1
|
Barrios BE, Jaime CE, Sena AA, de Paula-Silva M, Gil CD, Oliani SM, Correa SG. Brief Disruption of Circadian Rhythms Alters Intestinal Barrier Integrity and Modulates DSS-Induced Colitis Severity in Mice. Inflammation 2024:10.1007/s10753-024-02162-8. [PMID: 39407037 DOI: 10.1007/s10753-024-02162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 01/06/2025]
Abstract
Physiological processes in organisms exhibit circadian rhythms that optimize fitness and anticipate environmental changes. Luminal signals such as food or metabolites synchronize bowel activity, and disruptions in these rhythms are linked to metabolic disorders and gastrointestinal inflammation. To characterize the intrinsic intestinal rhythms and assess disruptions due to continuous darkness or light exposure, C57BL/6 mice were exposed to standard light-dark conditions or continuous light/darkness for 48 h, with evaluations at four timepoints. We assessed intestinal morphology, mucus production, nitric oxide levels and permeability. Under standard light: dark cycles, mice showed changes in intestinal morphology consistent with normal tract physiology. Continuous light exposure caused marked alterations in the small intestine´s epithelium and lamina propria, reduced nitric oxide production in the colon, and predominant neutral mucins. Enhanced permeability was indicated by higher FITC-dextran uptake and increased frequency of IgG-coated bacteria. Additionally, the 48 h-disruption influenced DSS-induced colitis with attenuation in L:L group, or exacerbation in D:D group, of clinical signs. These findings highlight the critical role of circadian rhythms in gut histoarchitecture and function, demonstrating that short-term disruptions in light-dark cycles can compromise intestinal barrier integrity and impact inflammatory outcomes.
Collapse
Affiliation(s)
- Bibiana E Barrios
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Cristian E Jaime
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Angela A Sena
- Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Marina de Paula-Silva
- Department of Biology, Institute of Bioscience, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, São Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Sonia M Oliani
- Department of Biology, Institute of Bioscience, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | - Silvia G Correa
- Inmunología, Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| |
Collapse
|
2
|
Weintraub Y, Cohen S, Yerushalmy-Feler A, Chapnik N, Tsameret S, Anafy A, Damari E, Ben-Tov A, Shamir R, Froy O. Circadian clock gene disruption in white blood cells of patients with celiac disease. Biochimie 2024; 219:51-54. [PMID: 37524198 DOI: 10.1016/j.biochi.2023.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Clock gene disruption has been reported in inflammatory and autoimmune diseases. Specifically, it has been shown that clock gene expression is down-regulated in intestinal tissue and peripheral blood mononuclear cells of patients with inflammatory bowel disease (IBD). We aimed to determine the systemic expression of the circadian clock genes in newly diagnosed untreated, young patients with celiac disease (CeD). We prospectively enrolled patients younger than 20 years old who underwent diagnostic endoscopic procedures either for CeD diagnosis or due to other gastrointestinal complaints, at the pediatric and adult gastroenterology units, the Tel Aviv Sourasky Medical Center from 8/2016-8/2022. Demographic data, anthropometric parameters, and endoscopic macroscopic and microscopic findings were obtained. Blood samples were obtained to determine tissue transglutaminase (tTG) and core clock gene (CLOCK, BMAL1, PER1, PER2, CRY1, CRY2) expression in white blood cells (WBC). Thirty individuals were analyzed (18 with newly diagnosed CeD and 12 controls). Expression of the clock genes CLOCK, BMAL1, CRY2, PER1 and PER2 was significantly reduced in CeD patients compared to controls, while CRY1 did not differ between the groups. In conclusion, newly diagnosed, untreated, young patients with CeD have reduced clock gene expression in WBC compared to controls. These results suggest that, in CeD, the inflammatory response is associated with systemic disruption of clock gene expression, as is manifested in other inflammatory and autoimmune diseases. CLINICALTRIALS.GOV IDENTIFIER: NCT03662646.
Collapse
Affiliation(s)
- Y Weintraub
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S Cohen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Pediatric Gastroenterology, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel
| | - A Yerushalmy-Feler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Pediatric Gastroenterology, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel
| | - N Chapnik
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - S Tsameret
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - A Anafy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Pediatric Gastroenterology, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel
| | - E Damari
- Institute of Pediatric Gastroenterology, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel
| | - A Ben-Tov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Institute of Pediatric Gastroenterology, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel
| | - R Shamir
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Froy
- Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
3
|
Alvarez-García L, Sánchez-García FJ, Vázquez-Pichardo M, Moreno-Altamirano MM. Chikungunya Virus, Metabolism, and Circadian Rhythmicity Interplay in Phagocytic Cells. Metabolites 2023; 13:1143. [PMID: 37999239 PMCID: PMC10672914 DOI: 10.3390/metabo13111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to humans by mosquitoes of the genus Aedes, causing the chikungunya fever disease, associated with inflammation and severe articular incapacitating pain. There has been a worldwide reemergence of chikungunya and the number of cases increased to 271,006 in 2022 in the Americas alone. The replication of CHIKV takes place in several cell types, including phagocytic cells. Monocytes and macrophages are susceptible to infection by CHIKV; at the same time, they provide protection as components of the innate immune system. However, in host-pathogen interactions, CHIKV might have the ability to alter the function of immune cells, partly by rewiring the tricarboxylic acid cycle. Some viral evasion mechanisms depend on the metabolic reprogramming of immune cells, and the cell metabolism is intertwined with circadian rhythmicity; thus, a circadian immunovirometabolism axis may influence viral pathogenicity. Therefore, analyzing the interplay between viral infection, circadian rhythmicity, and cellular metabolic reprogramming in human macrophages could shed some light on the new field of immunovirometabolism and eventually contribute to the development of novel drugs and therapeutic approaches based on circadian rhythmicity and metabolic reprogramming.
Collapse
Affiliation(s)
- Linamary Alvarez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - Mauricio Vázquez-Pichardo
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
- Laboratorio de Arbovirus, Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Col. Lomas de Plateros, Mexico City 01480, Mexico
| | - M. Maximina Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| |
Collapse
|
4
|
Pai YC, Li YH, Turner JR, Yu LCH. Transepithelial Barrier Dysfunction Drives Microbiota Dysbiosis to Initiate Epithelial Clock-driven Inflammation. J Crohns Colitis 2023; 17:1471-1488. [PMID: 37004200 PMCID: PMC10588795 DOI: 10.1093/ecco-jcc/jjad064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Factors that contribute to inflammatory bowel disease [IBD] pathogenesis include genetic polymorphisms, barrier loss, and microbial dysbiosis. A major knowledge gap exists in the origins of the colitogenic microbiome and its relationship with barrier impairment. Epithelial myosin light chain kinase [MLCK] is a critical regulator of the paracellular barrier, but the effects of MLCK activation on the intraepithelial bacteria [IEB] and dysbiosis are incompletely understood. We hypothesise that MLCK-dependent bacterial endocytosis promotes pathobiont conversion and shapes a colitogenic microbiome. METHODS To explore this, transgenic [Tg] mice with barrier loss induced by intestinal epithelium-specific expression of a constitutively active MLCK were compared with wild-type [WT] mice. RESULTS When progeny of homozygous MLCK-Tg mice were separated after weaning by genotype [Tg/Tg, Tg/WT, WT/WT], increased IEB numbers associated with dysbiosis and more severe colitis were present in Tg/Tg and Tg/WT mice, relative to WT/WT mice. Cohousing with MLCK-Tg mice induced dysbiosis, increased IEB abundance, and exacerbated colitis in WT mice. Conversely, MLCK-Tg mice colonised with WT microbiota at birth displayed increased Escherichia abundance and greater colitis severity by 6 weeks of age. Microarray analysis revealed circadian rhythm disruption in WT mice co-housed with MLCK-Tg mice relative to WT mice housed only with WT mice. This circadian disruption required Rac1/STAT3-dependent microbial invasion but not MLCK activity, and resulted in increased proinflammatory cytokines and glucocorticoid downregulation. CONCLUSIONS The data demonstrate that barrier dysfunction induces dysbiosis and expansion of invasive microbes that lead to circadian disruption and mucosal inflammation. These results suggest that barrier-protective or bacterium-targeted precision medicine approaches may be of benefit to IBD patients.
Collapse
Affiliation(s)
- Yu-Chen Pai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Yi-Hsuan Li
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Jerrold R Turner
- Brigham's Women Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| |
Collapse
|
5
|
Thorstensen MJ, Weinrauch AM, Bugg WS, Jeffries KM, Anderson WG. Tissue-specific transcriptomes reveal potential mechanisms of microbiome heterogeneity in an ancient fish. Database (Oxford) 2023; 2023:baad055. [PMID: 37590163 PMCID: PMC10434735 DOI: 10.1093/database/baad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/19/2023]
Abstract
The lake sturgeon (Acipenser fulvescens) is an ancient, octoploid fish faced with conservation challenges across its range in North America, but a lack of genomic resources has hindered molecular research in the species. To support such research, we created a transcriptomic database from 13 tissues: brain, esophagus, gill, head kidney, heart, white muscle, liver, glandular stomach, muscular stomach, anterior intestine, pyloric cecum, spiral valve and rectum. The transcriptomes for each tissue were sequenced and assembled individually from a mean of 98.3 million (±38.9 million SD) reads each. In addition, an overall transcriptome was assembled and annotated with all data used for each tissue-specific transcriptome. All assembled transcriptomes and their annotations were made publicly available as a scientific resource. The non-gut transcriptomes provide important resources for many research avenues. However, we focused our analysis on messenger ribonucleic acid (mRNA) observations in the gut because the gut represents a compartmentalized organ system with compartmentalized functions, and seven of the sequenced tissues were from each of these portions. These gut-specific analyses were used to probe evidence of microbiome regulation by studying heterogeneity in microbial genes and genera identified from mRNA annotations. Gene set enrichment analyses were used to reveal the presence of photoperiod and circadian-related transcripts in the pyloric cecum, which may support periodicity in lake sturgeon digestion. Similar analyses were used to identify different types of innate immune regulation across the gut, while analyses of unique transcripts annotated to microbes revealed heterogeneous genera and genes among different gut tissues. The present results provide a scientific resource and information about the mechanisms of compartmentalized function across gut tissues in a phylogenetically ancient vertebrate. Database URL: https://figshare.com/projects/Lake_Sturgeon_Transcriptomes/133143.
Collapse
Affiliation(s)
- Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - William S Bugg
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 212B Biological Sciences Building, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
6
|
Eum SY, Schurhoff N, Teglas T, Wolff G, Toborek M. Circadian disruption alters gut barrier integrity via a ß-catenin-MMP-related pathway. Mol Cell Biochem 2023; 478:581-595. [PMID: 35976519 PMCID: PMC9938043 DOI: 10.1007/s11010-022-04536-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
We evaluated the mechanistic link between circadian rhythms and gut barrier permeability. Mice were subjected to either constant 24-h light (LL) or 12-h light/dark cycles (LD). Mice housed in LL experienced a significant increase in gut barrier permeability that was associated with dysregulated ß-catenin expression and altered expression of tight junction (TJ) proteins. Silencing of ß-catenin resulted in disruption of barrier function in SW480 cells, with ß-catenin appearing to be an upstream regulator of the core circadian components, such as Bmal1, Clock, and Per1/2. In addition, ß-catenin silencing downregulated ZO-1 and occludin TJ proteins with only limited or no changes at their mRNA levels, suggesting post transcriptional regulation. Indeed, silencing of ß-catenin significantly upregulated expression of matrix metallopeptidase (MMP)-2 and MMP-9, and blocking MMP-2/9 activity attenuated epithelial disruption induced by ß-catenin silencing. These results indicate the regulatory role of circadian disruption on gut barrier integrity and the associations between TJ proteins and circadian rhythms, while demonstrating the regulatory role of ß-catenin in this process.
Collapse
Affiliation(s)
- Sung Yong Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Centre Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Fan XL, Song Y, Qin DX, Lin PY. Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression. Int Rev Immunol 2023; 42:101-112. [PMID: 34544330 DOI: 10.1080/08830185.2021.1931170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circadian locomotor output cycles kaput (Clock) and brain and muscle ARNT-like 1 (Bmal1) are two core circadian clock genes. They form a heterodimer that can bind to the E-box element in the promoters of Period circadian protein (Per) and Cryptochrome (Cry) genes, thereby inducing the rhythmic expression of circadian clock control genes. Toll-like receptors (TLRs) are type I transmembrane proteins belonging to the pattern recognition receptor (PRR) family. They can recognize a variety of pathogens and play an important role in innate immunity and adaptive immune responses. Recent studies have found that the circadian clock is closely associated with the immune system. TLRs have a certain correlation with the circadian rhythms; Bmal1 seems to be the central mediator connecting the circadian clock and the immune system. Research on Bmal1 and TLRs has made some progress, but the specific relationship between TLRs and Bmal1 remains unclear. Understanding the relationship between TLRs and Clock/Bmal1 genes is increasingly important for basic research and clinical treatment.
Collapse
Affiliation(s)
- Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Dong-Xu Qin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
8
|
Rosselot AE, Park M, Kim M, Matsu‐Ura T, Wu G, Flores DE, Subramanian KR, Lee S, Sundaram N, Broda TR, McCauley HA, Hawkins JA, Chetal K, Salomonis N, Shroyer NF, Helmrath MA, Wells JM, Hogenesch JB, Moore SR, Hong CI. Ontogeny and function of the circadian clock in intestinal organoids. EMBO J 2022; 41:e106973. [PMID: 34704277 PMCID: PMC8762567 DOI: 10.15252/embj.2020106973] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Circadian rhythms regulate diverse aspects of gastrointestinal physiology ranging from the composition of microbiota to motility. However, development of the intestinal circadian clock and detailed mechanisms regulating circadian physiology of the intestine remain largely unknown. In this report, we show that both pluripotent stem cell-derived human intestinal organoids engrafted into mice and patient-derived human intestinal enteroids possess circadian rhythms and demonstrate circadian phase-dependent necrotic cell death responses to Clostridium difficile toxin B (TcdB). Intriguingly, mouse and human enteroids demonstrate anti-phasic necrotic cell death responses to TcdB. RNA-Seq analysis shows that ~3-10% of the detectable transcripts are rhythmically expressed in mouse and human enteroids. Remarkably, we observe anti-phasic gene expression of Rac1, a small GTPase directly inactivated by TcdB, between mouse and human enteroids, and disruption of Rac1 abolishes clock-dependent necrotic cell death responses. Our findings uncover robust functions of circadian rhythms regulating clock-controlled genes in both mouse and human enteroids governing organism-specific, circadian phase-dependent necrotic cell death responses, and lay a foundation for human organ- and disease-specific investigation of clock functions using human organoids for translational applications.
Collapse
Affiliation(s)
- Andrew E Rosselot
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Miri Park
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Mari Kim
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Toru Matsu‐Ura
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Gang Wu
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Danilo E Flores
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | | | - Suengwon Lee
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Nambirajan Sundaram
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Taylor R Broda
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Heather A McCauley
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Jennifer A Hawkins
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Kashish Chetal
- Division of Biomedical InformaticsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Nathan Salomonis
- Division of Biomedical InformaticsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Noah F Shroyer
- Gastroenterology and HepatologyBaylor College of MedicineHoustonTXUSA
| | - Michael A Helmrath
- Department of Pediatric SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - James M Wells
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Division of EndocrinologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - John B Hogenesch
- Division of Human Genetics and ImmunobiologyCenter for ChronobiologyDepartment of PediatricsCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for ChronobiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| | - Sean R Moore
- Division of Pediatric Gastroenterology, Hepatology, and NutritionDepartment of PediatricsUniversity of Virginia School of MedicineCharlottesvilleVAUSA
| | - Christian I Hong
- Department of Pharmacology & Systems PhysiologyUniversity of CincinnatiCincinnatiOHUSA
- Center for Stem Cell and Organoid MedicineDivision of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Center for ChronobiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
- Division of Developmental BiologyCincinnati Children’s Hospital Medical CenterCincinnatiOHUSA
| |
Collapse
|
9
|
Gutierrez Lopez DE, Lashinger LM, Weinstock GM, Bray MS. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet. Cell Metab 2021; 33:873-887. [PMID: 33789092 DOI: 10.1016/j.cmet.2021.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
The molecular circadian clock and symbiotic host-microbe relationships both evolved as mechanisms that enhance metabolic responses to environmental challenges. The gut microbiome benefits the host by breaking down diet-derived nutrients indigestible by the host and generating microbiota-derived metabolites that support host metabolism. Similarly, cellular circadian clocks optimize organismal physiology to the environment by influencing the timing and coordination of metabolic processes. Host-microbe interactions are influenced by dietary quality and timing, as well as daily light/dark cycles that entrain circadian rhythms in the host. Together, the gut microbiome and the molecular circadian clock play a coordinated role in neural processing, metabolism, adipogenesis, inflammation, and disease initiation and progression. This review examines the bidirectional interactions between the circadian clock, gut microbiota, and host metabolic systems and their effects on obesity and energy homeostasis. Directions for future research and the development of therapies that leverage these systems to address metabolic disease are highlighted.
Collapse
Affiliation(s)
- Diana E Gutierrez Lopez
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura M Lashinger
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Storrs, CT 06032, USA
| | - Molly S Bray
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci 2021; 78:4563-4587. [PMID: 33683376 PMCID: PMC8195959 DOI: 10.1007/s00018-021-03800-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
11
|
Frazier K, Frith M, Harris D, Leone VA. Mediators of Host–Microbe Circadian Rhythms in Immunity and Metabolism. BIOLOGY 2020; 9:biology9120417. [PMID: 33255707 PMCID: PMC7761326 DOI: 10.3390/biology9120417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Simple Summary Circadian rhythms serve as the body’s internal metronome, driving responses to environmental cues over a 24-h period. Essential to nearly all life forms, the core circadian clock gene network drives physiological outputs associated with metabolic and immune responses. Modern-day disruptions to host circadian rhythms, such as shift work and jet lag, result in aberrant metabolic responses and development of complex diseases, including obesity and Type 2 Diabetes. These complex diseases are also impacted by interactions between gut microbes and the host immune system, driving a chronic low-grade inflammatory response. Gut microbes exhibit circadian dynamics that are closely tied to host circadian networks and disrupting microbial rhythmicity contributes to metabolic diseases. The underlying mediators that drive communication between host metabolism, the immune system, gut microbes, and circadian networks remain unknown, particularly in humans. Here, we explore the current state of knowledge regarding the transkingdom control of circadian networks and discuss gaps and challenges to overcome to push the field forward from the preclinical to clinical setting. Abstract Circadian rhythms are essential for nearly all life forms, mediated by a core molecular gene network that drives downstream molecular processes involved in immune function and metabolic regulation. These biological rhythms serve as the body’s metronome in response to the 24-h light:dark cycle and other timed stimuli. Disrupted circadian rhythms due to drastic lifestyle and environmental shifts appear to contribute to the pathogenesis of metabolic diseases, although the mechanisms remain elusive. Gut microbiota membership and function are also key mediators of metabolism and are highly sensitive to environmental perturbations. Recent evidence suggests rhythmicity of gut microbes is essential for host metabolic health. The key molecular mediators that transmit rhythmic signals between microbes and host metabolic networks remain unclear, but studies suggest the host immune system may serve as a conduit between these two systems, providing homeostatic signals to maintain overall metabolic health. Despite this knowledge, the precise mechanism and communication modalities that drive these rhythms remain unclear, especially in humans. Here, we review the current literature examining circadian dynamics of gut microbes, the immune system, and metabolism in the context of metabolic dysregulation and provide insights into gaps and challenges that remain.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
| | - Mary Frith
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Dylan Harris
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
| | - Vanessa A. Leone
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-262-5551
| |
Collapse
|
12
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
13
|
Gao J, Xu Q, Wang M, Ouyang J, Tian W, Feng D, Liang Y, Jiang B, Loor JJ. Ruminal epithelial cell proliferation and short-chain fatty acid transporters in vitro are associated with abundance of period circadian regulator 2 (PER2). J Dairy Sci 2020; 103:12091-12103. [PMID: 33010914 DOI: 10.3168/jds.2020-18767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
The major circadian clock gene PER2 is closely related to cell proliferation and lipid metabolism in various nonruminant cell types. Objectives of the study were to evaluate circadian clock-related mRNA abundance in cultured goat ruminal epithelial cells (REC), and to determine effects of PER2 on cell proliferation and mRNA abundance of short-chain fatty acid (SCFA) transporters, genes associated with lipid metabolism, cell proliferation, and apoptosis. Ruminal epithelial cells were isolated from weaned Boer goats (n = 3; 2 mo old; ∼10 kg of body weight) by serial trypsin digestion and cultured at 37°C for 24 h. Abundance of CLOCK and PER2 proteins in cells was determined by immunofluorescence. The role of PER2 was assessed through the use of a knockout model with short interfering RNA, and sodium butyrate (15 mM) was used to assess the effect of upregulating PER2. Both CLOCK and PER2 were expressed in REC in vitro. Sodium butyrate stimulation increased mRNA and protein abundance of PER2 and PER3. Furthermore, PER2 gene silencing enhanced cell proliferation and reduced cellular apoptosis in isolated REC. In contrast, PER2 overexpression in response to sodium butyrate led to lower cellular proliferation and ratio of cells in the S phase along with greater ratio of cells in the G2/M phase. Those responses were accompanied by downregulated mRNA abundance of CCND1, CCNB1, CDK1, and CDK2. Among the SCFA transporters, PER2 silencing upregulated mRNA abundance of MCT1 and MCT4. However, it downregulated mRNA abundance of PPARA and PPARG. Overexpression of PER2 resulted in lower mRNA abundance of MCT1 and MCT4, and greater PPARA abundance. Overall, data suggest that CLOCK and PER2 might play a role in the control of cell proliferation, SCFA, and lipid metabolism. Further studies should be conducted to evaluate potential mechanistic relationships between circadian clock and SCFA absorption in vivo.
Collapse
Affiliation(s)
- Jian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Qiaoyun Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Wen Tian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Dan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Beibei Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
14
|
Taira G, Onoue T, Hikima JI, Sakai M, Kono T. Circadian clock components Bmal1 and Clock1 regulate tlr9 gene expression in the Japanese medaka (Oryzias latipes). FISH & SHELLFISH IMMUNOLOGY 2020; 105:438-445. [PMID: 32653586 DOI: 10.1016/j.fsi.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Currently, circadian regulation of immune molecules in lower vertebrates, particularly, diurnal oscillation in the immune status of a fish, is not well understood. In this study, the diurnal oscillation of toll-like receptor (Tlr) 9, which plays a role in pathogen recognition, was investigated in the Japanese medaka fish (Oryzias latipes). We confirmed the expression of tlr9 and clock genes (bmal1 and clock1) in the central and peripheral tissues of medaka. These genes were expressed in a diurnal manner in medaka acclimated to a 12-h:12-h light-dark (12:12 LD) cycle. In addition, increased tlr9 expression was detected in medaka embryo cells (OLHdrR-e3) overexpressing both bmal1 and clock1 genes; however, this result was not obtained when only one or neither of the genes was overexpressed. This suggests that the increase in expression was mediated by the Bmal1 and Clock1 proteins together. In vitro stimulation of the head kidney with CpG-oligodeoxynucleotides (CpG-ODNs) at different zeitgeber times (ZTs; ZT0 = light on, ZT12 = light off) affected the degree of tlr9 gene expression, showing high and low responsiveness to CpG-ODN stimulation at ZT6/10 and ZT18/22, respectively. Similarly, bacterial infection at different ZT points induced a difference in the expression of Tlr9 signaling pathway-related genes (tlr9 and myd88). These results suggested that fish tlr9 exhibits diurnal oscillation, which is regulated by clock proteins, and its responsiveness to immune-stimulation/pathogen infection depends on the time of the day.
Collapse
Affiliation(s)
- Genki Taira
- Course of Biochemistry and Applied Biosciences, Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Teika Onoue
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
15
|
Lin X, Meng T, Yang T, Xu X, Zhao Y, Wu X. Circadian zinc feeding regime in laying hens related to laying performance, oxidation status, and interaction of zinc and calcium. Poult Sci 2020; 99:6783-6796. [PMID: 33248594 PMCID: PMC7704742 DOI: 10.1016/j.psj.2020.06.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
This study investigated that circadian zinc (Zn) feeding regime affected laying performance, Zn and calcium (Ca) status, antioxidant capacity and gene expression of circadian clock, and Ca and Zn transporter in laying hens. In total, 162 of 21-wk Hyline Sophie laying hens were assigned randomly into 3 groups including CON group (Control Zn, basal diets supplemented 60 mg/kg Zn), HL group (high-low Zn, basal diets supplemented 120 mg/kg Zn—basal diets), and LH group (low-high Zn, basal diets—basal diets supplemented 120 mg/kg Zn), which were fed at 0,530 h and 1,530 h, respectively. Blood, tibia, duodenum, and eggshell gland samples were collected at 8 h intervals with starting at 0,000 h in 1 d after 10 wk of experiment. Compared with CON group: 1) Feed conversion ratio (FCR) of LH and HL group decreased significantly (P < 0.05); 2) in serum, total antioxidant capacity and CuZn-superoxide dismutase (SOD) at 0,000 h increased significantly, as well as Ca and Zn concentration of tibia at 0,800 h in LH group (P < 0.05); 3) in duodenum, mRNA expression of calbindin-d28k (CaBP) and NCX1 at 1,600 h in HL group upregulated significantly, as well as Per2 and Per3 at 0,000 h, CLOCK, Cry2, Per2, and Per3 at 1,600 h (P < 0.05). But, Zn5 at 0,800 h in HL group downregulated significantly (P < 0.05). 4) In eggshell gland, the mRNA expression of CaBP at 0,000 h and Zn5 at 1,600 h in HL group downregulated significantly (P < 0.05). However, SOD at 1,600 h in HL group upregulated significantly, as well as Cry1 and Per3 at 0,800 h in HL group upregulated significantly (P < 0.05). In conclusion, circadian Zn feeding diet regime was beneficial to improvement of FCR. The regulation of laying hens' circadian rhythms affected Zn and Ca transporter and interrelationship between Ca and Zn metabolism, also altered antioxidant capacity in present study. Therefore, circadian Zn feeding regime can be considered as a new method to improve laying performance in laying hens.
Collapse
Affiliation(s)
- Xue Lin
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tiantian Meng
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Ting Yang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Xu
- Guangzhou Tanke Bio-tech Co., Ltd., Guangzhou, Guangdong 510528, China
| | - Yurong Zhao
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Xin Wu
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
16
|
Lv C, Han Y, Yang D, Zhao J, Wang C, Mu C. Antibacterial activities and mechanisms of action of a defensin from manila clam Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2020; 103:266-276. [PMID: 32439511 DOI: 10.1016/j.fsi.2020.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Defensins represent an evolutionary ancient family of antimicrobial peptides, which played an undeniably important role in host defense. In the present study, a defensin isoform was identified and characterized from manila clam Ruditapes philippinarum (designed as Rpdef1α). Multiple alignments and phylogenetic analysis suggested that Rpdef1α belonged to the defensin family. Quantitative RT-PCR and immunohistochemical analysis revealed that Rpdef1α transcripts and the encoding peptide were dominantly expressed in the tissues of gills and mantle. After Vibrio anguillarum challenge, the Rpdef1α transcripts were significantly up-regulated in gills of clams. In addition, rRpdef1α not only showed broad-spectrum antimicrobial activities towards Vibrio species, but also inhibited the formation of bacterial biofilms. Knockdown of Rpdef1α transcripts caused significant increase in the cumulative mortality of manila clams post V. anguillarum challenge. Membrane integrity, scanning electron microscopy analysis and electrochemical assay indicated that rRpdef1α was capable of causing bacterial membrane permeabilization and then resulted in cell death. Moreover, phagocytosis and chemotactic ability of hemocytes could be significantly enhanced after incubation with rRpdef1α. Overall, these results suggested that Rpdef1α could act as both antibacterial agent and opsonin to defend against the invading microorganisms in manila clam R. philippinarum.
Collapse
Affiliation(s)
- Chengjie Lv
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China
| | - Yijing Han
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dinglong Yang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315832, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, PR China.
| |
Collapse
|
17
|
Zheng D, Ratiner K, Elinav E. Circadian Influences of Diet on the Microbiome and Immunity. Trends Immunol 2020; 41:512-530. [DOI: 10.1016/j.it.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
18
|
Parasram K, Karpowicz P. Time after time: circadian clock regulation of intestinal stem cells. Cell Mol Life Sci 2020; 77:1267-1288. [PMID: 31586240 PMCID: PMC11105114 DOI: 10.1007/s00018-019-03323-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Daily fluctuations in animal physiology, known as circadian rhythms, are orchestrated by a conserved molecular timekeeper, known as the circadian clock. The circadian clock forms a transcription-translation feedback loop that has emerged as a central biological regulator of many 24-h processes. Early studies of the intestine discovered that many digestive functions have a daily rhythm and that intestinal cell production was similarly time-dependent. As genetic methods in model organisms have become available, it has become apparent that the circadian clock regulates many basic cellular functions, including growth, proliferation, and differentiation, as well as cell signalling and stem cell self-renewal. Recent connections between circadian rhythms and immune system function, and between circadian rhythms and microbiome dynamics, have also been revealed in the intestine. These processes are highly relevant in understanding intestinal stem cell biology. Here we describe the circadian clock regulation of intestinal stem cells primarily in two model organisms: Drosophila melanogaster and mice. Like all cells in the body, intestinal stem cells are subject to circadian timing, and both cell-intrinsic and cell-extrinsic circadian processes contribute to their function.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Phillip Karpowicz
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
19
|
The Circadian Clock, the Immune System, and Viral Infections: The Intricate Relationship Between Biological Time and Host-Virus Interaction. Pathogens 2020; 9:pathogens9020083. [PMID: 32012758 PMCID: PMC7168639 DOI: 10.3390/pathogens9020083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Living beings spend their lives and carry out their daily activities interacting with environmental situations that present space-time variations and that involve contact with other life forms, which may behave as commensals or as invaders and/or parasites. The characteristics of the environment, as well as the processes that support the maintenance of life and that characterize the execution of activities of daily life generally present periodic variations, which are mostly synchronized with the light–dark cycle determined by Earth’s rotation on its axis. These rhythms with 24-h periodicity, defined as circadian, influence events linked to the interaction between hosts and hosted microorganisms and can dramatically determine the outcome of this interplay. As for the various pathological conditions resulting from host–microorganism interactions, a particularly interesting scenario concerns infections by viruses. When a viral agent enters the body, it alters the biological processes of the infected cells in order to favour its replication and to spread to various tissues. Though our knowledge concerning the mutual influence between the biological clock and viruses is still limited, recent studies start to unravel interesting aspects of the clock–virus molecular interplay. Three different aspects of this interplay are addressed in this mini-review and include the circadian regulation of both innate and adaptive immune systems, the impact of the biological clock on viral infection itself, and finally the putative perturbations that the virus may confer to the clock leading to its deregulation.
Collapse
|
20
|
Weintraub Y, Cohen S, Chapnik N, Ben-Tov A, Yerushalmy-Feler A, Dotan I, Tauman R, Froy O. Clock Gene Disruption Is an Initial Manifestation of Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol 2020; 18:115-122.e1. [PMID: 30981000 DOI: 10.1016/j.cgh.2019.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Sleep disruption modifies the immune system and can trigger flares of inflammatory bowel diseases (IBD). Changes in expression of clock genes have been reported in patients with IBD. We investigated whether a change in the circadian clock is an early event in development of IBD. METHODS We performed a prospective study of patients younger than 21 years old who underwent diagnostic endoscopies at the pediatric and adult gastroenterology units at the Tel Aviv Sourasky Medical Center from August 2016 through August 2017. Questionnaires were completed by 32 patients with IBD (8-21 years old) and 18 healthy individuals (controls) that provided data on demographics, sleep, disease activity scores. We also obtained data on endoscopic scores, anthropometric parameters, blood level of C-reactive protein (CRP), and fecal level of calprotectin. Peripheral blood and intestinal mucosa samples were analyzed for expression levels of clock gene (CLOCK, BMAL1, CRY1, CRY2, PER1, and PER2). RESULTS Levels of CRP and fecal calprotectin were significantly higher in patients with IBD compared with controls (P<.05). Expression levels of clock genes (CLOCK, CRY1, CRY2, PER1, and PER2) were significantly lower in inflamed intestinal mucosa from patients compared with intestinal mucosa from controls (P<.05). Expression levels of all clock genes except for PER2, were also significantly lower in non-inflamed intestinal mucosal tissues from patients compared with controls (P<.05). Expression levels of clock genes (CLOCK, BMAL1, CRY1, CRY2, PER1 and PER2) were lower in white blood cells from patients with IBD compared with controls. This reduction was greater in white blood cells from patients with ulcerative colitis than in patients with Crohn's disease. CONCLUSION Young, newly diagnosed, untreated patients with IBD have reduced expression of clock genes in inflamed and non-inflamed intestinal mucosal samples, and also in blood cells, compared with healthy individuals. Alterations in expression of clock genes might be an early event in IBD pathogenesis. ClinicalTrials.gov Identifier: NCT03662646.
Collapse
Affiliation(s)
- Yael Weintraub
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Cohen
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Amir Ben-Tov
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Yerushalmy-Feler
- Pediatric Gastroenterology Unit, Dana-Dwek Children's Hospital, Sourasky Tel-Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dotan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Riva Tauman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sleep Disorders Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, the Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
21
|
Föh B, Schröder T, Oster H, Derer S, Sina C. Seasonal Clock Changes Are Underappreciated Health Risks-Also in IBD? Front Med (Lausanne) 2019; 6:103. [PMID: 31143764 PMCID: PMC6521728 DOI: 10.3389/fmed.2019.00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Today, daylight saving time is observed in nearly 80 countries around the world, including the European Union, the USA, Canada, and Russia. The benefits of daylight saving time in energy management have been questioned since it was first introduced during World War I and the latest research has led to varying results. Meanwhile, adverse effects of seasonal time shifts on human biology have been postulated and the European Union is planning to abandon the biannual clock change completely. Medical studies have revealed a correlation of seasonal time shifts with increased incidences of several diseases including stroke, myocardial infarction, and unipolar depressive episodes. Moreover, studies in mice have provided convincing evidence, that circadian rhythm disruption may be involved in the pathogenesis of inflammatory bowel diseases, mainly by disturbing the intestinal barrier integrity. Here, we present previously unpublished data from a large German cohort indicating a correlation of seasonal clock changes and medical leaves due to ulcerative colitis and Crohn's disease. Furthermore, we discuss the health risks of clock changes and the current attempts on reforming daylight saving time from a medical perspective.
Collapse
Affiliation(s)
- Bandik Föh
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Torsten Schröder
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
22
|
Kolbe I, Brehm N, Oster H. Interplay of central and peripheral circadian clocks in energy metabolism regulation. J Neuroendocrinol 2019; 31:e12659. [PMID: 30415480 DOI: 10.1111/jne.12659] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Metabolic health founds on a homeostatic balance that has to integrate the daily changes of rest/activity and feeding/fasting cycles. A network of endogenous 24-hour circadian clocks helps to anticipate daily recurring events and adjust physiology and behavioural functions accordingly. Circadian clocks are self-sustained cellular oscillators based on a set of clock genes/proteins organised in interlocked transcriptional-translational feedback loops. The body's clocks need to be regularly reset and synchronised with each other to achieve coherent rhythmic output signals. This synchronisation is achieved by interplay of a master clock, which resides in the suprachiasmatic nucleus, and peripheral tissue clocks. This clock network is reset by time signals such as the light/dark cycle, food intake and activity. The balanced interplay of clocks is easily disturbed in modern society by shiftwork or high-energy diets, which may further promote the development of metabolic disorders. In this review, we summarise the current model of central-peripheral clock interaction in metabolic health. Different established mouse models for central or peripheral clock disruption and their metabolic phenotypes are compared and the possible relevance of clock network interaction for the development of therapeutic approaches in humans is discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Niklas Brehm
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| |
Collapse
|
23
|
Barrios BE, Maccio-Maretto L, Nazar FN, Correa SG. A selective window after the food-intake period favors tolerance induction in mesenteric lymph nodes. Mucosal Immunol 2019; 12:108-116. [PMID: 30327533 DOI: 10.1038/s41385-018-0095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 02/04/2023]
Abstract
Biological rhythms are periodic oscillations that occur in the physiology of the organism and the cells. The rhythms of the immune system are strictly regulated and the circadian alteration seems to have serious consequences. Even so, it is not clear how the immune cells of the intestinal mucosa synchronize with the external environment. Besides, little is known about the way in which biological rhythms affect the critical functions of intestinal immunity, such as oral tolerance. We studied fluctuations in the relevant parameters of intestinal immunity at four different times throughout the day. By using multivariate statistical tools, we found that these oscillations represent at least three different time frames with different conditions for tolerance induction that are altered in Per2ko mice lacking one of the clock genes. Our results allowed us to characterize a window in the final stage of the dark phase that promotes the induction of specific regulatory populations and favors its location in the lamina propria. We show here that, at the end of the intake, the entry of luminal antigens, soluble factors, and leukocyte populations converge in the mesenteric lymph nodes (MLN) and display the greatest potential of the tolerogenic machinery.
Collapse
Affiliation(s)
- Bibiana E Barrios
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lisa Maccio-Maretto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - F Nicolás Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC) e Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Silvia G Correa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
24
|
Lin X, Liu Y, Meng T, Xie C, Wu X, Yin Y. Circadian calcium feeding regime in laying hens related to zinc concentration, gene expression of circadian clock, calcium transporters and oxidative status. J Trace Elem Med Biol 2018; 50:518-526. [PMID: 29548611 DOI: 10.1016/j.jtemb.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/03/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
Abstract
The study was conducted to investigate the effects of different circadian calcium feeding regimes on parameters of Zn status and gene expression of circadian clock, calcium transporters and oxidative status in laying hens. In total, 180 of 41-weeks Brown Hy-line laying hens were assigned randomly into three groups, 1-CON group (Control Ca, diets contained 3.4% Ca at both 0730 and 1530 h), 2-HL group (High-low Ca, diets contained 3.6%-3.2% Ca respectively) and 3-LH group (Low-high Ca, diets contained 3.2%-3.6% Ca respectively), which were fed a certain amount of control diet at 0730 h and 1530 h. Blood, tibia, jejunum and kidney samples were collected at 4 h intervals with initial starting at 0800 h after 10 weeks of experiment. Compared with the CON group: 1) the serum zinc in HL group increased at 2000 h, but lower at 1600 h in LH group (P < 0.05). 2) in jejunum, circadian clock genes including CLOCK and BMAL1 expression of HL group were down-regulated at 0000 h and 1600 h, as well as CLOCK, BMAL1, Cry2, Per3 and calcium transporter gene NCX1 in LH group at 2000 h (P < 0.05). 3) in kidney, CLOCK, Cry1, Cry2 and Per3 of LH group were up-regulated at 0400 h, CLOCK at 0000 h as well, while CLOCK at 2000 h were down-regulated (P < 0.05). 4) in kidney, the calcium transporters including PMCA, CaBP and CA of LH group were up-regulated at 0000 h, but PMCA and CaBP of LH group were down-regulated at 0800 h, 1200 h and 1600 h, as well as CA at 1600 h and PMCA at 2000 h of LH group (P < 0.05), and the oxidative gene SOD of the LH group was up-regulated at 0400 h, as well as CAT at 0400 h, SOD and GPX1 at 1200 h in HL group, but SOD at 1600 h and 2000 h, and GPX1 at 1600 h were down-regulated in LH group (P < 0.05). These results demonstrated that the dynamic circadian calcium feeding regime affected circadian rhythms of serum zinc concentration as well as the expression of certain genes related to the circadian clock, calcium transport and antioxidative capacity, and circadian calcium feeding regimes may therefore be considered with regard to improving the calcium usability.
Collapse
Affiliation(s)
- Xue Lin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yilin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Tiantian Meng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chunyan Xie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
25
|
Carvalho MF, Gill D. Rotavirus vaccine efficacy: current status and areas for improvement. Hum Vaccin Immunother 2018; 15:1237-1250. [PMID: 30215578 PMCID: PMC6663136 DOI: 10.1080/21645515.2018.1520583] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
The difference noted in Rotavirus vaccine efficiency between high and low income countries correlates with the lack of universal access to clean water and higher standards of hygiene. Overcoming these obstacles will require great investment and also time, therefore more effective vaccines should be developed to meet the needs of those who would benefit the most from them. Increasing our current knowledge of mucosal immunity, response to Rotavirus infection and its modulation by circadian rhythms could point at actionable pathways to improve vaccination efficacy, especially in the case of individuals affected by environmental enteropathy. Also, a better understanding and validation of Rotavirus entry factors as well as the systematic monitoring of dominant strains could assist in tailoring vaccines to individual's needs. Another aspect that could improve vaccine efficiency is targeting to M cells, for which new ligands could potentially be sought. Finally, alternative mucosal adjuvants and vaccine expression, storage and delivery systems could have a positive impact in the outcome of Rotavirus vaccination.
Collapse
Affiliation(s)
| | - Davinder Gill
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., New Delhi, India
| |
Collapse
|
26
|
Froy O, Garaulet M. The Circadian Clock in White and Brown Adipose Tissue: Mechanistic, Endocrine, and Clinical Aspects. Endocr Rev 2018; 39:261-273. [PMID: 29490014 PMCID: PMC6456924 DOI: 10.1210/er.2017-00193] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022]
Abstract
Obesity is a major risk factor for the development of illnesses, such as insulin resistance and hypertension, and has become a serious public health problem. Mammals have developed a circadian clock located in the hypothalamic suprachiasmatic nuclei (SCN) that responds to the environmental light-dark cycle. Clocks similar to the one located in the SCN are found in peripheral tissues, such as the kidney, liver, and adipose tissue. The circadian clock regulates metabolism and energy homeostasis in peripheral tissues by mediating activity and/or expression of key metabolic enzymes and transport systems. Knockouts or mutations in clock genes that lead to disruption of cellular rhythmicity have provided evidence to the tight link between the circadian clock and metabolism. In addition, key proteins play a dual role in regulating the core clock mechanism, as well as adipose tissue metabolism, and link circadian rhythms with lipogenesis and lipolysis. Adipose tissues are distinguished as white, brown, and beige (or brite), each with unique metabolic characteristics. Recently, the role of the circadian clock in regulating the differentiation into the different adipose tissues has been investigated. In this review, the role of clock proteins and the downstream signaling pathways in white, brown, and brite adipose tissue function and differentiation will be reviewed. In addition, chronodisruption and metabolic disorders and clinical aspects of circadian adiposity will be addressed.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marta Garaulet
- Department of Physiology, University of Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
27
|
Mohseni Moghadam Z, Mahmoodzadeh Hosseini H, Amin M, Behzadi E, Imani Fooladi AA. Microbial metabolite effects on TLR to develop autoimmune diseases. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1469512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Zeinab Mohseni Moghadam
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Polidarová L, Houdek P, Sumová A. Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. Chronobiol Int 2017; 34:1273-1287. [DOI: 10.1080/07420528.2017.1361436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lenka Polidarová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
29
|
Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR, Phillips CL. A circadian based inflammatory response – implications for respiratory disease and treatment. SLEEP SCIENCE AND PRACTICE 2017. [DOI: 10.1186/s41606-017-0019-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
30
|
Liang X, FitzGerald GA. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J Biol Rhythms 2017; 32:505-515. [DOI: 10.1177/0748730417729066] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Liang
- Merck Research Laboratories Cambridge Exploratory Science Center, Cambridge, Massachusetts
| | - Garret A. FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania
| |
Collapse
|
31
|
Hou W, Jiang Z, Ying J, Ding L, Li X, Qi F, Yang S, Cheng S, Wang Y, Liu Y, Xiao J, Guo H, Li Z, Wang Z. Clock gene affect the noncanonical NF-κB pathway via circadian variation of Otud7b. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1323422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Hou
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Junjie Ying
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Lu Ding
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Xiaoxue Li
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Fang Qi
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuhong Yang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhilin Li
- Sichuan Cancer Hospital, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
32
|
Matsu-Ura T, Dovzhenok A, Aihara E, Rood J, Le H, Ren Y, Rosselot AE, Zhang T, Lee C, Obrietan K, Montrose MH, Lim S, Moore SR, Hong CI. Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture. Mol Cell 2016; 64:900-912. [PMID: 27867006 PMCID: PMC5423461 DOI: 10.1016/j.molcel.2016.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/01/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle and circadian clock in 3D murine intestinal organoids (enteroids). The circadian clock gates a population of cells with heterogeneous cell-cycle times that emerge as 12-hr synchronized cell division cycles. Remarkably, we observe reduced-amplitude oscillations of circadian rhythms in intestinal stem cells and progenitor cells, indicating an intercellular signal arising from differentiated cells governing circadian clock-dependent synchronized cell division cycles. Stochastic simulations and experimental validations reveal Paneth cell-secreted WNT as the key intercellular coupling component linking the circadian clock and cell cycle in enteroids.
Collapse
Affiliation(s)
- Toru Matsu-Ura
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Andrey Dovzhenok
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Jill Rood
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, USA
| | - Hung Le
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Yan Ren
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - Andrew E Rosselot
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Tongli Zhang
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Choogon Lee
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Karl Obrietan
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA
| | - Sean R Moore
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, USA.
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
33
|
Genzer Y, Dadon M, Burg C, Chapnik N, Froy O. Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF). Mol Cell Endocrinol 2016; 430:49-55. [PMID: 27113028 DOI: 10.1016/j.mce.2016.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain and its decreased levels are associated with the development of obesity and neurodegeneration. Our aim was to test the effect of dietary fat, its timing and the circadian clock on the expression of BDNF and associated signaling pathways in mouse brain and liver. Bdnf mRNA oscillated robustly in brain and liver, but with a 12-h shift between the tissues. Brain and liver Bdnf mRNA showed a 12-h phase shift when fed ketogenic diet (KD) compared with high-fat diet (HFD) or low-fat diet (LFD). Brain or liver Bdnf mRNA did not show the typical phase advance usually seen under time-restricted feeding (RF). Clock knockdown in HT-4 hippocampal neurons led to 86% up-regulation of Bdnf mRNA, whereas it led to 60% down-regulation in AML-12 hepatocytes. Dietary fat in mice or cultured hepatocytes and hippocampal neurons led to increased Bdnf mRNA expression. At the protein level, HFD increased the ratio of the mature BDNF protein (mBDNF) to its precursor (proBDNF). In the liver, RF under LFD or HFD reduced the mBDNF/proBDNF ratio. In the brain, the two signaling pathways related to BDNF, mTOR and AMPK, showed reduced and increased levels, respectively, under timed HFD. In the liver, the reverse was achieved. In summary, Bdnf expression is mediated by the circadian clock and dietary fat. Although RF does not affect its expression phase, in the brain, when combined with high-fat diet, it leads to a unique metabolic state in which AMPK is activated, mTOR is down-regulated and the levels of mBDNF are high.
Collapse
Affiliation(s)
- Yoni Genzer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Maayan Dadon
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Chen Burg
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
34
|
Heath-Heckman EAC. The Metronome of Symbiosis: Interactions Between Microbes and the Host Circadian Clock. Integr Comp Biol 2016; 56:776-783. [PMID: 27371387 DOI: 10.1093/icb/icw067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The entrainment of circadian rhythms, physiological cycles with a period of about 24 h, is regulated by a variety of mechanisms, including nonvisual photoreception. While circadian rhythms have been shown to be integral to many processes in multicellular organisms, including immune regulation, the effect of circadian rhythms on symbiosis, or host-microbe interactions, has only recently begun to be studied. This review summarizes recent work in the interactions of both pathogenic and mutualistic associations with host and symbiont circadian rhythms, focusing specifically on three mutualistic systems in which this phenomenon has been best studied. One important theme taken from these studies is the fact that mutualisms are profoundly affected by the circadian rhythms of the host, but that the microbial symbionts in these associations can, in turn, manipulate host rhythms. The interplay between circadian rhythms and symbiosis is a promising new field with effects that should be kept in mind when designing future studies across biology.
Collapse
|
35
|
Genzer Y, Dadon M, Burg C, Chapnik N, Froy O. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver. Mol Cell Endocrinol 2015; 417:124-30. [PMID: 26408964 DOI: 10.1016/j.mce.2015.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver.
Collapse
Affiliation(s)
- Yoni Genzer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Maayan Dadon
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Chen Burg
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Abstract
Various intestinal functions exhibit circadian rhythmicity. Disruptions in these rhythms as in shift workers and transcontinental travelers are associated with intestinal discomfort. Circadian rhythms are controlled at the molecular level by core clock and clock-controlled genes. These clock genes are expressed in intestinal cells, suggesting that they might participate in the circadian regulation of intestinal functions. A major function of the intestine is nutrient absorption. Here, we will review absorption of proteins, carbohydrates, and lipids and circadian regulation of various transporters involved in their absorption. A better understanding of circadian regulation of intestinal absorption might help control several metabolic disorders and attenuate intestinal discomfort associated with disruptions in sleep-wake cycles.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA, and VA New York Harbor Healthcare System, Brooklyn, New York, USA
| | - Xiaoyue Pan
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York, USA, and VA New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
37
|
Huang Y, Zhu Z, Xie M, Xue J. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice. Nutr Res 2015; 35:792-9. [PMID: 26239949 DOI: 10.1016/j.nutres.2015.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/14/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.
Collapse
Affiliation(s)
- Yan Huang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou 215003, Jiangsu Province, China
| | - Zengyan Zhu
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou 215003, Jiangsu Province, China
| | - Meilin Xie
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jie Xue
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
38
|
Curtis AM, Fagundes CT, Yang G, Palsson-McDermott EM, Wochal P, McGettrick AF, Foley NH, Early JO, Chen L, Zhang H, Xue C, Geiger SS, Hokamp K, Reilly MP, Coogan AN, Vigorito E, FitzGerald GA, O'Neill LAJ. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A 2015; 112:7231-6. [PMID: 25995365 PMCID: PMC4466714 DOI: 10.1073/pnas.1501327112] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The response to an innate immune challenge is conditioned by the time of day, but the molecular basis for this remains unclear. In myeloid cells, there is a temporal regulation to induction by lipopolysaccharide (LPS) of the proinflammatory microRNA miR-155 that correlates inversely with levels of BMAL1. BMAL1 in the myeloid lineage inhibits activation of NF-κB and miR-155 induction and protects mice from LPS-induced sepsis. Bmal1 has two miR-155-binding sites in its 3'-UTR, and, in response to LPS, miR-155 binds to these two target sites, leading to suppression of Bmal1 mRNA and protein in mice and humans. miR-155 deletion perturbs circadian function, gives rise to a shorter circadian day, and ablates the circadian effect on cytokine responses to LPS. Thus, the molecular clock controls miR-155 induction that can repress BMAL1 directly. This leads to an innate immune response that is variably responsive to challenges across the circadian day.
Collapse
Affiliation(s)
- Anne M Curtis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| | - Caio T Fagundes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Guangrui Yang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Eva M Palsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Paulina Wochal
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh H Foley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - James O Early
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lihong Chen
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hanrui Zhang
- The Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chenyi Xue
- The Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sarah S Geiger
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Muredach P Reilly
- The Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew N Coogan
- Department of Psychology, National University of Ireland, Maynooth, Ireland
| | - Elena Vigorito
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire, CB22 3AT, United Kingdom
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
39
|
IMMUNOMODULATORY PROPERTIES OF THE HUMAN INTESTINAL MICROBIOTA AND PROSPECTS FOR THE USE OF PROBIOTICS FOR PROPHYLAXIS AND CORRECTION OF INFLAMMATORY PROCESSES. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Baumann A, Feilhauer K, Bischoff SC, Froy O, Lorentz A. IgE-dependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock. Mol Immunol 2014; 64:76-81. [PMID: 25466613 DOI: 10.1016/j.molimm.2014.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
Abstract
Symptoms of allergic attacks frequently exhibit diurnal variations. Accordingly, we could recently demonstrate that mast cells and eosinophils - known as major effector cells of allergic diseases - showed an intact circadian clock. Here, we analyzed the role of the circadian clock in the functionality of mast cells and eosinophils. Human intestinal mast cells (hiMC) were isolated from intestinal mucosa; human eosinophils were isolated from peripheral blood. HiMC and eosinophils were synchronized by dexamethasone before stimulation every 4h around the circadian cycle by FcɛRI crosslinking or fMLP, respectively. Signaling molecule activation was examined using Western blot, mRNA expression by real-time RT-PCR, and mediator release by multiplex analysis. CXCL8 and CCL2 were expressed and released in a circadian manner by both hiMC and eosinophils in response to activation. Moreover, phosphorylation of ERK1/2, known to be involved in activation of hiMC and eosinophils, showed circadian rhythms in both cell types. Interestingly, all clock genes hPer1, hPer2, hCry1, hBmal1, and hClock were expressed in a similar circadian pattern in activated and unstimulated cells indicating that the local clock controls hiMC and eosinophils and subsequently allergic reactions but not vice versa.
Collapse
Affiliation(s)
- Anja Baumann
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Axel Lorentz
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
41
|
Pérez-Cano FJ, Massot-Cladera M, Rodríguez-Lagunas MJ, Castell M. Flavonoids Affect Host-Microbiota Crosstalk through TLR Modulation. Antioxidants (Basel) 2014; 3:649-70. [PMID: 26785232 PMCID: PMC4665504 DOI: 10.3390/antiox3040649] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/07/2014] [Accepted: 09/26/2014] [Indexed: 12/18/2022] Open
Abstract
Interaction between host cells and microbes is known as crosstalk. Among other mechanisms, this takes place when certain molecules of the micro-organisms are recognized by the toll-like receptors (TLRs) in the body cells, mainly in the intestinal epithelial cells and in the immune cells. TLRs belong to the pattern-recognition receptors and represent the first line of defense against pathogens, playing a pivotal role in both innate and adaptive immunity. Dysregulation in the activity of such receptors can lead to the development of chronic and severe inflammation as well as immunological disorders. Among components present in the diet, flavonoids have been suggested as antioxidant dietary factors able to modulate TLR-mediated signaling pathways. This review focuses on the molecular targets involved in the modulatory action of flavonoids on TLR-mediated signaling pathways, providing an overview of the mechanisms involved in such action. Particular flavonoids have been able to modify the composition of the microbiota, to modulate TLR gene and protein expression, and to regulate the downstream signaling molecules involved in the TLR pathway. These synergistic mechanisms suggest the role of some flavonoids in the preventive effect on certain chronic diseases.
Collapse
Affiliation(s)
- Francisco J Pérez-Cano
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
| | - Malen Massot-Cladera
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
| | - Maria J Rodríguez-Lagunas
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
- Departament de Ciències Fisiològiques II, Facultat de Medicina, Universitat de Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain.
| | - Margarida Castell
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), E-08028 Barcelona, Spain.
| |
Collapse
|
42
|
Curtis AM, Bellet MM, Sassone-Corsi P, O'Neill LAJ. Circadian clock proteins and immunity. Immunity 2014; 40:178-86. [PMID: 24560196 DOI: 10.1016/j.immuni.2014.02.002] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 12/01/2022]
Abstract
Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary depending on time of infection, with mice being more at risk of sepsis when challenged ahead of their activity phase. Studies highlight the extent to which the molecular clock, most notably the core clock proteins BMAL1, CLOCK, and REV-ERBα, control fundamental aspects of the immune response. Examples include the BMAL1:CLOCK heterodimer regulating toll-like receptor 9 (TLR9) expression and repressing expression of the inflammatory monocyte chemokine ligand (CCL2) as well as REV-ERBα suppressing the induction of interleukin-6. Understanding the daily rhythm of the immune system could have implications for vaccinations and how we manage infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Anne M Curtis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Marina M Bellet
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
43
|
Baumann A, Gönnenwein S, Bischoff SC, Sherman H, Chapnik N, Froy O, Lorentz A. The circadian clock is functional in eosinophils and mast cells. Immunology 2014; 140:465-74. [PMID: 23876110 DOI: 10.1111/imm.12157] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 12/22/2022] Open
Abstract
Allergic diseases are frequently exacerbated between midnight and early morning, suggesting a role for the biological clock. Mast cells (MC) and eosinophils are the main effector cells of allergic diseases and some MC-specific or eosinophil-specific markers, such as tryptase or eosinophil cationic protein, exhibit circadian variation. Here, we analysed whether the circadian clock is functional in mouse and human eosinophils and MC. Mouse jejunal MC and polymorphonuclear cells from peripheral blood (PMNC) were isolated around the circadian cycle. Human eosinophils were purified from peripheral blood of non-allergic and allergic subjects. Human MC were purified from intestinal tissue. We found a rhythmic expression of the clock genes mPer1, mPer2, mClock and mBmal1 and eosinophil-specific genes mEcp, mEpo and mMbp in murine PMNC. We also found circadian variations for hPer1, hPer2, hBmal1, hClock, hEdn and hEcp mRNA and eosinophil cationic protein (ECP) in human eosinophils of both healthy and allergic people. Clock genes mPer1, mPer2, mClock and mBmal1 and MC-specific genes mMcpt-5, mMcpt-7, mc-kit and mFcεRI α-chain and protein levels of mMCPT5 and mc-Kit showed robust oscillation in mouse jejunum. Human intestinal MC expressed hPer1, hPer2 and hBmal1 as well as hTryptase and hFcεRI α-chain, in a circadian manner. We found that pre-stored histamine and de novo synthesized cysteinyl leukotrienes, were released in a circadian manner by MC following IgE-mediated activation. In summary, the biological clock controls MC and eosinophils leading to circadian expression and release of their mediators and, hence it might be involved in the pathophysiology of allergy.
Collapse
Affiliation(s)
- Anja Baumann
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Does Ramadan fasting affect the diurnal variations in metabolic responses and total antioxidant capacity during exercise in young soccer players? SPORT SCIENCES FOR HEALTH 2014. [DOI: 10.1007/s11332-014-0179-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
De Cata A, D'Agruma L, Tarquini R, Mazzoccoli G. Rheumatoid arthritis and the biological clock. Expert Rev Clin Immunol 2014; 10:687-95. [PMID: 24684672 DOI: 10.1586/1744666x.2014.899904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown cause and a chronic and progressive inflammatory disorder ensuing in genetically predisposed subjects, characterized by synovitis causing joint destruction, as well as inflammation in body organ systems, leading to anatomical alteration and functional disability. Immune competent cells, deregulated synoviocytes and cytokines play a key role in the pathophysiological mechanisms. The immune system function shows time-related variations related to the influence of the neuroendocrine system and driven by the circadian clock circuitry. Immune processes and symptom intensity in RA are characterized by oscillations during the day following a pattern of circadian rhythmicity. A cross-talk between inflammatory and circadian pathways is involved in RA pathogenesis and underlies the mutual actions of disruption of the circadian clock circuitry on immune system function as well as of inflammation on the function of the biological clock. Modulation of molecular processes and humoral factors mediating in RA the interplay between the biological clock and the immune response and underlying the rhythmic fluctuations of pathogenic processes and symptomatology could represent a promising therapeutic strategy in the future.
Collapse
Affiliation(s)
- Angelo De Cata
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | | | | |
Collapse
|
46
|
de Kivit S, Tobin MC, Forsyth CB, Keshavarzian A, Landay AL. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics. Front Immunol 2014; 5:60. [PMID: 24600450 PMCID: PMC3927311 DOI: 10.3389/fimmu.2014.00060] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLRs play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation.
Collapse
Affiliation(s)
- Sander de Kivit
- Division of Digestive Diseases and Nutrition, Rush University Medical Center , Chicago, IL , USA
| | - Mary C Tobin
- Department of Immunology/Microbiology, Rush University Medical Center , Chicago, IL , USA
| | - Christopher B Forsyth
- Division of Digestive Diseases and Nutrition, Rush University Medical Center , Chicago, IL , USA
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Rush University Medical Center , Chicago, IL , USA ; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , Utrecht , Netherlands
| | - Alan L Landay
- Department of Immunology/Microbiology, Rush University Medical Center , Chicago, IL , USA ; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
47
|
Abstract
Recent molecular data place microbes at the center of the biosphere, from ecosystem sustainability to animal and plant fitness. Models, including the squid-vibrio symbiosis described in this Essay, provide windows into underlying mechanisms that drive these systems.
Collapse
Affiliation(s)
- Margaret McFall-Ngai
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
48
|
Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring) 2013; 21:2504-12. [PMID: 23512957 DOI: 10.1002/oby.20460] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Few studies examined the association between time-of-day of nutrient intake and the metabolic syndrome. Our goal was to compare a weight loss diet with high caloric intake during breakfast to an isocaloric diet with high caloric intake at dinner. DESIGN AND METHODS Overweight and obese women (BMI 32.4 ± 1.8 kg/m(2) ) with metabolic syndrome were randomized into two isocaloric (~1400 kcal) weight loss groups, a breakfast (BF) (700 kcal breakfast, 500 kcal lunch, 200 kcal dinner) or a dinner (D) group (200 kcal breakfast, 500 kcal lunch, 700 kcal dinner) for 12 weeks. RESULTS The BF group showed greater weight loss and waist circumference reduction. Although fasting glucose, insulin, and ghrelin were reduced in both groups, fasting glucose, insulin, and HOMA-IR decreased significantly to a greater extent in the BF group. Mean triglyceride levels decreased by 33.6% in the BF group, but increased by 14.6% in the D group. Oral glucose tolerance test led to a greater decrease of glucose and insulin in the BF group. In response to meal challenges, the overall daily glucose, insulin, ghrelin, and mean hunger scores were significantly lower, whereas mean satiety scores were significantly higher in the BF group. CONCLUSIONS High-calorie breakfast with reduced intake at dinner is beneficial and might be a useful alternative for the management of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Diabetes Unit E. Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon, 58100, Israel
| | | | | | | |
Collapse
|
49
|
Williams WM, Torres S, Siedlak SL, Castellani RJ, Perry G, Smith MA, Zhu X. Antimicrobial peptide β-defensin-1 expression is upregulated in Alzheimer's brain. J Neuroinflammation 2013; 10:127. [PMID: 24139179 PMCID: PMC3817866 DOI: 10.1186/1742-2094-10-127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/01/2013] [Indexed: 02/01/2023] Open
Abstract
Background The human β-defensins (hBDs) are a highly conserved family of cationic antimicrobial and immunomodulatory peptides expressed primarily by epithelial cells in response to invasion by bacteria, fungi and some viruses. To date, the most studied members of this family of peptides are hBD-1, -2, and -3. Expression of hBD-1 and -2 has been demonstrated previously in cultured microglia and astrocytes of both mouse and human brain. Unlike inducible hBD-2 and -3, hBD-1 is constitutively expressed and is not generally upregulated by proinflammatory factors. In this study, we investigated whether hBDs, as active components of the innate immune response, are affected by pathological events in the Alzheimer’s disease (AD) brain. We assessed the expression of hBD-1, -2, and -3 in tissue obtained at autopsy from AD and age-matched control brains. Methods Fixed and frozen choroid plexus and the CA1 region of the hippocampus were obtained at autopsy from individuals diagnosed with AD, or from age-matched control brains without diagnosed neurodegenerative disease. Histopathologically diagnosed AD brain tissue was obtained for our study. Immunocytochemical analysis was performed using affinity purified polyclonal antibodies directed against hBD-1, -2, or -3. TaqMan gene expression assays were used to quantify the mRNA of hBD-1, -2, and -3 in the choroid plexus and hippocampus. Immunocytochemical detection of iron deposits was achieved using a modified Perl’s stain for redox-active iron. In vitro experiments were performed on human primary oral epithelial cells to model the human choroid plexus epithelial response to ferric chloride. Cells were then exposed to ferric chloride added to selected wells at 0, 1, or 10 mM concentrations for 24 h at 37°C. Total mRNA was isolated to quantify hBD-1 mRNA expression by RTqPCR. Results hBD-1 peptide is apparent in astrocytes of the AD hippocampus and hippocampal neurons, notably within granulovacuolar degeneration structures (GVD). A higher level of hBD-1 was also seen in the choroid plexus of AD brain in comparison to age-matched control tissue. Increased expression of hBD-1 mRNA was observed only in the choroid plexus of the AD brain when compared to expression level in age-matched control brain. Redox-active iron was also elevated in the AD choroid plexus and in vitro addition of Fe+3Cl3 to cultured epithelial cells induced hBD-1 mRNA expression. Conclusions Our findings suggest interplay between hBD-1 and neuroimmunological responses in AD, marked by microglial and astrocytic activation, and increased expression of the peptide within the choroid plexus and accumulation within GVD. As a constitutively expressed component of the innate immune system, we propose that hBD-1 may be of considerable importance early in the disease process. We also demonstrate that increased iron deposition in AD may contribute to the elevated expression of hBD-1 within the choroid plexus. These findings represent a potentially important etiological aspect of Alzheimer’s disease neuropathology not previously reported.
Collapse
Affiliation(s)
- Wesley M Williams
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 2124 Cornell Rd,, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Circadian aspects of energy metabolism and aging. Ageing Res Rev 2013; 12:931-40. [PMID: 24075855 DOI: 10.1016/j.arr.2013.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022]
Abstract
Life span extension has been a goal of research for several decades. Resetting circadian rhythms leads to well being and increased life span, while clock disruption is associated with increased morbidity accelerated aging. Increased longevity and improved health can be achieved by different feeding regimens that reset circadian rhythms and may lead to better synchrony in metabolism and physiology. This review focuses on the circadian aspects of energy metabolism and their relationship with aging in mammals.
Collapse
|