT 116 cells. Overall, our findings suggest PACS-2 E209K alters PACS-2 proteostasis and favors complex formation with 14-3-3ε, leading to increased cell death in the presence of environmental stressors.
Collapse
|
15
|
Zhao C, Li L, Li C, Tang C, Cai J, Liu Y, Yang J, Xi Y, Yang M, Jiang N, Han Y, Liu Y, Luo S, Xiao L, Sun L. PACS-2 deficiency in tubular cells aggravates lipid-related kidney injury in diabetic kidney disease. Mol Med 2022; 28:117. [PMID: 36138342 PMCID: PMC9502582 DOI: 10.1186/s10020-022-00545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Lipid accumulation in tubular cells plays a key role in diabetic kidney disease (DKD). Targeting lipid metabolism disorders has clinical value in delaying the progression of DKD, but the precise mechanism by which molecules mediate lipid-related kidney injury remains unclear. Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional sorting protein that plays a role in lipid metabolism. This study determined the role of PACS-2 in lipid-related kidney injury in DKD. Methods Diabetes was induced by a high-fat diet combined with intraperitoneal injections of streptozotocin (HFD/STZ) in proximal tubule-specific knockout of Pacs-2 mice (PT-Pacs-2−/− mice) and the control mice (Pacs-2fl/fl mice). Transcriptomic analysis was performed between Pacs-2fl/fl mice and PT-Pacs-2−/− mice. Results Diabetic PT-Pacs-2−/− mice developed more severe tubule injury and proteinuria compared to diabetic Pacs-2fl/fl mice, which accompanied with increasing lipid synthesis, uptake and decreasing cholesterol efflux as well as lipid accumulation in tubules of the kidney. Furthermore, transcriptome analysis showed that the mRNA level of sterol O-acyltransferase 1 (Soat1) was up-regulated in the kidney of control PT-Pacs-2−/− mice. Transfection of HK2 cells with PACS-2 siRNA under high glucose plus palmitic acid (HGPA) condition aggravated lipid deposition and increased the expression of SOAT1 and sterol regulatory element-binding proteins (SREBPs), while the effect was blocked partially in that of co-transfection of SOAT1 siRNA. Conclusions PACS-2 has a protective role against lipid-related kidney injury in DKD through SOAT1/SREBPs signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00545-x.
Collapse
Affiliation(s)
- Chanyue Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Chenrui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ming Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Na Jiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yachun Han
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yan Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shilu Luo
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Lin Sun
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Huynh AT, Nguyen TTN, Villegas CA, Montemorso S, Strauss B, Pearson RA, Graham JG, Oribello J, Suresh R, Lustig B, Wang N. Prediction and confirmation of a switch-like region within the N-terminal domain of hSIRT1. Biochem Biophys Rep 2022; 30:101275. [PMID: 35592613 PMCID: PMC9112024 DOI: 10.1016/j.bbrep.2022.101275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Many proteins display conformational changes resulting from allosteric regulation. Often only a few residues are crucial in conveying these structural and functional allosteric changes. These regions that undergo a significant change in structure upon receiving an input signal, such as molecular recognition, are defined as switch-like regions. Identifying these key residues within switch-like regions can help elucidate the mechanism of allosteric regulation and provide guidance for synthetic regulation. In this study, we combine a novel computational workflow with biochemical methods to identify a switch-like region in the N-terminal domain of human SIRT1 (hSIRT1), a lysine deacetylase that plays important roles in regulating cellular pathways. Based on primary sequence, computational methods predicted a region between residues 186-193 in hSIRT1 to exhibit switch-like behavior. Mutations were then introduced in this region and the resulting mutants were tested for allosteric reactions to resveratrol, a known hSIRT1 allosteric regulator. After fine-tuning the mutations based on comparison of known secondary structures, we were able to pinpoint M193 as the residue essential for allosteric regulation, likely by communicating the allosteric signal. Mutation of this residue maintained enzyme activity but abolished allosteric regulation by resveratrol. Our findings suggest a method to predict switch-like regions in allosterically regulated enzymes based on the primary sequence. If further validated, this could be an efficient way to identify key residues in enzymes for therapeutic drug targeting and other applications.
Collapse
Affiliation(s)
- Angelina T. Huynh
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Thi-Tina N. Nguyen
- Department of Biological Sciences, San José State University, San José, California, 95192, USA
| | - Carina A. Villegas
- Department of Biological Sciences, San José State University, San José, California, 95192, USA
| | - Saira Montemorso
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Benjamin Strauss
- Department of Computer Science, San José State University, San José, California, 95192, USA
| | - Richard A. Pearson
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Jason G. Graham
- Department of Biomedical, Chemical, and Materials Engineering, San José State University, San José, California, 95192, USA
| | - Jonathan Oribello
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Rohit Suresh
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Brooke Lustig
- Department of Chemistry, San José State University, San José, California, 95192, USA
| | - Ningkun Wang
- Department of Chemistry, San José State University, San José, California, 95192, USA
| |
Collapse
|
17
|
Babenko AY. Metformin in prediabetes: key mechanisms for the prevention of diabetes and cardiometabolic risks. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:96-103. [DOI: 10.21518/2079-701x-2022-16-10-96-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Today, prediabetes is regarded by the world medical community as early diabetes mellitus. The accumulated research evidence shows that prediabetes is characterized by a spectrum of complications that are similar to those of diabetes mellitus, which means that the deterioration of cardiovascular prognosis starts already at the stage of prediabetes. In the current timeframe, metformin is actually the only drug that is widely prescribed for the treatment of prediabetes to prevent type 2 diabetes mellitus and cardiovascular diseases associated with insulin resistance and hyperinsulinemia. Meanwhile, metabolically unhealthy obesity characterized by hyperinsulinemia and insulin resistance is associated with a significantly unfavourable course of prediabetes, as well as the highest risk of developing both type 2 diabetes mellitus and cardiovascular diseases, development/ progression of chronic kidney disease. The theme of this review is the priority of metformin for the management of the most prognostically unfavourable phenotypes of prediabetes. The review is also devoted to the description of the most significant mechanisms that provide effects of metformin underlying the management of key disorders that determine the unfavourable prognosis of prediabetes. In particular, it sets forth the role of unhealthy nutrition, its effects on the development of imbalance of the composition of gut microbiota, which, in turn, entails a cascade of metabolic disorders underlying the development of metabolic ill health. The review sets forth the key role of metformin as a drug that protects against the development of these disorders. The information presented in this review will be useful to personalize the choice of both the scope and nature of interventions in patients with different phenotypic characteristics.
Collapse
|
18
|
Li C, Li L, Yang M, Yang J, Zhao C, Han Y, Zhao H, Jiang N, Wei L, Xiao Y, Liu Y, Xiong X, Xi Y, Luo S, Deng F, Chen W, Yuan S, Zhu X, Xiao L, Sun L. PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum-Mitochondria Contact and Mitophagy in Diabetic Nephropathy. Diabetes 2022; 71:1034-1050. [PMID: 35133431 DOI: 10.2337/db21-0983] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022]
Abstract
Mitochondria-associated endoplasmic reticulum membrane (MAM) may have a role in tubular injury in diabetic nephropathy (DN), but the precise mechanism remains unclear. Here, we demonstrate that the expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a critical regulator of MAM formation, is significantly decreased in renal tubules of patients with DN, and PACS-2 expression is positively correlated with renal function and negatively correlated with degrees of tubulointerstitial lesions. Conditional deletion of Pacs-2 in proximal tubules (PTs) aggravates albuminuria and tubular injury in a streptozotocin-induced mouse model of diabetes. Mitochondrial fragmentation, MAM disruption, and defective mitophagy accompanied by altered expression of mitochondrial dynamics and mitophagic proteins, including Drp1 and Becn1, are observed in tubules of diabetic mice; these changes are more pronounced in PT-specific Pacs-2 knockout mice. In vitro, overexpression of PACS-2 in HK-2 cells alleviates excessive mitochondrial fission induced by high glucose concentrations through blocking mitochondrial recruitment of DRP1 and subsequently restores MAM integrity and enhances mitophagy. Mechanistically, PACS-2 binds to BECN1 and mediates the relocalization of BECN1 to MAM, where it promotes the formation of mitophagosome. Together, these data highlight an important but previously unrecognized role of PACS-2 in ameliorating tubular injury in DN by facilitating MAM formation and mitophagy.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ling Wei
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiaofen Xiong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
19
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
20
|
Gronenborn AM. Meet the IUPAB councilor - Angela M. Gronenborn. Biophys Rev 2021; 13:835-838. [PMID: 35059003 PMCID: PMC8724357 DOI: 10.1007/s12551-021-00886-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/23/2023] Open
Abstract
As an incoming IUPAB Councilor, I have been asked to write a short commentary describing myself and my career in science. Throughout my scientific life, my interests have evolved from initially trying to understand the physical and chemical properties of small molecules toward unraveling biological systems. To that end, I now apply biophysical, biochemical and chemistry tools. Along my journey, I developed and applied nuclear magnetic resonance (NMR) spectroscopy methods to figure out how proteins work at the atomic level and this voyage took me from Germany, where I earned degrees in Physics and Chemistry, to the UK and back to Germany, finally dropping anchor in the USA, where I have led research programs at both the National Institutes of Health and the University of Pittsburgh. I am now the UPMC Rosalind Franklin Professor and Chair of the Department of Structural Biology, University of Pittsburgh School of Medicine, a Professor of Bioengineering, Swanson School of Engineering, and a Professor of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh.
Collapse
Affiliation(s)
- Angela M. Gronenborn
- Department of Structural Biology, School of Medicine, and Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Biomedical Science Tower 3, Room 1051, 3501 Fifth Avenue, Pittsburgh, PA 15260 USA
| |
Collapse
|
21
|
Garcia-Venzor A, Toiber D. SIRT6 Through the Brain Evolution, Development, and Aging. Front Aging Neurosci 2021; 13:747989. [PMID: 34720996 PMCID: PMC8548377 DOI: 10.3389/fnagi.2021.747989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
During an organism's lifespan, two main phenomena are critical for the organism's survival. These are (1) a proper embryonic development, which permits the new organism to function with high fitness, grow and reproduce, and (2) the aging process, which will progressively undermine its competence and fitness for survival, leading to its death. Interestingly these processes present various similarities at the molecular level. Notably, as organisms became more complex, regulation of these processes became coordinated by the brain, and failure in brain activity is detrimental in both development and aging. One of the critical processes regulating brain health is the capacity to keep its genomic integrity and epigenetic regulation-deficiency in DNA repair results in neurodevelopmental and neurodegenerative diseases. As the brain becomes more complex, this effect becomes more evident. In this perspective, we will analyze how the brain evolved and became critical for human survival and the role Sirt6 plays in brain health. Sirt6 belongs to the Sirtuin family of histone deacetylases that control several cellular processes; among them, Sirt6 has been associated with the proper embryonic development and is associated with the aging process. In humans, Sirt6 has a pivotal role during brain aging, and its loss of function is correlated with the appearance of neurodegenerative diseases such as Alzheimer's disease. However, Sirt6 roles during brain development and aging, especially the last one, are not observed in all species. It appears that during the brain organ evolution, Sirt6 has gained more relevance as the brain becomes bigger and more complex, observing the most detrimental effect in the brains of Homo sapiens. In this perspective, we part from the evolution of the brain in metazoans, the biological similarities between brain development and aging, and the relevant functions of Sirt6 in these similar phenomena to conclude with the evidence suggesting a more relevant role of Sirt6 gained in the brain evolution.
Collapse
Affiliation(s)
- Alfredo Garcia-Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
22
|
Packer M. Differential Pathophysiological Mechanisms in Heart Failure With a Reduced or Preserved Ejection Fraction in Diabetes. JACC-HEART FAILURE 2021; 9:535-549. [PMID: 34325884 DOI: 10.1016/j.jchf.2021.05.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Diabetes promotes the development of both heart failure with a reduced ejection fraction and heart failure with a preserved ejection fraction through diverse mechanisms, which are likely mediated through hyperinsulinemia rather than hyperglycemia. Diabetes promotes nutrient surplus signaling (through Akt and mammalian target of rapamycin complex 1) and inhibits nutrient deprivation signaling (through sirtuin-1 and its downstream effectors); this suppresses autophagy and promotes endoplasmic reticulum and oxidative stress and mitochondrial dysfunction, thereby undermining the health of diabetic cardiomyocytes. The hyperinsulinemia of diabetes may also activate sodium-hydrogen exchangers in cardiomyocytes (leading to injury and loss) and in the proximal renal tubules (leading to sodium retention). Diabetes may cause epicardial adipose tissue expansion, and the resulting secretion of proinflammatory adipocytokines onto the adjoining myocardium can lead to coronary microcirculatory dysfunction and myocardial inflammation and fibrosis. Interestingly, sodium-glucose cotransporter 2 (SGLT2) inhibitors-the only class of antidiabetic medication that reduces serious heart failure events-may act to mitigate each of these mechanisms. SGLT2 inhibitors up-regulate sirtuin-1 and its downstream effectors and autophagic flux, thus explaining the actions of these drugs to reduce oxidative stress, normalize mitochondrial structure and function, and mute proinflammatory pathways in the stressed myocardium. Inhibition of SGLT2 may also lead to a reduction in the activity of sodium-hydrogen exchangers in the kidney (leading to diuresis) and in the heart (attenuating the development of cardiac hypertrophy and systolic dysfunction). Finally, SGLT2 inhibitors reduce the mass and mute the adverse biology of epicardial adipose tissue (and reduce the secretion of leptin), thus explaining the capacity of these drugs to mitigate myocardial inflammation, microcirculatory dysfunction, and fibrosis, and improve ventricular filling dynamics. The pathophysiological mechanisms by which SGLT2 inhibitors may benefit heart failure likely differ depending on ejection fraction, but each represents interference with distinct pathways by which hyperinsulinemia may adversely affect cardiac structure and function.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College, London, United Kingdom.
| |
Collapse
|
23
|
Wei R, Han C, He F, Xiong X, Ye F, Liu H, Li L, Xu H, Wei S, Zeng X. Role of forkhead box protein O1 and insulin on cell proliferation mediated by sirtuin 1 in goose primary hepatocytes. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Siebert JC, Stanislawski MA, Zaman A, Ostendorf DM, Konigsberg IR, Jambal P, Ir D, Bing K, Wayland L, Scorsone JJ, Lozupone CA, Görg C, Frank DN, Bessesen D, MacLean PS, Melanson EL, Catenacci VA, Borengasser SJ. Multiomic Predictors of Short-Term Weight Loss and Clinical Outcomes During a Behavioral-Based Weight Loss Intervention. Obesity (Silver Spring) 2021; 29:859-869. [PMID: 33811477 PMCID: PMC8085074 DOI: 10.1002/oby.23127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Identifying predictors of weight loss and clinical outcomes may increase understanding of individual variability in weight loss response. We hypothesized that baseline multiomic features, including DNA methylation (DNAme), metabolomics, and gut microbiome, would be predictive of short-term changes in body weight and other clinical outcomes within a comprehensive weight loss intervention. METHODS Healthy adults with overweight or obesity (n = 62, age 18-55 years, BMI 27-45 kg/m2 , 75.8% female) participated in a 1-year behavioral weight loss intervention. To identify baseline omic predictors of changes in clinical outcomes at 3 and 6 months, whole-blood DNAme, plasma metabolites, and gut microbial genera were analyzed. RESULTS A network of multiomic relationships informed predictive models for 10 clinical outcomes (body weight, waist circumference, fat mass, hemoglobin A1c , homeostatic model assessment of insulin resistance, total cholesterol, triglycerides, C-reactive protein, leptin, and ghrelin) that changed significantly (P < 0.05). For eight of these, adjusted R2 ranged from 0.34 to 0.78. Our models identified specific DNAme sites, gut microbes, and metabolites that were predictive of variability in weight loss, waist circumference, and circulating triglycerides and that are biologically relevant to obesity and metabolic pathways. CONCLUSIONS These data support the feasibility of using baseline multiomic features to provide insight for precision nutrition-based weight loss interventions.
Collapse
Affiliation(s)
- Janet C. Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Adnin Zaman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle M. Ostendorf
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R. Konigsberg
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diana Ir
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Bing
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liza Wayland
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jared J. Scorsone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Catherine A. Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carsten Görg
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Bessesen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S. MacLean
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward L. Melanson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO, USA
| | - Victoria A. Catenacci
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J. Borengasser
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
25
|
Wang M, Lin H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem 2021; 90:245-285. [PMID: 33848425 DOI: 10.1146/annurev-biochem-082520-125411] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA; .,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
26
|
Zhang M, Lu P, Terada T, Sui M, Furuta H, Iida K, Katayama Y, Lu Y, Okamoto K, Suzuki M, Asakura T, Shimizu K, Hakuno F, Takahashi SI, Shimada N, Yang J, Ishikawa T, Tatsuzaki J, Nagata K. Quercetin 3,5,7,3',4'-pentamethyl ether from Kaempferia parviflora directly and effectively activates human SIRT1. Commun Biol 2021; 4:209. [PMID: 33608631 PMCID: PMC7896056 DOI: 10.1038/s42003-021-01705-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, is a crucial regulator that produces multiple physiological benefits, such as the prevention of cancer and age-related diseases. SIRT1 is activated by sirtuin-activating compounds (STACs). Here, we report that quercetin 3,5,7,3',4'-pentamethyl ether (KPMF-8), a natural STAC from Thai black ginger Kaempferia parviflora, interacts with SIRT1 directly and stimulates SIRT1 activity by enhancing the binding affinity of SIRT1 with Ac-p53 peptide, a native substrate peptide without a fluorogenic moiety. The binding affinity between SIRT1 and Ac-p53 peptide was enhanced 8.2-fold by KPMF-8 but only 1.4-fold by resveratrol. The specific binding sites of KPMF-8 to SIRT1 were mainly localized to the helix2-turn-helix3 motif in the N-terminal domain of SIRT1. Intracellular deacetylase activity in MCF-7 cells was promoted 1.7-fold by KPMF-8 supplemented in the cell medium but only 1.2-fold by resveratrol. This work reveals that KPMF-8 activates SIRT1 more effectively than resveratrol does.
Collapse
Affiliation(s)
- Mimin Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Peng Lu
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Tohru Terada
- grid.26999.3d0000 0001 2151 536XDepartment of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XAgricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Miaomiao Sui
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Haruka Furuta
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Kilico Iida
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.5290.e0000 0004 1936 9975Division of Food and Nutrition, Graduate School of Human Sciences, Kyoritsu Women’s University, Tokyo, Japan
| | - Yukie Katayama
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Yi Lu
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Ken Okamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Michio Suzuki
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Tomiko Asakura
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Kentaro Shimizu
- grid.26999.3d0000 0001 2151 536XDepartment of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XAgricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Fumihiko Hakuno
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Shin-Ichiro Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | | | - Jinwei Yang
- Tokiwa Phytochemical Co. Ltd., Sakura Chiba, Japan
| | | | | | - Koji Nagata
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XAgricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| |
Collapse
|
27
|
Yang S, Zhou R, Zhang C, He S, Su Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in the Pathogenesis of Type 2 Diabetes Mellitus. Front Cell Dev Biol 2020; 8:571554. [PMID: 33195204 PMCID: PMC7606698 DOI: 10.3389/fcell.2020.571554] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are essential intracellular organelles that actively communicate via temporally and spatially formed contacts called mitochondria-associated membranes (MAMs). These mitochondria-ER contacts are not only necessary for the physiological function of the organelles and their coordination with each other, but they also control the intracellular lipid exchange, calcium signaling, cell survival, and homeostasis in cellular metabolism. Growing evidence strongly supports the role of the mitochondria-ER connection in the insulin resistance of peripheral tissues, pancreatic β cell dysfunction, and the consequent development of type 2 diabetes mellitus (T2DM). In this review, we summarize current advances in the understanding of the mitochondria-ER connection and specifically focus on addressing a new perspective of the alterations in mitochondria-ER communication in insulin signaling and β cell maintenance.
Collapse
Affiliation(s)
- Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Siyuan He
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Li C, Li L, Yang M, Zeng L, Sun L. PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res 2020; 160:105080. [DOI: 10.1016/j.phrs.2020.105080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
29
|
Packer M. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation 2020; 141:2095-2105. [DOI: 10.1161/circulationaha.119.045561] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors reduce the risk of serious heart failure and adverse renal events, but the mechanisms that underlie this benefit are not understood. Treatment with SGLT2 inhibitors is distinguished by 2 intriguing features: ketogenesis and erythrocytosis. Both reflect the induction of a fasting-like and hypoxia-like transcriptional paradigm that is capable of restoring and maintaining cellular homeostasis and survival. In the face of perceived nutrient and oxygen deprivation, cells activate low-energy sensors, which include sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia inducible factors (HIFs; especially HIF-2α); these enzymes and transcription factors are master regulators of hundreds of genes and proteins that maintain cellular homeostasis. The activation of SIRT1 (through its effects to promote gluconeogenesis and fatty acid oxidation) drives ketogenesis, and working in concert with AMPK, it can directly inhibit inflammasome activation and maintain mitochondrial capacity and stability. HIFs act to promote oxygen delivery (by stimulating erythropoietin and erythrocytosis) and decrease oxygen consumption. The activation of SIRT1, AMPK, and HIF-2α enhances autophagy, a lysosome-dependent degradative pathway that removes dangerous constituents, particularly damaged mitochondria and peroxisomes, which are major sources of oxidative stress and triggers of cellular dysfunction and death. SIRT1 and AMPK also act on sodium transport mechanisms to reduce intracellular sodium concentrations. It is interesting that type 2 diabetes mellitus, obesity, chronic heart failure, and chronic kidney failure are characterized by the accumulation of intracellular glucose and lipid intermediates that are perceived by cells as indicators of energy overabundance. The cells respond by downregulating SIRT1, AMPK, and HIF-2α, thus leading to an impairment of autophagic flux and acceleration of cardiomyopathy and nephropathy. SGLT2 inhibitors reverse this maladaptive signaling by triggering a state of fasting and hypoxia mimicry, which includes activation of SIRT1, AMPK, and HIF-2α, enhanced autophagic flux, reduced cellular stress, decreased sodium influx into cells, and restoration of mitochondrial homeostasis. This mechanistic framework clarifies the findings of large-scale randomized trials and the close association of ketogenesis and erythrocytosis with the cardioprotective and renoprotective benefits of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
30
|
Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2020; 117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of serious heart failure events, even though SGLT2 is not expressed in the myocardium. This cardioprotective benefit is not related to an effect of these drugs to lower blood glucose, promote ketone body utilization or enhance natriuresis, but it is linked statistically with their action to increase haematocrit. SGLT2 inhibitors increase both erythropoietin and erythropoiesis, but the increase in red blood cell mass does not directly prevent heart failure events. Instead, erythrocytosis is a biomarker of a state of hypoxia mimicry, which is induced by SGLT2 inhibitors in manner akin to cobalt chloride. The primary mediators of the cellular response to states of energy depletion are sirtuin-1 and hypoxia-inducible factors (HIF-1α/HIF-2α). These master regulators promote the cellular adaptation to states of nutrient and oxygen deprivation, promoting mitochondrial capacity and minimizing the generation of oxidative stress. Activation of sirtuin-1 and HIF-1α/HIF-2α also stimulates autophagy, a lysosome-mediated degradative pathway that maintains cellular homoeostasis by removing dangerous constituents (particularly unhealthy mitochondria and peroxisomes), which are a major source of oxidative stress and cardiomyocyte dysfunction and demise. SGLT2 inhibitors can activate SIRT-1 and stimulate autophagy in the heart, and thereby, favourably influence the course of cardiomyopathy. Therefore, the linkage between erythrocytosis and the reduction in heart failure events with SGLT2 inhibitors may be related to a shared underlying molecular mechanism that is triggered by the action of these drugs to induce a perceived state of oxygen and nutrient deprivation.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
31
|
Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia. Proc Natl Acad Sci U S A 2020; 117:6890-6900. [PMID: 32152092 DOI: 10.1073/pnas.1909943117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD+-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.
Collapse
|
32
|
A novel form of Deleted in breast cancer 1 (DBC1) lacking the N-terminal domain does not bind SIRT1 and is dynamically regulated in vivo. Sci Rep 2019; 9:14381. [PMID: 31591441 PMCID: PMC6779753 DOI: 10.1038/s41598-019-50789-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
The protein Deleted in Breast Cancer-1 is a regulator of several transcription factors and epigenetic regulators, including HDAC3, Rev-erb-alpha, PARP1 and SIRT1. It is well known that DBC1 regulates its targets, including SIRT1, by protein-protein interaction. However, little is known about how DBC1 biological activity is regulated. In this work, we show that in quiescent cells DBC1 is proteolytically cleaved, producing a protein (DN-DBC1) that misses the S1-like domain and no longer binds to SIRT1. DN-DBC1 is also found in vivo in mouse and human tissues. Interestingly, DN-DBC1 is cleared once quiescent cells re-enter to the cell cycle. Using a model of liver regeneration after partial hepatectomy, we found that DN-DBC1 is down-regulated in vivo during regeneration. In fact, WT mice show a decrease in SIRT1 activity during liver regeneration, coincidentally with DN-DBC1 downregulation and the appearance of full length DBC1. This effect on SIRT1 activity was not observed in DBC1 KO mice. Finally, we found that DBC1 KO mice have altered cell cycle progression and liver regeneration after partial hepatectomy, suggesting that DBC1/DN-DBC1 transitions play a role in normal cell cycle progression in vivo after cells leave quiescence. We propose that quiescent cells express DN-DBC1, which either replaces or coexist with the full-length protein, and that restoring of DBC1 is required for normal cell cycle progression in vitro and in vivo. Our results describe for the first time in vivo a naturally occurring form of DBC1, which does not bind SIRT1 and is dynamically regulated, thus contributing to redefine the knowledge about its function.
Collapse
|
33
|
Gordaliza‐Alaguero I, Cantó C, Zorzano A. Metabolic implications of organelle-mitochondria communication. EMBO Rep 2019; 20:e47928. [PMID: 31418169 PMCID: PMC6726909 DOI: 10.15252/embr.201947928] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular organelles are not static but show dynamism-a property that is likely relevant for their function. In addition, they interact with other organelles in a highly dynamic manner. In this review, we analyze the proteins involved in the interaction between mitochondria and other cellular organelles, especially the endoplasmic reticulum, lipid droplets, and lysosomes. Recent results indicate that, on one hand, metabolic alterations perturb the interaction between mitochondria and other organelles, and, on the other hand, that deficiency in proteins involved in the tethering between mitochondria and the ER or in specific functions of the interaction leads to metabolic alterations in a variety of tissues. The interaction between organelles is an emerging field that will permit to identify key proteins, to delineate novel modulation pathways, and to elucidate their implications in human disease.
Collapse
Affiliation(s)
- Isabel Gordaliza‐Alaguero
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Carlos Cantó
- Nestle Institute of Health Sciences (NIHS)LausanneSwitzerland
- School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- CIBER de Diabetes y Enfermedades Metabolicas AsociadasBarcelonaSpain
- Departamento de Bioquimica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
34
|
Nakao M, Anan K, Araki H, Hino S. Distinct Roles of the NAD +-Sirt1 and FAD-LSD1 Pathways in Metabolic Response and Tissue Development. Trends Endocrinol Metab 2019; 30:409-412. [PMID: 31151734 DOI: 10.1016/j.tem.2019.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 01/23/2023]
Abstract
Various nutritional signals are transduced by two epigenetic pathways: NAD-dependent sirtuin Sirt1 (NAD+-Sirt1) deacetylase and flavin adenine dinucleotide-dependent lysine-specific demethylase 1 (FAD-LSD1). These pathways are controlled by dietary vitamins and nutrient-responsive hormones such as glucocorticoids and insulin, resulting in endocrine-metabolism-epigenome cooperation in adipocyte and skeletal muscle development.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| | - Kotaro Anan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Abstract
In this issue of Molecular Cell, Krzysiak et al. (2018) describe a mechanism by which insulin signaling represses the NAD+-dependent SIRT1 deacetylase by promoting PACS-2 binding and provide structural clues to understanding how SIRT1 activating compounds (STACs) work.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular, Cell and Cancer Biology Program, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
36
|
Kosciuk T, Wang M, Hong JY, Lin H. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol 2019; 51:18-29. [PMID: 30875552 DOI: 10.1016/j.cbpa.2019.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Sirtuins are a class of enzyme with NAD+-dependent protein lysine deacylase activities. They were initially discovered to regulate transcription and life span via histone deacetylase activities. Later studies expanded their activities to other proteins and acyl lysine modifications. Through deacylating various substrate proteins, they regulate many biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Here, we review recent understandings of the epigenetic functions (broadly defined to include transcriptional, post-transcriptional regulation, and DNA repair) of mammalian sirtuins. Because of the important functions of sirtuins, their own regulation is of great interest and is also discussed.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|