1
|
Thombare K, Vaid R, Pucci P, Ihrmark Lundberg K, Ayyalusamy R, Baig MH, Mendez A, Burgos-Panadero R, Höppner S, Bartenhagen C, Sjövall D, Rehan AA, Dattatraya Nale S, Djos A, Martinsson T, Jaako P, Dong JJ, Kogner P, Johnsen JI, Fischer M, Turner SD, Mondal T. METTL3/MYCN cooperation drives neural crest differentiation and provides therapeutic vulnerability in neuroblastoma. EMBO J 2024:10.1038/s44318-024-00299-8. [PMID: 39528654 DOI: 10.1038/s44318-024-00299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial childhood cancer, caused by the improper differentiation of developing trunk neural crest cells (tNCC) in the sympathetic nervous system. The N6-methyladenosine (m6A) epitranscriptomic modification controls post-transcriptional gene expression but the mechanism by which the m6A methyltransferase complex METTL3/METTL14/WTAP is recruited to specific loci remains to be fully characterized. We explored whether the m6A epitranscriptome could fine-tune gene regulation in migrating/differentiating tNCC. We demonstrate that the m6A modification regulates the expression of HOX genes in tNCC, thereby contributing to their timely differentiation into sympathetic neurons. Furthermore, we show that posterior HOX genes are m6A modified in MYCN-amplified NB with reduced expression. In addition, we provide evidence that sustained overexpression of the MYCN oncogene in tNCC drives METTL3 recruitment to a specific subset of genes including posterior HOX genes creating an undifferentiated state. Moreover, METTL3 depletion/inhibition induces DNA damage and differentiation of MYCN overexpressing cells and increases vulnerability to chemotherapeutic drugs in MYCN-amplified patient-derived xenografts (PDX) in vivo, suggesting METTL3 inhibition could be a potential therapeutic approach for NB.
Collapse
Affiliation(s)
- Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Roshan Vaid
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kristina Ihrmark Lundberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ritish Ayyalusamy
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Akram Mendez
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Rebeca Burgos-Panadero
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Stefanie Höppner
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Daniel Sjövall
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Aqsa Ali Rehan
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden
| | - Sagar Dattatraya Nale
- BNJ Biopharma, Memorial Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pekka Jaako
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden.
| |
Collapse
|
2
|
Pupak A, Rodríguez-Navarro I, Sathasivam K, Singh A, Essmann A, Del Toro D, Ginés S, Mouro Pinto R, Bates GP, Vang Ørom UA, Martí E, Brito V. m 6A modification of mutant huntingtin RNA promotes the biogenesis of pathogenic huntingtin transcripts. EMBO Rep 2024; 25:5026-5052. [PMID: 39394467 PMCID: PMC11549361 DOI: 10.1038/s44319-024-00283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
In Huntington's disease (HD), aberrant processing of huntingtin (HTT) mRNA produces HTT1a transcripts that encode the pathogenic HTT exon 1 protein. The mechanisms behind HTT1a production are not fully understood. Considering the role of m6A in RNA processing and splicing, we investigated its involvement in HTT1a generation. Here, we show that m6A methylation is increased before the cryptic poly(A) sites (IpA1 and IpA2) within the huntingtin RNA in the striatum of Hdh+/Q111 mice and human HD samples. We further assessed m6A's role in mutant Htt mRNA processing by pharmacological inhibition and knockdown of METTL3, as well as targeted demethylation of Htt intron 1 using a dCas13-ALKBH5 system in HD mouse cells. Our data reveal that Htt1a transcript levels are regulated by both METTL3 and the methylation status of Htt intron 1. They also show that m6A methylation in intron 1 depends on expanded CAG repeats. Our findings highlight a potential role for m6A in aberrant splicing of Htt mRNA.
Collapse
Affiliation(s)
- Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene Rodríguez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Kirupa Sathasivam
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Ankita Singh
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Amelie Essmann
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Mouro Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gillian P Bates
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | | | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Bhattarai PY, Kim G, Lim SC, Choi HS. METTL3-STAT5B interaction facilitates the co-transcriptional m 6A modification of mRNA to promote breast tumorigenesis. Cancer Lett 2024; 603:217215. [PMID: 39218290 DOI: 10.1016/j.canlet.2024.217215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Enhanced expression of methyltransferase-like 3 (METTL3) promotes the m6A modification of specific mRNAs, contributing to breast tumorigenesis. While the mRNA substrates targeted by METTL3 are well characterized, the factors dictating the selection of these specific mRNA remain elusive. This study aimed to examine the regulatory role of the transcription factor STAT5B in METTL3-induced m6A modification. METTL3 specifically interacts with STAT5B in response to mitogenic stimulation by epidermal growth factor (EGF). Chromatin immunoprecipitation and CRISPR/Cas9 mutagenesis showed that STAT5B recruits METTL3 to gene promoters like CCND1, where METTL3 interacts with RPB1, dependent on CDK9-mediated RPB1 (Ser2) phosphorylation during transcription elongation. Inhibition and depletion of either STAT5B or CDK9 prevented the EGF-induced m6A modification of CCND1. The translation efficiency of CCND1 was increased following m6A modification, thereby increasing cell proliferation. STAT5B facilitated METTL3-induced tumor formation by increasing CCND1 expression in an orthotopic mouse model. In clinical context, a positive correlation was observed between p-STAT5B and METTL3 expression in high-grade breast tumors. This study elucidates a novel mechanism that underlies the specificity of m6A modification in breast cancer cells, thereby underscoring its potential therapeutic value.
Collapse
Affiliation(s)
- Poshan Yugal Bhattarai
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Garam Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hong Seok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
4
|
Dierks D, Schwartz S. Timing is everything: When is m6A deposited? Mol Cell 2024; 84:3572-3573. [PMID: 39366343 DOI: 10.1016/j.molcel.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
In this issue of Molecular Cell, Tang et al. suggest that m6A deposition is predominantly post-transcriptional.1 They further propose that nuclear dwell time dictates the post-transcriptional accumulation of m6A. These findings have important implications for m6A biogenesis and function.
Collapse
Affiliation(s)
- David Dierks
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Tang P, Yang J, Chen Z, Du C, Yang Y, Zhao H, Huang L, Li G, Liu F, Dong B, Shan T, Bao X, Zhou Y. Nuclear retention coupled with sequential polyadenylation dictates post-transcriptional m 6A modification in the nucleus. Mol Cell 2024; 84:3758-3774.e10. [PMID: 39127036 DOI: 10.1016/j.molcel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) modification is deemed to be co-transcriptionally installed on pre-mRNAs, thereby influencing various downstream RNA metabolism events. However, the causal relationship between m6A modification and RNA processing is often unclear, resulting in premature or even misleading generalizations on the function of m6A modification. Here, we develop 4sU-coupled m6A-level and isoform-characterization sequencing (4sU-m6A-LAIC-seq) and 4sU-GLORI to quantify the m6A levels for both newly synthesized and steady-state RNAs at transcript and single-base-resolution levels, respectively, which enable dissecting the relationship between m6A modification and alternative RNA polyadenylation. Unexpectedly, our results show that many m6A addition events occur post-transcriptionally, especially on transcripts with high m6A levels. Importantly, we find higher m6A levels on shorter 3' UTR isoforms, which likely result from sequential polyadenylation of longer 3' UTR isoforms with prolonged nuclear dwelling time. Therefore, m6A modification can also take place post-transcriptionally to intimately couple with other key RNA metabolism processes to establish and dynamically regulate epi-transcriptomics in mammalian cells.
Collapse
Affiliation(s)
- Peng Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiayi Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Zonggui Chen
- Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yang Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haiping Zhao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Huang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Guangnan Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Feiyan Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Bei Dong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Shan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, RNA Institute, Wuhan University, Wuhan, China; Institute of Advanced Studies, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Gao W, Miao X, Xu T. Wilms tumor 1-associated protein mediated m6A modification promotes osteogenic differentiation of stem cells from human exfoliated deciduous teeth. J Dent Sci 2024; 19:2305-2314. [PMID: 39347097 PMCID: PMC11437296 DOI: 10.1016/j.jds.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/20/2024] [Indexed: 10/01/2024] Open
Affiliation(s)
- Weiheng Gao
- Department of Emergency, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Xixi Miao
- National Clinical Research Center for Child Health, Hangzhou, China
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Xu
- Department of Stomatology, Nanjing Geriatric Hospital, Nanjing, China
| |
Collapse
|
7
|
Han J, Song Y, Xie J, Tano V, Shen H, Gan WL, Ng L, Ng BYL, Ng VHE, Sui X, Tang SJ, Chen L. Modulation of m 6A RNA modification by DAP3 in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2404509121. [PMID: 39316047 PMCID: PMC11459197 DOI: 10.1073/pnas.2404509121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is a prevalent RNA modification that significantly impacts RNA metabolism and cancer development. Maintaining the global m6A levels in cancer cells relies on RNA accessibility to methyltransferases and the availability of the methyl donor S-adenosylmethionine (SAM). Here, we reveal that death associated protein 3 (DAP3) plays a crucial role in preserving m6A levels through two distinct mechanisms. First, although DAP3 is not a component of the m6A writer complex, it directly binds to m6A target regions, thereby facilitating METTL3 binding. Second, DAP3 promotes MAT2A's last intron splicing, increasing MAT2A protein, cellular SAM, and m6A levels. Silencing DAP3 hinders tumorigenesis, which can be rescued by MAT2A overexpression. This evidence suggests DAP3's role in tumorigenesis, partly through m6A regulation. Our findings unveil DAP3's complex role as an RNA-binding protein and tumor promoter, impacting RNA processing, splicing, and m6A modification in cancer transcriptomes.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Jinghe Xie
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Vincent Tano
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Wei Liang Gan
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Larry Ng
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | | | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Xiaohui Sui
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, 8, Singapore117599, Singapore
- National University of Singapore (NUS) Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
| |
Collapse
|
8
|
Tegowski M, Prater AK, Holley CL, Meyer KD. Single-cell m 6A profiling in the mouse brain uncovers cell type-specific RNA methylomes and age-dependent differential methylation. Nat Neurosci 2024:10.1038/s41593-024-01768-3. [PMID: 39317796 DOI: 10.1038/s41593-024-01768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification in the brain that has important roles in neurodevelopment and brain function. However, because of technical limitations, global profiling of m6A sites within the individual cell types that make up the brain has not been possible. Here, we develop a mouse model that enables transcriptome-wide m6A detection in any tissue of interest at single-cell resolution. We use these mice to map m6A across different brain regions and within single cells of the mouse cortex and discover a high degree of shared methylation across brain regions and cell types. However, we also identify a small number of differentially methylated mRNAs in neurons that encode important regulators of neuronal signaling, and we discover that microglia have lower levels of m6A than other cell types. Finally, we perform single-cell m6A mapping in aged mice and identify many transcripts with age-dependent changes in m6A.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Anna K Prater
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Christopher L Holley
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
9
|
Guarnacci M, Zhang PH, Kanchi M, Hung YT, Lin H, Shirokikh NE, Yang L, Preiss T. Substrate diversity of NSUN enzymes and links of 5-methylcytosine to mRNA translation and turnover. Life Sci Alliance 2024; 7:e202402613. [PMID: 38986569 PMCID: PMC11235314 DOI: 10.26508/lsa.202402613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Maps of the RNA modification 5-methylcytosine (m5C) often diverge markedly not only because of differences in detection methods, data depand analysis pipelines but also biological factors. We re-analysed bisulfite RNA sequencing datasets from five human cell lines and seven tissues using a coherent m5C site calling pipeline. With the resulting union list of 6,393 m5C sites, we studied site distribution, enzymology, interaction with RNA-binding proteins and molecular function. We confirmed tRNA:m5C methyltransferases NSUN2 and NSUN6 as the main mRNA m5C "writers," but further showed that the rRNA:m5C methyltransferase NSUN5 can also modify mRNA. Each enzyme recognises mRNA features that strongly resemble their canonical substrates. By analysing proximity between mRNA m5C sites and footprints of RNA-binding proteins, we identified new candidates for functional interactions, including the RNA helicases DDX3X, involved in mRNA translation, and UPF1, an mRNA decay factor. We found that lack of NSUN2 in HeLa cells affected both steady-state levels of, and UPF1-binding to, target mRNAs. Our studies emphasise the emerging diversity of m5C writers and readers and their effect on mRNA function.
Collapse
Affiliation(s)
- Marco Guarnacci
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Pei-Hong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Madhu Kanchi
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yu-Ting Hung
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hanrong Lin
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nikolay E Shirokikh
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Thomas Preiss
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Sydney, Australia
| |
Collapse
|
10
|
Guo JS, Ma J, Zhao XH, Zhang JF, Liu KL, Li LT, Qin YX, Meng FH, Jian LY, Yang YH, Li XY. DHPS-Mediated Hypusination Regulates METTL3 Self-m6A-Methylation Modification to Promote Melanoma Proliferation and the Development of Novel Inhibitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402450. [PMID: 38952061 PMCID: PMC11434010 DOI: 10.1002/advs.202402450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Indexed: 07/03/2024]
Abstract
Discovering new treatments for melanoma will benefit human health. The mechanism by which deoxyhypusine synthase (DHPS) promotes melanoma development remains elucidated. Multi-omics studies have revealed that DHPS regulates m6A modification and maintains mRNA stability in melanoma cells. Mechanistically, DHPS activates the hypusination of eukaryotic translation initiation factor 5A (eIF5A) to assist METTL3 localizing on its mRNA for m6A modification, then promoting METTL3 expression. Structure-based design, synthesis, and activity screening yielded the hit compound GL-1 as a DHPS inhibitor. Notably, GL-1 directly inhibits DHPS binding to eIF5A, whereas GC-7 cannot. Based on the clarification of the mode of action of GL-1 on DHPS, it is found that GL-1 can promote the accumulation of intracellular Cu2+ to induce apoptosis, and antibody microarray analysis shows that GL-1 inhibits the expression of several cytokines. GL-1 shows promising antitumor activity with good bioavailability in a xenograft tumor model. These findings clarify the molecular mechanisms by which DHPS regulates melanoma proliferation and demonstrate the potential of GL-1 for clinical melanoma therapy.
Collapse
Affiliation(s)
- Jing-Si Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Xi-He Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Ji-Fang Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Kai-Li Liu
- School of Pharmaceutical Engineering, Jining Medical College, University Park, No.16 Haichuan Road, Gaoxin, Jining, Shandong, 272000, P. R. China
| | - Long-Tian Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Yu-Xi Qin
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China
| | - Ling-Yan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Yue-Hui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Xin-Yang Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| |
Collapse
|
11
|
Palos K, Nelson Dittrich AC, Lyons EH, Gregory BD, Nelson ADL. Comparative analyses suggest a link between mRNA splicing, stability, and RNA covalent modifications in flowering plants. BMC PLANT BIOLOGY 2024; 24:768. [PMID: 39134938 PMCID: PMC11318313 DOI: 10.1186/s12870-024-05486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In recent years, covalent modifications on RNA nucleotides have emerged as pivotal moieties influencing the structure, function, and regulatory processes of RNA Polymerase II transcripts such as mRNAs and lncRNAs. However, our understanding of their biological roles and whether these roles are conserved across eukaryotes remains limited. RESULTS In this study, we leveraged standard polyadenylation-enriched RNA-sequencing data to identify and characterize RNA modifications that introduce base-pairing errors into cDNA reads. Our investigation incorporated data from three Poaceae (Zea mays, Sorghum bicolor, and Setaria italica), as well as publicly available data from a range of stress and genetic contexts in Sorghum and Arabidopsis thaliana. We uncovered a strong enrichment of RNA covalent modifications (RCMs) deposited on a conserved core set of nuclear mRNAs involved in photosynthesis and translation across these species. However, the cohort of modified transcripts changed based on environmental context and developmental program, a pattern that was also conserved across flowering plants. We determined that RCMs can partly explain accession-level differences in drought tolerance in Sorghum, with stress-associated genes receiving a higher level of RCMs in a drought tolerant accession. To address function, we determined that RCMs are significantly enriched near exon junctions within coding regions, suggesting an association with splicing. Intriguingly, we found that these base-pair disrupting RCMs are associated with stable mRNAs, are highly correlated with protein abundance, and thus likely associated with facilitating translation. CONCLUSIONS Our data point to a conserved role for RCMs in mRNA stability and translation across the flowering plant lineage.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | | | - Eric H Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Lu L, Zhang X, Zhou Y, Shi Z, Xie X, Zhang X, Gao L, Fu A, Liu C, He B, Xiong X, Yin Y, Wang Q, Yi C, Li X. Base-resolution m 5C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach. Mol Cell 2024; 84:2984-3000.e8. [PMID: 39002544 DOI: 10.1016/j.molcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.
Collapse
Affiliation(s)
- Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuenan Zhou
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zuokun Shi
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiwen Xie
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Zhang
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaoliao Gao
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Anbo Fu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- The Second Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
13
|
Cun Y, Guo W, Ma B, Okuno Y, Wang J. Decoding the specificity of m 6A RNA methylation and its implication in cancer therapy. Mol Ther 2024; 32:2461-2469. [PMID: 38796701 PMCID: PMC11405154 DOI: 10.1016/j.ymthe.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant endogenous modification in eukaryotic RNAs. It plays important roles in various biological processes and diseases, including cancers. More and more studies have revealed that the deposition of m6A is specifically regulated in a context-dependent manner. Here, we review the diverse mechanisms that determine the topology of m6A along RNAs and the cell-type-specific m6A methylomes. The exon junction complex (EJC) as well as histone modifications play important roles in determining the topological distribution of m6A along nascent RNAs, while the transcription factors and RNA-binding proteins, which usually bind specific DNAs and RNAs in a cell-type-specific manner, largely account for the cell-type-specific m6A methylomes. Due to the lack of specificity of m6A writers and readers, there are still challenges to target the core m6A machinery for cancer therapies. Therefore, understanding the mechanisms underlying the specificity of m6A modifications in cancers would be important for future cancer therapies through m6A intervention.
Collapse
Affiliation(s)
- Yixian Cun
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China
| | - Wenbing Guo
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China
| | - Biao Ma
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jinkai Wang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
14
|
Wells GR, Pillai RS. Roles of N 6-methyladenosine writers, readers and erasers in the mammalian germline. Curr Opin Genet Dev 2024; 87:102224. [PMID: 38981182 DOI: 10.1016/j.gde.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification of mRNAs in eukaryotes. Numerous studies have shown that m6A plays key roles in many biological and pathophysiological processes, including fertility. The factors involved in m6A-dependent mRNA regulation include writers, which deposit the m6A mark, erasers, which remove it, and readers, which bind to m6A-modified transcripts and mediate the regulation of mRNA fate. Many of these proteins are highly expressed in the germ cells of mammals, and some have been linked to fertility disorders in human patients. In this review, we summarise recent findings on the important roles played by proteins involved in m6A biology in mammalian gametogenesis and fertility. Continued study of the m6A pathway in the mammalian germline will shed further light on the importance of epitranscriptomics in reproduction and may lead to effective treatment of human fertility disorders.
Collapse
Affiliation(s)
- Graeme R Wells
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Chen K, Nan J, Xiong X. Genetic regulation of m 6A RNA methylation and its contribution in human complex diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1591-1600. [PMID: 38764000 DOI: 10.1007/s11427-024-2609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
N6-methyladenosine (m6A) has been established as the most prevalent chemical modification in message RNA (mRNA), playing an essential role in determining the fate of RNA molecules. Dysregulation of m6A has been revealed to lead to abnormal physiological conditions and cause various types of human diseases. Recent studies have delineated the genetic regulatory maps for m6A methylation by mapping the quantitative trait loci of m6A (m6A-QTLs), thereby building up the regulatory circuits linking genetic variants, m6A, and human complex traits. Here, we review the recent discoveries concerning the genetic regulatory maps of m6A, describing the methodological and technical details of m6A-QTL identification, and introducing the key findings of the cis- and trans-acting drivers of m6A. We further delve into the tissue- and ethnicity-specificity of m6A-QTL, the association with other molecular phenotypes in light of genetic regulation, the regulators underlying m6A genetics, and importantly, the functional roles of m6A in mediating human complex diseases. Lastly, we discuss potential research avenues that can accelerate the translation of m6A genetics studies toward the development of therapies for human genetic diseases.
Collapse
Affiliation(s)
- Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Jiuhong Nan
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China.
| |
Collapse
|
16
|
Zha X, Gao Z, Li M, Xia X, Mao Z, Wang S. Insight into the regulatory mechanism of m 6A modification: From MAFLD to hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116966. [PMID: 38906018 DOI: 10.1016/j.biopha.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
In recent years, there has been a significant increase in the incidence of metabolic-associated fatty liver disease (MAFLD), which has been attributed to the increasing prevalence of type 2 diabetes mellitus (T2DM) and obesity. MAFLD affects more than one-third of adults worldwide, making it the most prevalent liver disease globally. Moreover, MAFLD is considered a significant risk factor for hepatocellular carcinoma (HCC), with MAFLD-related HCC cases increasing. Approximately 1 in 6 HCC patients are believed to have MAFLD, and nearly 40 % of these HCC patients do not progress to cirrhosis, indicating direct transformation from MAFLD to HCC. N6-methyladenosine (m6A) is commonly distributed in eukaryotic mRNA and plays a crucial role in normal development and disease progression, particularly in tumors. Numerous studies have highlighted the close association between abnormal m6A modification and cellular metabolic alterations, underscoring its importance in the onset and progression of MAFLD. However, the specific impact of m6A modification on the progression of MAFLD to HCC remains unclear. Can targeting m6A effectively halt the progression of MAFLD-related HCC? In this review, we investigated the pivotal role of abnormal m6A modification in the transition from MAFLD to HCC, explored the potential of m6A modification as a therapeutic target for MAFLD-related HCC, and proposed possible directions for future investigations.
Collapse
Affiliation(s)
- Xuan Zha
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zewei Gao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
17
|
Mehravar M, Wong JJL. Interplay between N 6-adenosine RNA methylation and mRNA splicing. Curr Opin Genet Dev 2024; 87:102211. [PMID: 38838495 DOI: 10.1016/j.gde.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification to mRNAs. Loss-of-function studies of main m6A regulators have indicated the role of m6A in pre-mRNA splicing. Recent studies have reported the role of splicing in preventing m6A deposition. Understanding the interplay between m6A and mRNA splicing holds the potential to clarify the significance of these fundamental molecular mechanisms in cell development and function, thereby shedding light on their involvement in the pathogenesis of myriad diseases.
Collapse
Affiliation(s)
- Majid Mehravar
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.
| |
Collapse
|
18
|
Fernandez Rodriguez G, Tarullo M, Fatica A. N 6-methyladenosine (m 6A) RNA modification in chronic myeloid leukemia: unveiling a novel therapeutic target. Cell Mol Life Sci 2024; 81:326. [PMID: 39085650 PMCID: PMC11335252 DOI: 10.1007/s00018-024-05379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
N6-methyladenosine (m6A), the most prevalent internal mRNA modification, plays a critical role in physiological processes by regulating gene expression through modulation of mRNA metabolism at multiple stages. In recent years, m6A has garnered significant attention for a deeper understanding of the initiation, progression, and drug resistance of various cancers, including hematological malignancies. Dysregulation of m6A has been implicated in both cancer promotion and suppression. m6A methylation is a complex regulatory process involving methyltransferases (writers), demethylases (erasers), and proteins that recognize specific m6A modifications (readers). This intricate interplay presents challenges for precisely modulating m6A levels, either globally or at specific sites. This review specifically focuses on the role of m6A in chronic myeloid leukemia (CML), a blood cancer characterized by the BCR-ABL1 fusion. We emphasize its impact on leukemia cell survival and drug resistance mechanisms. Notably, inhibitors targeting m6A regulators show promise in preclinical models, suggesting a potential therapeutic avenue for CML. Integrating our understanding of m6A biology with current treatment strategies may lead to more effective therapies, especially for patients with advanced-stage or resistant CML.
Collapse
MESH Headings
- Humans
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Drug Resistance, Neoplasm/genetics
- Animals
- Methyltransferases/metabolism
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Methylation
Collapse
Affiliation(s)
| | - Marco Tarullo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
19
|
Bonnet C, Dian AL, Espie-Caullet T, Fabbri L, Lagadec L, Pivron T, Dutertre M, Luco R, Navickas A, Vagner S, Verga D, Uguen P. Post-transcriptional gene regulation: From mechanisms to RNA chemistry and therapeutics. Bull Cancer 2024; 111:782-790. [PMID: 38824069 DOI: 10.1016/j.bulcan.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 06/03/2024]
Abstract
A better understanding of the RNA biology and chemistry is necessary to then develop new RNA therapeutic strategies. This review is the synthesis of a series of conferences that took place during the 6th international course on post-transcriptional gene regulation at Institut Curie. This year, the course made a special focus on RNA chemistry.
Collapse
Affiliation(s)
- Clara Bonnet
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Ana Luisa Dian
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Tristan Espie-Caullet
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Lucilla Fabbri
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Lucie Lagadec
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Thibaud Pivron
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Martin Dutertre
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Reini Luco
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Albertas Navickas
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Stephan Vagner
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Daniela Verga
- CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, Institut Curie, université Paris-Saclay, 91405 Orsay, France
| | - Patricia Uguen
- CNRS UMR3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France.
| |
Collapse
|
20
|
Wang G, Li H, Ye C, He K, Liu S, Jiang B, Ge R, Gao B, Wei J, Zhao Y, Li A, Zhang D, Zhang J, He C. Quantitative profiling of m 6A at single base resolution across the life cycle of rice and Arabidopsis. Nat Commun 2024; 15:4881. [PMID: 38849358 PMCID: PMC11161662 DOI: 10.1038/s41467-024-48941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Haoxuan Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Kayla He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Bochen Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boyang Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Aixuan Li
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Xu W, Shen H. m 6A regulates heterochromatin in mammalian embryonic stem cells. Curr Opin Genet Dev 2024; 86:102196. [PMID: 38669774 DOI: 10.1016/j.gde.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
As the most well-studied modification in mRNA, m6A has been shown to regulate multiple biological processes, including RNA degradation, processing, and translation. Recent studies showed that m6A modification is enriched in chromatin-associated RNAs and nascent RNAs, suggesting m6A might play regulatory roles in chromatin contexts. Indeed, in the past several years, a number of studies have clarified how m6A and its modulators regulate different types of chromatin states. Specifically, in the past 2-3 years, several studies discovered the roles of m6A and/or its modulators in regulating constitutive and facultative heterochromatin, shedding interesting lights on RNA-dependent heterochromatin formation in mammalian cells. This review will summarize and discuss the mechanisms underlying m6A's regulation in different types of heterochromatin, with a specific emphasis on the regulation in mammalian embryonic stem cells, which exhibit distinct features of multiple heterochromatin marks.
Collapse
Affiliation(s)
- Wenqi Xu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Hongjie Shen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Liu S, Liu M, Li Y, Song Q. N6-methyladenosine-dependent signaling in colorectal cancer: Functions and clinical potential. Crit Rev Oncol Hematol 2024; 198:104360. [PMID: 38615872 DOI: 10.1016/j.critrevonc.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Yuxuan Li
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Qing Song
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
23
|
Song M, Zhao J, Zhang C, Jia C, Yang J, Zhao H, Zhai J, Lei B, Tao S, Chen S, Su R, Ma C. PEA-m6A: an ensemble learning framework for accurately predicting N6-methyladenosine modifications in plants. PLANT PHYSIOLOGY 2024; 195:1200-1213. [PMID: 38428981 DOI: 10.1093/plphys/kiae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
N 6-methyladenosine (m6A), which is the mostly prevalent modification in eukaryotic mRNAs, is involved in gene expression regulation and many RNA metabolism processes. Accurate prediction of m6A modification is important for understanding its molecular mechanisms in different biological contexts. However, most existing models have limited range of application and are species-centric. Here we present PEA-m6A, a unified, modularized and parameterized framework that can streamline m6A-Seq data analysis for predicting m6A-modified regions in plant genomes. The PEA-m6A framework builds ensemble learning-based m6A prediction models with statistic-based and deep learning-driven features, achieving superior performance with an improvement of 6.7% to 23.3% in the area under precision-recall curve compared with state-of-the-art regional-scale m6A predictor WeakRM in 12 plant species. Especially, PEA-m6A is capable of leveraging knowledge from pretrained models via transfer learning, representing an innovation in that it can improve prediction accuracy of m6A modifications under small-sample training tasks. PEA-m6A also has a strong capability for generalization, making it suitable for application in within- and cross-species m6A prediction. Overall, this study presents a promising m6A prediction tool, PEA-m6A, with outstanding performance in terms of its accuracy, flexibility, transferability, and generalization ability. PEA-m6A has been packaged using Galaxy and Docker technologies for ease of use and is publicly available at https://github.com/cma2015/PEA-m6A.
Collapse
Affiliation(s)
- Minggui Song
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chujun Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengchao Jia
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haonan Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Zhai
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Beilei Lei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Chen
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Ye H, Li T, Rigden DJ, Wei Z. m6ACali: machine learning-powered calibration for accurate m6A detection in MeRIP-Seq. Nucleic Acids Res 2024; 52:4830-4842. [PMID: 38634812 PMCID: PMC11109940 DOI: 10.1093/nar/gkae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
We present m6ACali, a novel machine-learning framework aimed at enhancing the accuracy of N6-methyladenosine (m6A) epitranscriptome profiling by reducing the impact of non-specific antibody enrichment in MeRIP-Seq. The calibration model serves as a genomic feature-based classifier that refines the identification of m6A sites, distinguishing those genuinely present from those that can be detected in in-vitro transcribed (IVT) control experiments. We find that m6ACali effectively identifies non-specific binding peaks reported by exomePeak2 and MACS2 in novel MeRIP-Seq datasets without the need for paired IVT controls. The model interpretation revealed that off-target antibody binding sites commonly occur at short exons and short mRNAs, originating from high read coverage regions that share the motif sequence with true m6A sites. We also reveal that the ML strategy can efficiently adjust differentially methylated peaks and other antibody-dependent, base-resolution m6A detection techniques. As a result, m6ACali offers a promising method for the universal enhancement of m6A profiles generated by MeRIP-Seq experiments, elevating the benchmark for omics-level m6A data integration.
Collapse
Affiliation(s)
- Haokai Ye
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Tenglong Li
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Life Course and Medical Sciences, University of Liverpool, L7 8TX Liverpool, UK
| |
Collapse
|
25
|
Khan D, Ramachandiran I, Vasu K, China A, Khan K, Cumbo F, Halawani D, Terenzi F, Zin I, Long B, Costain G, Blaser S, Carnevale A, Gogonea V, Dutta R, Blankenberg D, Yoon G, Fox PL. Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m 6A site accessibility. Nat Commun 2024; 15:4284. [PMID: 38769304 PMCID: PMC11106242 DOI: 10.1038/s41467-024-48549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fabio Cumbo
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Dalia Halawani
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Isaac Zin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Briana Long
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Gregory Costain
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Amanda Carnevale
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Grace Yoon
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Department of Paediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
26
|
Bensaude O, Barbosa I, Morillo L, Dikstein R, Le Hir H. Exon-junction complex association with stalled ribosomes and slow translation-independent disassembly. Nat Commun 2024; 15:4209. [PMID: 38760352 PMCID: PMC11101648 DOI: 10.1038/s41467-024-48371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Exon junction complexes are deposited at exon-exon junctions during splicing. They are primarily known to activate non-sense mediated degradation of transcripts harbouring premature stop codons before the last intron. According to a popular model, exon-junction complexes accompany mRNAs to the cytoplasm where the first translating ribosome pushes them out. However, they are also removed by uncharacterized, translation-independent mechanisms. Little is known about kinetic and transcript specificity of these processes. Here we tag core subunits of exon-junction complexes with complementary split nanoluciferase fragments to obtain sensitive and quantitative assays for complex formation. Unexpectedly, exon-junction complexes form large stable mRNPs containing stalled ribosomes. Complex assembly and disassembly rates are determined after an arrest in transcription and/or translation. 85% of newly deposited exon-junction complexes are disassembled by a translation-dependent mechanism. However as this process is much faster than the translation-independent one, only 30% of the exon-junction complexes present in cells at steady state require translation for disassembly. Deep RNA sequencing shows a bias of exon-junction complex bound transcripts towards microtubule and centrosome coding ones and demonstrate that the lifetimes of exon-junction complexes are transcript-specific. This study provides a dynamic vision of exon-junction complexes and uncovers their unexpected stable association with ribosomes.
Collapse
Affiliation(s)
- Olivier Bensaude
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Lucia Morillo
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
27
|
Acera Mateos P, J Sethi A, Ravindran A, Srivastava A, Woodward K, Mahmud S, Kanchi M, Guarnacci M, Xu J, W S Yuen Z, Zhou Y, Sneddon A, Hamilton W, Gao J, M Starrs L, Hayashi R, Wickramasinghe V, Zarnack K, Preiss T, Burgio G, Dehorter N, E Shirokikh N, Eyras E. Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications. Nat Commun 2024; 15:3899. [PMID: 38724548 PMCID: PMC11082244 DOI: 10.1038/s41467-024-47953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI's capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome.
Collapse
Affiliation(s)
- P Acera Mateos
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - A J Sethi
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - A Ravindran
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - A Srivastava
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - K Woodward
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - S Mahmud
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - M Kanchi
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - M Guarnacci
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - J Xu
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
| | - Z W S Yuen
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - Y Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - A Sneddon
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - W Hamilton
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3052, Australia
| | - J Gao
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - L M Starrs
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - R Hayashi
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | | | - K Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - T Preiss
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - G Burgio
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - N Dehorter
- The Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - N E Shirokikh
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
| | - E Eyras
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, ACT, 2601, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
28
|
Hao JD, Liu QL, Liu MX, Yang X, Wang LM, Su SY, Xiao W, Zhang MQ, Zhang YC, Zhang L, Chen YS, Yang YG, Ren J. DDX21 mediates co-transcriptional RNA m 6A modification to promote transcription termination and genome stability. Mol Cell 2024; 84:1711-1726.e11. [PMID: 38569554 DOI: 10.1016/j.molcel.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.
Collapse
Affiliation(s)
- Jin-Dong Hao
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Lan Liu
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng-Xia Liu
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xing Yang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-Ming Wang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Yi Su
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Xiao
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Chang Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yu-Sheng Chen
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Ren
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Baek A, Lee GE, Golconda S, Rayhan A, Manganaris AA, Chen S, Tirumuru N, Yu H, Kim S, Kimmel C, Zablocki O, Sullivan MB, Addepalli B, Wu L, Kim S. Single-molecule epitranscriptomic analysis of full-length HIV-1 RNAs reveals functional roles of site-specific m 6As. Nat Microbiol 2024; 9:1340-1355. [PMID: 38605174 PMCID: PMC11087264 DOI: 10.1038/s41564-024-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/15/2024] [Indexed: 04/13/2024]
Abstract
Although the significance of chemical modifications on RNA is acknowledged, the evolutionary benefits and specific roles in human immunodeficiency virus (HIV-1) replication remain elusive. Most studies have provided only population-averaged values of modifications for fragmented RNAs at low resolution and have relied on indirect analyses of phenotypic effects by perturbing host effectors. Here we analysed chemical modifications on HIV-1 RNAs at the full-length, single RNA level and nucleotide resolution using direct RNA sequencing methods. Our data reveal an unexpectedly simple HIV-1 modification landscape, highlighting three predominant N6-methyladenosine (m6A) modifications near the 3' end. More densely installed in spliced viral messenger RNAs than in genomic RNAs, these m6As play a crucial role in maintaining normal levels of HIV-1 RNA splicing and translation. HIV-1 generates diverse RNA subspecies with distinct m6A ensembles, and maintaining multiple of these m6As on its RNAs provides additional stability and resilience to HIV-1 replication, suggesting an unexplored viral RNA-level evolutionary strategy.
Collapse
Affiliation(s)
- Alice Baek
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Ga-Eun Lee
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
| | - Sarah Golconda
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Asif Rayhan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Anastasios A Manganaris
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
- Department of Computer Science and Engineering, Ohio State University, Columbus, OH, USA
| | - Shuliang Chen
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Nagaraja Tirumuru
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Hannah Yu
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Shihyoung Kim
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA
| | - Christopher Kimmel
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA
| | - Olivier Zablocki
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sanggu Kim
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA.
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA.
- Infectious Diseases Institute, Ohio State University, Columbus, OH, USA.
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
30
|
Wang Y, Wang S, Meng Z, Liu XM, Mao Y. Determinant of m6A regional preference by transcriptional dynamics. Nucleic Acids Res 2024; 52:3510-3521. [PMID: 38452220 DOI: 10.1093/nar/gkae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant chemical modification occurring on eukaryotic mRNAs, and has been reported to be involved in almost all stages of mRNA metabolism. The distribution of m6A sites is notably asymmetric along mRNAs, with a strong preference toward the 3' terminus of the transcript. How m6A regional preference is shaped remains incompletely understood. In this study, by performing m6A-seq on chromatin-associated RNAs, we found that m6A regional preference arises during transcription. Nucleosome occupancy is remarkedly increased in the region downstream of m6A sites, suggesting an intricate interplay between m6A methylation and nucleosome-mediated transcriptional dynamics. Notably, we found a remarkable slowdown of Pol-II movement around m6A sites. In addition, inhibiting Pol-II movement increases nearby m6A methylation levels. By analyzing massively parallel assays for m6A, we found that RNA secondary structures inhibit m6A methylation. Remarkably, the m6A sites associated with Pol-II pausing tend to be embedded within RNA secondary structures. These results suggest that Pol-II pausing could affect the accessibility of m6A motifs to the methyltransferase complex and subsequent m6A methylation by mediating RNA secondary structure. Overall, our study reveals a crucial role of transcriptional dynamics in the formation of m6A regional preference.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Shen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhen Meng
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanhui Mao
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Tegowski M, Meyer KD. Studying m 6A in the brain: a perspective on current methods, challenges, and future directions. Front Mol Neurosci 2024; 17:1393973. [PMID: 38711483 PMCID: PMC11070500 DOI: 10.3389/fnmol.2024.1393973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
A major mechanism of post-transcriptional RNA regulation in cells is the addition of chemical modifications to RNA nucleosides, which contributes to nearly every aspect of the RNA life cycle. N6-methyladenosine (m6A) is a highly prevalent modification in cellular mRNAs and non-coding RNAs, and it plays important roles in the control of gene expression and cellular function. Within the brain, proper regulation of m6A is critical for neurodevelopment, learning and memory, and the response to injury, and m6A dysregulation has been implicated in a variety of neurological disorders. Thus, understanding m6A and how it is regulated in the brain is important for uncovering its roles in brain function and potentially identifying novel therapeutic pathways for human disease. Much of our knowledge of m6A has been driven by technical advances in the ability to map and quantify m6A sites. Here, we review current technologies for characterizing m6A and highlight emerging methods. We discuss the advantages and limitations of current tools as well as major challenges going forward, and we provide our perspective on how continued developments in this area can propel our understanding of m6A in the brain and its role in brain disease.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
32
|
Horner SM, Thompson MG. Challenges to mapping and defining m 6A function in viral RNA. RNA (NEW YORK, N.Y.) 2024; 30:482-490. [PMID: 38531643 PMCID: PMC11019751 DOI: 10.1261/rna.079959.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Viral RNA molecules contain multiple layers of regulatory information. This includes features beyond the primary sequence, such as RNA structures and RNA modifications, including N6-methyladenosine (m6A). Many recent studies have identified the presence and location of m6A in viral RNA and have found diverse regulatory roles for this modification during viral infection. However, to date, viral m6A mapping strategies have limitations that prevent a complete understanding of the function of m6A on individual viral RNA molecules. While m6A sites have been profiled on bulk RNA from many viruses, the resulting m6A maps of viral RNAs described to date present a composite picture of m6A across viral RNA molecules in the infected cell. Thus, for most viruses, it is unknown if unique viral m6A profiles exist throughout infection, nor if they regulate specific viral life cycle stages. Here, we describe several challenges to defining the function of m6A in viral RNA molecules and provide a framework for future studies to help in the understanding of how m6A regulates viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
33
|
Gilbert WV. Recent developments, opportunities, and challenges in the study of mRNA pseudouridylation. RNA (NEW YORK, N.Y.) 2024; 30:530-536. [PMID: 38531650 PMCID: PMC11019745 DOI: 10.1261/rna.079975.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Pseudouridine is an abundant mRNA modification found in diverse organisms ranging from bacteria and viruses to multicellular plants and humans. New developments in pseudouridine profiling provide quantitative tools to map mRNA pseudouridylation sites. Sparse biochemical studies establish the potential for mRNA pseudouridylation to affect most stages of the mRNA life cycle from birth to death. This recent progress sets the stage for deeper investigations into the molecular and cellular functions of specific mRNA pseudouridines, including in disease.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
34
|
Guarnacci M, Preiss T. The je ne sais quoi of 5-methylcytosine in messenger RNA. RNA (NEW YORK, N.Y.) 2024; 30:560-569. [PMID: 38531644 PMCID: PMC11019750 DOI: 10.1261/rna.079982.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
The potential presence of 5-methylcytosine as a sparse internal modification of mRNA was first raised in 1975, and a first map of the modification was also part of the epitranscriptomics "big bang" in 2012. Since then, the evidence for its presence in mRNA has firmed up, and initial insights have been gained into the molecular function and broader biological relevance of 5-methylcytosine when present in mRNA. Here, we summarize the status quo of the field, outline some of its current challenges, and suggest how to address them in future work.
Collapse
Affiliation(s)
- Marco Guarnacci
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| |
Collapse
|
35
|
Albihlal WS, Chan WY, van Werven FJ. Budding yeast as an ideal model for elucidating the role of N 6-methyladenosine in regulating gene expression. Yeast 2024; 41:148-157. [PMID: 38238962 DOI: 10.1002/yea.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
N6-methyladenosine (m6A) is a highly abundant and evolutionarily conserved messenger RNA (mRNA) modification. This modification is installed on RRACH motifs on mRNAs by a hetero-multimeric holoenzyme known as m6A methyltransferase complex (MTC). The m6A mark is then recognised by a group of conserved proteins known as the YTH domain family proteins which guide the mRNA for subsequent downstream processes that determine its fate. In yeast, m6A is installed on thousands of mRNAs during early meiosis by a conserved MTC and the m6A-modified mRNAs are read by the YTH domain-containing protein Mrb1/Pho92. In this review, we aim to delve into the recent advances in our understanding of the regulation and roles of m6A in yeast meiosis. We will discuss the potential functions of m6A in mRNA translation and decay, unravelling their significance in regulating gene expression. We propose that yeast serves as an exceptional model organism for the study of fundamental molecular mechanisms related to the function and regulation of m6A-modified mRNAs. The insights gained from yeast research not only expand our knowledge of mRNA modifications and their molecular roles but also offer valuable insights into the broader landscape of eukaryotic posttranscriptional regulation of gene expression.
Collapse
Affiliation(s)
- Waleed S Albihlal
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Wei Yee Chan
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Folkert J van Werven
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| |
Collapse
|
36
|
Jiang S, Gao L, Li J, Zhang F, Zhang Y, Liu J. N6-methyladenosine-modified circ_0000337 sustains bortezomib resistance in multiple myeloma by regulating DNA repair. Front Cell Dev Biol 2024; 12:1383232. [PMID: 38586304 PMCID: PMC10995360 DOI: 10.3389/fcell.2024.1383232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Studies have shown that bortezomib resistance in multiple myeloma (MM) is mediated by the abnormalities of various molecules and microenvironments. Exploring these resistance mechanisms will improve the therapeutic efficacy of bortezomib. In this study, bone marrow tissues from three patients with MM, both sensitive and resistant to bortezomib, were collected for circRNA high-throughput sequencing analysis. The relationship between circ_0000337, miR-98-5p, and target gene DNA2 was analyzed by luciferase detection and verified by RT-qPCR. We first found that circ_0000337 was significantly upregulated in bortezomib-resistant MM tissues and cells, and overexpression of circ_0000337 could promote bortezomib resistance in MM cells. circ_0000337 may act as a miR-98-5p sponge to upregulate DNA2 expression, regulate DNA damage repair, and induce bortezomib resistance. Furthermore, it was determined that the increased circ_0000337 level in bortezomib-resistant cells was due to an increased N6-methyladenosine (m6A) level, resulting in enhanced RNA stability. In conclusion, the m6A level of circ_0000337 and its regulation may be a new and potential therapeutic target for overcoming bortezomib resistance in MM.
Collapse
Affiliation(s)
- Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lili Gao
- Jinan Hospital of Integrated Chinese and Western Medicine, Jinan, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanan Zhang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Da Cunha D, Miro J, Van Goethem C, Notarnicola C, Hugon G, Carnac G, Cossée M, Koenig M, Tuffery-Giraud S. The exon junction complex is required for DMD gene splicing fidelity and myogenic differentiation. Cell Mol Life Sci 2024; 81:150. [PMID: 38512499 PMCID: PMC10957711 DOI: 10.1007/s00018-024-05188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Deposition of the exon junction complex (EJC) upstream of exon-exon junctions helps maintain transcriptome integrity by preventing spurious re-splicing events in already spliced mRNAs. Here we investigate the importance of EJC for the correct splicing of the 2.2-megabase-long human DMD pre-mRNA, which encodes dystrophin, an essential protein involved in cytoskeletal organization and cell signaling. Using targeted RNA-seq, we show that knock-down of the eIF4A3 and Y14 core components of EJC in a human muscle cell line causes an accumulation of mis-splicing events clustered towards the 3' end of the DMD transcript (Dp427m). This deregulation is conserved in the short Dp71 isoform expressed ubiquitously except in adult skeletal muscle and is rescued with wild-type eIF4A3 and Y14 proteins but not with an EJC assembly-defective mutant eIF4A3. MLN51 protein and EJC-associated ASAP/PSAP complexes independently modulate the inclusion of the regulated exons 71 and 78. Our data confirm the protective role of EJC in maintaining splicing fidelity, which in the DMD gene is necessary to preserve the function of the critical C-terminal protein-protein interaction domain of dystrophin present in all tissue-specific isoforms. Given the role of the EJC in maintaining the integrity of dystrophin, we asked whether the EJC could also be involved in the regulation of a mechanism as complex as skeletal muscle differentiation. We found that eIF4A3 knockdown impairs myogenic differentiation by blocking myotube formation. Collectively, our data provide new insights into the functional roles of EJC in human skeletal muscle.
Collapse
Affiliation(s)
- Dylan Da Cunha
- PhyMedExp, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Miro
- PhyMedExp, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Charles Van Goethem
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France
- Montpellier BioInformatique Pour Le Diagnostic Clinique (MOBIDIC), Plateau de Médecine Moléculaire Et Génomique (PMMG), CHU Montpellier, 34295, Montpellier, France
| | | | - Gérald Hugon
- PhyMedExp, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Gilles Carnac
- PhyMedExp, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Mireille Cossée
- PhyMedExp, Univ Montpellier, CNRS, INSERM, Montpellier, France
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France
| | - Michel Koenig
- PhyMedExp, Univ Montpellier, CNRS, INSERM, Montpellier, France
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France
| | | |
Collapse
|
38
|
He PC, He C. mRNA accessibility within mRNPs as a determinant of gene expression. Trends Biochem Sci 2024; 49:199-207. [PMID: 38071089 PMCID: PMC10939938 DOI: 10.1016/j.tibs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 01/31/2024]
Abstract
Gene expression is a complex process requiring many control mechanisms to achieve a desired phenotype. DNA accessibility within chromatin is well established as an important determinant of gene expression. By contrast, while mRNA also associates with a complement of proteins, the exact nature of messenger ribonucleoprotein (mRNP) packaging and its functional relevance is not as clear. Recent reports indicate that exon junction complex (EJC)-mediated mRNP packaging renders exon junction-proximal regions inaccessible for m6A methylation, and that EJCs reside within the inaccessible interior of globular transcription and export (TREX) complex-associated nuclear mRNPs. We propose that 'mRNA accessibility' within mRNPs is an important determinant of gene expression that may modulate the specificity of a broad array of regulatory processes including but not limited to m6A methylation.
Collapse
Affiliation(s)
- P Cody He
- Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Esteva-Socias M, Aguilo F. METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer 2024; 6:zcae009. [PMID: 38444581 PMCID: PMC10914372 DOI: 10.1093/narcan/zcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Translational regulation is an important step in the control of gene expression. In cancer cells, the orchestration of both global control of protein synthesis and selective translation of specific mRNAs promote tumor cell survival, angiogenesis, transformation, invasion and metastasis. N6-methyladenosine (m6A), the most prevalent mRNA modification in higher eukaryotes, impacts protein translation. Over the past decade, the development of m6A mapping tools has facilitated comprehensive functional investigations, revealing the involvement of this chemical mark, together with its writer METTL3, in promoting the translation of both oncogenes and tumor suppressor transcripts, with the impact being context-dependent. This review aims to consolidate our current understanding of how m6A and METTL3 shape translation regulation in the realm of cancer biology. In addition, it delves into the role of cytoplasmic METTL3 in protein synthesis, operating independently of its catalytic activity. Ultimately, our goal is to provide critical insights into the interplay between m6A, METTL3 and translational regulation in cancer, offering a deeper comprehension of the mechanisms sustaining tumorigenesis.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85Umeå, Sweden
| |
Collapse
|
40
|
Shachar R, Dierks D, Garcia-Campos MA, Uzonyi A, Toth U, Rossmanith W, Schwartz S. Dissecting the sequence and structural determinants guiding m6A deposition and evolution via inter- and intra-species hybrids. Genome Biol 2024; 25:48. [PMID: 38360609 PMCID: PMC10870504 DOI: 10.1186/s13059-024-03182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant mRNA modification, and controls mRNA stability. m6A distribution varies considerably between and within species. Yet, it is unclear to what extent this variability is driven by changes in genetic sequences ('cis') or cellular environments ('trans') and via which mechanisms. RESULTS Here we dissect the determinants governing RNA methylation via interspecies and intraspecies hybrids in yeast and mammalian systems, coupled with massively parallel reporter assays and m6A-QTL reanalysis. We find that m6A evolution and variability is driven primarily in 'cis', via two mechanisms: (1) variations altering m6A consensus motifs, and (2) variation impacting mRNA secondary structure. We establish that mutations impacting RNA structure - even when distant from an m6A consensus motif - causally dictate methylation propensity. Finally, we demonstrate that allele-specific differences in m6A levels lead to allele-specific changes in gene expression. CONCLUSIONS Our findings define the determinants governing m6A evolution and diversity and characterize the consequences thereof on gene expression regulation.
Collapse
Affiliation(s)
- Ran Shachar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - David Dierks
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | | | - Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, 1090, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, 1090, Austria
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel.
| |
Collapse
|
41
|
Goh WSS, Kuang Y. Heterogeneity of chemical modifications on RNA. Biophys Rev 2024; 16:79-87. [PMID: 38495447 PMCID: PMC10937866 DOI: 10.1007/s12551-023-01128-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/27/2023] [Indexed: 03/19/2024] Open
Abstract
The chemical modifications of RNAs broadly impact almost all cellular events and influence various diseases. The rapid advance of sequencing and other technologies opened the door to global methods for profiling all RNA modifications, namely the "epitranscriptome." The mapping of epitranscriptomes in different cells and tissues unveiled that RNA modifications exhibit extensive heterogeneity, in type, amount, and in location. In this mini review, we first introduce the current understanding of modifications on major types of RNAs and the methods that enabled their discovery. We next discuss the tissue and cell heterogeneity of RNA modifications and briefly address the limitations of current technologies. With much still remaining unknown, the development of the epitranscriptomic field lies in the further developments of novel technologies.
Collapse
Affiliation(s)
- W. S. Sho Goh
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
42
|
Zhang C, Wang Y, Zhen Z, Li J, Su J, Wu C. mTORC1 Mediates Biphasic Mechano-Response to Orchestrate Adhesion-Dependent Cell Growth and Anoikis Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307206. [PMID: 38041494 PMCID: PMC10853740 DOI: 10.1002/advs.202307206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 12/03/2023]
Abstract
Cells constantly sense and respond to not only biochemical but also biomechanical changes in their microenvironment, demanding for dynamic metabolic adaptation. ECM stiffening is a hallmark of cancer aggressiveness, while survival under substrate detachment also associates with poor prognosis. Mechanisms underlying this, non-linear mechano-response of tumor cells may reveal potential double-hit targets for cancers. Here, an integrin-GSK3β-FTO-mTOR axis is reported, that can integrate stiffness sensing to ensure both the growth advantage endowed by rigid substrate and cell death resistance under matrix detachment. It is demonstrated that substrate stiffening can activate mTORC1 and elevate mTOR level through integrins and GSK3β-FTO mediated mRNA m6 A modification, promoting anabolic metabolism. Inhibition of this axis upon ECM detachment enhances autophagy, which in turn conveys resilience of tumor cells to anoikis, as it is demonstrated in human breast ductal carcinoma in situ (DCIS) and mice malignant ascites. Collectively, these results highlight the biphasic mechano-regulation of cellular metabolism, with implications in tumor growth under stiffened conditions such as fibrosis, as well as in anoikis-resistance during cancer metastasis.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Yuan Wang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Zifeng Zhen
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jiayi Li
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| | - Jing Su
- Pathology DepartmentPeking University Third HospitalBeijing100191China
| | - Congying Wu
- Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
- International Cancer InstituteBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191China
| |
Collapse
|
43
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
44
|
Guca E, Alarcon R, Palo MZ, Santos L, Alonso-Gil S, Davyt M, de Lima LHF, Boissier F, Das S, Zagrovic B, Puglisi JD, Hashem Y, Ignatova Z. N 6-methyladenosine in 5' UTR does not promote translation initiation. Mol Cell 2024; 84:584-595.e6. [PMID: 38244546 PMCID: PMC10909339 DOI: 10.1016/j.molcel.2023.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.
Collapse
Affiliation(s)
- Ewelina Guca
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Rodrigo Alarcon
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Michael Z Palo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo H F de Lima
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Department of Exact and Biological Sciences, Federal University of São João Del Rei, Sete Lagoas Campus, Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Fanny Boissier
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
45
|
Beck M, Covino R, Hänelt I, Müller-McNicoll M. Understanding the cell: Future views of structural biology. Cell 2024; 187:545-562. [PMID: 38306981 DOI: 10.1016/j.cell.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
Determining the structure and mechanisms of all individual functional modules of cells at high molecular detail has often been seen as equal to understanding how cells work. Recent technical advances have led to a flush of high-resolution structures of various macromolecular machines, but despite this wealth of detailed information, our understanding of cellular function remains incomplete. Here, we discuss present-day limitations of structural biology and highlight novel technologies that may enable us to analyze molecular functions directly inside cells. We predict that the progression toward structural cell biology will involve a shift toward conceptualizing a 4D virtual reality of cells using digital twins. These will capture cellular segments in a highly enriched molecular detail, include dynamic changes, and facilitate simulations of molecular processes, leading to novel and experimentally testable predictions. Transferring biological questions into algorithms that learn from the existing wealth of data and explore novel solutions may ultimately unveil how cells work.
Collapse
Affiliation(s)
- Martin Beck
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Goethe University Frankfurt, Frankfurt, Germany.
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
| | - Inga Hänelt
- Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
46
|
Ramakrishnan M, Rajan KS, Mullasseri S, Ahmad Z, Zhou M, Sharma A, Ramasamy S, Wei Q. Exploring N6-methyladenosine (m 6A) modification in tree species: opportunities and challenges. HORTICULTURE RESEARCH 2024; 11:uhad284. [PMID: 38371641 PMCID: PMC10871907 DOI: 10.1093/hr/uhad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/17/2023] [Indexed: 02/20/2024]
Abstract
N 6-methyladenosine (m6A) in eukaryotes is the most common and widespread internal modification in mRNA. The modification regulates mRNA stability, translation efficiency, and splicing, thereby fine-tuning gene regulation. In plants, m6A is dynamic and critical for various growth stages, embryonic development, morphogenesis, flowering, stress response, crop yield, and biomass. Although recent high-throughput sequencing approaches have enabled the rapid identification of m6A modification sites, the site-specific mechanism of this modification remains unclear in trees. In this review, we discuss the functional significance of m6A in trees under different stress conditions and discuss recent advancements in the quantification of m6A. Quantitative and functional insights into the dynamic aspect of m6A modification could assist researchers in engineering tree crops for better productivity and resistance to various stress conditions.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - K Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi 682018, Kerala, India
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Subbiah Ramasamy
- Cardiac Metabolic Disease Laboratory, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
47
|
Maestri S, Furlan M, Mulroney L, Coscujuela Tarrero L, Ugolini C, Dalla Pozza F, Leonardi T, Birney E, Nicassio F, Pelizzola M. Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing. Brief Bioinform 2024; 25:bbae001. [PMID: 38279646 PMCID: PMC10818168 DOI: 10.1093/bib/bbae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal eukaryotic mRNA modification, and is involved in the regulation of various biological processes. Direct Nanopore sequencing of native RNA (dRNA-seq) emerged as a leading approach for its identification. Several software were published for m6A detection and there is a strong need for independent studies benchmarking their performance on data from different species, and against various reference datasets. Moreover, a computational workflow is needed to streamline the execution of tools whose installation and execution remains complicated. We developed NanOlympicsMod, a Nextflow pipeline exploiting containerized technology for comparing 14 tools for m6A detection on dRNA-seq data. NanOlympicsMod was tested on dRNA-seq data generated from in vitro (un)modified synthetic oligos. The m6A hits returned by each tool were compared to the m6A position known by design of the oligos. In addition, NanOlympicsMod was used on dRNA-seq datasets from wild-type and m6A-depleted yeast, mouse and human, and each tool's hits were compared to reference m6A sets generated by leading orthogonal methods. The performance of the tools markedly differed across datasets, and methods adopting different approaches showed different preferences in terms of precision and recall. Changing the stringency cut-offs allowed for tuning the precision-recall trade-off towards user preferences. Finally, we determined that precision and recall of tools are markedly influenced by sequencing depth, and that additional sequencing would likely reveal additional m6A sites. Thanks to the possibility of including novel tools, NanOlympicsMod will streamline the benchmarking of m6A detection tools on dRNA-seq data, improving future RNA modification characterization.
Collapse
Affiliation(s)
- Simone Maestri
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Logan Mulroney
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, U.K
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Lucia Coscujuela Tarrero
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Camilla Ugolini
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Fabio Dalla Pozza
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, U.K
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
48
|
Aufgebauer CJ, Bland KM, Horner SM. Modifying the antiviral innate immune response by selective writing, erasing, and reading of m 6A on viral and cellular RNA. Cell Chem Biol 2024; 31:100-109. [PMID: 38176419 PMCID: PMC10872403 DOI: 10.1016/j.chembiol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Viral infection and the antiviral innate immune response are regulated by the RNA modification m6A. m6A directs nearly all aspects of RNA metabolism by recruiting RNA-binding proteins that mediate the fate of m6A-containing RNA. m6A controls the antiviral innate immune response in diverse ways, including shielding viral RNA from detection by antiviral sensors and influencing the expression of cellular mRNAs encoding antiviral signaling proteins, cytokines, and effector proteins. While m6A and the m6A machinery are important for the antiviral response, the precise mechanisms that determine how the m6A machinery selects specific viral or cellular RNA molecules for modification during infection are not fully understood. In this review, we highlight recent findings that shed light on how viral infection redirects the m6A machinery during the antiviral response. A better understanding of m6A targeting during viral infection could lead to new immunomodulatory and therapeutic strategies against viral infection.
Collapse
Affiliation(s)
- Caroline J Aufgebauer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katherine M Bland
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
49
|
Palazzo AF, Qiu Y, Kang YM. mRNA nuclear export: how mRNA identity features distinguish functional RNAs from junk transcripts. RNA Biol 2024; 21:1-12. [PMID: 38091265 PMCID: PMC10732640 DOI: 10.1080/15476286.2023.2293339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The division of the cellular space into nucleoplasm and cytoplasm promotes quality control mechanisms that prevent misprocessed mRNAs and junk RNAs from gaining access to the translational machinery. Here, we explore how properly processed mRNAs are distinguished from both misprocessed mRNAs and junk RNAs by the presence or absence of various 'identity features'.
Collapse
Affiliation(s)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Höfler S, Duss O. Interconnections between m 6A RNA modification, RNA structure, and protein-RNA complex assembly. Life Sci Alliance 2024; 7:e202302240. [PMID: 37935465 PMCID: PMC10629537 DOI: 10.26508/lsa.202302240] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N6-methyladenosine (m6A) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 m6A writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the m6A modification affects RNA folding and protein-RNA interactions.
Collapse
Affiliation(s)
- Simone Höfler
- https://ror.org/03mstc592 Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Olivier Duss
- https://ror.org/03mstc592 Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|