1
|
Sajid GA, Uddin MJ, Al-Janabi SAA, Ibrahim AN, Cinar MU. MicroRNA expression profiling of ovine epithelial cells stimulated with the Staphylococcus aureus in vitro. Mamm Genome 2024; 35:673-682. [PMID: 39215776 DOI: 10.1007/s00335-024-10062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) act as key gene expression regulators, influencing intracellular biological and pathological processes. They are of significant interest in animal genetics as potential biomarkers for animal selection and health. This study aimed to unravel the complex miRNA signature involved in mastitis in in vitro cell culture. For this purpose, we constructed a control and treatment model in ovarian mammary epithelial cells to analyze miRNA responses upon Staphylococcus aureus (S. aureus) stimulation. The high-throughput Illumina Small RNA protocol was employed, generating an average of 7.75 million single-end reads per sample, totaling 46.54 million reads. Standard bioinformatics analysis, including cleaning, filtering, miRNA quantification, and differential expression was performed using the miRbase database as a reference for ovine miRNAs. The results indicated differential expression of 63 miRNAs, including 33 up-regulated and 30 down-regulated compared to the control group. Notably, miR-10a, miR-10b, miR-21, and miR-99a displayed a significant differential expression (p ≤ 0.05) associated to signal transduction, transcriptional pathways, diseases of signal transduction by growth factor receptors and second messengers, MAPK signaling pathway, NF-κB pathway, TNFα, Toll Like Receptor 4 (TLR4) cascade, and breast cancer. This study contributes expanding miRNA databases, especially for sheep miRNAs, and identifies potential miRNA candidates for further study in biomarker identification for mastitis resistance and diagnosis.
Collapse
Affiliation(s)
- Ghulam Asghar Sajid
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Muhammad Jasim Uddin
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
- The School of Veterinary Medicine, Murdoch University, South Street, Murdoch, 6150, Australia
| | - Saif Adil Abbood Al-Janabi
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
- Ministry of Agriculture, Office of Technical Deputy, Baghdad, Iraq
| | - Abdiaziz Nur Ibrahim
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, Kayseri, 38039, Türkiye.
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Chen Q, Mi S, Xing Y, An S, Chen S, Tang Y, Wang Y, Yu Y. Transcriptome analysis identifies the NR4A subfamily involved in the alleviating effect of folic acid on mastitis induced by high concentration of Staphylococcus aureus lipoteichoic acid. BMC Genomics 2024; 25:1051. [PMID: 39506684 PMCID: PMC11542246 DOI: 10.1186/s12864-024-10895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) mastitis results in economic losses during dairy production. Understanding the biological progression of bovine S. aureus mastitis is vital for its prevention. Lipoteichoic acid is a key virulence factor of S. aureus (aLTA), but the main biological pathways involved in its effect on bovine mammary epithetionallial cells (Mac-T) apoptosis and necrosis have not been fully explored. Folic acid (FA) has anti-inflammatory and anti-apoptotic effects. However, the role of FA in mediating the effects of aLTA on apoptosis and necrosis remains unknown. RESULTS We found that low concentration of aLTA inhibited apoptosis and necrosis and that high concentration promoted the apoptosis and necrosis of Mac-T. FA pretreatment alleviated high concentration of aLTA induced apoptosis. Through transcriptomic analysis, we found that nuclear receptor subfamily 4 group A (NR4A), which alters the expression of downstream genes involved in apoptosis, proliferation, and inflammation, decreased under stimulation with a low concentration of aLTA and increased under stimulation with a high concentration of aLTA. Under stimulation with a high concentration of aLTA, the expression of the NR4A subfamily could be inhibited by FA. The results showed that aLTA may affect apoptosis and necrosis through the NR4A subfamily by targeting genes involved in bacterial invasion of epithelial cells, the IL-17 signaling pathway, DNA replication, longevity regulation, the cell cycle, and tight junction pathways. We further found that the expression trends of NR4A1 and the target genes of the NR4A subfamily (PTGS2, ESPL1, MCM5, and BUB1B) in the blood of healthy cows (Healthy), subclinical mastitis cows (SCM), and SCM supplemented with FA (SCM_FA) were consistent with those observed at the cellular level in this study. CONCLUSIONS Our study revealed that low and high concentrations of aLTA have opposite effects on apoptosis and necrosis of Mac-T and that FA can alleviate the apoptosis induced by high concentration of aLTA. Transcriptome analysis revealed that the NR4A subfamily play a role in the ability of FA to alleviate the apoptosis and necrosis induced by high concentration of aLTA.
Collapse
Affiliation(s)
- Quanzhen Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Songyan An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Winther AR, Perrin A, Nordraak AOO, Kjos M, Porcellato D. An in vitro evaluation of the effect of antimicrobial treatment on bovine mammary microbiota. Sci Rep 2024; 14:18333. [PMID: 39112607 PMCID: PMC11306798 DOI: 10.1038/s41598-024-69273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Antimicrobial-resistant bacteria have been an increasing problem in human medicine and animal husbandry since the introduction of antimicrobials on the market in the 1940s. Over the last decades, efforts to reduce antimicrobial usage in animal husbandry have been shown to limit the development of resistant bacteria. Despite this, antimicrobial-resistant bacteria are still commonly detected and isolated worldwide. In this study, we investigated the presence of antimicrobial-resistant bacteria in bovine milk samples using a multiple approach based on culturing and amplicon sequencing. We first enriched milk samples obtained aseptically from bovine udders in the presence of two antimicrobials commonly used to treat mastitis and then described the resistant microbiota by amplicon sequencing and isolate characterization. Our results show that several commensal species and mastitis pathogens harbor antimicrobial resistance and dominate the enriched microbiota in milk in presence of antimicrobial agents. The use of the two different antimicrobials selected for different bacterial taxa and affected the overall microbial composition. These results provide new information on how different antimicrobials can shape the microbiota which is able to survive and reestablish in the udder and point to the fact that antimicrobial resistance is widely spread also in commensal species.
Collapse
Affiliation(s)
- Anja R Winther
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway.
| | - Aurelie Perrin
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
- Institute Agro Dijon, 26 Bd Dr Petitjean, 21079, Dijon, France
| | - Anne O O Nordraak
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
- Norwegian Defence Research Establishment, Kjeller, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
| |
Collapse
|
4
|
Müller-Langhans K, Oberberger L, Zablotski Y, Engelmann S, Hoedemaker M, Kühn C, Schuberth HJ, Zerbe H, Petzl W, Meyerholz-Wohllebe MM. Cows with diverging haplotypes show differences in differential milk cell count, milk parameters and vaginal temperature after S. aureus challenge but not after E. coli challenge. BMC Vet Res 2024; 20:200. [PMID: 38745199 PMCID: PMC11094921 DOI: 10.1186/s12917-024-03996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.
Collapse
Affiliation(s)
- Katharina Müller-Langhans
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Lisa Oberberger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Sonnenstrasse 24, Oberschleissheim, 85764, Germany
| | - Yury Zablotski
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Susanne Engelmann
- Technical University Braunschweig, Institute for Microbiology, Inhoffenstrasse 7, Brunswick, 38124, Germany
- Helmholtz Center for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, Brunswick, 38124, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hanover Foundation, Bischofsholer Damm 15, Hanover, 30173, Germany
| | - Christa Kühn
- Research Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196, Germany
- Agricultural and Environmental Faculty, University Rostock, Justus-Von-Liebig-Weg 6, Rostock, 18059, Germany
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems, 17493, Germany
| | - Hans-Joachim Schuberth
- Institute for Immunology, University of Veterinary Medicine Hanover Foundation, Bünteweg 2, Hanover, 30559, Germany
| | - Holm Zerbe
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Wolfram Petzl
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Marie Margarete Meyerholz-Wohllebe
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany.
| |
Collapse
|
5
|
Jadhav AB, Ingole SD, Bharucha SV, Yoshitha KL, Gaikwad RV, Pharande RR, Kharde SD. Milk miRNA expression in buffaloes as a potential biomarker for mastitis. BMC Vet Res 2024; 20:150. [PMID: 38643124 PMCID: PMC11031985 DOI: 10.1186/s12917-024-04002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Buffaloes have the highest potential for production due to a promising gene pool that is being enhanced and upgraded. Mastitis is a significant health impediment that greatly diminishes milk yield and quality, affecting rural farmers' livelihoods. The traditional gold standard used for diagnosing mastitis or subclinical mastitis is CMT, but it has the drawback of false positive or negative results. Subclinical mastitis, if not treated promptly, can lead to mammary tumors. To address the gap in early diagnosis of subclinical mastitis in CMT-negative milk of buffaloes, we performed a retrospective analysis and evaluated the milk miRNA expression profiles as potential biomarkers. RESULTS Thirty buffalo milk samples based on clinical signs and CMT were divided into normal, subclinical, and clinical mastitis. SCC evaluation showed significant differences between the groups. The data analysis demonstrated that the elevation of miR-146a and miR-383 differed substantially between normal, subclinical, and clinical mastitis milk of buffaloes with 100% sensitivity and specificity. The relationship of SCC with miR-146a and miR-383 in normal/healthy and subclinical mastitis was positively correlated. CONCLUSION The overexpression of miR-146a and miR-383 is associated with inflammation. It can be a valuable prognostic and most sensitive biomarker for early mastitis detection in buffaloes with SCC below 2 lakhs and CMT-ve, enhancing the accuracy of subclinical mastitis diagnosis.
Collapse
Affiliation(s)
- Abhishek B Jadhav
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Shailesh D Ingole
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India.
| | - Simin V Bharucha
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Korsapati L Yoshitha
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Rajiv V Gaikwad
- Teaching Veterinary Clinical Complex, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbia, India
| | - Rajesh R Pharande
- Department of Veterinary Microbiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Shambhudeo D Kharde
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| |
Collapse
|
6
|
Liu K, Pei L, Shen Y, Wu J, Qian Y, Zhang N, Mao W, Cao J. Prostaglandin E2 accumulation is closely associated with S. aureus-infected bovine endometritis. Cytokine 2024; 175:156498. [PMID: 38176086 DOI: 10.1016/j.cyto.2024.156498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
S. aureus isolated from bacterial bovine endometritis is common in epidemiological reports, but is often ignored as a subclinical pathogenic microorganism. In a previous study, we showed that live S. aureus (LSA) and heat killed S. aureus (HK-SA) induce different inflammatory responses in bovine endometrial tissue, and possibly being associated with the accumulation of prostaglandin E2 (PGE2). Thus, in this study, we varied PGE2 concentrations using inhibitors or agonists in HK-SA-treated bovine endometrial tissues. The results demonstrated that PGE2 has a positive relationship with IL-6, TNF-α, and damage-associated molecular patterns (DAMPs; e.g., HMGB-1 and HABP-1) expression and tissues damage, and is regulated by the EP4-p38 MAPK pathway. We concluded that lipoproteins of S. aureus are associated with PGE2 generation. To further explore the relationship between LSA and PGE2 accumulation, we used the S. aureus strain SA113 lipoprotein knockout (SA113Δlpl) to infect bovine endometrial epithelial cells (BECs). LSA decreased PGE2, cAMP, EP4, IL-6, IL-8, cAMP secretion, and the MAPK and PKA signaling pathways when infected with SA113Δlpl, as compared with SA113-infected groups. Moreover, the adhesion and invasion of BECs were similarly downregulated when lipoproteins in S. aureus were knocked out. The results of this study show that PGE2 is involved in both HK-SA- and LSA-induced inflammatory responses in the bovine endometrium. We suggest that S. aureus infection is associated with bovine endometritis, and although HK-SA and LSA induce different inflammatory responses, the strategy of decreasing PGE2 accumulation is helpful in reducing the inflammation stage caused by S. aureus.
Collapse
Affiliation(s)
- Kun Liu
- School of Public Healthy, Inner Mongolia Medical University, 010110 Hohhot, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018 Hohhot, China
| | - Le Pei
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010031 Hohhot, China
| | - Yuan Shen
- School of Public Healthy, Inner Mongolia Medical University, 010110 Hohhot, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018 Hohhot, China
| | - Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018 Hohhot, China
| | - Yinghong Qian
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010031 Hohhot, China
| | - Nan Zhang
- School of Public Healthy, Inner Mongolia Medical University, 010110 Hohhot, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018 Hohhot, China.
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018 Hohhot, China.
| |
Collapse
|
7
|
HUANG CH, KAYANO M, KUSABA N. Pathogen and severity-dependent immune responses in bovine mastitis: highlight the dynamics of differential somatic cell count. J Vet Med Sci 2024; 86:7-17. [PMID: 37981317 PMCID: PMC10849865 DOI: 10.1292/jvms.23-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
Immune responses in bovine clinical mastitis (CM) probably differ depending on the causative pathogen and disease severity. The observational study aimed to investigate whether both factors are associated with the dynamics of immune indicators, including somatic cell score (SCS), white blood cell count (WBC), serum albumin/globulin (A/G) ratio, and differential somatic cell count (DSCC). We collected blood and milk samples 0, 3, 5, 7, 14, and 21 days after CM occurred in 38 cows, and grouped the cases (n=49) by disease severity and pathogen. We analyzed data using a linear mixed model considering the effects of pathogens and severity, calculated estimated-marginal means for indicators at each time point, and compared the means between groups. The dynamics of WBC varied depending on both pathogen and severity. WBC changed drastically in either severe or coliform-caused CM, slightly elevated in streptococcal mastitis, but unchanged in staphylococcal mastitis. This possibly relates to the deficiency in innate immune response toward staphylococci. The A/G ratio also changed depending on severity, as it dropped sharply only in severe CM. We observed a non-linear relationship between DSCC and SCS, possibly due to mammary epithelial cells shedding in milk when CM occurred. When cows recovering from Streptococcus dysgalatiae mastitis, DSCC decreased while SCS remained high, suggesting a healing process requiring more macrophages. Our results demonstrate that both the severity and pathogen are associated with immune responses in CM, providing insights into mastitis pathogenesis.
Collapse
Affiliation(s)
- Che-Hsuan HUANG
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Mitsunori KAYANO
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Nobuyuki KUSABA
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
8
|
Rios ACH, Nasner SLC, Londoño-Gil M, Gonzalez-Herrera LG, Lopez-Herrera A, Flórez JCR. Genome-wide association study for reproduction traits in Colombian Creole Blanco Orejinegro cattle. Trop Anim Health Prod 2023; 55:429. [PMID: 38044379 DOI: 10.1007/s11250-023-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The profitability of the beef cattle production system relies heavily on reproductive traits. Unfortunately, certain traits, such as age at first calving (AFC), calving interval (CI), and gestation length (GL), can pose challenges in traditional breeding programs because of their low heritability (0.01-0.12) and sex-limited characteristics. Another important aspect is the conservation of the genetic resources of animals adapted to the Colombian regions, which implies the preservation and rational use of the creole breeds in the country market. Therefore, this study aimed to identify genomic regions in the creole cattle breed Blanco Orejinegro (BON) that influence the reproductive traits in females. The dataset comprised 439 animals and 118,116 single-nucleotide polymorphisms' (SNPs) markers. The GS3 program was used to identify the SNP effects employing the BAYES Cπ methodology. The number of SNPs with effect for AFC was 25, 1527 for CI, and 23 for GL. Some of the genes found associated with reproductive and growth traits as well as immune response and environmental adaptation ECE1, EPH, EPHB2, SMARCAL1, IGFBP5, IGFBP2, FCGRT, EGFR, MUL1, PINK1, STPG1, CNGB1, TGFB1, OXTR, IL22RA1, MYOM3, OXTR, CNR2, HIVEP3, CTPS1, CXCL8, FCGRT, MREG, TMEM169, PECR, and MC1R. Our results evidenced a high contribution of the genetic architecture of the Colombian creole cattle breed Blanco Orejinegro that may impact should be included in implementing genetic improvement and conservation programs.
Collapse
Affiliation(s)
- Ana Cristina Herrera Rios
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia.
- Grupo de Investigación Nutri-Solla, SOLLA S.A., Cra 42 #33-80, Itagüí, Antioquia, Colombia.
| | - Sindy Liliana Caivio Nasner
- Grupo de Investigación Biomolecular y Pecuaria BIOPEC, Universidad Tecnológica de Pereira, Cra. 27 N10-02, 660003, Pereira, Risaralda, Colombia
| | - Marisol Londoño-Gil
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
| | - Luis Gabriel Gonzalez-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
| | - Albeiro Lopez-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
| | - Juan Carlos Rincón Flórez
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Carrera 65 N 59A-110, 050034, Medellín, Colombia
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Palmira, Carrera 32 N 12 - 00, PC 763352, Palmira, Colombia
| |
Collapse
|
9
|
Daneshi M, Caton JS, Caixeta LS, Eftekhari Z, Ward AK. Expression, Regulation, and Function of β-Defensins in the Bovine Mammary Glands: Current Knowledge and Future Perspectives. Animals (Basel) 2023; 13:3372. [PMID: 37958127 PMCID: PMC10650070 DOI: 10.3390/ani13213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
β-Defensins are cationic antimicrobial peptides (AMPs) that play an important role in the innate immune defense of bovines. They are constitutively expressed in mammary glands and induced differently in response to pathogens. Their expression is influenced by various factors, including hormones, plant-derived compounds, and dietary energy imbalance. The toll-like receptors (TLRs)/nuclear factor-kappa B (NF-κB) pathway plays a crucial role in β-defensin induction, while alternative pathways such as mitogen-activated protein kinase (MAPK) and epigenetic regulation also make substantial contributions. β-Defensins exhibit bactericidal activity against a wide range of pathogens, including two major mastitis pathogens, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), primarily through membrane disruption. β-Defensins have low cytotoxicity to host cells and demonstrate immunomodulatory properties, and pathogens also display minimal resistance to these AMPs. Given the increasing concern in antimicrobial resistance, the potential of β-defensins as natural antimicrobials has garnered considerable attention. This article provides an overview of the characteristics of bovine β-defensins, their expression pathways, their mode of action, and factors influencing their expression in the mammary glands of cattle. Additionally, it identifies the current gaps in research within this field and suggests areas that require further investigation. Understanding the regulation and function of β-defensins offers valuable insights to develop effective strategies for strengthening the immune system of mammary glands, reducing the reliance on synthetic antimicrobials, and explore novel natural antimicrobial alternatives.
Collapse
Affiliation(s)
- Mojtaba Daneshi
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Luciano S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Zohre Eftekhari
- Biotechnology Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Alison K. Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
10
|
Xia X, Hou J, Ren P, Liu M, Wang L, Wei X, Teng Z, Kasianenko O, Cheng L, Hu J. Coexpression analysis of lncRNAs and mRNAs identifies potential regulatory long noncoding RNAs involved in the inflammatory effects of lipopolysaccharide on bovine mammary epithelial cells. BMC Vet Res 2023; 19:209. [PMID: 37845761 PMCID: PMC10580555 DOI: 10.1186/s12917-023-03780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The infection of bovine mammary glands by pathogenic microorganisms not only causes animal distress but also greatly limits the development of the dairy industry and animal husbandry. A deeper understanding of the host's initial response to infection may increase the accuracy of selecting drug-resistant animals or facilitate the development of new preventive or therapeutic intervention strategies. In addition to their functions of milk synthesis and secretion, bovine mammary epithelial cells (BMECs) play an irreplaceable role in the innate immune response. To better understand this process, the current study identified differentially expressed long noncoding lncRNAs (DE lncRNAs) and mRNAs (DE mRNAs) in BMECs exposed to Escherichia coli lipopolysaccharide (LPS) and further explored the functions and interactions of these lncRNAs and mRNAs. RESULTS In this study, transcriptome analysis was performed by RNA sequencing (RNA-seq), and the functions of the DE mRNAs and DE lncRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, we constructed a modulation network to gain a deeper understanding of the interactions and roles of these lncRNAs and mRNAs in the context of LPS-induced inflammation. A total of 231 DE lncRNAs and 892 DE mRNAs were identified. Functional enrichment analysis revealed that pathways related to inflammation and the immune response were markedly enriched in the DE genes. In addition, research results have shown that cell death mechanisms, such as necroptosis and pyroptosis, may play key roles in LPS-induced inflammation. CONCLUSIONS In summary, the current study identified DE lncRNAs and mRNAs and predicted the signaling pathways and biological processes involved in the inflammatory response of BMECs that might become candidate therapeutic and prognostic targets for mastitis. This study also revealed several possible pathogenic mechanisms of mastitis.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China.
| | - Jie Hou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Pengfei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Oksana Kasianenko
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Likun Cheng
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, PR China.
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| |
Collapse
|
11
|
Gao L, Tang Z, Li T, Wang J. Myricetin exerts anti-biofilm activity and attenuates osteomyelitis by inhibiting the TLR2/MAPK pathway in experimental mice. Microb Pathog 2023; 182:106165. [PMID: 37224983 DOI: 10.1016/j.micpath.2023.106165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
AIMS To evaluate the potential of Myricetin against S.aureus induced osteomyelitis. BACKGROUND Osteomyelitis is infected condition of bone by micro-organisms. The mitogen-activated protein kinase (MAPK), inflammatory cytokines and Toll-like receptor-2 (TLR-2) pathway are mainly involved in osteomyelitis. Myricetin is a plant-food derived flavonoid which shows anti-inflammatory activity. OBJECTIVE In the present study, we evaluated the potential of Myricetin against S.aureus induced osteomyelitis. MC3T3-E1 cells were used for in vitro studies. METHOD Murine model of osteomyelitis was developed in BALB/c mice by injecting S.aureus in the medullary cavity of the femur. The mice were studied for bone destruction, anti-biofilm activity, osteoblast growth markers alkaline phosphatase (ALP), osteopontin (OCN) and collagen type-I (COLL-1) were studied by RT-PCR, ELISA analysis for levels of proinflammatory factors CRP, IL-6 and IL-1β. Expression of proteins by Western blot analysis and anti-biofilm effect by Sytox green dye fluorescence assay. Target confirmation was done by performing in silico docking analysis. RESULTS Myricetin reduced bone destruction in osteomyelitis induced mice. The treatment decreased bone levels of ALP, OCN, COLL-1 and TLR2. Myricetin decreased serum levels of CRP, IL-6 and IL-1β. The treatment suppressed activation of MAPK pathway and showed anti-biofilm effect. Docking studies suggested high binding affinity of Myricetin with MAPK protein in silico, by showing lower binding energies. CONCLUSION Myricetin suppresses osteomyelitis by inhibiting ALP, OCN, COLL-1 via the TLR2 and MAPK pathway involving inhibition of biofilm formation. In silico studies suggested MAPK as potential binding protein for myricetin.
Collapse
Affiliation(s)
- Lei Gao
- Department of Orthopaedic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
| | - Zhiping Tang
- Clinical Lab, He Bei General Hospital, Shi Jia Zhuang, 050051, China.
| | - Tianbo Li
- Department of Orthopaedic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
| | - Jiangning Wang
- Department of Orthopaedic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China.
| |
Collapse
|
12
|
Hasankhani A, Bakherad M, Bahrami A, Shahrbabak HM, Pecho RDC, Shahrbabak MM. Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis. Sci Rep 2023; 13:13826. [PMID: 37620551 PMCID: PMC10449796 DOI: 10.1038/s41598-023-41116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Maryam Bakherad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hossein Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Mohammad Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
13
|
Noleto PG, Gilbert FB, Rossignol C, Cunha P, Germon P, Rainard P, Martins RP. Punch-excised explants of bovine mammary gland to model early immune response to infection. J Anim Sci Biotechnol 2023; 14:100. [PMID: 37420291 DOI: 10.1186/s40104-023-00899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Mammary gland (MG) infections (mastitis) are frequent diseases of dairy cows that affect milk quality, animal welfare and farming profitability. These infections are commonly associated with the bacteria Escherichia coli and Staphylococcus aureus. Different in vitro models have been used to investigate the early response of the MG to bacteria, but the role of the teat in mastitis pathogenesis has received less attention. In this study, we used punch-excised teat tissue as an ex vivo model to study the immune mechanisms that arise early during infection when bacteria have entered the MG. RESULTS Cytotoxicity and microscopic analyses showed that bovine teat sinus explants have their morphology and viability preserved after 24 h of culture and respond to ex vivo stimulation with TLR-agonists and bacteria. LPS and E. coli trigger stronger inflammatory response in teat when compared to LTA and S. aureus, leading to a higher production of IL-6 and IL-8, as well as to an up-regulation of proinflammatory genes. We also demonstrated that our ex vivo model can be applied to frozen-stored explants. CONCLUSIONS In compliance with the 3Rs principle (replacement, reduction and refinement) in animal experimentation, ex vivo explant analyses proved to be a simple and affordable approach to study MG immune response to infection. This model, which better reproduces organ complexity than epithelial cell cultures or tissue slices, lends itself particularly well to studying the early phases of the MG immune response to infection.
Collapse
Affiliation(s)
| | | | | | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | | |
Collapse
|
14
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
15
|
Shen J, Yang F, Wang G, Mou X, Li J, Ding X, Wang X, Li H. Paeoniflorin alleviates inflammation in bovine mammary epithelial cells induced by Staphylococcus haemolyticus through TLR2/NF-κB signaling pathways. Res Vet Sci 2023; 156:95-103. [PMID: 36796241 DOI: 10.1016/j.rvsc.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is one of the most common coagulase-negative staphylococci (CoNS) isolates from bovine mastitis. Paeoniflorin (PF) shows anti-inflammatory effects on different inflammatory diseases in vitro studies and in vivo animal experiments. In this study, the viability of bovine mammary epithelial cells (bMECs) was detected by the cell counting kit-8 experiment. Subsequently, bMECs were induced with S. haemolyticus, and the induction dosage was determined. The expression of pro-inflammatory cytokines and toll-like receptor (TLR2) and nuclear factor kappa-B (NF-κB) signaling pathway-related genes were investigated by quantitative real-time PCR. The critical pathway proteins were detected by western blot. The results showed that the multiplicity of infection (MOI; the ratio of bacteria to bMECs) 5:1 of S. haemolyticus for 12 h could cause cellular inflammation, which was selected to establish the inflammatory model. Incubation with 50 μg/ml PF for 12 h was the best intervention condition for cells stimulated by S. hemolyticus. Quantitative real-time PCR and western blot analysis showed that PF inhibited the activation of TLR2 and NF-κB pathway-related genes and the expression of related proteins. Western blot results showed that PF suppressed the expression of NF-κB unit p65, NF-κB unit p50, and MyD88 in bMECs stimulated by S. haemolyticus. The inflammatory response pathway and molecular mechanism caused by S. haemolyticus on bMECs are related to TLR2-mediated NF-κB signaling pathways. The anti-inflammatory mechanism of PF may also be through this pathway. Therefore, PF is expected to develop potential drugs against CoNS-induced bovine mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guibo Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaoqing Mou
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jinyu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xurong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| |
Collapse
|
16
|
Hussen J, Alkuwayti MA, Falemban B, Al-Sukruwah MA, Alhojaily SM, Humam NAA, Adwani SA. Immunomodulatory Effects of Bacterial Toll-like Receptor Ligands on the Phenotype and Function of Milk Immune Cells in Dromedary Camel. BIOLOGY 2023; 12:biology12020276. [PMID: 36829554 PMCID: PMC9952959 DOI: 10.3390/biology12020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
(1) Toll-like receptors (TLR) are a family of pattern recognition receptors that sense distinct molecular patterns of microbial origin. Although the immune cell composition of camel milk has been recently described, host-pathogen interaction studies in the camel mammary gland are still scarce. The present study aimed to use a whole milk stimulation assay for investigating the modulatory effect of selected Toll-like receptor (TLR) ligands on the phenotype and function of milk immune cells. (2) Methods-camel milk samples (n = 7) were stimulated in vitro with the TLR4 ligand LPS or the TLR2/1 ligand Pam3CSK4, and separated milk cells were evaluated for stimulation-induced shape change, the expression of cell surface markers, phagocytosis, apoptosis, ROS production, and NETosis. Stimulation with PMA was used as a control stimulation. (3) Results-all stimulants induced shape change in milk cells, change in the expression of several cell markers, and increased cell apoptosis and NETosis. In addition, stimulation with Pam3CSK4 and PMA was associated with enhanced ROS production, while only PMA stimulation resulted in enhanced bacterial phagocytosis by milk immune cells. (4) Conclusions-our data indicates selective modulating effects of the TLR ligands LPS and Pam3CSK4 on camel milk phagocytes. These results may have implications for the use of synthetic TLR agonists as immunomodulatory adjuvants of the immune response to intra-mammary vaccines against mastitis pathogens.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: or ; Tel.: +966-135896626
| | | | - Baraa Falemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammed Ali Al-Sukruwah
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Naser Abdallah Al Humam
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Salma Al Adwani
- Department of Animal & Veterinary Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
17
|
Taban Q, Ahmad SM, Mumtaz PT, Bhat B, Haq E, Magray S, Saleem S, Shabir N, Muhee A, Kashoo ZA, Zargar MH, Malik AA, Ganai NA, Shah RA. Scavenger receptor B1 facilitates the endocytosis of Escherichia coli via TLR4 signaling in mammary gland infection. Cell Commun Signal 2023; 21:3. [PMID: 36604713 PMCID: PMC9813905 DOI: 10.1186/s12964-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023] Open
Abstract
SCARB1 belongs to class B of Scavenger receptors (SRs) that are known to be involved in binding and endocytosis of various pathogens. SRs have emerging role in regulating innate immunity and host-pathogen interactions by acting in co-ordination with Toll-like receptors.Query Little is known about the function of SCARB1 in milk-derived mammary epithelial cells (MECs). This study reports the role of SCARB1 in infection and its potential association in TLR4 signaling on bacterial challenge in Goat mammary epithelial cells (GMECs). The novelty in the establishment of MEC culture lies in the method that aims to enhance the viability of the cells with intact characteristics upto a higher passage number. We represent MEC culture to be used as a potential infection model for deeper understanding of animal physiology especially around the mammary gland. On E.coli challenge the expression of SCARB1 was significant in induced GMECs at 6 h. Endoribonuclease-esiRNA based silencing of SCARB1 affects the expression of TLR4 and its pathways i.e. MyD88 and TRIF pathways on infection. Knockdown also affected the endocytosis of E.coli in GMECs demonstrating that E.coli uses SCARB1 function to gain entry in cells. Furthermore, we predict 3 unique protein structures of uncharacterized SCARB1 (Capra hircus) protein. Overall, we highlight SCARB1 as a main participant in host defence and its function in antibacterial advances to check mammary gland infections. Video Abstract.
Collapse
Affiliation(s)
- Qamar Taban
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India.
| | | | - Basharat Bhat
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Suhail Magray
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Sahar Saleem
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Amatul Muhee
- Department of Clinical Veterinary Medicine, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Zahid Amin Kashoo
- Department of Veterinary Microbiology & Immunology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Mahrukh Hameed Zargar
- Department of Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Abrar A Malik
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Nazir A Ganai
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| | - Riaz A Shah
- Division of Animal Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, FV.Sc and A.H, Shuhama, Jammu and Kashmir, India
| |
Collapse
|
18
|
A Novel TLR4-SYK Interaction Axis Plays an Essential Role in the Innate Immunity Response in Bovine Mammary Epithelial Cells. Biomedicines 2022; 11:biomedicines11010097. [PMID: 36672605 PMCID: PMC9855420 DOI: 10.3390/biomedicines11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary gland epithelium, as the first line of defense for bovine mammary gland immunity, is crucial in the process of mammary glands’ innate immunity, especially that of bovine mammary epithelial cells (bMECs). Our previous studies successfully marked SYK as an important candidate gene for mastitis traits via GWAS and preliminarily confirmed that SYK expression is down-regulated in bMECs with LPS (E. coli) stimulation, but its work mechanism is still unclear. In this study, for the first time, in vivo, TLR4 and SYK were colocalized and had a high correlation in mastitis mammary epithelium; protein−protein interaction results also confirmed that there was a direct interaction between them in mastitis tissue, suggesting that SYK participates in the immune regulation of the TLR4 cascade for bovine mastitis. In vitro, TLR4 also interacts with SYK in LPS (E. coli)-stimulated or GBS (S. agalactiae)-infected bMECs, respectively. Moreover, TLR4 mRNA expression and protein levels were little affected in bMECsSYK- with LPS stimulation or GBS infection, indicating that SYK is an important downstream element of the TLR4 cascade in bMECs. Interestingly, IL-1β, IL-8, NF-κB and NLRP3 expression in LPS-stimulated or GBS-infected bMECsSYK- were significantly higher than in the control group, while AKT1 expression was down-regulated, implying that SYK could inhibit the IL-1β, IL-8, NF-κB and NLRP3 expression and alleviate inflammation in bMECs with LPS and GBS. Taken together, our solid evidence supports that TLR4/SYK/NF-κB signal axis in bMECs regulates the innate immunity response to LPS or GBS.
Collapse
|
19
|
Shen LH, Zhang Y, Shen Y, Su ZT, Yu SM, Cao SZ, Zong XL. Effect of anemoside B4 on milk whey in clinical mastitis-affected cows elucidated using tandem mass tag (TMT)-based quantitative proteomics. Sci Rep 2022; 12:18829. [PMID: 36335251 PMCID: PMC9637092 DOI: 10.1038/s41598-022-23749-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
Intramuscular injection of anemoside B4 (AB4) has a superior therapeutic effect on clinical mastitis in lactating cows. Here, we explored AB4's effect on milk whey in clinical mastitis-affected cows using proteomics. Among fifty clinical mastitis cows received AB4 administration (0.05 ml/kg/day, for 7 days), twelve healed cows were selected and marked as group T. Twelve clinically heathy cows received the same dose of saline for 7 days, marked as group C. Collected milk whey of group T before and after AB4 administration marked as T1 and T2, respectively. The milk whey of group C after saline injection marked as C1. Milk whey protein changes were detected using tandem mass tag-based quantitative proteomic. We identified 872 quantifiable proteins in the samples. Among them, 511 proteins between T1 and C1, and 361 proteins between T2 and T1 were significantly altered. T1 than C1 had significantly more proteins associated with inflammatory damage and trans-endothelial migration of leukocytes, whereas these proteins were reduced in T2 treated with AB4. Compared with C, proteins associated with fibrin clot degradation and complement system activation were downregulated in T1 but upregulated in T2. In summary, AB4 can exert its therapeutic effect on clinical mastitis in cows mainly by reducing inflammatory damage, activating the complement system, inhibiting trans-endothelial migration of leukocytes, and promoting degradation of milk fibrin clots.
Collapse
Affiliation(s)
- Liu-hong Shen
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yue Zhang
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yu Shen
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhe-tong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu, 546600 Guangxi China
| | - Shu-min Yu
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Sui-zhong Cao
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiao-lan Zong
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
20
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
21
|
Li K, Yang M, Tian M, Jia L, Du J, Wu Y, Li L, Yuan L, Ma Y. Lactobacillus plantarum 17-5 attenuates Escherichia coli-induced inflammatory responses via inhibiting the activation of the NF-κB and MAPK signalling pathways in bovine mammary epithelial cells. BMC Vet Res 2022; 18:250. [PMID: 35764986 PMCID: PMC9238091 DOI: 10.1186/s12917-022-03355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mastitis is one of the most prevalent diseases and causes considerable economic losses in the dairy farming sector and dairy industry. Presently, antibiotic treatment is still the main method to control this disease, but it also brings bacterial resistance and drug residue problems. Lactobacillus plantarum (L. plantarum) is a multifunctional probiotic that exists widely in nature. Due to its anti-inflammatory potential, L. plantarum has recently been widely researched in complementary therapies for various inflammatory diseases. In this study, the apoptotic ratio, the expression levels of various inflammatory mediators and key signalling pathway proteins in Escherichia coli-induced bovine mammary epithelial cells (BMECs) under different doses of L. plantarum 17–5 intervention were evaluated. Results The data showed that L. plantarum 17–5 reduced the apoptotic ratio, downregulated the mRNA expression levels of TLR2, TLR4, MyD88, IL1β, IL6, IL8, TNFα, COX2, iNOS, CXCL2 and CXCL10, and inhibited the activation of the NF-κB and MAPK signalling pathways by suppressing the phosphorylation levels of p65, IκBα, p38, ERK and JNK. Conclusions The results proved that L. plantarum 17–5 exerted alleviative effects in Escherichia coli-induced inflammatory responses of BMECs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03355-9.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Mengyue Tian
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Li Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jinliang Du
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yinghao Wu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lianmin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Lining Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
22
|
Chen L, Liu X, Li Z, Wang J, Tian R, Zhang H. Integrated Analysis of Transcriptome mRNA and miRNA Profiles Reveals Self-Protective Mechanism of Bovine MECs Induced by LPS. Front Vet Sci 2022; 9:890043. [PMID: 35812870 PMCID: PMC9260119 DOI: 10.3389/fvets.2022.890043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have investigated the molecular crosstalk between mastitis-pathogens and cows by either miRNA or mRNA profiles. Here, we employed both miRNA and mRNA profiles to understand the mechanisms of the response of bovine mammary epithelial cells (bMECs) to lipopolysaccharide (LPS) by RNA-Seq. The total expression level of miRNAs increased while mRNAs reduced after LPS treatment. About 41 differentially expressed mRNAs and 45 differentially expressed miRNAs involved in inflammation were screened out. We found the NFκB-dependent chemokine, CXCL1, CXCL3, CXCL6, IL8, and CX3CL1 to be strongly induced. The anti-apoptosis was active because BCL2A1 and BIRC3 significantly increased with a higher expression. The effects of anti-microbe and inflammation were weakly activated because TNF, IL1, CCL20, CFB, S100A, MMP9, and NOS2A significantly increased but with a low expression, IL6 and β-defensin decreased. These activities were supervised by the NFKBIA to avoid excessive damage to bMECs. The bta-let-7a-5p, bta-miR-30a-5p, bta-miR-125b, and bta-miR-100 were essential to regulate infection process in bMECs after LPS induction. Moreover, the lactation potential of bMECs was undermined due to significantly downregulated SOSTDC1, WNT7B, MSX1, and bta-miR-2425-5p. In summary, bMECs may not be good at going head-to-head with the pathogens; they seem to be mainly charged with sending out signals for help and anti-apoptosis for maintaining lives after LPS induction.
Collapse
Affiliation(s)
- Ling Chen
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- *Correspondence: Xiaolin Liu
| | - Zhixiong Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Jian Wang
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Rongfu Tian
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
23
|
Wei MJ, Wang ZN, Yang Y, Zhang SJ, Tang H, Li H, Bi CL. Selenium Attenuates S. aureus-Induced Inflammation by Regulation TLR2 Signaling Pathway and NLRP3 Inflammasome in RAW 264.7 Macrophages. Biol Trace Elem Res 2022; 200:761-767. [PMID: 33754304 DOI: 10.1007/s12011-021-02676-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the effects of selenium (Se) on the expression of Toll-like receptor (TLR) 2 and pyrin domain-containing protein (NLRP)3 inflammasome in macrophages infected by Staphylococcus aureus (S. aureus). RAW 264.7 macrophages were treated with 2 μmol/L Na2SeO3 for 12 h before infection with S. aureus for 2 h. Through Western blot, qRT-PCR, and ELISA analysis, the core molecules of TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages were detected. Results showed that Se significantly reduced the elevated mRNA expression of TLR2, myeloid differentiation factor-88 (Myd88), NLRP3, Caspase-recruitment domain (ASC), and Caspase-1 induced by S. aureus. Furthermore, compared with I group, the protein expression of TLR2, Myd88, NLRP3, ASC, and Caspase-1 were suppressed in T group. In addition, the mRNA and protein expression of interleukin-1 beta (IL-1β) induced by S. aureus were also decreased after Se treatment. In conclusion, Se inhibits S. aureus-induced inflammation by suppressing the activation of the TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ming-Ji Wei
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Zhen-Nan Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, 276012, Shandong, China
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
- Drug Micro Vector Engineering Center of Linyi, Shuangling Road, Linyi, 276005, Shandong, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China.
| |
Collapse
|
24
|
Liu B, Li Q, Gong Z, Zhao J, Gu B, Feng S. Staphylococcus aureus lipoproteins play crucial roles in inducing inflammatory responses and bacterial internalization into bovine mammary epithelial cells. Microb Pathog 2021; 162:105364. [PMID: 34921958 DOI: 10.1016/j.micpath.2021.105364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023]
Abstract
Bovine mastitis is caused by bacterial infection and characterized by inflammatory and infectious processes. Staphylococcus aureus frequently causes subclinical mastitis in dairy cows. In this study, we aimed to investigate the roles of S. aureus lipoproteins in inducing inflammatory responses and in mediating bacterial internalization into bovine mammary epithelial cells (bMECs). The results showed that TLR2 expression in bMECs infected with S. aureus isogenic mutant deficient in lipoprotein maturation was decreased compared to that in bMECs infected with wild-type S. aureus. Lipoproteins from S. aureus and the engagement of TLR2 were essential for inducing the activation of MAPK and NF-κB signaling, and stimulating the secretion of the inflammatory mediators tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-X-C motif chemokine ligand 8 (CXCL8). The production of prostaglandin E2 (PGE2) and the expression of PTGS2 in S. aureus-infected bMECs were dependent on the presence of bacterial lipoproteins. Furthermore, bacterial lipoproteins contributed to S. aureus internalization into bMECs. These findings suggest the S. aureus lipoproteins are key immunobiologically active compounds that trigger inflammatory responses in bMECs and play an important role in S. aureus internalization into bMECs.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Qianru Li
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Zhiguo Gong
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Jiamin Zhao
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Baichen Gu
- Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China
| | - Shuang Feng
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, 010018, Hohhot, China.
| |
Collapse
|
25
|
PIAS Factors from Rainbow Trout Control NF-κB- and STAT-Dependent Gene Expression. Int J Mol Sci 2021; 22:ijms222312815. [PMID: 34884614 PMCID: PMC8657546 DOI: 10.3390/ijms222312815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Four ‘protein inhibitors of activated STAT’ (PIAS) control STAT-dependent and NF-κB-dependent immune signalling in humans. The genome of rainbow trout (Oncorhynchus mykiss) contains eight pias genes, which encode at least 14 different pias transcripts that are differentially expressed in a tissue- and cell-specific manner. Pias1a2 was the most strongly expressed variant among the analysed pias genes in most tissues, while pias4a2 was commonly low or absent. Since the knock-out of Pias factors in salmonid CHSE cells using CRISPR/Cas9 technology failed, three structurally different Pias protein variants were selected for overexpression studies in CHSE-214 cells. All three factors quenched the basal activity of an NF-κB promoter in a dose-dependent fashion, while the activity of an Mx promoter remained unaffected. Nevertheless, all three overexpressed Pias variants from trout strongly reduced the transcript level of the antiviral Stat-dependent mx gene in ifnγ-expressing CHSE-214 cells. Unlike mx, the overexpressed Pias factors modulated the transcript levels of NF-κB-dependent immune genes (mainly il6, il10, ifna3, and stat4) in ifnγ-expressing CHSE-214 cells in different ways. This dissimilar modulation of expression may result from the physical cooperation of the Pias proteins from trout with differential sets of interacting factors bound to distinct nuclear structures, as reflected by the differential nuclear localisation of trout Pias factors. In conclusion, this study provides evidence for the multiplication of pias genes and their sub-functionalisation during salmonid evolution.
Collapse
|
26
|
Niedziela DA, Cormican P, Foucras G, Leonard FC, Keane OM. Bovine milk somatic cell transcriptomic response to Staphylococcus aureus is dependent on strain genotype. BMC Genomics 2021; 22:796. [PMID: 34740333 PMCID: PMC8571842 DOI: 10.1186/s12864-021-08135-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mastitis is an economically important disease of dairy cows with Staphylococcus aureus a major cause worldwide. Challenge of Holstein-Friesian cows demonstrated that S. aureus strain MOK124, which belongs to Clonal Complex (CC)151, caused clinical mastitis, while strain MOK023, belonging to CC97, caused mild or subclinical mastitis. The aim of this study was to elucidate the molecular mechanisms of the host immune response utilising a transcriptomic approach. Milk somatic cells were collected from cows infected with either S. aureus MOK023 or MOK124 at 0, 24, 48, 72 and 168 h post-infection (hpi) and analysed for differentially expressed (DE) genes in response to each strain. Results In response to MOK023, 1278, 2278, 1986 and 1750 DE genes were found at 24, 48, 72 and 168 hpi, respectively, while 2293, 1979, 1428 and 1544 DE genes were found in response to MOK124 at those time points. Genes involved in milk production (CSN1, CSN10, CSN1S2, CSN2, a-LACTA and PRLR) were downregulated in response to both strains, with a more pronounced decrease in the MOK124 group. Immune response pathways such as NF-κB and TNF signalling were overrepresented in response to both strains at 24 hpi. These immune pathways continued to be overrepresented in the MOK023 group at 48 and 72 hpi, while the Hippo signalling, extracellular matrix interaction (ECM) and tight junction pathways were overrepresented in the MOK124 group between 48 and 168 hpi. Cellular composition analysis demonstrated that a neutrophil response was predominant in response to MOK124, while M1 macrophages were the main milk cell type post-infection in the MOK023 group. Conclusions A switch from immune response pathways to pathways involved in maintaining the integrity of the epithelial cell layer was observed in the MOK124 group from 48 hpi, which coincided with the occurrence of clinical signs in the infected animals. The higher proportion of M1 macrophages in the MOK023 group and lack of substantial neutrophil recruitment in response to MOK023 may indicate immune evasion by this strain. The results of this study highlight that the somatic cell transcriptomic response to S. aureus is dependent on the genotype of the infecting strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08135-7.
Collapse
Affiliation(s)
- Dagmara A Niedziela
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRAE, UMR1225, F-31076, Toulouse, France
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
27
|
Hu H, Fang Z, Mu T, Wang Z, Ma Y, Ma Y. Application of Metabolomics in Diagnosis of Cow Mastitis: A Review. Front Vet Sci 2021; 8:747519. [PMID: 34692813 PMCID: PMC8531087 DOI: 10.3389/fvets.2021.747519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cow mastitis, with high incidence rate and complex cause of disease, is one of the main diseases that affect the development of dairy industry in the world. Clinical mastitis and subclinical mastitis caused by Staphylococcus aureus, Escherichia coli, Streptococcus, and other pathogens have a huge potential safety hazard to food safety and the rapid development of animal husbandry. The economic loss caused by cow mastitis is billions of dollars every year in the world. In recent years, the omics technology has been widely used in animal husbandry with the continuous breakthrough of sequencing technology and the continuous reduction of sequencing cost. For dairy cow mastitis, the traditional diagnostic technique, such as histopathological screening, somatic cell count, milk pH test, milk conductivity test, enzyme activity test, and infrared thermography, are difficult to fully and comprehensively clarify its pathogenesis due to their own limitations. Metabolomics technology is an important part of system biology, which can simultaneously analyze all low molecular weight metabolites such as amino acids, lipids, carbohydrates under the action of complex factors including internal and external environment and in a specific physiological period accurately and efficiently, and then clarify the related metabolic pathways. Metabolomics, as the most downstream of gene expression, can amplify the small changes of gene and protein expression at the level of metabolites, which can more fully reflect the cell function. The application of metabolomics technology in cow mastitis can analyze the hetero metabolites, identify the related biomarkers, and reveal the physiological and pathological changes of cow mammary gland, so as to provide valuable reference for the prediction, diagnosis, and treatment of mastitis. The research progress of metabolomics technology in cow mastitis in recent years was reviewed, in order to provide guidance for the development of cow health and dairy industry safety in this manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanfen Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
28
|
Live S. aureus and heat-killed S. aureus induce different inflammation-associated factors in bovine endometrial tissue in vitro. Mol Immunol 2021; 139:123-130. [PMID: 34481270 DOI: 10.1016/j.molimm.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/27/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is majorly involved in bovine mastitis; however, it weakly induces pro-inflammatory factors in mammary gland epithelial cells. We aimed to clarify the involvement of S. aureus in other inflammation types and its relationship with inflammatory factor secretion in bovine endometritis. We used live S. aureus (LSA)- and heat-killed S. aureus (HK-SA)-treated bovine endometrial tissue in vitro. The HK-SA-treated group showed significantly higher IL-6, IL-1β, TNF-α, CXCL1/2 and TLR2 expression than the LSA-infected group. Contrastingly, the LSA-infected group showed significantly higher PTGS2, mPGES-1, and EP4 expression than the HK-SA treated group. There was no significant between-group difference in hyaluronan-binding protein 1 expression, which suggested similar inflammatory responses. H&E results indicated that LSA and HK-SA induced shedding of endometrial gland epithelial cells. The LSA-infected group showed higher high-mobility group box 1 protein expression than the HK-SA treated groups, which indicated differences in signaling pathway activation. Further, the LSA-treated group had higher JNK and p38 MAPK levels while the HK-SA-treated group had higher IκB-α levels. There was no significant between-group difference in the ERK signaling pathway. Our findings indicate that the pathogen-associated molecular patterns (PAMPs) of S. aureus activate pro-inflammatory factor expression via the TLR2-ERK-NF-κB signaling pathway. Contrastingly, LSA induced PGE2 accumulation via the TLR2/MAPKs signaling pathway. This is the first report that S. aureus and the PAMPs of S. aureus activate different signaling pathways and that LSA mainly induce PGE2 accumulation rather than cytokine secretion.
Collapse
|
29
|
Jingjing W, Yiwu F, Youpeng S, Xia W, Zhikai W, Peixuan L, Ershun Z, Zhengtao Y. DNase I improves blood-milk barrier integrity and alleviates inflammation induced by Staphylococcus aureus during mastitis. Int Immunopharmacol 2021; 100:108079. [PMID: 34455255 DOI: 10.1016/j.intimp.2021.108079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
Mastitis is an inflammation of mammary gland, which directly affects the milk production performance and causes huge economic losses in the dairy industry. During mastitis, the blood-milk barrier (BMB) loses its integrity and aggravates the severity of mastitis. Exogenous DNase I has been exerted protective effects in different model of tissue injury. Here, we designed a study to investigate the effects of DNase I on inflammation and BMB in a mice model of Staphylococcus aureus-induced mastitis. In the model, we found that DNase I treatment significantly alleviated the inflammatory response through decrease of inflammatory cells in mammary alveoli, MPO activity and cytokines in mammary gland. Furthermore, immunofluorescent staining and western blotting demonstrated that exogenous DNase I obviously reduced BMB permeability and changed the expression of tight junction proteins to support the re-establishment of the barrier integrity. Mechanismly, DNase I treatment inhibited NF-κB and enhanced AKT signaling pathways. Therefore, our results indicate that DNase I may be an effective treatment for attenuating mastitis.
Collapse
Affiliation(s)
- Wang Jingjing
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Fu Yiwu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Sun Youpeng
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Wang Xia
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Wu Zhikai
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Li Peixuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| | - Zhou Ershun
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| | - Yang Zhengtao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| |
Collapse
|
30
|
Xu H, Zhang T, Hu X, Xie Y, Wu R, Lian S, Wang J. Exosomal miR-193b-5p as a regulator of LPS-induced inflammation in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim 2021; 57:695-703. [PMID: 34312802 DOI: 10.1007/s11626-021-00596-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022]
Abstract
Exosomes are a type of extracellular vesicle that act as shuttles, transporting certain genetic information to other cells. MiRNA cargo within exosomes can regulate gene expression at the transcriptional level. The objective of this study was to investigate the exosomal miRNAs that regulate lipopolysaccharide (LPS)-induced inflammation in dairy cow mammary alveolar (Mac-T) cells. We found two exosome miRNAs upregulated and five exosomal miRNAs downregulated, respectively, in the LPS-stimulated Mac-T cells. MiR-193b-5p was upregulated 6.3-fold in the LPS-stimulated cell-derived exosome. Target prediction results showed that nuclear factor kappa B (NF-κB) inhibitor delta (NFKBID), transforming growth factor-beta 1 induced transcript 1 (TGFB1I1), interleukin 22 (IL-22), TNF receptor superfamily member 11b (TNFRSF11B), and Janus kinase 3 (JAK3) might be the main target genes of miR-193b-5p. After treatment of Mac-T cells with the miR-193b-5p mimic, the phosphorylation levels of inhibitor of nuclear factor-kappa Bα (IκBα) and p65 were upregulated, the level of IL-6 mRNA was upregulated, and IL-1β, TNF-α, and TGF-β mRNA levels were downregulated. After treatment of Mac-T cells with miR-193b-5p inhibitor, the phosphorylation levels of IκBα and p65 were downregulated. In summary, these findings provide strong evidence that exosomal miR-193b-5p could be a regulator of LPS-induced inflammation in Mac-T cells and reveal a new role of exosomal miRNAs in regulating dairy cow mastitis.
Collapse
Affiliation(s)
- Haotian Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Tianqi Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Xuequan Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Yingying Xie
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, High and New Technology Development Zone, Daqing, Heilongjiang, 163319, People's Republic of China.
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, No. 2 Xinyang Road, Sartu District, Daqing, 163319, People's Republic of China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, High and New Technology Development Zone, Daqing, Heilongjiang, 163319, People's Republic of China.
| |
Collapse
|
31
|
Liu K, Mao W, Liu B, Li T, Wang X, Pei L, Cao J, Wang F. Prostaglandin E2 promotes Staphylococcus aureus infection via EP4 receptor in bovine endometrium. Microb Pathog 2021; 158:105019. [PMID: 34107344 DOI: 10.1016/j.micpath.2021.105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Prostaglandin E2 (PGE2) enhances Staphylococcus aureus infection but its mechanism is not well understood. Here, we examined the effect of PGE2 on Staphylococcal Protein A (SPA) expression in bovine endometrium and determined the role of select PGE2 receptors (i.e., EP2 and EP4) in adhesion and internalization of S. aureus. S. aureus isolate SA113 was used for in vitro infection of bovine endometrial tissues and epithelial cells, with treatment conditions consisting of untreated control, SA113 treatment, SA113 + PGE2, SA113 + PGE2 + EP2 receptor antagonist (AH-6809), and SA113 + PGE2 + EP4 receptor antagonist (AH-23848). Immunofluorescence assay revealed that PGE2 could promote SPA expression in S. aureus-infected bovine endometrial tissues. PGE2 also enhanced the adhesion and internalization of S. aureus in bovine endometrial cells. The addition of EP4 antagonist, but not the EP2 antagonist, abrogated the ability of PGE2 to promote S. aureus SPA expression, adhesion, and internalization in endometrial cells. Our findings suggest that S. aureus infection in the endometrium is enhanced by PGE2 through the EP4 receptor. This result is essential for the development of new approach to treating S. aureus infection, such as the application of EP4 antagonist as an adjunct drug treatment.
Collapse
Affiliation(s)
- Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China; Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Xinfei Wang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Le Pei
- Veterinary Research Institute, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China.
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Anima Disease, Ministry of Agriculture, Hohhot, China.
| | - Fenglong Wang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
32
|
El-Deeb W, Fayez M, Alhumam N, Elsohaby I, Quadri SA, Mkrtchyan H. The effect of staphylococcal mastitis including resistant strains on serum procalcitonin, neopterin, acute phase response and stress biomarkers in Holstein dairy cows. PeerJ 2021; 9:e11511. [PMID: 34131523 PMCID: PMC8174151 DOI: 10.7717/peerj.11511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal mastitis (SM) is a frequent disease in the dairy cattle that is costly to treat. This study aimed to investigate the alterations in the levels of procalcitonin (PCT), neopterin (NPT), haptoglobin (HP), serum amyloid A (SAA), proinflammatory cytokines (IL-1β, IL-8, TNF-α, IF-γ) and oxidative stress (OS) biomarkers in Holstein dairy cows with SM under field conditions. In addition, we also evaluated the role of examined biomarkers in disease pathogenesis and their use as diagnostic biomarkers for the disease in dairy cows. Fifty-three dairy cows with SM, including those with infections caused by Staphylococcus aureus (n = 42) and methicillin resistant S. aureus (MRSA) (n = 11) were selected for this study. In addition, 20 healthy dairy cows were enrolled as a control group. Higher serum levels of PCT, NP, IL-1β, IL-8, TNF-α, IF-γ, HP and SAA and a state of OS was detected in SM group in comparison with the controls. Moreover, the levels of all examined biomarkers in mastitic cows with S. aureus when compared with those infected with MRSA was not significantly different. All examined biomarkers demonstrated a significant degree of discrimination between SM cows and healthy controls (the area under the curve (AUC) ranged from 83.6 for SAA to 100 for PCT). Our study showed that SM in dairy cows was associated with substantial changes in serum PCT, NPT, Acute phase proteins (APPs), proinflammatory cytokines, and OS levels. This study demonstrates that clinical examination in tandem with quantification of PCT, NPT, APPs and cytokines, OS biomarkers could be a useful assessment tool for SM in dairy cows.
Collapse
Affiliation(s)
- Wael El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Internal Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud Fayez
- Al Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
| | - Naser Alhumam
- Department of Microbiology and parasitology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Al-Hofuf, Saudi Arabia
| | - Ibrahim Elsohaby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Sayed A. Quadri
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Hermine Mkrtchyan
- School of Biomedical Sciences, University of West London, London, United Kingdom
| |
Collapse
|
33
|
Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, O'Brien‐Simpson NM, Hill AF, Stinear TP, Kaparakis‐Liaskos M. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 2021; 10:e12080. [PMID: 33815695 PMCID: PMC8015888 DOI: 10.1002/jev2.12080] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host.
Collapse
Affiliation(s)
- Natalie J. Bitto
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Lesley Cheng
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ella L. Johnston
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Rishi Pathirana
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Thanh Kha Phan
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ivan K. H. Poon
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Neil M. O'Brien‐Simpson
- Centre for Oral Health ResearchMelbourne Dental SchoolBio21 InstituteThe University of MelbourneParkvilleVictoria3010Australia
| | - Andrew F. Hill
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Timothy P. Stinear
- Department of Microbiology and ImmunologyDoherty InstituteUniversity of MelbourneParkvilleVictoria3010Australia
| | - Maria Kaparakis‐Liaskos
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| |
Collapse
|
34
|
Ge BJ, Zhao P, Li HT, Sang R, Wang M, Zhou HY, Zhang XM. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113595. [PMID: 33212175 DOI: 10.1016/j.jep.2020.113595] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Taraxacum mongolicum has been widely used for the prevention and treatment of a variety of inflammatory and infectious diseases, and also clinically used as a remedy for mastitis. However, the scientific rationale and mechanism behind its use on mastitis in vivo are still unclear. AIM OF THE STUDY This study aimed to investigate the protective effect and potential mechanism of Taraxacum mongolicum Hand.-Mazz. (T. mongolicum) on mastitis infected by Staphylococcus aureus (S. aureus). MATERIALS AND METHODS Female ICR mice were given intragastrically 2.5, 5 and 10 g/kg of T. mongolicum extract twice per day for 6 consecutive days, and infected with S. aureus via teat canal to induce mastitis. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels were determined by ELISA. Myeloperoxidase (MPO) activity and distribution were measured by reagent kit and immunohistochemistry. Histopathological changes of mammary gland tissues were observed by H&E staining. Toll-like receptor 2 (TLR2) expression, phosphorylations of related proteins in nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways were detected by western blot. RESULTS T. mongolicum decreased TNF-α, IL-6 and IL-1β levels, and reduced MPO activity and distribution in sera and mammary glands with S. aureus-infected mastitis. In addition, T. mongolicum effectively attenuated histopathological damages and cell necrosis of mammary gland tissues infected by S. aureus. Moreover, T. mongolicum inhibited the expression of TLR2, and the phosphorylations of inhibitor κBα (IκBα), p65, p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) proteins in mammary glands with S. aureus-infected mastitis. CONCLUSIONS This study suggests that T. mongolicum protects against S. aureus-infected mastitis by exerting anti-inflammatory role, which is attributed to the inhibition of TLR2-NF-κB/MAPKs pathways.
Collapse
Affiliation(s)
- Bing-Jie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Peng Zhao
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Hai-Tao Li
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China; Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Juye Street, Changchun, Jilin 132109, China.
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Meng Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Hong-Yuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Xue-Mei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| |
Collapse
|
35
|
Qiu T, Wu D, Zhang L, Zou D, Sun Y, Gao M, Wang X. A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14707-14719. [PMID: 33219508 DOI: 10.1007/s11356-020-11469-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dan Wu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dexun Zou
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yanmei Sun
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Banjing, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
36
|
Tsugami Y, Wakasa H, Kawahara M, Nishimura T, Kobayashi K. Lipopolysaccharide and lipoteichoic acid influence milk production ability via different early responses in bovine mammary epithelial cells. Exp Cell Res 2021; 400:112472. [PMID: 33450209 DOI: 10.1016/j.yexcr.2021.112472] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) are cell wall components of Escherichia coli and Staphylococcus aureus, which cause clinical and subclinical mastitis, respectively. However, the reason of the difference in symptoms by pathogen type remains unclear. In this study, the influence of LPS and LTA on early response and milk production in lactating bovine mammary epithelial cells (BMECs) was comparatively investigated. The results showed that LPS decreased the secretion of β-casein, lactose, and triglycerides, whereas LTA decreased the secretion of lactose and triglycerides but increased lactoferrin production without any influence on β-casein secretion. In addition, the influence of milk lipid droplet size in BMECs and gene expression related to milk fat synthesis was different between LPS and LTA. LPS increased the gene expression of interleukin (IL)-1β, tumor necrosis factor-α, and IL-8 through the activation of the nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase pathways, whereas LTA increased IL-1β and CC chemokine ligand 5 expression through the activation of the NF-κB pathway. Moreover, these cytokines and chemokines differently affected the milk production ability of BMECs. These results suggested that the pathogen-specific symptoms may be related to the differences in the early response of BMECs to bacterial toxins.
Collapse
Affiliation(s)
- Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
37
|
Ali A, Dar RR, Ahmad SF, Singh SK, Patra MK, Panigrahi M, Kumar H, Krishnaswamy N. Curcumin inhibits lipopolysaccharide and lipoteichoic acid-induced expression of proinflammatory cytokines and production of PGE 2 in the primary bubaline endometrial stromal cells. Mol Biol Rep 2020; 47:10015-10021. [PMID: 33174083 DOI: 10.1007/s11033-020-05961-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Infection of the uterus with Gram-positive Trueperella pyogenes and Gram-negative Escherichia coli is a common cause of postpartum endometritis in the cattle and buffalo and the condition is treated with antimicrobial drugs. The presence of drug residues in the milk and development of resistant bacteria necessitate the evaluation of alternate therapies for endometritis. Accordingly, we tested the immunomodulatory effect of curcumin in the bubaline endometrial stromal cells after treatment with the lipoteichoic acid (LTA) of Gram-positive Staphylococcus aureus and lipopolysaccharide (LPS) of Gram-negative E. coli that activate toll-like receptors (TLR-2 and TLR-4, respectively). Confluent primary culture of endometrial stromal cells was treated with LTA (1 µg/mL) and/or LPS (0.1 µg/mL), in the presence or absence of curcumin (30 µM for 24 h). PGE2 was assayed in the supernatant and the relative expression of proinflammatory cytokines (PICs) (IL1B, IL6, IL8 and TNFA) transcripts were quantified using real-time PCR. LTA was not effective in stimulating PGE2 production or upregulating the PIC expression except IL8. LTA+LPS increased PGE2 production and upregulated IL6 and IL8 genes. Curcumin inhibited the basal and LTA+LPS induced production of PGE2 and upregulation of PIC production. It was apparent that LPS, but not LTA, is a potent stimulator of PGE2 from the bubaline endometrial stromal cells. Curcumin downregulated the expression of LPS and/or LTA induced PICs and PGE2 and may be an alternate to antimicrobial drugs for the therapeutic management of endometritis.
Collapse
Affiliation(s)
- Ajaz Ali
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Rouf Rashid Dar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.,Animal Genetics and Breeding, ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Sanjay Kumar Singh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, UP, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Harendra Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | | |
Collapse
|
38
|
Miles AM, Huson HJ. Graduate Student Literature Review: Understanding the genetic mechanisms underlying mastitis. J Dairy Sci 2020; 104:1183-1191. [PMID: 33162090 DOI: 10.3168/jds.2020-18297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/16/2020] [Indexed: 01/24/2023]
Abstract
Mastitis is the costliest disease facing dairy producers today; consequently, it has been the subject of substantial research focus. Efforts have evolved from an initial focus on understanding the etiology of intramammary infections to the application of preventative measures, including attempts to breed cows that are resistant to infection. However, breeding for resistance to infection has proven difficult, given the complexity of the disease and the high expense associated with assembling high-quality genotypes and phenotypes. This review provides a brief background on mastitis; illustrates current understanding of the genetics influencing mastitis and the application of this knowledge; and discusses challenges and limitations in understanding these mechanisms and applying these findings to genetic improvement strategies.
Collapse
Affiliation(s)
- Asha M Miles
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
39
|
Berardo N, Bohl L, Porporatto C, Nader-Macias MEF, Bogni C, Pellegrino M. Intramammary inoculation with lactic acid bacteria at dry-off triggers an immunomodulatory response in dairy cows. Benef Microbes 2020; 11:561-572. [PMID: 33032469 DOI: 10.3920/bm2019.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of antibiotics to prevent bovine mastitis is responsible for the emergence and selection of resistant strains. Lactic acid bacteria (LAB) could be introduced into animal feed as an alternative prevention method that would bypass the risk of resistance development. In previous research, we demonstrated that two probiotic LAB strains isolated from bovine milk were capable of stimulating the production of antibodies and the host's immune cellular response in the udder. The present study aimed to elucidate whether the antibodies of animals inoculated with these strains were able to increase phagocytosis by neutrophils and inhibit the growth of different mastitis-causing pathogens. Moreover, the effect of LAB on the expression of pro-inflammatory cytokines was assessed. Ten animals were inoculated intramammarily with 106 cells of the two strains at dry-off. The blood serum was tested for its ability to opsonize bovine mastitis pathogens, the in vitro bactericidal activity of bovine blood and milk against these pathogens was determined, and cytokine mRNA expression was quantified in milk somatic cells. The inoculated animals did not show abnormal signs of sensitivity to the LAB. Their blood serum significantly enhanced the phagocytosis of Staphylococcus spp. and the LAB. Escherichia coli and Streptococcus uberis were inhibited by the milk serum but not the blood serum, whereas Staphylococcus aureus and Staphylococcus haemolyticus were inhibited by both. In regard to cytokine expression, interleukin (IL)-1β increased markedly for up to 4 h post-inoculation, and an increase in IL-8 was observed 4, 12 and 24 h after inoculation. Tumour necrosis factor-α mRNA increased 1 and 2 h after inoculation and a significant difference was registered at 6 h for interferon-γ. This rapid immunomodulatory response shows that inoculating animals with LAB at dry-off, when they are especially susceptible, could be a useful strategy for the prevention of bovine mastitis.
Collapse
Affiliation(s)
- N Berardo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800-Río Cuarto, Córdoba, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - L Bohl
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,CIT-VM (Centro de Investigaciones y Transferencia de Villa María, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María), Av. Arturo Jauretche 1555, 5900-Villa María, Córdoba, Argentina
| | - C Porporatto
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,CIT-VM (Centro de Investigaciones y Transferencia de Villa María, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María), Av. Arturo Jauretche 1555, 5900-Villa María, Córdoba, Argentina
| | - M E F Nader-Macias
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,CERELA-CONICET (Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Departamento de Microbiología Preventiva, Chacabuco 145, 4000- San Miguel de Tucumán, Argentina
| | - C Bogni
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800-Río Cuarto, Córdoba, Argentina
| | - M Pellegrino
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800-Río Cuarto, Córdoba, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, C1425FQB-Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Khan MZ, Khan A, Xiao J, Ma J, Ma Y, Chen T, Shao D, Cao Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals (Basel) 2020; 10:E1625. [PMID: 32927884 PMCID: PMC7552152 DOI: 10.3390/ani10091625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mastitis is the inflammation of the mammary gland. Escherichia coli and Staphylococcus aureus are the most common bacteria responsible for mastitis. When mammary epithelial cells are infected by microorganisms, this activates an inflammatory response. The bacterial infection is recognized by innate pattern recognition receptors (PRRs) in the mammary epithelial cells, with the help of Toll-like receptors (TLRs). Upon activation by lipopolysaccharides, a virulent agent of bacteria, the TLRs further trigger nuclear factor-κB (NF-κB) signaling to accelerate its pathogenesis. The NF-κB has an essential role in many biological processes, such as cell survival, immune response, inflammation and development. Therefore, the NF-κB signaling triggered by the TLRs then regulates the transcriptional expression of specific inflammatory mediators to initiate inflammation of the mammary epithelial cells. Thus, any aberrant regulation of NF-κB signaling may lead to many inflammatory diseases, including mastitis. Hence, the inhibiting of NF-κB signaling has potential therapeutic applications in mastitis control strategies. In this review, we highlighted the regulation and function of NF-κB signaling in mastitis. Furthermore, the role of NF-κB signaling for therapeutic purposes in mastitis control has been explored in the current review.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Dafu Shao
- Institute of Agricultural Information of CAAS, Beijing 100081, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| |
Collapse
|
41
|
Bi Y, Ding Y, Wu J, Miao Z, Wang J, Wang F. Staphylococcus aureus induces mammary gland fibrosis through activating the TLR/NF-κB and TLR/AP-1 signaling pathways in mice. Microb Pathog 2020; 148:104427. [PMID: 32783982 DOI: 10.1016/j.micpath.2020.104427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
To investigate the TLR-NF-κB/AP-1 pathways in S. aureus infection-induced mammary gland fibrosis, mice were infected with S. aureus isolated from the mammary glands of cows with mastitis. Lactating mice were divided into three groups: control group (CON); PBS control group (PBS) and the S. aureus-treated group (S. aureus). Pathological observations revealed that neutrophil infiltration into mammary gland tissue was obviously induced by S. aureus at the early stage of infection (1-7 d). With persistent S. aureus infection, mammary gland fibrosis developed and was characterized by infiltration and proliferation of macrophage, lymphocyte and fibroblast and ECM hyperplasia (7-21 d). Immunohistochemistry staining showed upregulation of fibrosis associated cytokines viz bFGF and PDGF-BB. Real-time qPCR and Western blot analysis revealed that transcription and translation of TLR2, TLR4, bFGF, PDGF-BB, α-SMA and COL Ⅰ α1 was significantly upregulated by S. aureus. NF-κB p65 and AP-I c-jun were translocated into the nucleus after S. aureus infection. There was no remarkable difference between the CON and PBS groups. The datas indicate that mammary gland fibrosis in mice is induced by S. aureus, which promotes cytokine release and the expression of ECM though activating the TLR/NF-κB p65 and TLR/AP-1 c-jun signaling pathways.
Collapse
Affiliation(s)
- Yannan Bi
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China; School of Basic Medical Science and Forensic Medicine, Baotou Medical College, Jianshe Road 31, 014040, Baotou, Inner Mongolia, People's Republic of China
| | - Yulin Ding
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Jianmei Wu
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Erdos Street 50, 010031, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zengqiang Miao
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Jinling Wang
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China
| | - Fenglong Wang
- Department of Veterinary Pathology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
42
|
Zhuang C, Liu G, Barkema HW, Zhou M, Xu S, Ur Rahman S, Liu Y, Kastelic JP, Gao J, Han B. Selenomethionine Suppressed TLR4/NF-κB Pathway by Activating Selenoprotein S to Alleviate ESBL Escherichia coli-Induced Inflammation in Bovine Mammary Epithelial Cells and Macrophages. Front Microbiol 2020; 11:1461. [PMID: 32733409 PMCID: PMC7360804 DOI: 10.3389/fmicb.2020.01461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Inflammation is the hallmark of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli-induced bovine mastitis. Organic selenium can activate pivotal proteins in immune responses and regulate the immune system. The present study aimed to investigate whether selenomethionine (SeMet) attenuates ESBL E. coli-induced inflammation in bovine mammary epithelial cells (bMECs) and macrophages. Cells were treated with 0, 5/10, 10/20, 20/40, or 40/60 μM SeMet for 12 h and/or inoculated with ESBL-E. coli [multiplicity of infection (MOI) = 5] for 4/6 h, respectively. We assessed inflammatory responses, including selenoprotein S (SeS), Toll-like receptor 4 (TLR4), Ikappa-B (IκB), phospho-NF-κB p65 (Ser536), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and lactate dehydrogenase (LDH) activities. Treatment with 40/60 μM SeMet promoted cell viability and inhibited LDH activities in both bMECs and macrophages. Inoculation with ESBL-E. coli reduced cell viability, which was attenuated by SeMet treatment in bMECs and macrophages. SeMet increased ESBL E. coli-induced downregulation of SeS and decreased LDH activities, TLR4, IκB, phospho-NF-κB p65 (Ser536), IL-1β, and TNF-α protein expressions in bMECs and macrophages. In addition, knockdown of SeS promoted protein expression of TLR4-mediated nuclear factor-kappa (NF-κB) pathway and BAY 11-708 inhibited TNF-α and IL-1β protein levels in bMECs and macrophages after ESBL-E. coli treatment. Moreover, ESBL-E. coli inoculation increased monocyte chemoattractant protein 1 (MCP-1), C-C motif ligand 3 (CCL-3), and CCL-5 mRNA expressions in bMECs. In conclusion, ESBL-E. coli induced expression of MCP-1, CCL-3, and CCL-5 in bMECs and then recruited and activated macrophages, whereas SeMet attenuated ESBL E. coli-induced inflammation through activated SeS-mediated TLR4/NF-κB signaling pathway in bMECs and macrophages.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sadeeq Ur Rahman
- Section of Microbiology, Department of Pathobiology, College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Pérez VKC, Costa GMD, Guimarães AS, Heinemann MB, Lage AP, Dorneles EMS. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. J Glob Antimicrob Resist 2020; 22:792-802. [PMID: 32603906 DOI: 10.1016/j.jgar.2020.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/10/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES This review summarizes the literature on the role of virulence and antimicrobial resistance genes of Staphylococcus aureus in bovine mastitis, focusing on the association between these characteristics and their implications for public and animal health. CONCLUSIONS There is the possibility of antimicrobial resistance gene exchange among different bacteria, which is of serious concern in livestock husbandry, as well as in the treatment of human staphylococcal infections.
Collapse
Affiliation(s)
- Verónica Karen Castro Pérez
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Geraldo Márcio da Costa
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Alessandro Sá Guimarães
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite, Juiz de Fora 36038-330, Minas Gerais, Brazil
| | - Marcos Bryan Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brazil.
| |
Collapse
|
44
|
Zecconi A, Zanini L, Cipolla M, Stefanon B. Factors Affecting the Patterns of Total Amount and Proportions of Leukocytes in Bovine Milk. Animals (Basel) 2020; 10:E992. [PMID: 32517222 PMCID: PMC7341286 DOI: 10.3390/ani10060992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Differential leukocyte count (DSCC) in milk is considered important to improve knowledge of udder immune response. The investigations on milk DSCC were limited by the techniques available until recently, when a high-throughput tool to perform DSCC opened the way to explore these factors in rapid and economically sustainable ways. We hypothesized that DSCC alone does not fully describe the pattern of these cells, since the total amount is also influenced by milk yield and SCC. Therefore, this study was designed to describe DSCC and total amount of different leukocytes in milk during the course of lactation in cows differing in parity and in levels of SCC. This study considered 17,939 individual milk tests from 12 dairy herds in Lombardy Region, where DCC testing was applied in the period of February 2018-December 2019 (23 months). The samples were divided into two subsets-"healthy" (HS) with SCC ≤200,000 cells/mL and "inflamed" (IS) with SCC >200,000 cells/mL. Cow in HS have a P + LT average between 5.0 × 108 and 3.0 × 109 cells. In IS cows, the values were 1.6 × 1010 and 2.5 × 1010. Therefore, the presence of a well-defined inflammatory process increased the overall amount of polymorphonuclear neutrophils (PMN) and lymphocytes (LYM) of 1 log, from 1 × 109 to 1 × 1010. The assessment of the total amount of PMN and LYM, to our knowledge, have never been reported in scientific literature; the values observed may be proposed as benchmarks for studies on udder immune response. When data were analyzed by days in milk (DIM), they showed that cows in first and second lactation have a significantly lower amount of PMN + LYM, when compared to cows in third and higher lactation. However, these differences are numerically not very large (7%), and suggest that, in healthy animals, the number of immune cells is kept as constant as possible. In IS, the analysis of trends based on DIM showed that both DSCC and P + LT have a significant negative trend. These data suggest that only in this group, the presence of high SCC as lactation proceeds is associated with a progressive increase in the number of macrophages. To the best of our knowledge, this is the first study describing the pattern of DSCC and the total amount of PMN + LYM in relation to parity, days in milk, and SCC, and it may be considered as the first contribution in the investigation on mammary gland immune response by the means of differential cell counts in milk.
Collapse
Affiliation(s)
- Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Sciences-One Health Unit, University of Milan, Via Pascal 36, 20133 Milano, Italy
| | - Lucio Zanini
- Associazione Regionale Allevatori Lombardia, Via Kennedy 30, 26013 Crema, Italy; (L.Z.); (M.C.)
| | - Micaela Cipolla
- Associazione Regionale Allevatori Lombardia, Via Kennedy 30, 26013 Crema, Italy; (L.Z.); (M.C.)
| | - Bruno Stefanon
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 206, I-33100 Udine, Italy;
| |
Collapse
|
45
|
Gao Q, Wang Y, Ma N, Dai H, Roy AC, Chang G, Shi X, Shen X. Sodium valproate attenuates the iE-DAP induced inflammatory response by inhibiting the NOD1-NF-κB pathway and histone modifications in bovine mammary epithelial cells. Int Immunopharmacol 2020; 83:106392. [PMID: 32182568 DOI: 10.1016/j.intimp.2020.106392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
The anti-inflammatory effects of sodium valproate (VPA) in vivo and in vitro have been demonstrated in recent studies. The aim of this study was to evaluate whether VPA can suppress inflammation in bovine mammary epithelial cells (BMECs) stimulated by γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP). First, the concentration and treatment points of iE-DAP and VPA were optimized. Then, BMECs were cultured in complete media and separated into four groups: untreated control cells (CON group), cells stimulated by 10 μg/mL iE-DAP for 6 h (DAP group), cells stimulated by 0.5 mmol/L VPA for 6 h (VPA group), and cells pretreated with VPA (0.5 mmol/L) for 6 h followed by 10 μg/mL of iE-DAP for 6 h (VD group). The results showed that the level of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the culture medium increased in the iE-DAP-treated cells and that pretreatment with VPA reversed this increase. iE-DAP increased both mRNA and protein expression levels of nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and receptor-interacting protein kinas (RIPK2) and activated inhibitor of NF-κB (IκB) and nuclear factor-kappa B p65 (NF-κB p65) through phosphorylation. Upon activation of the NF-κB pathway, the expression of the pro-inflammatory cytokines IL-6, interleukin-8 (IL-8) and interleukin-1β (IL-1β), the acute phase protein serum amyloid A 3 (SAA3) and the lingual antimicrobial peptide (LAP) but not haptoglobi (HP) or bovine neutrophil beta defensing 5 (BNBD5) were increased in the DAP group. The VPA pretreatment induced the acetylation of signal transducers and activators of transcription(STAT1) and histone 3 (H3) by inhibiting histone deacetylase (HDAC) and then suppressed the NF-κB pathway. Moreover, VPA induced autophagy and reduced apoptosis in BMECs in the VD group. These results suggested that VPA treatment can attenuate the inflammatory response induced by iE-DAP.
Collapse
Affiliation(s)
- Qianyun Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongyu Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Animesh Chandra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
46
|
Sánchez-Visedo A, Gallego B, Royo LJ, Soldado A, Valledor M, Ferrero FJ, Campo JC, Costa-Fernández JM, Fernández-Argüelles MT. Visual detection of microRNA146a by using RNA-functionalized gold nanoparticles. Mikrochim Acta 2020; 187:192. [PMID: 32124045 DOI: 10.1007/s00604-020-4148-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/26/2020] [Indexed: 01/07/2023]
Abstract
Gold nanoparticles of different sizes have been synthesized and surface-functionalized with selected RNA probes in order to develop a rapid, low-cost and sensitive method for detection of microRNA146a (miR146a). The strategy is based on the change of colour that can be observed visually after aggregation of the RNA modified-gold nanoparticles (AuNPs) in presence of miR146a. Experimental conditions have been carefully selected in order to obtain a good sensitivity that allows to perform visual detection of microRNA at the nM level, achieving a detection limit of 5 nM. Good repeatability and selectivity versus other sequences that only differ from miR146a in 3 bases was achieved. miR146a has been described as one of the main microRNA involved in the immune response of bovine mastitis, being expressed in tissue, blood and milk samples. The method was successfully applied to the detection of miR146a in raw cow milk samples. The present scheme constitutes a rapid and low-cost alternative to perform highly sensitive detection of microRNA without the need of instrumentation and amplification steps for the early detection of bovine mastitis in the agrofood industry. Graphical abstract Schematic representation of the assay based on aggregation of RNA-modified gold nanoparticles (blue) in presence of microRNA146a generating a dark blue spot onto a solid support, versus a pink spot observed in absence of miR146a due to dispersed gold nanoparticles (red).
Collapse
Affiliation(s)
- Adrián Sánchez-Visedo
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain
| | - Borja Gallego
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain
| | - Luis José Royo
- Department of Animal Nutrition, Grassland and Forages, Regional Institute for Research and Agro-Food Development (SERIDA), Carretera Oviedo S/N, 33300, Villaviciosa (Asturias), Spain.
| | - Ana Soldado
- Department of Animal Nutrition, Grassland and Forages, Regional Institute for Research and Agro-Food Development (SERIDA), Carretera Oviedo S/N, 33300, Villaviciosa (Asturias), Spain
| | - Marta Valledor
- Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, Campus Gijón, 33204, Gijón, Spain
| | - Francisco Javier Ferrero
- Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, Campus Gijón, 33204, Gijón, Spain
| | - Juan Carlos Campo
- Department of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, Campus Gijón, 33204, Gijón, Spain
| | - José Manuel Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain
| | - María Teresa Fernández-Argüelles
- Department of Physical and Analytical Chemistry, University of Oviedo, Avenida Julian Clavería 8, 33006, Oviedo (Asturias), Spain.
| |
Collapse
|
47
|
Peralta OA, Carrasco C, Vieytes C, Tamayo MJ, Muñoz I, Sepulveda S, Tadich T, Duchens M, Melendez P, Mella A, Torres CG. Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Sci Rep 2020; 10:2843. [PMID: 32071371 PMCID: PMC7028716 DOI: 10.1038/s41598-020-59724-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Although, antibiotics are effective in the treatment of bovine mastitis, they do not address the regeneration of mammary glandular tissue and have been associated to the increment in antimicrobial resistance worldwide. Considering the necessity of alternative therapies for this disease of high economic impact and the reported regenerative and antibacterial effects of mesenchymal stem cell (MSCs), we evaluated the safety and efficacy of an allogenic MSC-based intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. In a safety trial, heifers were inoculated intramammarily with a 2.5 × 107-suspension of bovine fetal AT-MSCs on experimental days 1 and 10. Animals were evaluated clinically on a daily basis during a 20-day experimental period and blood samples were collected for hemogram determination and peripheral blood leukocytes (PBLs) isolation. In an efficacy trial, Holstein Friesian cows were inoculated with S. aureus and treated intramammarily with vehicle (NEG; days 4 and 10), antibiotics (ATB; days 4 and 5) or a suspension of 2.5 × 107 AT-MSCs (MSC; days 4 and 5). Cows were clinically evaluated daily and milk samples were collected for somatic cell count (SCC) and colony forming units (CFU). Blood samples were collected for serum haptoglobin and amyloid A determination. Intramammary administration of two doses of bovine fetal AT-MSCs in healthy cows did not induce changes in clinical or hematological variables, and gene expression profiles in PBLs associated to activation (CD4, CD8, CD25, CD62L and CD69) and proinflammatory cytokines (CCL2, CCL5, IL2, CXCL3, IFNγ, and TNFα). Quarters of MSC group of cows had similar SCC log/mL in milk compared to infected quarters of ATB or NEG cows. However, quarters of MSC cows had lower CFU log/mL in milk compared to quarters of NEG cows. Intramammarily inoculation of repeated doses of 2.5 × 107 allogenic AT-MSCs did not induce clinical or immunological response in healthy cows. Moreover, MSC-intramammary treatment reduced bacterial count in milk of cows with S. aureus clinical mastitis compared to untreated cows. This work provides initial evidence for the safety and efficacy of an allogenic MSC-based intramammary therapy for the treatment of bovine mastitis.
Collapse
Affiliation(s)
- O A Peralta
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile. .,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA.
| | - C Carrasco
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| | - C Vieytes
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| | - M J Tamayo
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| | - I Muñoz
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| | - S Sepulveda
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| | - T Tadich
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| | - M Duchens
- Department of Animal Production Science, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| | - P Melendez
- Food Animal Health & Management Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - A Mella
- Mastitis Laboratory, Department of Biochemistry and Microbiology, Faculty of Sciences, Austral University of Chile, Valdivia, 5110566, Chile
| | - C G Torres
- Department of Clinical Sciences, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, 8820808, Chile
| |
Collapse
|
48
|
Parés S, Fàbregas F, Bach À, Garcia-Fruitós E, de Prado A, Arís A. Short communication: Recombinant mammary serum amyloid A3 as a potential strategy for preventing intramammary infections in dairy cows at dryoff. J Dairy Sci 2020; 103:3615-3621. [PMID: 32057432 DOI: 10.3168/jds.2019-17276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
Mammary serum amyloid A3 (M-SAA3) has shown potential in stimulating innate immunity during intramammary infections, at calving and at dryoff. In this study, we produced recombinant caprine M-SAA3 to test its ability to reduce intramammary infections with Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli, which are all common mastitis-producing pathogens. Recombinant production of M-SAA3 (followed by lipopolysaccharide removal to avoid lipopolysaccharide-nonspecific stimulation of the immune system) was successfully achieved. Mammary serum amyloid A3 stimulated the expression of IL-8 in a dose-dependent manner in primary mammary cultures. Although a direct killing effect on Staph. aureus by M-SAA3 was not detected, this acute phase protein was able to reduce Staph. aureus, Strep. uberis, and Strep. dysgalactiae infections by up to 50% and induced a reduction in E. coli counts of 67%. In general, the best concentration of caprine M-SAA3 for inhibiting infections was the lowest concentration tested (10 μg/mL), although higher concentrations (up to 160 μg/mL) increased its antimicrobial potential against some pathogens.
Collapse
Affiliation(s)
- Sílvia Parés
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain
| | - Francesc Fàbregas
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain
| | - Àlex Bach
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain
| | - Ana de Prado
- Corporate Ruminant Department, Ceva Sante Animale, Libourne, France 33500
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries, 08140 Caldes de Montbui, Spain.
| |
Collapse
|
49
|
Miao Z, Ding Y, Zhao N, Chen X, Cheng H, Wang J, Liu Y, Wang F. Transcriptome sequencing reveals fibrotic associated-genes involved in bovine mammary fibroblasts with Staphylococcus aureus. Int J Biochem Cell Biol 2020; 121:105696. [PMID: 32001362 DOI: 10.1016/j.biocel.2020.105696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022]
Abstract
Bovine mammary fibrosis represents a considerable health problem of cows, primarily indicated by lactation failure. Staphylococcus aureus (S. aureus) can cause mammary damage, this multifactorial disease necessitates to identify how and to what extent molecular pathogen defense mechanisms prevent bacterial infections in bovine mammary gland. In this study, we have aimed to determine the transcriptional responses in bovine mammary fibroblasts (BMFBs) induced by S. aureus using bioinformatics analysis to determine whether mRNA expression profile changes between BMFBs activation and quiescence. Established primary BMFBs obtained from healthy Holstein bovine were induced 106 CFU/mL heat-inactivated S. aureus and total RNA was isolated 6 h after treatment. The 574 DEGs were involved in gene ontology (GO) that were immune response, apoptotic process, extracellular region, receptor binding, endopeptidase activity and protein kinase activity et al. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, distinct pathway contained signaling molecules common to various inflammatory and fibrotic pathways were Pathways in cancer, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway and Toll-like receptor signaling pathway. The BMFBs was treated with heat-inactivated S. aureus (106 CFU/mL) and also with pharmacological inhibitors of ERK1/2, P38 MAPK and JNK. The MMP-2 activity were examined gelatin zymography, MMP-2, TIMP-1, -2 and PLAU/PAI-1 protein expression were examined in vitro by western blot. The MMP-2 activity was significantly inhibited by simultaneous inhibition of ERK1/2, P38 MAPK and JNK, and MMP-2, TIMP-1,-2 and PLAU/PAI-1 protein expression were significantly decreased by inhibiting ERK1/2, P38 MAPK or JNK. This suggested a crosstalk between the ERK1/2, P38 MAPK or JNK signaling pathways in regulating extracellular matrix metabolism in the BMFBs with S. aureus. Our study complement our initial study on S. aureus-induced responses by fibrosis-associated genes in BMFBs. This may lead to development of novel therapeutic targets to control bovine mammary fibrosis induced by S. aureus.
Collapse
Affiliation(s)
- Zengqiang Miao
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Yulin Ding
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Nan Zhao
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Xunan Chen
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Huixin Cheng
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Jinling Wang
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Yonghong Liu
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| | - Fenglong Wang
- Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
50
|
Cui L, Wang Y, Wang H, Dong J, Li Z, Li J, Qian C, Li J. Different effects of cortisol on pro-inflammatory gene expressions in LPS-, heat-killed E.coli-, or live E.coli-stimulated bovine endometrial epithelial cells. BMC Vet Res 2020; 16:9. [PMID: 31918707 PMCID: PMC6953302 DOI: 10.1186/s12917-020-2231-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bacterial infections are common in postpartum dairy cows. Cortisol level has been observed to increase in dairy cows during peripartum period, and is associated with the endometrial innate immunity against pathogens like E.coli. However, the mechanism underlying how cortisol regulates E.coli-induced inflammatory response in bovine endometrial epithelial cells (BEEC) remains elusive. Results Cortisol decreased the expressions of IL1β, IL6, TNF-α, IL8, and TLR4 mRNA in BEEC treated with LPS or heat-killed E.coli, but up-regulated these gene expressions in BEEC stimulated by live E.coli. Conclusion Cortisol exerted the anti-inflammatory action on LPS- or heat-killed E.coli-stimulated BEEC, but the pro-inflammatory action on live E.coli-induced BEEC.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Yali Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Zixiang Li
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, 48 East Wenhui Rd, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|