1
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Ma Y, Guo T, Ding J, Dong Z, Ren Y, Lu C, Zhao Y, Guo X, Cao G, Li B, Gao P. RNA-seq analysis of small intestine transcriptional changes induced by starvation stress in piglets. Anim Biotechnol 2024; 35:2295931. [PMID: 38147885 DOI: 10.1080/10495398.2023.2295931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Piglets may experience a variety of stress injuries, but the molecular regulatory mechanisms underlying these injuries are not well understood. In this study, we analysed the ileum of Large White (LW) and Mashen (MS) piglets at different times of starvation using chemical staining and transcriptome analysis. The intestinal barrier of piglets was damaged after starvation stress, but the intestinal antistress ability of MS piglets was stronger than LW piglets. A total of 8021 differentially expressed genes (DEGs) were identified in two breeds. Interestingly, the immune capacity (CHUK, TLR3) of MS piglets increased significantly after short-term starvation stress, while energy metabolism (NAGS, PLA2G12B, AGCG8) was predominant in LW piglets. After long-term starvation stress, the level of energy metabolism (PLIN5, PLA2G12B) was significantly increased in MS piglets. The expression of immune (HLA-DQB1, IGHG4, COL3A1, CD28, LAT) and disease (HSPA1B, MINPPI, ADH1C, GAL3ST1) related genes were significantly increased in two breeds of piglets. These results suggest that short-term stress mainly enhances immunity and energy metabolism in piglets, while long-term starvation produces greater stress on piglets, making it difficult for them to compensate for the damage to their bodies through self-regulation. This information can help improve the stress resistance of piglets through molecular breeding.
Collapse
Affiliation(s)
- Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianqin Ding
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhiling Dong
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yifei Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
3
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Wang C, Zhai J, Zhou X, Chen Y. Lipid metabolism: Novel approaches for managing idiopathic epilepsy. Neuropeptides 2024; 108:102475. [PMID: 39366134 DOI: 10.1016/j.npep.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Epilepsy is a common neurological condition characterized by abnormal neuronal activity, often leading to cellular damage and death. There is evidence to suggest that lipid imbalances resulting in cellular death play a key role in the development of epilepsy, including changes in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Disrupted lipid metabolism acts as a crucial pathological mechanism in epilepsy, potentially linked to processes such as cellular ferroptosis, lipophagy, and immune modulation of gut microbiota (thus influencing the gut-brain axis). Understanding these mechanisms could open up new avenues for epilepsy treatment. This study investigates the association between disturbances in lipid metabolism and the onset of epilepsy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuemei Zhou
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
5
|
Xiong Y, Shi X, Xiong X, Li S, Zhao H, Song H, Wang J, Zhang L, You S, Ji G, Liu B, Wu N. A systematic review and meta-analysis of randomized controlled trials: effects of mediterranean diet and low-fat diet on liver enzymes and liver fat content of NAFLD. Food Funct 2024; 15:8248-8257. [PMID: 39076035 DOI: 10.1039/d4fo01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) has emerged as a leading cause of several chronic diseases, imposing a significant global economic burden. The Mediterranean diet (MD) and low-fat diet (LFD) are the two primary recommended dietary patterns that exhibit distinct positive effects on treating NAFLD. Objective: To investigate which of the two diets, MD and LFD, is more effective in the treatment of NAFLD. Methods: Randomized controlled trials (RCTs) up to April 2024 were searched for in PubMed, Web of Science, Medline, Scopus and Embase. Interventions included MD or LFD, with primary outcome measures being intrahepatic lipid, liver stiffness, triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, gamma-glutamyl transferase, and homeostasis model assessment of insulin resistance. Secondary outcomes included weight, waist circumference, and body mass index. Use of random effects meta-analysis to assess outcomes of interest. Results: meta-analysis revealed no significant differences between MD and LFD in improving liver enzymes, liver fat, and related indices in NAFLD patients. Our findings provide compelling evidence for patients and healthcare professionals, allowing patients to choose a dietary pattern that aligns with their preferences and disease conditions. In summary, both MD and LFD can equivalently ameliorate NAFLD in the short term. Conclusions: Our results show that MD and LFD have similar therapeutic effects on liver enzymes and liver fat content in patients with NAFLD in the short term. Furthermore, our meta-analysis results have also opened up a new avenue of thought as to whether similar effects are achieved by alternating MD and LFD on alternate days.
Collapse
Affiliation(s)
- Yalan Xiong
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyu Shi
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinying Xiong
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shenyu Li
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hanhua Zhao
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou, China
| | - Hualing Song
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jianying Wang
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lei Zhang
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shengfu You
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Baocheng Liu
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Na Wu
- School of Public Health, Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Zheng Y, Chen J, Macwan V, Dixon CL, Li X, Liu S, Yu Y, Xu P, Sun Q, Hu Q, Liu W, Raught B, Fairn GD, Neculai D. S-acylation of ATGL is required for lipid droplet homoeostasis in hepatocytes. Nat Metab 2024; 6:1549-1565. [PMID: 39143266 DOI: 10.1038/s42255-024-01085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Lipid droplets (LDs) are organelles specialized in the storage of neutral lipids, cholesterol esters and triglycerides, thereby protecting cells from the toxicity of excess lipids while allowing for the mobilization of lipids in times of nutrient deprivation. Defects in LD function are associated with many diseases. S-acylation mediated by zDHHC acyltransferases modifies thousands of proteins, yet the physiological impact of this post-translational modification on individual proteins is poorly understood. Here, we show that zDHHC11 regulates LD catabolism by modifying adipose triacylglyceride lipase (ATGL), the rate-limiting enzyme of lipolysis, both in hepatocyte cultures and in mice. zDHHC11 S-acylates ATGL at cysteine 15. Preventing the S-acylation of ATGL renders it catalytically inactive despite proper localization. Overexpression of zDHHC11 reduces LD size, whereas its elimination enlarges LDs. Mutating ATGL cysteine 15 phenocopies zDHHC11 loss, causing LD accumulation, defective lipolysis and lipophagy. Our results reveal S-acylation as a mode of regulation of ATGL function and LD homoeostasis. Modulating this pathway may offer therapeutic potential for treating diseases linked to defective lipolysis, such as fatty liver disease.
Collapse
Affiliation(s)
- Yuping Zheng
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jishun Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Vinitha Macwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charneal L Dixon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Xinran Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Shengjie Liu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuyun Yu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Pinglong Xu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qi Hu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Dante Neculai
- Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| |
Collapse
|
7
|
Liu Q, Li S, Ma D, Chen J, Li C, Zhuang W, Chen M. Ros-responsive nano-platform for lipid-specific fluorescence imaging of atherosclerosis. J Colloid Interface Sci 2024; 667:520-528. [PMID: 38653073 DOI: 10.1016/j.jcis.2024.04.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Fluorescent probes that specifically targeting Lipid droplets (LDs) have shown potential in biological imaging. Albeit, their in vivo applications are limited due to the hydrophobicity, low signal-to-noise ratio (SNR) and LDs-specificity. Thus, we designed a novel probe namely MeOND, and a reactive oxygen species (ROS)-responsive nano-platform to improve in vivo LDs-specific imaging. MeOND exhibits a remarkable twisted intramolecular charge transfer (TICT) effect with a strongly enhanced near-infrared emission in low-polarity lipid environment. Also, MeOND demonstrates satisfactory biocompatibility and superior intracellular LDs imaging capabilities. MeOND encapsulated nano-platform (MeOND@PMM) presented favorable water solubility and biocompatibility. MeOND@PMM remains stable in physiological conditions but quickly degrades in the environment of elevated ROS level. The released MeOND could then light up the intracellular LDs in atherosclerotic plaques. The design of the probe and nano-platform is expected to provide a better tool for the scientific research of LDs and LDs-related diseases.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, Precision Medicine Translational Research Center, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shufen Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, Precision Medicine Translational Research Center, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Di Ma
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, Precision Medicine Translational Research Center, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingruo Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, Precision Medicine Translational Research Center, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chengming Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, Precision Medicine Translational Research Center, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weihua Zhuang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, Precision Medicine Translational Research Center, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, Precision Medicine Translational Research Center, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
8
|
Liu Y, Liang Y, Zhao X, Ma S, Sun G, Li Y. Individual and interaction effects of monounsaturated fatty acids on their associations with hypertension in Chinese residents. Food Funct 2024; 15:7907-7919. [PMID: 38973334 DOI: 10.1039/d4fo01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Currently, associations between dietary intakes of individual monounsaturated fatty acids (MUFAs) and hypertension were not well disclosed, and the interaction effects of MUFAs on their associations with hypertension were unknown. Obesity was correlated with both MUFAs and hypertension, while if anthropometric obesity indices performed mediating roles in associations between MUFAs and hypertension remained underdetermined. In our study, 8509 Chinese adults investigated from 2004 to 2011 were included. Dietary information collection and physical examinations were performed at baseline and each timepoint of follow-up. As we found, inverse associations of MUFA17, MUFA18 and MUFA20 with hypertension were statistically significant after adjustments, hazard ratios (HRs) were 0.87, 0.90 and 0.91, respectively. MUFA15 was positively associated with hypertension, with an HR of 1.07 (95% confidence interval: 1.01, 1.12). By performing principal component analysis (PCA) to estimate the joint effects of MUFAs on hypertension, the PCA score of MUFAs was only inversely associated with blood pressure. No joint effect was observed in g-computation analyses. Both linear and nonlinear interactions of MUFAs on their associations with hypertension were estimated using restricted cubic spline analysis. The association between MUFA15 and hypertension was interacted by MUFA17, and the association between MUFA20 and hypertension was interacted by MUFA18. The mediation effects of body mass index and waist circumference were found on associations of hypertension with MUFA15, MUFA17 and MUFA20. Our findings suggested that associations with hypertension were different among individual MUFAs, and mutual interactions existed, implying that the utility of individual MUFAs might be recommended for estimating relationships between MUFAs and diseases. Moreover, fat accumulation might potentially underlie associations between MUFAs and hypertension.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanhong Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Shuxian Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Guifan Sun
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Yongfang Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
10
|
Li S, Han B, Li J, Lv Z, Jiang H, Liu Y, Yang X, Lu J, Zhang Z. Resveratrol Alleviates Liver Fibrosis Induced by Long-Term Inorganic Mercury Exposure through Activating the Sirt1/ PGC-1α Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15985-15997. [PMID: 38959496 DOI: 10.1021/acs.jafc.4c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Liver disease has become an important risk factor for global health. Resveratrol (Res) is a natural polyphenol which is widely found in foods and has a variety of biological activities. This study investigated the role of the microbiota-gut-liver axis in the Res relieving the liver fibrosis induced by inorganic mercury exposure. Twenty-eight mice were divided into four groups (n = 7) and treated with mercuric chloride and/or Res for 24 weeks, respectively. The results showed that Res mitigated the ileum injury induced by inorganic mercury and restrained LPS and alcohol entering the body circulation. Network pharmacological and molecular analyses showed that Res alleviated oxidative stress, metabolism disorders, inflammation, and hepatic stellate cell activation in the liver. In conclusion, Res alleviates liver fibrosis induced by inorganic mercury via activating the Sirt1/PGC-1α signaling pathway and regulating the microbial-gut-liver axis, particularly, increasing the relative enrichment of Bifidobacterium in the intestinal tract.
Collapse
Affiliation(s)
- Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yunfeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Jingjing Lu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China
| |
Collapse
|
11
|
Zhou R, Liu Y, Hu W, Yang J, Lin B, Zhang Z, Chen M, Yi J, Zhu C. Lycium barbarum polysaccharide ameliorates the accumulation of lipid droplets in adipose tissue via an ATF6/SIRT1-dependent mechanism. Acta Biochim Biophys Sin (Shanghai) 2024; 56:844-856. [PMID: 38606478 PMCID: PMC11214951 DOI: 10.3724/abbs.2024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 04/13/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.
Collapse
Affiliation(s)
- Rui Zhou
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Yajing Liu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Weiqian Hu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jing Yang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Bing Lin
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Zhentian Zhang
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Mingyan Chen
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Jingwen Yi
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| | - Cuifeng Zhu
- />Department of Clinical NutritionShenzhen Hospital of Southern Medical UniversityShenzhen518000China
| |
Collapse
|
12
|
Fan H, Tan Y. Lipid Droplet-Mitochondria Contacts in Health and Disease. Int J Mol Sci 2024; 25:6878. [PMID: 38999988 PMCID: PMC11240910 DOI: 10.3390/ijms25136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The orchestration of cellular metabolism and redox balance is a complex, multifaceted process crucial for maintaining cellular homeostasis. Lipid droplets (LDs), once considered inert storage depots for neutral lipids, are now recognized as dynamic organelles critical in lipid metabolism and energy regulation. Mitochondria, the powerhouses of the cell, play a central role in energy production, metabolic pathways, and redox signaling. The physical and functional contacts between LDs and mitochondria facilitate a direct transfer of lipids, primarily fatty acids, which are crucial for mitochondrial β-oxidation, thus influencing energy homeostasis and cellular health. This review highlights recent advances in understanding the mechanisms governing LD-mitochondria interactions and their regulation, drawing attention to proteins and pathways that mediate these contacts. We discuss the physiological relevance of these interactions, emphasizing their role in maintaining energy and redox balance within cells, and how these processes are critical in response to metabolic demands and stress conditions. Furthermore, we explore the pathological implications of dysregulated LD-mitochondria interactions, particularly in the context of metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease, and their potential links to cardiovascular and neurodegenerative diseases. Conclusively, this review provides a comprehensive overview of the current understanding of LD-mitochondria interactions, underscoring their significance in cellular metabolism and suggesting future research directions that could unveil novel therapeutic targets for metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Hongjun Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Van Woerkom A, Harney DJ, Nagarajan SR, Hakeem-Sanni MF, Lin J, Hooke M, Pulpitel T, Cooney GJ, Larance M, Saunders DN, Brandon AE, Hoy AJ. Hepatic lipid droplet-associated proteome changes distinguish dietary-induced fatty liver from glucose tolerance in male mice. Am J Physiol Endocrinol Metab 2024; 326:E842-E855. [PMID: 38656127 PMCID: PMC11376491 DOI: 10.1152/ajpendo.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Fatty liver is characterized by the expansion of lipid droplets (LDs) and is associated with the development of many metabolic diseases. We assessed the morphology of hepatic LDs and performed quantitative proteomics in lean, glucose-tolerant mice compared with high-fat diet (HFD) fed mice that displayed hepatic steatosis and glucose intolerance as well as high-starch diet (HStD) fed mice who exhibited similar levels of hepatic steatosis but remained glucose tolerant. Both HFD- and HStD-fed mice had more and larger LDs than Chow-fed animals. We observed striking differences in liver LD proteomes of HFD- and HStD-fed mice compared with Chow-fed mice, with fewer differences between HFD and HStD. Taking advantage of our diet strategy, we identified a fatty liver LD proteome consisting of proteins common in HFD- and HStD-fed mice, as well as a proteome associated with glucose tolerance that included proteins shared in Chow and HStD but not HFD-fed mice. Notably, glucose intolerance was associated with changes in the ratio of adipose triglyceride lipase to perilipin 5 in the LD proteome, suggesting dysregulation of neutral lipid homeostasis in glucose-intolerant fatty liver. We conclude that our novel dietary approach uncouples ectopic lipid burden from insulin resistance-associated changes in the hepatic lipid droplet proteome.NEW & NOTEWORTHY This study identified a fatty liver lipid droplet proteome and one associated with glucose tolerance. Notably, glucose intolerance was linked with changes in the ratio of adipose triglyceride lipase to perilipin 5 that is indicative of dysregulation of neutral lipid homeostasis.
Collapse
Affiliation(s)
- Andries Van Woerkom
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Dylan J Harney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jinfeng Lin
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Hooke
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Mark Larance
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Darren N Saunders
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda E Brandon
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
15
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
16
|
Bakhtiari S, Asri N, Jahdkaran M, Rezaei-Tavirani M, Jahani-Sherafat S, Rostami-Nejad M. The connection between fatty acids and inflammation in celiac disease; a deep exploring. Tissue Barriers 2024:2342619. [PMID: 38618691 DOI: 10.1080/21688370.2024.2342619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The interplay between fatty acids (FAs) and celiac disease (CD) is a burgeoning field of research with significant implications for understanding the pathophysiology and potential therapeutic avenues for this autoimmune disorder. CD, triggered by gluten consumption in susceptible individuals, presents with a range of intestinal and extra-intestinal symptoms impacting various bodily functions. The disruption of intestinal tight junctions (TJs) by gluten proteins leads to increased gut permeability and subsequent inflammatory responses mediated by T-cells. FAs, crucial components of cell membranes, play diverse roles in inflammation and immune regulation. In fact, FAs have been shown to modulate inflammatory processes through various mechanisms. Studies have highlighted alterations in FA profiles in individuals with CD, indicating potential implications for disease pathogenesis and micronutrient deficiencies. Moreover, the exploration of FAs as biomarkers for CD diagnosis offers promising avenues for future research and therapeutic interventions. Understanding the intricate relationship between FAs and CD could lead to novel approaches in managing this complex autoimmune disorder. Therefore, this review article aims to provide an overview of the connection between FAs and inflammation in CD.
Collapse
Affiliation(s)
- Sajjad Bakhtiari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Yin X, Dong L, Wang X, Qin Z, Ma Y, Ke X, Li Y, Wang Q, Mi Y, Lyu Q, Xu X, Zheng P, Tang Y. Perilipin 5 regulates hepatic stellate cell activation and high-fat diet-induced non-alcoholic fatty liver disease. Animal Model Exp Med 2024; 7:166-178. [PMID: 37202925 PMCID: PMC11079159 DOI: 10.1002/ame2.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases globally. Hepatic stellate cells (HSCs) are the major effector cells of liver fibrosis. HSCs contain abundant lipid droplets (LDs) in their cytoplasm during quiescence. Perilipin 5 (PLIN 5) is a LD surface-associated protein that plays a crucial role in lipid homeostasis. However, little is known about the role of PLIN 5 in HSC activation. METHODS PLIN 5 was overexpressed in HSCs of Sprague-Dawley rats by lentivirus transfection. At the same time, PLIN 5 gene knockout mice were constructed and fed with a high-fat diet (HFD) for 20 weeks to study the role of PLIN 5 in NAFLD. The corresponding reagent kits were used to measure TG, GSH, Caspase 3 activity, ATP level, and mitochondrial DNA copy number. Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS. AMPK, mitochondrial function, cell proliferation, and apoptosis-related genes and proteins were detected by western blotting and qPCR. RESULTS Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria, inhibition of cell proliferation, and a significant increase in cell apoptosis through AMPK activation. In addition, compared with the HFD-fed C57BL/6J mice, PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition, decreased LD abundance and size, and reduced liver fibrosis. CONCLUSION These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.
Collapse
Affiliation(s)
- Xuecui Yin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Dong
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaohan Wang
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenzhen Qin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuying Ma
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaofei Ke
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ya Li
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qingde Wang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Mi
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanjun Lyu
- Department of Clinical Nutritionthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New drug R & D and Preclinical Safety, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Pengyuan Zheng
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Youcai Tang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pediatrics, Gastroenterology, Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury and Henan Provincial Outstanding Overseas Scientists Chronic Liver Injury Studiothe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
18
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Wang Y, Zheng J, Long Y, Wu W, Zhu Y. Direct degradation and stabilization of proteins: New horizons in treatment of nonalcoholic steatohepatitis. Biochem Pharmacol 2024; 220:115989. [PMID: 38122854 DOI: 10.1016/j.bcp.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is featured with excessive hepatic lipid accumulation and its global prevalence is soaring. Nonalcoholic steatohepatitis (NASH), the severe systemic inflammatory subtype of NAFLD, is tightly associated with metabolic comorbidities, and the hepatocytes manifest severe inflammation and ballooning. Currently the therapeutic options for treating NASH are limited. Potent small molecules specifically intervene with the signaling pathways that promote pathogenesis of NASH. Nevertheless they have obvious adverse effects and show long-term ineffectiveness in clinical trials. It poses the fundamental question to efficiently and safely inhibit the pathogenic processes. Targeted protein degradation (TPD) belongs to the direct degradation strategies and is a burgeoning strategy. It utilizes the small molecules to bind to the target proteins and recruit the endogenous proteasome, lysosome and autophagosome-mediated degradation machineries. They effectively and specifically degrade the target proteins. It has exhibited promising therapeutic effects in treatment of cancer, neurodegenerative diseases and other diseases in a catalytic manner at low doses. We critically discuss the principles of multiple direct degradation strategies, especially PROTAC and ATTEC. We extensively analyze their emerging application in degradation of excessive pathogenic proteins and lipid droplets, which promote the progression of NASH. Moreover, we discuss the opposite strategy that utilizes the small molecules to recruit deubiquinases to stabilize the NASH/MASH-suppressing proteins. Their advantages, limitations, as well as the solutions to address the limitations have been analyzed. In summary, the innovative direct degradation strategies provide new insights into design of next-generation therapeutics to combat NASH with optimal safety paradigm and efficiency.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, PR China.
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yun Long
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, PR China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| |
Collapse
|
20
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
22
|
Scott JS, Quek LE, Hoy AJ, Swinnen JV, Nassar ZD, Butler LM. Fatty acid elongation regulates mitochondrial β-oxidation and cell viability in prostate cancer by controlling malonyl-CoA levels. Biochem Biophys Res Commun 2024; 691:149273. [PMID: 38029544 DOI: 10.1016/j.bbrc.2023.149273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Recently, the fatty acid elongation enzyme ELOVL5 was identified as a critical pro-metastatic factor in prostate cancer, required for cell growth and mitochondrial homeostasis. The fatty acid elongation reaction catalyzed by ELOVL5 utilizes malonyl-CoA as the carbon donor. Here, we demonstrate that ELOVL5 knockdown causes malonyl-CoA accumulation. Malonyl-CoA is a cellular substrate that can inhibit fatty acid β-oxidation in the mitochondria through allosteric inhibition of carnitine palmitoyltransferase 1A (CPT1A), the enzyme that controls the rate-limiting step of the long chain fatty acid β-oxidation cycle. We hypothesized that changes in malonyl-CoA abundance following ELOVL5 knockdown could influence mitochondrial β-oxidation rates in prostate cancer cells, and regulate cell viability. Accordingly, we find that ELOVL5 knockdown is associated with decreased mitochondrial β-oxidation in prostate cancer cells. Combining ELOVL5 knockdown with FASN inhibition to increase malonyl-CoA abundance endogenously enhances the effect of ELOVL5 knockdown on prostate cancer cell viability, while preventing malonyl-CoA production rescues the cells from the effect of ELOVL5 knockdown. Our findings indicate an additional role for fatty acid elongation, in the control of malonyl-CoA homeostasis, alongside its established role in the production of long-chain fatty acid species, to explain the importance of fatty acid elongation for cell viability.
Collapse
Affiliation(s)
- Julia S Scott
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Johannes V Swinnen
- LKI - Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, B-3000, Belgium
| | - Zeyad D Nassar
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute, Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5005, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
23
|
Liu Q, Zhuang W, Chen J, Li S, Li C, Ma D, Chen M. A turn-on fluorescent probe for lipid-targeting imaging in human arterial aneurysm and fibrocalcific stenotic aortic valve. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123030. [PMID: 37354855 DOI: 10.1016/j.saa.2023.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Fluorescence imaging techniques have shown remarkable performance in studying the biological functions of lipid droplets (LDs). However, the biological applications of the commercially available LDs probes suffer from insufficient specificity and low signal/noise ratio (SNR). Herein, we presented a novel near-infrared (NIR) lipid activatable fluorescence probe, namely Me2NND, with extremely low emission in water but significantly enhanced emission in the lipid environment. Me2NND presented good biocompatibility and impressive LDs-specific imaging ability in cells and tissues. Moreover, Me2NND has also shown good photostability and it could efficiently locate the distribution of LDs in human pathological samples of aortic aneurysms and fibrocalcific stenotic aortic valves. This study provided a novel turn-on probe Me2NND and would improve the bio-applications of LDs-specific probes.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| | - Jingruo Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Shufen Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Chengming Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Di Ma
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| |
Collapse
|
24
|
Sun X, Yang X, Gui W, Liu S, Gui Q. Sirtuins and autophagy in lipid metabolism. Cell Biochem Funct 2023; 41:978-987. [PMID: 37755711 DOI: 10.1002/cbf.3860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Sirtuins are a family of NAD+ -dependent deacetylases that regulate some important biological processes, including lipid metabolism and autophagy, through their deacetylase function. Autophagy is a new discovery in the field of lipid metabolism, which may provide a new idea for the regulation of lipid metabolism. There are many tandem parts in the regulation process of lipid metabolism and autophagy of sirtuins protein family. This paper summarized these tandem parts and proposed the possibility of sirtuins regulating lipid autophagy, as well as the interaction and synergy between sirtuins protein family. Currently, some natural drugs have been reported to affect metabolism by regulating sirtuins, some of which regulate autophagy by targeting sirtuins.
Collapse
Affiliation(s)
- Xuan Sun
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoting Yang
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Wanfei Gui
- Department of Medicine, Chuanshan College, University of South China, Hengyang, China
| | - Songling Liu
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingjun Gui
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
25
|
Cole-Skinner B, Andre NM, Blankenheim Z, Root K, Simmons GE. Unsaturated fatty acid alters the immune response in non-small cell lung adenocarcinoma through regulation of HMGB1 trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566231. [PMID: 37986958 PMCID: PMC10659279 DOI: 10.1101/2023.11.08.566231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cancer cell evasion of the immune response is critical to cancer development and metastases. The ability of clinicians to kickstart the immune system to target these rogue cells is an ever-growing area of research and medicine. In this study, we delved into the relationship between lipid metabolism, High Mobility Group Box 1 protein (HMGB1), and immune regulation within non-small cell lung adenocarcinoma (NSCLC), shedding light on novel therapeutic avenues and potential personalized approaches for patients. We found that the expression of stearoyl CoA desaturase 1 (SCD1) was decreased in NSCLC tumors compared to normal tissues. This emphasized the critical role of lipid metabolism in tumor progression. Interestingly, monounsaturated fatty acid (MUFA) availability impacted the expression of programmed death receptor ligand -1 (PD-L1), a pivotal immune checkpoint target in lung cancer cells and immune cells, suggesting a novel approach to modulating the immune response. This study uncovered a complex interplay between HMGB1, SCD1, and PD-L1, influencing the immunological sensitivity of tumors. Our work underscores the importance of understanding the intricate relationships between lipid metabolism and immune modulation to develop more effective NSCLC treatments and personalized therapies. As we continue to explore these connections, we hope to contribute to the ever-evolving field of cancer research, improving patient outcomes and advancing precision medicine in NSCLC.
Collapse
Affiliation(s)
- Breanna Cole-Skinner
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
| | - Nicole M. Andre
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca
| | - Zachary Blankenheim
- Department of Biomedical Sciences, University of Minnesota School of Medicine, Duluth
| | - Kate Root
- Department of Biomedical Sciences, University of Minnesota School of Medicine, Duluth
| | - Glenn E. Simmons
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca
| |
Collapse
|
26
|
Guo YF, Sun JY, Liu Y, Liu ZY, Huang Y, Xiao Y, Su T. lncRNA Hnscr Regulates Lipid Metabolism by Mediating Adipocyte Lipolysis. Endocrinology 2023; 164:bqad147. [PMID: 37788569 PMCID: PMC10628467 DOI: 10.1210/endocr/bqad147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Obesity is a process of fat accumulation due to the imbalance between energy intake and consumption. Long noncoding RNA (lncRNA) Hnscr is crucial for metabolic regulation, but its roles in lipid metabolism during obesity are still unknown. In this article, we found that the expression of Hnscr gradually decreased in adipose tissues of diet-induced obese mice. Furthermore, the deletion of Hnscr promoted an increase in body weight and adipose tissue weight by upregulating the expression of lipogenesis genes and downregulating lipolysis genes in inguinal white adipose tissue (iWAT) and brown adipose tissue. In vitro knockdown of Hnscr in adipocytes resulted in reduced lipolysis of adipocytes. Overexpression of Hnscr by adenovirus or drug mimics showed the opposite. Mechanistically, Hnscr regulated adipose lipid metabolism by mediating the cyclic adenosine monophosphate/protein kinase A signaling pathway. This study identifies the initial characterization of Hnscr as a critical modifier that regulates lipid metabolism, suggesting that lncRNA Hnscr is a potential target for treating obesity.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Jing-Yi Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Zhe-Yu Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yuan Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
27
|
Huang Y, Hertzel AV, Fish SR, Halley CL, Bohm EK, Martinez HM, Durfee CC, Sanders MA, Harris RS, Niedernhofer LJ, Bernlohr DA. TP53/p53 Facilitates Stress-Induced Exosome and Protein Secretion by Adipocytes. Diabetes 2023; 72:1560-1573. [PMID: 37347719 PMCID: PMC10588298 DOI: 10.2337/db22-1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Besides the secretion of fatty acids, lipolytic stimulation of adipocytes results in the secretion of triglyceride-rich extracellular vesicles and some free proteins (e.g., fatty acid binding protein 4) that, in sum, affect adipose homeostasis as well as the development of metabolic disease. At the mechanistic level, lipolytic signals activate p53 in an adipose triglyceride lipase-dependent manner, and pharmacologic inhibition of p53 attenuates adipocyte-derived extracellular vesicle (AdEV) protein and FABP4 secretion. Mass spectrometry analyses of the lipolytic secretome identified proteins involved in glucose and fatty acid metabolism, translation, chaperone activities, and redox control. Consistent with a role for p53 in adipocyte protein secretion, activation of p53 by the MDM2 antagonist nutlin potentiated AdEV particles and non-AdEV protein secretion from cultured 3T3-L1 or OP9 adipocytes while the levels of FABP4 and AdEV proteins were significantly reduced in serum from p53-/- mice compared with wild-type controls. The genotoxin doxorubicin increased AdEV protein and FABP4 secretion in a p53-dependent manner and DNA repair-depleted ERCC1-/Δ-haploinsufficient mice expressed elevated p53 in adipose depots, along with significantly increased serum FABP4. In sum, these data suggest that lipolytic signals, and cellular stressors such as DNA damage, facilitate AdEV protein and FABP4 secretion by adipocytes in a p53-dependent manner. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yimao Huang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Shayla R. Fish
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Catherine L. Halley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ellie K. Bohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hector Martell Martinez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN
| | - Cameron C. Durfee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Mark A. Sanders
- University Imaging Center, University of Minnesota, Minneapolis, MN
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN
- Institute for Diabetes, Obesity and Metabolism, University of Minnesota, Minneapolis, MN
| |
Collapse
|
28
|
Jia M, Xu T, Xu YJ, Liu Y. Dietary fatty acids activate or deactivate brown and beige fat. Life Sci 2023; 330:121978. [PMID: 37516433 DOI: 10.1016/j.lfs.2023.121978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/10/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Brown adipose tissue (BAT) and beige fat have been documented to rapidly consume fatty acids (FAs) rather than deposit of lipid, and they have high capacity to dissipate energy via nonshivering thermogenesis, making BAT and beige fat potential organs to fight obesity and related chronic diseases. As the main substrate for thermogenesis and the basic constituent unit of triacylglycerol, FAs could modify BAT and remodel white adipose tissue (WAT) to beige fat. However, there are few comprehensive review covering the link between dietary FAs and thermogenic adipocyte..In this review, we described the metabolism of thermogenic adipose upon activation and comprehensively summarized publications on the dietary FAs that activate or deactivate BAT and beige fat. Specifically, eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA), α-linolenic acid (α-ALA), conjugated linoleic acid (CLA), oleic acid (OA), long-chain saturated fatty acid (LC-SFA) and medium-chain fatty acid (MCFA). in addition, the influences on BAT function, WAT remodeling, and lipid metabolism, as well as delineated the possible mechanisms are also reviewed. Characterizing thermogenic or obesogenic dietary FAs may offer novel insight into dietary oil and nutritional treatment.
Collapse
Affiliation(s)
- Min Jia
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan 250100, Shandong, PR China
| | - Tongcheng Xu
- Institute of Food & Nutrition Science and Technology, Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 23788 Gongyebei Road, Jinan 250100, Shandong, PR China
| | - Yong-Jiang Xu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
29
|
Jian L, Gao X, Wang C, Sun X, Xu Y, Han R, Wang Y, Xu S, Ding L, Zhou J, Gu Y, Zhao Y, Yang Y, Yuan Y, Ye J, Zhang L. Perilipin 5 deficiency aggravates cardiac hypertrophy by stimulating lactate production in leptin-deficient mice. Biol Direct 2023; 18:54. [PMID: 37667357 PMCID: PMC10478499 DOI: 10.1186/s13062-023-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Perilipin 5 (Plin5) is well known to maintain the stability of intracellular lipid droplets (LDs) and regulate fatty acid metabolism in oxidative tissues. It is highly expressed in the heart, but its roles have yet to be fully elucidated. METHODS Plin5-deficient mice and Plin5/leptin-double-knockout mice were produced, and their histological structures and myocardial functions were observed. Critical proteins related to fatty acid and glucose metabolism were measured in heart tissues, neonatal mouse cardiomyocytes and Plin5-overexpressing H9C2 cells. 2-NBDG was employed to detect glucose uptake. The mitochondria and lipid contents were observed by MitoTracker and BODIPY 493/503 staining in neonatal mouse cardiomyocytes. RESULTS Plin5 deficiency impaired glucose utilization and caused insulin resistance in mouse cardiomyocytes, particularly in the presence of fatty acids (FAs). Additionally, Plin5 deficiency increased the NADH content and elevated the expression of lactate dehydrogenase (LDHA) in cardiomyocytes, which resulted in increased lactate production. Moreover, when fatty acid oxidation was blocked by etomoxir or LDHA was inhibited by GSK2837808A in Plin5-deficient cardiomyocytes, glucose utilization was improved. Leptin-deficient mice exhibited myocardial hypertrophy, insulin resistance and altered substrate utilization, and Plin5 deficiency exacerbated myocardial hypertrophy in leptin-deficient mice. CONCLUSION Our results demonstrated that Plin5 plays a critical role in coordinating fatty acid and glucose oxidation in cardiomyocytes, providing a potential target for the treatment of metabolic disorders in the heart.
Collapse
Affiliation(s)
- Lele Jian
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Shaanxi Provincial Corps, Chinese People's Armed Police Force, Xi'an, 710054, China
| | - Xing Gao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Wang
- Department of Pathology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiao Sun
- Department of CardiologyXijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuqiao Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruili Han
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuying Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Shenhui Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lan Ding
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjun Zhou
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Gu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Ye
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
30
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Miner GE, So CM, Edwards W, Ragusa JV, Wine JT, Wong Gutierrez D, Airola MV, Herring LE, Coleman RA, Klett EL, Cohen S. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev Cell 2023; 58:1250-1265.e6. [PMID: 37290445 PMCID: PMC10525032 DOI: 10.1016/j.devcel.2023.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina M So
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joey V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan T Wine
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Wong Gutierrez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
33
|
Dong L, Cheng R, Ma X, Liang W, Hong Y, Li H, Zhou K, Du Y, Takahashi Y, Zhang X, Li XR, Ma JX. Regulation of Monocyte Activation by PPARα Through Interaction With the cGAS-STING Pathway. Diabetes 2023; 72:958-972. [PMID: 37058417 PMCID: PMC10281240 DOI: 10.2337/db22-0654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Monocyte activation plays an important role in diabetic complications such as diabetic retinopathy (DR). However, the regulation of monocyte activation in diabetes remains elusive. Fenofibrate, an agonist of peroxisome proliferator-activated receptor-α (PPARα), has shown robust therapeutic effects on DR in patients with type 2 diabetes. Here we found that PPARα levels were significantly downregulated in monocytes from patients with diabetes and animal models, correlating with monocyte activation. Fenofibrate attenuated monocyte activation in diabetes, while PPARα knockout alone induced monocyte activation. Furthermore, monocyte-specific PPARα overexpression ameliorated, while monocyte-specific PPARα knockout aggravated monocyte activation in diabetes. PPARα knockout impaired mitochondrial function while also increasing glycolysis in monocytes. PPARα knockout increased cytosolic mitochondrial DNA release and activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in monocytes under diabetic conditions. STING knockout or STING inhibitor attenuated monocyte activation induced by diabetes or by PPARα knockout. These observations suggest that PPARα negatively regulates monocyte activation through metabolic reprogramming and interaction with the cGAS-STING pathway.
Collapse
Affiliation(s)
- Lijie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yaru Hong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Hui Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yanhong Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Xiaomin Zhang
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Xiao-rong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
34
|
Xu X, Qiu J, Li X, Chen J, Li Y, Huang X, Zang S, Ma X, Liu J. Perilipin5 protects against non-alcoholic steatohepatitis by increasing 11-Dodecenoic acid and inhibiting the occurrence of ferroptosis. Nutr Metab (Lond) 2023; 20:29. [PMID: 37349836 DOI: 10.1186/s12986-023-00751-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a major contributor to liver cirrhosis and hepatocellular carcinoma. There remains no effective pharmacological therapy. The hepatic lipid metabolism and fatty acid β-oxidation are regulated by Perilipin5 (Plin5). However, it is yet unknown how Plin5 affects NASH and the molecular process. METHODS High-fat, high-cholesterol and high-fructose (HFHC) diets were used to mimic the progression of NASH in wild type (WT) mice and Plin5 knockout (Plin5 KO) mice. The degree of ferroptosis was measured by detecting the expression of key genes of ferroptosis and the level of lipid peroxide. The degree of NASH was judged by observing the morphology of the liver, detecting the expression of inflammation and fibrosis related genes of liver damage. Plin5 was overexpressed in the liver of mice by tail vein injection of adenovirus, and the process of NASH was simulated by methionine choline deficiency (MCD) diet. The occurrence of ferroptosis and NASH was detected by the same detection method. Targeted lipidomics sequencing was used to detect the difference in free fatty acid expression in the WT Plin5 KO group. Finally, it was verified in cell experiments to further study the effect of free fatty acids on ferroptosis of hepatocytes. RESULTS In various NASH models, hepatic Plin5 was dramatically reduced. Plin5 knockout (KO) worsened NASH-associated characteristics in mice given a high-fat/high-cholesterol (HFHC) diet, such as lipid accumulation, inflammation and hepatic fibrosis. It has been shown that ferroptosis is involved in NASH progression. We revealed that Plin5 KO in mice aggravated the degree of ferroptosis in NASH models. Conversely, overexpression of Plin5 significantly alleviated ferroptosis and further ameliorated progression of MCD-induced NASH. Analysis of livers obtained from HFHC diet-fed mice by targeted lipidomics revealed that 11-Dodecenoic acid was significantly decreased in Plin5 KO mice. Addition of 11-Dodecenoia acid to Plin5 knockdown hepatocytes effectively prevented ferroptosis. CONCLUSION Our study demonstrates that Plin5 protects against NASH progression by increasing 11-Dodecenoic acid level and further inhibiting ferroptosis, suggesting that Plin5 has therapeutic potential as a target for the management of NASH.
Collapse
Affiliation(s)
- Xinming Xu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biological, Institute of Biomedical Science, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xiaoya Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Juntong Chen
- Shanghai Key Laboratory of Regulatory Biological, Institute of Biomedical Science, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biological, Institute of Biomedical Science, School of Life Science, East China Normal University, Shanghai, 200241, China.
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai, 200240, China.
| |
Collapse
|
35
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
36
|
Najt CP, Adhikari S, Heden TD, Cui W, Gansemer ER, Rauckhorst AJ, Markowski TW, Higgins L, Kerr EW, Boyum MD, Alvarez J, Brunko S, Mehra D, Puchner EM, Taylor EB, Mashek DG. Organelle interactions compartmentalize hepatic fatty acid trafficking and metabolism. Cell Rep 2023; 42:112435. [PMID: 37104088 PMCID: PMC10278152 DOI: 10.1016/j.celrep.2023.112435] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/09/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Organelle interactions play a significant role in compartmentalizing metabolism and signaling. Lipid droplets (LDs) interact with numerous organelles, including mitochondria, which is largely assumed to facilitate lipid transfer and catabolism. However, quantitative proteomics of hepatic peridroplet mitochondria (PDM) and cytosolic mitochondria (CM) reveals that CM are enriched in proteins comprising various oxidative metabolism pathways, whereas PDM are enriched in proteins involved in lipid anabolism. Isotope tracing and super-resolution imaging confirms that fatty acids (FAs) are selectively trafficked to and oxidized in CM during fasting. In contrast, PDM facilitate FA esterification and LD expansion in nutrient-replete medium. Additionally, mitochondrion-associated membranes (MAM) around PDM and CM differ in their proteomes and ability to support distinct lipid metabolic pathways. We conclude that CM and CM-MAM support lipid catabolic pathways, whereas PDM and PDM-MAM allow hepatocytes to efficiently store excess lipids in LDs to prevent lipotoxicity.
Collapse
Affiliation(s)
- Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Timothy D Heden
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Erica R Gansemer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Evan W Kerr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D Boyum
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jonas Alvarez
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sophia Brunko
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
37
|
Kong L, Zhao H, Wang F, Zhang R, Yao X, Zuo R, Li J, Xu J, Qian Y, Kang Q, Fan C. Endocrine modulation of brain-skeleton axis driven by neural stem cell-derived perilipin 5 in the lipid metabolism homeostasis for bone regeneration. Mol Ther 2023; 31:1293-1312. [PMID: 36760127 PMCID: PMC10188646 DOI: 10.1016/j.ymthe.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Factors released from the nervous system always play crucial roles in modulating bone metabolism and regeneration. How the brain-driven endocrine axes maintain bone homeostasis, especially under metabolic disorders, remains obscure. Here, we found that neural stem cells (NSCs) residing in the subventricular zone participated in lipid metabolism homeostasis of regenerative bone through exosomal perilipin 5 (PLIN5). Fluorescence-labeled exosomes tracing and histological detection identified that NSC-derived exosomes (NSC-Exo) could travel from the lateral ventricle into bone injury sites. Homocysteine (Hcy) led to osteogenic and angiogenic impairment, whereas the NSC-Exo were confirmed to restore it. Mecobalamin, a clinically used neurotrophic drug, further enhanced the protective effects of NSC-Exo through increased PLIN5 expression. Mechanistically, NSC-derived PLIN5 reversed excessive Hcy-induced lipid metabolic imbalance and aberrant lipid droplet accumulation through lipophagy-dependent intracellular lipolysis. Intracerebroventricular administration of mecobalamin and/or AAV-shPlin5 confirmed the effects of PLIN5-driven endocrine modulations on new bone formation and vascular reconstruction in hyperhomocysteinemic and high-fat diet models. This study uncovered a novel brain-skeleton axis that NSCs in the mammalian brain modulated bone regeneration through PLIN5-driven lipid metabolism modulation, providing evidence for lipid- or bone-targeted medicine development.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Haoyu Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Feng Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Rui Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Rongtai Zuo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
38
|
Papsdorf K, Miklas JW, Hosseini A, Cabruja M, Morrow CS, Savini M, Yu Y, Silva-García CG, Haseley NR, Murphy LM, Yao P, de Launoit E, Dixon SJ, Snyder MP, Wang MC, Mair WB, Brunet A. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat Cell Biol 2023; 25:672-684. [PMID: 37127715 PMCID: PMC10185472 DOI: 10.1038/s41556-023-01136-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Dietary mono-unsaturated fatty acids (MUFAs) are linked to longevity in several species. But the mechanisms by which MUFAs extend lifespan remain unclear. Here we show that an organelle network involving lipid droplets and peroxisomes is critical for MUFA-induced longevity in Caenorhabditis elegans. MUFAs upregulate the number of lipid droplets in fat storage tissues. Increased lipid droplet number is necessary for MUFA-induced longevity and predicts remaining lifespan. Lipidomics datasets reveal that MUFAs also modify the ratio of membrane lipids and ether lipids-a signature associated with decreased lipid oxidation. In agreement with this, MUFAs decrease lipid oxidation in middle-aged individuals. Intriguingly, MUFAs upregulate not only lipid droplet number but also peroxisome number. A targeted screen identifies genes involved in the co-regulation of lipid droplets and peroxisomes, and reveals that induction of both organelles is optimal for longevity. Our study uncovers an organelle network involved in lipid homeostasis and lifespan regulation, opening new avenues for interventions to delay aging.
Collapse
Affiliation(s)
| | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amir Hosseini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Matias Cabruja
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marzia Savini
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Pallas Yao
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Meng C Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Institute of Neurosciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Abou-Rjeileh U, Dos Santos Neto JM, Chirivi M, O'Boyle N, Salcedo D, Prom C, Laguna J, Parales-Giron J, Lock AL, Contreras GA. Oleic acid abomasal infusion limits lipolysis and improves insulin sensitivity in adipose tissue from periparturient dairy cows. J Dairy Sci 2023; 106:4306-4323. [PMID: 37105874 DOI: 10.3168/jds.2022-22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023]
Abstract
Excessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT. In the liver and skeletal muscle, OA improves mitochondrial function and promotes lipid droplet formation by activating perilipin 5 (PLIN5) and peroxisome proliferator-activated receptor α (PPARα). However, it is unknown if this mechanism occurs in AT. The objective of this study was to determine the effect of OA on AT lipolysis, systemic and AT insulin sensitivity, and AT mitochondrial function in periparturient dairy cows. Twelve rumen-cannulated Holstein cows were infused abomasally following parturition with ethanol (CON) or OA (60 g/d) for 14 d. Subcutaneous AT samples were collected at 11 ± 3.6 d before calving (-12 d), and 6 ± 1.0 d (7 d) and 13 ± 1.4 d (14 d) after parturition. An intravenous glucose tolerance test was performed on d 14. Adipocyte morphometry was performed on hematoxylin and eosin-stained AT sections. The antilipolytic effect of insulin (1 μg/L) was evaluated using an ex vivo explant culture following lipolysis stimulation. PLIN5 and PPARα transcription and translation were determined by real-time quantitative PCR and capillary electrophoresis, respectively. RNA sequencing was used to evaluate the transcriptomic profile of mitochondrial gene networks. In CON cows, postpartum lipolysis increased the percentage of smaller (<3,000 µm2) adipocytes at 14 d compared with -12 d. However, OA limited adipocyte size reduction at 14 d. Likewise, OA decreased lipolysis plasma markers nonesterified free fatty acids and β-hydroxybutyrate at 5 and 7 d. Over the 14-d period, compared with CON, OA increased the concentration of plasma insulin and decreased plasma glucose. During the glucose tolerance test, OA decreased circulating glucose concentration (at 10, 20, 30, 40 min) and the glucose clearance rate. Moreover, OA increased insulin at 10 and 20 min and tended to increase it at 30 min. Following lipolysis stimulation, OA improved the antilipolytic effect of insulin in the AT at 14 d. PLIN5 and PPARA gene expression decreased postpartum regardless of treatment. However, OA increased PLIN5 protein expression at 14 d and increased PPARA at 7 and 14 d. Immunohistochemical analysis of AT and RNA sequencing data showed that OA increased the number of mitochondria and improved mitochondrial function. However, OA had no effect on production and digestibility. Our results demonstrate that OA limits AT lipolysis, improves systemic and AT insulin sensitivity, and is associated with markers of mitochondrial function supporting a shift to lipogenesis in AT of periparturient dairy cows.
Collapse
Affiliation(s)
- Ursula Abou-Rjeileh
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - José M Dos Santos Neto
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Nial O'Boyle
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - David Salcedo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Juliana Laguna
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824.
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
40
|
Guan D, Bae H, Zhou D, Chen Y, Jiang C, La CM, Xiao Y, Zhu K, Hu W, Trinh TM, Liu P, Xiong Y, Cai B, Jang C, Lazar MA. Hepatocyte SREBP signaling mediates clock communication within the liver. J Clin Invest 2023; 133:e163018. [PMID: 37066875 PMCID: PMC10104893 DOI: 10.1172/jci163018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -β (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage-activating protein (SCAP) was required for Reverb-hDKO-induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB-depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and β (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Dishu Zhou
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chunjie Jiang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cam Mong La
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China
| | - Trang Minh Trinh
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Xiong
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and
- Department of Genetics, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Chen W, Mehlkop O, Scharn A, Nolte H, Klemm P, Henschke S, Steuernagel L, Sotelo-Hitschfeld T, Kaya E, Wunderlich CM, Langer T, Kononenko NL, Giavalisco P, Brüning JC. Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab 2023; 35:786-806.e13. [PMID: 37075752 PMCID: PMC10173804 DOI: 10.1016/j.cmet.2023.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.
Collapse
Affiliation(s)
- Weiyi Chen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Oliver Mehlkop
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Alexandra Scharn
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Paul Klemm
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sinika Henschke
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Tamara Sotelo-Hitschfeld
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Ecem Kaya
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Natalia L Kononenko
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
42
|
Cinato M, Mardani I, Miljanovic A, Drevinge C, Laudette M, Bollano E, Henricsson M, Tolö J, Bauza Thorbrügge M, Levin M, Lindbom M, Arif M, Pacher P, Andersson L, Olofsson CS, Borén J, Levin MC. Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility. Life Sci Alliance 2023; 6:e202201690. [PMID: 36717246 PMCID: PMC9887753 DOI: 10.26508/lsa.202201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA-sequencing data from human left ventricle and showed that cardiac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed increases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.
Collapse
Affiliation(s)
- Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christina Drevinge
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Entela Bollano
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Tolö
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcos Bauza Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
43
|
Differential Lipid Accumulation on HepG2 Cells Triggered by Palmitic and Linoleic Fatty Acids Exposure. Molecules 2023; 28:molecules28052367. [PMID: 36903612 PMCID: PMC10005272 DOI: 10.3390/molecules28052367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Lipid metabolism pathways such as β-oxidation, lipolysis and, lipogenesis, are mainly associated with normal liver function. However, steatosis is a growing pathology caused by the accumulation of lipids in hepatic cells due to increased lipogenesis, dysregulated lipid metabolism, and/or reduced lipolysis. Accordingly, this investigation hypothesizes a selective in vitro accumulation of palmitic and linoleic fatty acids on hepatocytes. After assessing the metabolic inhibition, apoptotic effect, and reactive oxygen species (ROS) generation by linoleic (LA) and palmitic (PA) fatty acids, HepG2 cells were exposed to different ratios of LA and PA to study the lipid accumulation using the lipophilic dye Oil Red O. Lipidomic studies were also carried out after lipid isolation. Results revealed that LA was highly accumulated and induced ROS production when compared to PA. Lipid profile modifications were observed after LA:PA 1:1 (v/v) exposure, which led to a four-fold increase in triglycerides (TGs) (mainly in linoleic acid-containing species), as well as a increase in cholesterol and polyunsaturated fatty acids (PUFA) content when compared to the control cells. The present work highlights the importance of balancing both PA and LA fatty acids concentrations in HepG2 cells to maintain normal levels of free fatty acids (FFAs), cholesterol, and TGs and to minimize some of the observed in vitro effects (i.e., apoptosis, ROS generation and lipid accumulation) caused by these fatty acids.
Collapse
|
44
|
Fachada V, Silvennoinen M, Sahinaho UM, Rahkila P, Kivelä R, Hulmi JJ, Kujala U, Kainulainen H. Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1 α. Int J Mol Sci 2023; 24:ijms24054282. [PMID: 36901715 PMCID: PMC10002284 DOI: 10.3390/ijms24054282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.
Collapse
|
45
|
Niu H, Lei A, Tian H, Yao W, Liu Y, Li C, An X, Chen X, Zhang Z, Wu J, Yang M, Huang J, Cheng F, Zhao J, Hua J, Liu S, Luo J. Scd1 Deficiency in Early Embryos Affects Blastocyst ICM Formation through RPs-Mdm2-p53 Pathway. Int J Mol Sci 2023; 24:ijms24021750. [PMID: 36675264 PMCID: PMC9864350 DOI: 10.3390/ijms24021750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Embryos contain a large number of lipid droplets, and lipid metabolism is gradually activated during embryonic development to provide energy. However, the regulatory mechanisms remain to be investigated. Stearoyl-CoA desaturase 1 (Scd1) is a fatty acid desaturase gene that is mainly involved in intracellular monounsaturated fatty acid production, which takes part in many physiological processes. Analysis of transcripts at key stages of embryo development revealed that Scd1 was important and expressed at an increased level during the cleavage and blastocyst stages. Knockout Scd1 gene by CRISPR/Cas9 from zygotes revealed a decrease in lipid droplets (LDs) and damage in the inner cell mass (ICM) formation of blastocyst. Comparative analysis of normal and knockout embryo transcripts showed a suppression of ribosome protein (RPs) genes, leading to the arrest of ribosome biogenesis at the 2-cell stage. Notably, the P53-related pathway was further activated at the blastocyst stage, which eventually caused embryonic development arrest and apoptosis. In summary, Scd1 helps in providing energy for embryonic development by regulating intra-embryonic lipid droplet formation. Moreover, deficiency activates the RPs-Mdm2-P53 pathway due to ribosomal stress and ultimately leads to embryonic development arrest. The present results suggested that Scd1 gene is essential to maintain healthy development of embryos by regulating energy support.
Collapse
Affiliation(s)
- Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ying Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuetong An
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fei Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianqing Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinlian Hua
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6018, Australia
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
46
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
47
|
Lei P, Hu Y, Gao P, Ding Q, Yan J, Zhao J, Li B, Shan Y. Sulforaphane Ameliorates Hepatic Lipid Metabolism via Modulating Lipophagy In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15126-15133. [PMID: 36420856 DOI: 10.1021/acs.jafc.2c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although sulforaphane (SFN) is reported to ameliorate the excessive accumulation of lipid droplets (LDs) in hepatocytes, its underlying mechanism remains unclear. This paper aims to investigate how SFN induces hepatic LD degradation via activating macroautophagy. High-fat diet and free fatty acids (FFAs) were used to induce excessive LD formation in hepatocytes in vivo and in vitro, respectively. SFN-induced macroautophagy was shown by the increased LC3 protein expression both (1.32 ± 0.18) in vivo and (2.43 ± 0.22) in vitro. The mRNA levels of Lc3 (1.99 ± 0.16), Atg4 (2.12 ± 0.23), Ulk1 (1.19 ± 0.12), Atg7 (1.25 ± 0.11), and Atg5 (0.81 ± 0.1) genes were elevated by SFN. SFN individually enhanced the localization of LC3 (0.41 ± 0.15), LAMP1 (0.66 ± 0.14), ATG7 (0.26 ± 0.08), and ATG5 (0.38 ± 0.09) with LDs, indicating the occurrence of lipophagy. In the components of LDs isolated from SFN treatment, the expressions of LC3, ATG7, and ATG5 protein were largely increased both in vivo and in vitro. LDs were visualized in autophagosomes which confirmed that the lipophagy was triggered by SFN. Moreover, SFN treatment improved the profile of FFAs which was characterized by increasing the FFAs in liver (total FFA: 261.51 ± 39.58 μM/g) and serum (total FFA: 967.59 ± 239.18 nM/mL). After silencing the nrf2 gene, ATG7 and ATG5 protein expressions were decreased and attenuated this induction by SFN. Nrf2 gene silencing inversely increased TG contents. In summary, SFN enhanced the LD degradation via stimulating lipophagy in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Peng Lei
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yunqi Hu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Peng Gao
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Qi Ding
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jielin Yan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiahe Zhao
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Baolong Li
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
48
|
The Patatin-Like Phospholipase Domain Containing Protein 7 Regulates Macrophage Classical Activation through SIRT1/NF-κB and p38 MAPK Pathways. Int J Mol Sci 2022; 23:ijms232314983. [PMID: 36499308 PMCID: PMC9739533 DOI: 10.3390/ijms232314983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is a bioactive lipid that modulates macrophage polarization during immune responses, inflammation, and tissue remodeling. Patatin-like phospholipase domain containing protein 7 (PNPLA7) is a lysophospholipase with a preference for LPC. However, the role of PNPLA7 in macrophage polarization as an LPC hydrolase has not been explored. In the current study, we found that PNPLA7 is highly expressed in naïve macrophages and downregulated upon lipopolysaccharide (LPS)-induced polarization towards the classically activated (M1) phenotype. Consistently, overexpression of PNPLA7 suppressed the expression of proinflammatory M1 marker genes, including interleukin 1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and tumor necrosis factor α (TNF-α), whereas knockdown of PNPLA7 augmented the inflammatory gene expression in LPS-challenged macrophages. PNPLA7 overexpression and knockdown increased and decreased Sirtuin1 (SIRT1) mRNA and protein levels, respectively, and affected the acetylation of the nuclear factor-kappa B (NF-κB) p65 subunit, a key transcription factor in M1 polarization. In addition, the levels of phosphorylated p38 mitogen-activated protein kinase (MAPK) were suppressed and enhanced by PNPLA7 overexpression and knockdown, respectively. Taken together, these findings suggest that PNPLA7 suppresses M1 polarization of LPS-challenged macrophages by modulating SIRT1/NF-κB- and p38 MAPK-dependent pathways.
Collapse
|
49
|
SIRT1 activation and its circadian clock control: a promising approach against (frailty in) neurodegenerative disorders. Aging Clin Exp Res 2022; 34:2963-2976. [DOI: 10.1007/s40520-022-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 11/01/2022]
|
50
|
Rosas-Rodríguez JA, Virgen-Ortíz A, Ruiz EA, Ortiz RM, Soñanez-Organis JG. Perilipin Isoforms and PGC-1α Are Regulated Differentially in Rat Heart during Pregnancy-Induced Physiological Cardiac Hypertrophy. Medicina (B Aires) 2022; 58:medicina58101433. [PMID: 36295596 PMCID: PMC9611277 DOI: 10.3390/medicina58101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Perilipins 1–5 (PLIN) are lipid droplet-associated proteins that participate in regulating lipid storage and metabolism, and the PLIN5 isoform is known to form a nuclear complex with peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) to regulate lipid metabolism gene expression. However, the changes in PLIN isoforms’ expression in response to pregnancy-induced cardiac hypertrophy are not thoroughly studied. The aim of this study was to quantify the mRNA expression of PLIN isoforms and PGC-1α along with total triacylglycerol (TAG) and cholesterol levels during late pregnancy and the postpartum period in the rat left ventricle. Materials and Methods: Female Sprague-Dawley rats were divided into three groups: non-pregnant, late pregnancy, and postpartum. The mRNA and protein levels were evaluated using quantitative RT-PCR and Western blotting, respectively. TAG and total cholesterol content were evaluated using commercial colorimetric methods. Results: The expression of mRNAs for PLIN1, 2, and 5 increased during pregnancy and the postpartum period. PGC-1α mRNA and protein expression increased during pregnancy and the postpartum period. Moreover, TAG and total cholesterol increased during pregnancy and returned to basal levels after pregnancy. Conclusions: Our results demonstrate that pregnancy upregulates differentially the expression of PLIN isoforms along with PGC-1α, suggesting that together they might be involved in the regulation of the lipid metabolic shift induced by pregnancy.
Collapse
Affiliation(s)
- Jesús A. Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico
| | - Adolfo Virgen-Ortíz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28040, Mexico
| | - Enrico A. Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Rudy M. Ortiz
- Department of Molecular & Cell Biology, University of California Merced, Merced, CA 95343, USA
| | - José G. Soñanez-Organis
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico
- Correspondence:
| |
Collapse
|