1
|
Okano M, Miyamae J, Sakurai K, Yamaguchi T, Uehara R, Katakura F, Moritomo T. Subgenomic T cell receptor alpha and delta (TRA/TRD) loci in common carp. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109421. [PMID: 38325591 DOI: 10.1016/j.fsi.2024.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
In jawed vertebrates, the T cell receptor alpha (TRA) and delta (TRD) genes, which encode the TRα and TRδ chains, respectively, are located as a nested structure on a single chromosome. To date, no animal has been reported to harbor multiple TRA/TRD loci on different chromosomes. Therefore, herein, we describe the first full annotation of the TRA/TRD genomic regions of common carp, an allo-tetraploid fish species that experiences cyprinid-specific whole-genome duplication (WGD) in evolution. Fine genomic maps of TRA/TRD genomic regions 1 and 2, on LG30 and LG22, respectively, were constructed using the annotations of complete sets of TRA and TRD genes, including TRA/TRD variable (V), TRA junction (J), and constant (C), TRD diversity (D), and the J and C genes. The structure and synteny of the TRA/TRD genomic regions were highly conserved in zebrafish, indicating that these regions are on individual chromosomes. Furthermore, analysis of the variable regions of the TRA and TRD genes in a monoclonal T cell line revealed that both subgenomic regions 1 and 2 were indeed rearranged. Although carp TRAV and TRDV genes were phylogenetically divided into different lineages, they were mixed and organized into the TRA/TRD V gene clusters on the genome, similar to that in other vertebrates. Notably, 285 potential TRA/TRD V genes were detected in the TRA/TRD genomic regions, which is the most abundant number of genes in vertebrates and approximately two-fold that in zebrafish. The recombination signal sequences (RSSs) at the end of each V gene differed between TRAV and TRDV, suggesting that RSS variations might separate each V gene into a TRα or TRδ chain. This study is the first to describe subgenomic TRA/TRD loci in animals. Our findings provide fundamental insights to elucidate the impact of WGD on the evolution of immune repertoire.
Collapse
Affiliation(s)
- Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, Kanda-Surugadai 1-8-13, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari, Ehime, 794-8555, Japan
| | - Kohei Sakurai
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Takuya Yamaguchi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Ren Uehara
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
2
|
Lv M, Zhang J, Wang W, Jiang R, Su J. Re-identification and characterization of grass carp Ctenopharyngodon idella TLR20. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100119. [PMID: 37841419 PMCID: PMC10568090 DOI: 10.1016/j.fsirep.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the recognition of microbial-associated molecular patterns in the innate immune system. Fish TLRs have undergone significant gene expansion to adapt to complex aquatic environments. Among them, TLR20 from the TLR11 family actively responds to viral and bacterial invasions. Previous studies have reported two TLR20s in grass carp (Ctenopharyngodon idella), and in this study, we revised this conclusion. Based on the latest grass carp genome, we identified a new TLR20 member. These three TLR20s are arranged in tandem on chromosome 9, indicating that they are generated by gene duplication events. They were renamed CiTLR20.1 to CiTLR20.3 based on their chromosomal positions. The CiTLR20s in C. idella exhibit higher similarities with those in Danio rerio, Cyprinus carpio, and Megalobrama amblycephala, and lower similarities with those in other distantly related fish species. Selective pressure analysis revealed low conservation and negative evolution of TLR20s during evolution. The 3D structures of the three TLR20s showed significant differences, reflecting functional variations and different downstream adaptor molecule recruitment. Transcriptome data revealed tissue distribution differences of TLR20s, with TLR20.1 showing relatively low expression levels in all the tissues, while TLR20.2 and TLR20.3 showed higher expression in the head kidney, spleen, and gill. Additionally, TLR20.2 and TLR20.3 actively responded to GCRV-II infection, with higher upregulation of TLR20.2 in response to Aeromonas hydrophila challenge. In conclusion, this study corrected the number of grass carp TLR20 members and analyzed TLR20 from an evolutionary and structural perspective, exploring its role in antiviral and antibacterial defense. This study provides reference for future research on fish TLR20.
Collapse
Affiliation(s)
- Maolin Lv
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjing Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Jiang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Gao H, Li K, Ai K, Geng M, Cao Y, Wang D, Yang J, Wei X. Interleukin-12 induces IFN-γ secretion and STAT signaling implying its potential regulation of Th1 cell response in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108974. [PMID: 37482205 DOI: 10.1016/j.fsi.2023.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
As a pleiotropic cytokine consisting of IL-12p35 and IL-12p40, Interleukin-12 (IL-12) features in inflammation regulation and anti-bacterial immunity. While IL-12 homologs have been identified in non-mammalian species, the precise mechanisms by which IL-12 contributes to early adaptive immune responses in vertebrates remain incompletely understood. Herein, an evolutionary conserved Oreochromis niloticus IL-12 (defined as OnIL-12) was identified by synteny characterization, structural comparisons and phylogenetic pattern of IL-12p35b and IL-12p40a. IL-12p35b and IL-12p40a exhibited widespread expression in lymphoid-related tissues of tilapia, while their mRNA expression in head-kidney demonstrated a significant increase after Edwardsiella piscicida infection. Compared with other lymphocytes, recombinant OnIL-12 (rOnIL-12) displayed stronger affinity binding to T cells. Although stimulation of lymphocytes with the p35b or p40a subunit resulted in a significant induction of IFN-γ expression, rOnIL-12 showed stronger potential to promote IFN-γ expression than these subunits. rOnIL-12 not only elevated the mRNA expression level Th1 cell-associated transcription factor T-bet in lymphocytes, but also increased the proportion of CD4-1+IFN-γ+ lymphocytes. Moreover, the mRNA and phosphorylation levels of STAT1, STAT3, STAT4 and STAT5 were enhanced by rOnIL-12. These findings will offer previous evidence for further exploration into the regulatory mechanisms of Th1 cellular immunity in early vertebrates.
Collapse
Affiliation(s)
- Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Liu G, Zhu L, Wu Y, Wang C, Wang Y, Zheng Q, Tian M, Wang H, Chen YH. Herbal active small molecule as an immunomodulator for potential application on resistance of common carp against SVCV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108782. [PMID: 37141957 DOI: 10.1016/j.fsi.2023.108782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Herbal immunomodulators are an important part of prevention and control on viral diseases in aquaculture because of their propensity to improve immunity in fish. The present study was conducted to evaluate the immunomodulatory effect and antiviral activity of a synthesized derivative (serial number: LML1022) against spring viremia of carp virus (SVCV) infection in vitro and in vivo. The antiviral data suggested that LML1022 at 100 μM significantly inhibited the virus replication in epithelioma papulosum cyprini (EPC) cells, and may completely inhibit the infectivity of SVCV virion particles to fish cells by affecting the viral internalization. The results in the related stability of water environments also demonstrated that LML1022 had an inhibitory half-life of 2.3 d at 15 °C, which would facilitate rapid degradation of LML1022 in aquaculture application. For in vivo study, the survival rate of SVCV-infected common carp was increased 30% at least under continuous oral injection of LML1022 at 2.0 mg/kg for 7 d treatment. Additionally, pretreatment of LML1022 on fish prior to SVCV infection also obviously reduced the viral loads in vivo as well as an improved survival rate, showing that LML1022 was potential as an immunomodulator. As an immune response, LML1022 significantly upregulated the immune-related gene expression including IFN-γ2b, IFN-I, ISG15 and Mx1, indicating that its dietary administration may improve the resistance of common carp against SVCV infection.
Collapse
Affiliation(s)
- Guanglu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China; Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Normal University, Zhoukou, 466001, China; Zhoukou Key Laboratory of Small Molecule Drug Development and Application, Zhoukou, 466001, China.
| | - Lili Zhu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yi Wu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Chunjie Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yunsheng Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Qiushuo Zheng
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Mengyao Tian
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Haitong Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ya-Hong Chen
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China; Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Normal University, Zhoukou, 466001, China; Zhoukou Key Laboratory of Small Molecule Drug Development and Application, Zhoukou, 466001, China.
| |
Collapse
|
5
|
Wang X, Zhang A, Qiu X, Yang K, Zhou H. The IL-12 family cytokines in fish: Molecular structure, expression profile and function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104643. [PMID: 36632929 DOI: 10.1016/j.dci.2023.104643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-12 family cytokines including IL-12, IL-23, IL-27, IL-35 and IL-39 are heterodimeric cytokines composed of two subunits, an α-chain (entitled p35, p19 and p28) and a β-chain (namely p40 and Epstein-Barr virus-induced gene 3, EBI3). Unlike in mammals, specific whole genome duplication events in fish may generate more paralogues of these subunits as the components of IL-12 family cytokines. Although all subunit genes of IL-12 family have been isolated and identified in various fish species, some important issues on fish IL-12 family are needed to be addressed compared to the extensive study in mammals: Whether the expansion of these subunit genes results in the generation of multiple isoforms of the family cytokines; Whether the related receptor genes have similar complex repertoire corresponding to their ligands; How about the expression kinetics of these subunit paralogues particularly under the circumstance of pathogen infection and immune stimulation; How about the functional properties of IL-12 family in fish. In the past ten years, these concerns have received increasing attentions to establish the biological significance of this family cytokines in fish immunity. In this review, we summarized the current understanding of IL-12 family with a special focus on the molecular structures, inducible expression profiles and functions of IL-12 family members in fish.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Mes W, Kersten P, Maas RM, Eding EH, Jetten MSM, Siepel H, Lücker S, Gorissen M, Van Kessel MAHJ. Effects of demand-feeding and dietary protein level on nitrogen metabolism and symbiont dinitrogen gas production of common carp ( Cyprinus carpio, L.). Front Physiol 2023; 14:1111404. [PMID: 36824463 PMCID: PMC9941540 DOI: 10.3389/fphys.2023.1111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Ammonia accumulation is a major challenge in intensive aquaculture, where fish are fed protein-rich diets in large rations, resulting in increased ammonia production when amino acids are metabolized as energy source. Ammonia is primarily excreted via the gills, which have been found to harbor nitrogen-cycle bacteria that convert ammonia into dinitrogen gas (N2) and therefore present a potential in situ detoxifying mechanism. Here, we determined the impact of feeding strategies (demand-feeding and batch-feeding) with two dietary protein levels on growth, nitrogen excretion, and nitrogen metabolism in common carp (Cyprinus carpio, L.) in a 3-week feeding experiment. Demand-fed fish exhibited significantly higher growth rates, though with lower feed efficiency. When corrected for feed intake, nitrogen excretion was not impacted by feeding strategy or dietary protein, but demand-fed fish had significantly more nitrogen unaccounted for in the nitrogen balance and less retained nitrogen. N2 production of individual fish was measured in all experimental groups, and production rates were in the same order of magnitude as the amount of nitrogen unaccounted for, thus potentially explaining the missing nitrogen in the balance. N2 production by carp was also observed when groups of fish were kept in metabolic chambers. Demand feeding furthermore caused a significant increase in hepatic glutamate dehydrogenase activities, indicating elevated ammonia production. However, branchial ammonia transporter expression levels in these animals were stable or decreased. Together, our results suggest that feeding strategy impacts fish growth and nitrogen metabolism, and that conversion of ammonia to N2 by nitrogen cycle bacteria in the gills may explain the unaccounted nitrogen in the balance.
Collapse
Affiliation(s)
- Wouter Mes
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands.,Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Philippe Kersten
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Roel M Maas
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ep H Eding
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Maartje A H J Van Kessel
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
7
|
Qiu T, Wang H, Liu L, Chen J. Long-term exposure to azoxystrobin induces immunodeficiency in fish that are vulnerable to subsequent rhabdovirus infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114331. [PMID: 36435002 DOI: 10.1016/j.ecoenv.2022.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Azoxystrobin (AZ) is one of the most widely used strobilurin fungicides in the world, and its residue has seriously endangered aquatic ecological security. Our previous data showed that AZ exposure may reduce the resistance of fish to rhabdovirus infection in aquatic environment. Here, we further reported a potential long-term adverse effect of AZ exposure on the antiviral and immunosuppressive recovery in fish, and observed that mitochondrial dynamic balance was disturbed by AZ in which excessive mitochondrial fission occurred in response to decreased ATP levels. When a recovery operation was performed in AZ-exposed cells and fish, infectivity of our model virus, spring viraemia of carp virus (SVCV), was significantly decreased in vitro (using the epithelioma papulosum cyprini [EPC] fish cell line) and in vivo (using zebrafish) in a time-dependent manner. Also, the expression of eight innate antiviral immune genes (IFNs, ISG15, MX1, RIG-I, IRF3, Nrf2 and HO-1) showed a similar change to SVCV replication between the longer exposure period and the expression recovery. Additionally, AZ facilitated horizontal transmission of SVCV in a static cohabitation challenge model, predicting the increase of the potential for the viral outbreak. Therefore, our data suggest that long-term effect of AZ on irreparable impairment in fish made AZ residue potentially greater for ecological risks.
Collapse
Affiliation(s)
- Tianxiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
8
|
Abstract
Cytokines belong to the most widely studied group of intracellular molecules involved in the function of the immune system. Their secretion is induced by various infectious stimuli. Cytokine release by host cells has been extensively used as a powerful tool for studying immune reactions in the early stages of viral and bacterial infections. Recently, research attention has shifted to the investigation of cytokine responses using mRNA expression, an essential mechanism related to pathogenic and nonpathogenic-immune stimulants in fish. This review represents the current knowledge of cytokine responses to infectious diseases in the common carp (Cyprinus carpio L.). Given the paucity of literature on cytokine responses to many infections in carp, only select viral diseases, such as koi herpesvirus disease (KHVD), spring viremia of carp (SVC), and carp edema virus disease (CEVD), are discussed. Aeromonas hydrophila is one of the most studied bacterial pathogens associated with cytokine responses in common carp. Therefore, the cytokine-based immunoreactivity raised by this specific bacterial pathogen is also highlighted in this review.
Collapse
|
9
|
Palikova M, Kopp R, Kohoutek J, Blaha L, Mares J, Ondrackova P, Papezikova I, Minarova H, Pojezdal L, Adamovsky O. Cyanobacteria Microcystis aeruginosa Contributes to the Severity of Fish Diseases: A Study on Spring Viraemia of Carp. Toxins (Basel) 2021; 13:601. [PMID: 34564605 PMCID: PMC8473110 DOI: 10.3390/toxins13090601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the impact of a model viral agent, Carp sprivivirus (SVCV), on fish. In addition to the specific effects of a single stressor (SVCV or cyanobacteria), the combination of both stressors worsens markers related to the immune system and liver health. Solely combined exposure resulted in the rise in the production of immunoglobulins, changes in glucose and cholesterol levels, and an elevated marker of impaired liver, alanine aminotransferase (ALT). Analytical determination of the cyanobacterial toxin microcystin-LR (MC-LR) and its structurally similar congener MC-RR and their conjugates showed that SVCV affects neither the levels of MC in the liver nor the detoxification capacity of the liver. MC-LR and MC-RR were depurated from liver mostly in the form of cysteine conjugates (MC-LR-Cys, MC-RR-Cys) in comparison to glutathione conjugates (LR-GSH, RR-GSH). Our study brought new evidence that cyanobacteria worsen the effect of viral agents. Such inclusion of multiple stressor concept helps us to understand how and to what extent the relevant environmental stressors co-influence the health of the fish population.
Collapse
Affiliation(s)
- Miroslava Palikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Radovan Kopp
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Jiri Kohoutek
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| | - Ludek Blaha
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Petra Ondrackova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Ivana Papezikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Hana Minarova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Lubomir Pojezdal
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Ondrej Adamovsky
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| |
Collapse
|
10
|
Das S, Dharmaratnam A, Ravi C, Kumar R, Swaminathan TR. Immune gene expression in cyprinid herpesvirus-2 (CyHV-2)-sensitized peripheral blood leukocytes (PBLs) co-cultured with CyHV-2-infected goldfish fin cell line. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2021; 29:1925-1934. [PMID: 34334971 PMCID: PMC8310777 DOI: 10.1007/s10499-021-00721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Goldfish is one of the preferred ornamental fish which is highly susceptible to cyprinid herpesvirus-2 (CyHV-2) infection. The present study aimed to analyse immune gene expression in a co-culture of CyHV-2-sensitized goldfish peripheral blood leukocytes (PBLs) with CyHV-2-infected fantail goldfish fin cell lines (FtGF). Goldfish were sensitized with intraperitoneal TCID50 dose (107.8±0.26/mL) of CyHV-2. After 2 weeks, PBLs were collected and co-cultured with CyHV-2-infected FtGF cells keeping both uninfected FtGF cells and PBL control groups. After 2 days of co-culture, WST-1 assay for cell proliferation was performed at 450 nm during the 2nd, 4th and 6th days of co-culture. The results showed a significant increase (p < 0.05) in cell density in CyHV-2-infected PBL and virus-infected FtGF cells during the 4th day post co-culture which confirmed effector cell generation. Expressions of few immune genes were checked taking RNA samples of CyHV-2-induced PBLs post co-culture with infected FtGF cells along with uninfected FtGF cells as control group at different time periods (2nd, 4th and 6th days) in triplicate. The results indicated increased expression of CD8α, IFNγ, b2m, MHC I, LMP 7, IL-10, IL-12 and GATA3 except Tapasin. From the above study, we concluded that goldfish showed both Th1- and Th2-mediated immune responses to CyHV-2. The current findings support the scope for further vaccine development against CyHV-2 for goldfish.
Collapse
Affiliation(s)
- Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Arathi Dharmaratnam
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Charan Ravi
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Raj Kumar
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, P.O. Number 1603, Kochi, Kerala 682018 India
| |
Collapse
|
11
|
Jurecka P, Wiegertjes GF, Dietrich M, Forlenza M, Kamińska-Gibas T, Pilarczyk A, Savelkoul HFJ, Ciereszko A, Irnazarow I. Differences in growth of Trypanoplasma borreli in carp serum is dependent on transferrin genotype. FISH & SHELLFISH IMMUNOLOGY 2021; 114:58-64. [PMID: 33864945 DOI: 10.1016/j.fsi.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Kinetoplastid parasites require transferrin (Tf), being the main source of iron, for growth and multiplication. This group of parasites developed a unique receptor-mediated system for acquiring host Tf which bears no structural homology with the host transferrin receptor. Trypanoplasma borreli, a blood parasite of common carp, probably uses a similar mechanism to sequester iron from host transferrin. In this study, we demonstrate a critical role of Tf for parasite growth. For in vitro studies we isolated and purified Tf from carp homozygous for the D or G allele of Tf. We obtained Tf-depleted serum using specific antibodies to carp Tf and studied gene expression in vivo during T. borreli infection with Real Time-quantitative PCR. We demonstrate that T. borreli cannot survive in medium supplemented with Tf-depleted serum while reconstitution with Tf restores normal growth. The critical role of Tf for parasite survival was shown in incomplete medium (medium without serum): addition of purified Tf significantly increased parasite survival. We also demonstrate that Tf polymorphism has a significant impact on T. borreli multiplication. Cultured parasites die more quickly in an environment containing D-typed Tf, as compared to medium with G-typed Tf. Gene expression during T. borreli infection in carp did not show an acute phase response. We could, however, observe an increased transcription of Tf in the head kidney, which may be associated with an immunological function of the Tf protein.
Collapse
Affiliation(s)
- Patrycja Jurecka
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Science, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, Netherlands
| | - Mariola Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Maria Forlenza
- Cell Biology & Immunology Group, Department of Animal Science, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, Netherlands
| | - Teresa Kamińska-Gibas
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Andrzej Pilarczyk
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Huub F J Savelkoul
- Cell Biology & Immunology Group, Department of Animal Science, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, Netherlands
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland.
| |
Collapse
|
12
|
Machat R, Pojezdal L, Piackova V, Faldyna M. Carp edema virus and immune response in carp (Cyprinus carpio): Current knowledge. JOURNAL OF FISH DISEASES 2021; 44:371-378. [PMID: 33460151 DOI: 10.1111/jfd.13335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The importance of world aquaculture production grows annually together with the increasing need to feed the global human population. Common carp (Cyprinus carpio) is one of the most important freshwater fish in global aquaculture. Unfortunately, carp production is affected by numerous diseases of which viral diseases are the most serious. Koi herpesvirus disease (KHVD), spring viraemia of carp (SVC), and during the last decades also koi sleepy disease (KSD) are currently the most harmful viral diseases of common carp. This review summarizes current knowledge about carp edema virus (CEV), aetiological agent causing KSD, and about the disease itself. Furthermore, the article is focused on summarizing the available information about the antiviral immune response of common carp, like production of class I interferons (IFNs), activation of cytotoxic cells, and production of antibodies by B cells focusing on anti-CEV immunity.
Collapse
Affiliation(s)
- Radek Machat
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lubomir Pojezdal
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Veronika Piackova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - Martin Faldyna
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
13
|
Cao Q, Wang H, Fan C, Sun Y, Li J, Cheng J, Chu P, Yin S. Environmental salinity influences the branchial expression of TCR pathway related genes based on transcriptome of a catadromous fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100815. [PMID: 33610026 DOI: 10.1016/j.cbd.2021.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022]
Abstract
Environmental salinity not only affects the physiological processes such as osmoregulation and hormonal control, but also changes the immune system in fishes. Studies are limited in fish on the roles of the T cell receptor (TCR)-related genes in relation to changes in environmental salinity. A large group of salinity-challenged transcripts was obtained in gills of marbled eel (Anguilla marmorata). Moreover, bioinformatic ways were used to identify the enriched TCR pathway related genes which were significantly different expressed in fresh water (FW), brackish water (BW) and seawater (SW). Meanwhile, the RT-qPCR results were validated and consistent with the RNA-seq results. TCR a, TCR b, CD45, CD28, PI3K, LCK and LAT were up-regulated when the salinity increases in BW and SW, which connected with the related signaling pathways (Ras-MAPK and PKC pathway). CD4 and Zap70 were down-regulated when the salinity increases in BW and SW, which connected with the PLC pathway. The research offers a novel viewpoint to explore the immune pathways including the TCR pathway in fish based on transcriptome.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Hongyu Wang
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Chengxu Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475000, China
| | - Yiru Sun
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Jie Li
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Jinghao Cheng
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Peng Chu
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
14
|
Jung JW, Lee AR, Kim J, Kim YR, Lazarte JMS, Lee JS, Thompson KD, Kim H, Jung TS. Elucidating the Functional Roles of Helper and Cytotoxic T Cells in the Cell-Mediated Immune Responses of Olive Flounder ( Paralichthys olivaceus). Int J Mol Sci 2021; 22:ijms22020847. [PMID: 33467734 PMCID: PMC7829854 DOI: 10.3390/ijms22020847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
In higher vertebrates, helper and cytotoxic T cells, referred to as CD4 and CD8 T lymphocytes, respectively, are mainly associated with adaptive immunity. The adaptive immune system in teleosts involves T cells equivalent to those found in mammals. We previously generated monoclonal antibodies (mAbs) against olive flounder (Paralichthys olivaceus) CD4 T cells, CD4-1 and CD4-2, and used these to describe the olive flounder’s CD4 Tcell response during a viral infection. In the present study, we successfully produced mAbs against CD8 T lymphocytes and their specificities were confirmed using immuno-blotting, immunofluorescence staining, flow cytometry analysis andreverse transcription polymerase chain reaction (RT-PCR). The results showed that these mAbs are specific for CD8 T lymphocytes. We also investigated variations in CD4 and CD8 T cells populations, and analyzed the expression of immune-related genes expressed by these cells in fish infected with nervous necrosis virus or immunized with thymus dependent and independent antigens. We found that both CD4 and CD8 T lymphocyte populations significantly increased in these fish and Th1-related genes were up-regulated compared to the control group. Collectively, these findings suggest that the CD4 and CD8 T lymphocytes in olive flounder are similar to the helper and cytotoxic T cells found in mammals, and Th1 and cytotoxic immune responses are primarily involved in the early adaptive immune response against extracellular antigens.
Collapse
Affiliation(s)
- Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Ae Rin Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jassy Mary S. Lazarte
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jung Suk Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK;
| | - Hyeongsu Kim
- Inland Aquaculture Research, National Institute of Fisheries Science, #55, 25gil, Yeomyeong-ro, Jinhae-gu, Changwon-si 51688, Korea;
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
- Centre for Marine Bioproducts Development, Flinders University, Bedford Park 5042, Australia
- Correspondence: ; Tel.: +82-10-8545-9310; Fax: +82-55-762-6733
| |
Collapse
|
15
|
Liu L, Song DW, Liu GL, Shan LP, Qiu TX, Chen J. Hydroxycoumarin efficiently inhibits spring viraemia of carp virus infection in vitro and in vivo. Zool Res 2020; 41:395-409. [PMID: 32390373 PMCID: PMC7340527 DOI: 10.24272/j.issn.2095-8137.2020.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spring viremia of carp virus (SVCV) causes devastating losses in aquaculture. Coumarin has an advantageous structure for the design of novel antiviral agents with high affinity and specificity. In this study, we evaluated a hydroxycoumarin medicine, i.e., 7-(6-benzimidazole) coumarin (C10), regarding its anti-SVCV effects in vitro and in vivo. Results showed that up to 12.5 mg/L C10 significantly inhibited SVCV replication in the epithelioma papulosum cyprini (EPC) cell line, with a maximum inhibitory rate of >97%. Furthermore, C10 significantly reduced cell death and relieved cellular morphological damage in SVCV-infected cells. Decreased mitochondrial membrane potential (ΔΨm) also suggested that C10 not only protected mitochondria, but also reduced apoptosis in SVCV-infected cells. For in vivo studies, intraperitoneal injection of C10 resulted in an anti-SVCV effect and substantially enhanced the survival rate of virus-infected zebrafish. Furthermore, C10 significantly enhanced antioxidant enzyme activities and decreased reactive oxygen species (ROS) to maintain antioxidant-oxidant balance within the host, thereby contributing to inhibition of SVCV replication. The up-regulation of six interferon (IFN)-related genes also demonstrated that C10 indirectly activated IFNs for the clearance of SVCV in zebrafish. This was beneficial for the continuous maintenance of antiviral effects because of the low viral loads in fish. Thus, C10 is suggested as a therapeutic agent with great potential against SVCV infection in aquaculture.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Da-Wei Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Guang-Lu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
16
|
Liu GL, Liu L, Shan LP. Evaluation on the antiviral effect of a hydroxycoumarin against infectious hematopoietic necrosis virus infection in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2020; 102:389-399. [PMID: 32380168 DOI: 10.1016/j.fsi.2020.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Infectious hematopoietic necrosis (IHN) caused by the viral pathogen infectious hematopoietic necrosis virus (IHNV) is a highly contagious disease of salmonid species, resulting in significant economic impact. The previous study showed a hydroxycoumarin derivative 7-[6-(2-methylimidazole) hexyloxy] coumarin (D5) significantly inhibited spring viraemia of carp virus (SVCV) infection, suggesting that D5 may be useful as a potential anti-IHNV agent. In this study, D5 at the concentration of up to 10 mg/L significantly inhibited IHNV replication in epithelioma papulosum cyprini (EPC) cells with a maximum inhibitory rate of >90%, maintained mitochondrial membrane potential (ΔΨm) levels, and decreased IHNV-induced apoptosis in virus-infected cells. As the consequence of protection on mitochondria, D5 enhanced antioxidant enzyme activities and decreased reactive oxygen species (ROS) to maintain the antioxidant-oxidant balance of IHNV-infected EPC cells. For in vivo study, D5 via intraperitoneal injection exhibited an anti-IHNV effect in the virus-infected fish by substantially enhancing the survival rate. Meanwhile, up-regulation of six interferon (IFN) related gene expressions demonstrated that D5 may activate IFN-related expressions for inhibiting IHNV replication during the early stage of viral infection, which is beneficial for the continuous antiviral action on controlling low viral loads in rainbow trout juvenile. Thus, D5 effective regulated IHNV-induced undesirable conditions to be an excellent potential therapeutic agent against IHNV infection.
Collapse
Affiliation(s)
- Guang-Lu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, Henan, China.
| | - Lei Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Li-Peng Shan
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| |
Collapse
|
17
|
Liu L, Qiu TX, Song DW, Shan LP, Chen J. Inhibition of a novel coumarin on an aquatic rhabdovirus by targeting the early stage of viral infection demonstrates potential application in aquaculture. Antiviral Res 2019; 174:104672. [PMID: 31825851 DOI: 10.1016/j.antiviral.2019.104672] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Spring viremia of carp virus (SVCV) is one of the most serious pathogens in aquaculture, resulting in devastating damage in cyprinid. In this study, we designed and synthesized a novel coumarin derivative (C3007) for evaluating its in vitro and in vivo anti-SVCV effects. Here, we determined that up to 25 mg/L C3007 significantly decreased SVCV protein gene expression levels in EPC cells by a maximum inhibitory rate of >95%. When C3007 was preincubated with SVCV, infectivity was significantly inhibited in vitro in a time-dependent manner, with complete inhibition at 25 mg/L. For in vivo studies, C3007 exhibited an anti-SVCV effect by substantially enhancing the survival rate of virus-infected fish via intraperitoneal injection. Although the horizontal transmission of SVCV was hindered by C3007 in a static cohabitation challenge model, it was not completely blocked, showing that the viral loads in recipient fish were obviously reduced. Thus, C3007 could potentially be used as a therapeutic agent with great potential in aquatic systems and may also be suitable for applications in pond aquaculture settings against viral transmission. Additionally, the C3007-preincubated virus induced an antiviral immune response with high levels of IFN expression, suggesting that C3007 pre-treatment could be used in vaccine development.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Da-Wei Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
19
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
20
|
Dóró É, Jacobs SH, Hammond FR, Schipper H, Pieters RP, Carrington M, Wiegertjes GF, Forlenza M. Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. eLife 2019; 8:48388. [PMID: 31547905 PMCID: PMC6759355 DOI: 10.7554/elife.48388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are important disease agents of humans, livestock and cold-blooded species, including fish. The cellular morphology of trypanosomes is central to their motility, adaptation to the host’s environments and pathogenesis. However, visualizing the behaviour of trypanosomes resident in a live vertebrate host has remained unexplored. In this study, we describe an infection model of zebrafish (Danio rerio) with Trypanosoma carassii. By combining high spatio-temporal resolution microscopy with the transparency of live zebrafish, we describe in detail the swimming behaviour of trypanosomes in blood and tissues of a vertebrate host. Besides the conventional tumbling and directional swimming, T. carassii can change direction through a ‘whip-like’ motion or by swimming backward. Further, the posterior end can act as an anchoring site in vivo. To our knowledge, this is the first report of a vertebrate infection model that allows detailed imaging of trypanosome swimming behaviour in vivo in a natural host environment. Trypanosomes are one-celled parasites that cause the disease trypanosomiasis, which is also known as sleeping sickness. Trypanosomiasis is transmitted to humans and animals by a type of fly, known as tse-tse, which is commonly found in sub-Saharan Africa. A bite from the tse-tse fly transfers the trypanosome cells into the host’s bloodstream, where they spread from the blood to the internal organs and brain. This leads to a long-term illness, which can sometimes result in a coma and eventually death. Once in the blood trypanosomes move around using a structure similar to an underwater propeller called the flagellum. How the trypanosomes move and behave in the blood determines how the infection will progress. Until now it has only been possible to observe trypanosomes in plastic dishes or in blood drawn from infected patients. However, neither of these settings mimic the conditions of the bloodstream, and it is currently impossible to look inside human hosts to watch how trypanosomes move. To overcome this hurdle, Doro et al. infected zebrafish with Trypanosoma carassii, a close relative of the sub-Saharan trypanosomes that specifically infects fish. Zebrafish are transparent when young, making it possible to observe the parasite in the blood and tissues of live fish using a microscope. Doro et al. noticed that Trypanosoma carassii cells adapt to different environments in the host by using different swimming techniques. For example, in small capillaries trypanosomes were dragged along with the blood flow, whilst in larger vessels, when blood flow was slow or there were fewer red blood cells, trypanosomes actively swam against the current. The parasites were also able to change direction by using their flagella in a ‘whip-like’ motion. Lastly, it was discovered that Trypanosoma carassii could rapidly attach to blood vessel walls using one end of its cell body, even when blood flow was strong. This behaviour may help the parasites escape from the bloodstream into the surrounding tissues, making the infection more dangerous. Studying how trypanosomes infect zebrafish at this high level of detail provides new insights into how these parasites move and behave inside a host. An important question that remains to be answered, is how exactly the trypanosomes leave the bloodstream. A better understanding of the whole infection process may hint at new ways of fighting these deadly infections in future.
Collapse
Affiliation(s)
- Éva Dóró
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sem H Jacobs
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Henk Schipper
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Remco Pm Pieters
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Geert F Wiegertjes
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Department of Animal Sciences, Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Adamek M, Matras M, Dawson A, Piackova V, Gela D, Kocour M, Adamek J, Kaminski R, Rakus K, Bergmann SM, Stachnik M, Reichert M, Steinhagen D. Type I interferon responses of common carp strains with different levels of resistance to koi herpesvirus disease during infection with CyHV-3 or SVCV. FISH & SHELLFISH IMMUNOLOGY 2019; 87:809-819. [PMID: 30776543 DOI: 10.1016/j.fsi.2019.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Carp from breeding strains with different genetic background present diverse levels of resistance to viral pathogens. Carp strains of Asian origin, currently being treated as Cyprinus rubrofuscus L., especially Amur wild carp (AS), were proven to be more resistant to koi herpesvirus disease (KHVD; caused by cyprinid herpesvirus 3, CyHV-3) than strains originating from Europe and belonging to Cyprinus carpio L., like the Prerov scale carp (PS) or koi carp from a breed in the Czech Republic. We hypothesised that it can be associated with a higher magnitude of type I interferon (IFN) response as a first line of innate defence mechanisms against viral infections. To evaluate this hypothesis, four strains of common carp (AS, Rop, PS and koi) were challenged using two viral infection models: Rhabdovirus SVCV (spring viremia of carp virus) and alloherpesvirus CyHV-3. The infection with SVCV induced a low mortality rates and the most resistant was the Rop strain (no mortalities), whereas the PS strain was the most susceptible (survival rate of 78%). During CyHV-3 infection, Rop and AS strains performed better (survival rates of 78% and 53%, respectively) than PS and koi strains (survival rates of 35% and 10%, respectively). The evaluation of virus loads and virus replication showed significant differences between the carp strains, which correlated with the mortality rate. The evaluation of type I IFN responses showed that there were fundamental differences between the virus infection models. While responses to the SVCV were high, the CyHV-3 generally induced low responses. Furthermore, the results demonstrated that the magnitude of type I IFN responses did not correlate with a higher resistance in infected carp. In the case of a CyHV-3 infection, reduced type I IFN responses could be related to the potential ability of the virus to interfere with cellular sensing of foreign nucleic acids. Taken together, the results broaden our understanding of how common carp from different genetic strains interact with various viral pathogens.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany.
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Andy Dawson
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany; School of Life Sciences, Keele University, England, UK
| | - Veronika Piackova
- Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia Ceske Budejovice, Vodnany, Czech Republic
| | - David Gela
- Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Kocour
- Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia Ceske Budejovice, Vodnany, Czech Republic
| | - Jerzy Adamek
- Experimental Fish Farm in Zator, The Stanislaw Sakowicz Inland Fisheries Institute in Olsztyn, Poland
| | - Rafal Kaminski
- Experimental Fish Farm in Zabieniec, The Stanislaw Sakowicz Inland Fisheries Institute in Olsztyn, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
22
|
Ashfaq H, Soliman H, Saleh M, El-Matbouli M. CD4: a vital player in the teleost fish immune system. Vet Res 2019; 50:1. [PMID: 30616664 PMCID: PMC6323851 DOI: 10.1186/s13567-018-0620-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
CD4 is a nonpolymorphic transmembrane glycoprotein molecule that is expressed on the surface of T-helper cells and plays an essential role in the immune response. It functions as a coreceptor with the T-cell receptor by binding to major histocompatibility complex class II on the surface of dendritic cells that present antigens. CD4+ T cells hold a key position in coordinating the immune system through production of several cytokines after activation and differentiation. The CD4+ T helper subtypes (T-helper 1, T-helper 2, T-helper 17, T-helper 9, and regulatory-T cells) perform different immune functions subsequent to their differentiation from the naive T cells. Different types of CD4+ T cells require different cytokines such as drivers and effectors, as well as master transcription factors for their activation. Fish cells that express CD4-related genes are activated in the presence of a pathogen and release cytokines against the pathogen. This review highlights the types of CD4+ T cells in fish and describes their direct role in cell-mediated and humoral immunity for protection against the intracellular bacterial as well as viral infections in fish.
Collapse
Affiliation(s)
- Hassan Ashfaq
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
23
|
Christie L, van Aerle R, Paley RK, Verner-Jeffreys DW, Tidbury H, Green M, Feist SW, Cano I. The skin immune response of rainbow trout, Oncorhynchus mykiss (Walbaum), associated with puffy skin disease (PSD). FISH & SHELLFISH IMMUNOLOGY 2018; 78:355-363. [PMID: 29709592 DOI: 10.1016/j.fsi.2018.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Puffy skin disease (PSD) is an emerging skin condition which affects rainbow trout, Oncorhynchus mykiss (Walbaum). The transmission pattern of PSD suggests an infectious aetiology, however, the actual causative infectious agent(s) remain(s) unknown. In the present study, the rainbow trout epidermal immune response to PSD was characterised. Skin samples from infected fish were analysed and classified as mild, moderate or severe PSD by gross pathology and histological assessment. The level of expression of 26 immune-associated genes including cytokines, immunoglobulins and cell markers were examined by TaqMan qPCR assays. A significant up-regulation of the gene expression of C3, lysozyme, IL-1β and T-bet and down-regulation of TGFβ and TLR3 was observed in PSD fish compared to control fish. MHCI gene expression was up-regulated only in severe PSD lesions. Histological examinations of the epidermis showed a significant increase in the number of eosinophil cells and dendritic melanocytes in PSD fish. In severe lesions, mild diffuse lymphocyte infiltration was observed. IgT and CD8 positive cells were detected locally in the skin of PSD fish by in situ hybridisation (ISH), however, the gene expression of those genes was not different from control fish. Total IgM in serum of diseased animals was not different from control fish, measured by a sandwich ELISA, nor was significant up regulation of IgM gene expression in PSD lesions observed. Taken together, these results show activation of the complement pathway, up-regulation of a Th17 type response and eosinophilia during PSD. This is typical of a response to extracellular pathogens (i.e. bacteria and parasites) and allergens, commonly associated with acute dermatitis.
Collapse
Affiliation(s)
- Lyndsay Christie
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Richard K Paley
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - David W Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Hannah Tidbury
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Matthew Green
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Stephen W Feist
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Irene Cano
- Centre for Environment, Fisheries and Aquaculture Science Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
24
|
Embregts CWE, Rigaudeau D, Veselý T, Pokorová D, Lorenzen N, Petit J, Houel A, Dauber M, Schütze H, Boudinot P, Wiegertjes GF, Forlenza M. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response. Front Immunol 2017; 8:1340. [PMID: 29114248 PMCID: PMC5660689 DOI: 10.3389/fimmu.2017.01340] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Dimitri Rigaudeau
- INRA, Infectiologie Expérimentale Rongeurs Poissons, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | - Jules Petit
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Armel Houel
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Malte Dauber
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Insel Riems, Germany
| | - Heike Schütze
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Infectiology, Insel Riems, Germany
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
25
|
Bailey C, Segner H, Casanova-Nakayama A, Wahli T. Who needs the hotspot? The effect of temperature on the fish host immune response to Tetracapsuloides bryosalmonae the causative agent of proliferative kidney disease. FISH & SHELLFISH IMMUNOLOGY 2017; 63:424-437. [PMID: 28238860 DOI: 10.1016/j.fsi.2017.02.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Proliferative kidney disease (PKD) of salmonids, caused by Tetracapsuloides bryosalmonae may lead to high mortalities at elevated water temperatures. However, it has not yet been investigated how temperature affects the fish host immune response to T. bryosalmonae. We exposed YOY (young of the year) rainbow trout (Oncorhynchus mykiss) to T. bryosalmonae at two temperatures (12 °C and 15 °C) that reflect a realistic environmental scenario and could occur in the natural habitat of salmonids. We followed the development of the parasite, host pathology and immune response over seven weeks. We evaluated the composition and kinetics of the leukocytes and their major subgroups in the anterior and posterior kidney. We measured immune gene expression profiles associated with cell lineages and functional pathways in the anterior and posterior kidney. At 12 °C, both infection prevalence and pathogen load were markedly lower. While the immune response was characterized by subtle changes, mainly an increased amount of lymphocytes present in the kidney, elevated expression of Th1-like signature cytokines and strong upregulation of the natural killer cell enhancement factor, NKEF at week 6 P.E. At 15 °C the infection prevalence and pathogen burden were ominously greater. While the immune response as the disease progressed was associated with a Th2-like switch at week 6 P.E and a prominent B cell response, evidenced at the tissue, cell and transcript level. Our results highlight how a subtle, environmentally relevant difference in temperature resulted in diverse outcomes in terms of the immune response strategy, altering the type of interaction between a host and a parasite.
Collapse
Affiliation(s)
- Christyn Bailey
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland
| | - Helmut Segner
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland
| | - Ayako Casanova-Nakayama
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland
| | - Thomas Wahli
- University of Berne, Vetsuisse Faculty, Centre for Fish and Wildlife Health, Länggassstrasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
26
|
Neave MJ, Sunarto A, McColl KA. Transcriptomic analysis of common carp anterior kidney during Cyprinid herpesvirus 3 infection: Immunoglobulin repertoire and homologue functional divergence. Sci Rep 2017; 7:41531. [PMID: 28148967 PMCID: PMC5288646 DOI: 10.1038/srep41531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) infects koi and common carp and causes widespread mortalities. While the virus is a significant concern for aquaculture operations in many countries, in Australia the virus may be a useful biocontrol agent for pest carp. However, carp immune responses to CyHV-3, and the molecular mechanisms underpinning resistance, are not well understood. Here we used RNA-Seq on carp during different phases of CyHV-3 infection to detect the gene expression dynamics of both host and virus simultaneously. During acute CyHV-3 infection, the carp host modified the expression of genes involved in various immune systems and detoxification pathways. Moreover, the activated pathways were skewed toward humoral immune responses, which may have been influenced by the virus itself. Many immune-related genes were duplicated in the carp genome, and often these were expressed differently across the infection phases. Of particular interest were two interleukin-10 homologues that were not expressed synchronously, suggesting neo- or sub-functionalization. The carp immunoglobulin repertoire significantly diversified during active CyHV-3 infection, which was followed by the selection of high-affinity B-cells. This is indicative of a developing adaptive immune response, and is the first attempt to use RNA-Seq to understand this process in fish during a viral infection.
Collapse
Affiliation(s)
- Matthew J. Neave
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Agus Sunarto
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
- AMAFRAD Centre for Fisheries Research and Development, Fish Health Research Laboratory, Jakarta 12540, Indonesia
| | - Kenneth A. McColl
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| |
Collapse
|
27
|
Szwejser E, Verburg-van Kemenade BML, Maciuszek M, Chadzinska M. Estrogen-dependent seasonal adaptations in the immune response of fish. Horm Behav 2017; 88:15-24. [PMID: 27760301 DOI: 10.1016/j.yhbeh.2016.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Clinical and experimental evidence shows that estrogens affect immunity in mammals. Less is known about this interaction in the evolutionary older, non-mammalian, vertebrates. Fish form an excellent model to identify evolutionary conserved neuroendocrine-immune interactions: i) they are the earliest vertebrates with fully developed innate and adaptive immunity, ii) immune and endocrine parameters vary with season, and iii) physiology is constantly disrupted by increasing contamination of the aquatic environment. Neuro-immuno-endocrine interactions enable adaption to changing internal and external environment and are based on shared signaling molecules and receptors. The presence of specific estrogen receptors on/in fish leukocytes, implies direct estrogen-mediated immunoregulation. Fish leukocytes most probably are also capable to produce estrogens as they express the cyp19a and cyp19b - genes, encoding aromatase cytochrome P450, the enzyme critical for conversion of C19 steroids to estrogens. Immunoregulatory actions of estrogens, vary among animal species, and also with dose, target cell type, or physiological condition (e.g., infected/non-infected, reproductive status). They moreover are multifaceted. Interestingly, season-dependent changes in immune status correlate with changes in the levels of circulating sex hormones. Whereas E2 circulating in the bloodstream is perhaps the most likely candidate to be the physiological mediator of systemic immune-reproductive trade-offs, leukocyte-derived hormones are hypothesized to be mainly involved in local tuning of the immune response. Contamination of the aquatic environment with estrogenic EDCs may violate the delicate and precise allostatic interactions between the endogenous estrogen system and the immune system. This has negative effects on fish health, but will also affect the physiology of its consumers.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
28
|
Piazzon MC, Wentzel AS, Wiegertjes GF, Forlenza M. Carp Il10a and Il10b exert identical biological activities in vitro, but are differentially regulated in vivo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:350-360. [PMID: 27586813 DOI: 10.1016/j.dci.2016.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/28/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
We recently reported on the functional characterization of carp Il10. We showed that carp Il10 is able to downregulate proinflammatory activities by carp phagocytes and promote B cell proliferation, differentiation and antibody production as well as proliferation of memory T cells. Taking advantage of the recent annotation of the carp genome, we completed the sequence of a second il10 paralogue, named il10b, the presence of which was expected owing to the recent (8 million years ago) fourth round of whole genome duplication that occurred in common carp. In the present study we closely compared the two Il10 paralogues and show that Il10a and Il10b have almost identical gene structure, synteny, protein sequence as well as bioactivity on phagocytes. Although the two il10 paralogues show a large overlap in tissue expression, il10b has a low constitutive expression and is highly upregulated upon infection, whereas il10a is higher expressed under basal conditions but its gene expression remains constant during viral and parasitic infections. This differential regulation is most likely due to the observed differences in their promoter regions. Altogether our results demonstrate that gene duplication in carp, although recent, led to sub-functionalization and expression divergence rather than functional redundancy of the Il10 paralogues, yet with very similar protein sequences.
Collapse
Affiliation(s)
- M Carla Piazzon
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands
| | - Annelieke S Wentzel
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Szwejser E, Maciuszek M, Casanova-Nakayama A, Segner H, Verburg-van Kemenade BML, Chadzinska M. A role for multiple estrogen receptors in immune regulation of common carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:61-72. [PMID: 27062969 DOI: 10.1016/j.dci.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 05/02/2023]
Abstract
Estrogens are important for bi-directional neuroendocrine-immune interaction. They act via nuclear estrogen receptors (ERα and ERβ) and/or G-protein coupled receptor - GPR30. We found expression of ERα, ERβ and GPR30 in carp lymphoid tissues and head kidney monocytes/macrophages, neutrophils and lymphocytes. Interestingly, ERβ is also expressed in some head kidney lymphocytes but not in naive PBLs. Immune stimulation altered the cell type specific profile of expression of these receptors, which depends on both activation and maturation stage. This implies direct leukocyte responsiveness to estrogen stimulation and therefore in vitro effects of 17β-estradiol (E2) on reactive oxygen species (ROS) production in monocytes/macrophages were determined. Short-time incubation with E2 increased ROS production in PMA-stimulated cells. Results comply with mediation by GPR30, partially functioning via phosphoinositide 3-kinase activation. These results furthermore demonstrate that neuroendocrine-immune communication via estrogen receptors is evolutionary conserved.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Ayako Casanova-Nakayama
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
30
|
Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland LT, Calduch-Giner JA, Fuentes J, Karalazos V, Ortiz Á, Øverland M, Sitjà-Bobadilla A, Pérez-Sánchez J. Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLoS One 2016; 11:e0166564. [PMID: 27898676 PMCID: PMC5127657 DOI: 10.1371/journal.pone.0166564] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023] Open
Abstract
There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations.
Collapse
Affiliation(s)
- Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Gabriel Ballester-Lozano
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Laura Benedito-Palos
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Fabian Grammes
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Liv-Torunn Mydland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology. CCMar, University of Algarve, Faro, Portugal
| | | | | | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
- * E-mail:
| |
Collapse
|
31
|
Tafalla C, Leal E, Yamaguchi T, Fischer U. T cell immunity in the teleost digestive tract. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:167-177. [PMID: 26905634 DOI: 10.1016/j.dci.2016.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Fish (along with cyclostomes) constitute the most ancient animal group in which an acquired immune system is present. As in higher vertebrates, both B and T lymphocytes cooperate in implementing an adequate response. Although there is still a debate on whether fish possess a true gut associated lymphoid tissue (GALT), the presence of diffuse B and T lymphocytes throughout all mucosal surfaces has been demonstrated in a wide variety of fish species. The lack of antibodies against T lymphocyte markers has hampered the performance of functional assays in both systemic and mucosal compartments. However, most components associated with T lymphocyte function have been identified in fish through extensive genomic research, suggesting similar functionalities for fish and mammalian T lymphocytes. Thus, the aim of this review is to briefly summarize what is known in teleost concerning the characteristics and functionalities of the different T cell subsets, to then focus on what is known to date regarding their presence and role in the gastrointestinal tract, through either direct functional assays or indirectly by conclusions drawn from transcriptomic analysis.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| | - Esther Leal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Takuya Yamaguchi
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
32
|
Buonocore F, Bernini C, Coscia MR, Giacomelli S, de Pascale D, Randelli E, Stocchi V, Scapigliati G. Immune response of the Antarctic teleost Trematomus bernacchii to immunization with Psychrobacter sp. (TAD1). FISH & SHELLFISH IMMUNOLOGY 2016; 56:192-198. [PMID: 27417227 DOI: 10.1016/j.fsi.2016.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Adult Trematomus bernacchii have been immunized intraperitoneally with heat-killed cells of the Antarctic marine bacterium Psychrobacter sp. (TAD1) up to 60 days. After immunizations and sampling at various times, fish sera were tested for specific IgM by ELISA, and different tissues (head kidney and spleen) were investigated for transcription of master genes of the acquired immune response (IgM, IgT, TRβ, TRγ). Results from ELISA assays showed a time-dependent induction of specific serum anti-TAD1 IgM, and western blot analysis of TAD1 lysates probed with fish sera revealed enhanced immunoreactivity in immunized animals compared to controls. Quantitative PCR analysis of transcripts coding for IgM, IgT, TRβ, TRγ was performed in T. bernacchii tissues to assess basal expression, and then on cDNAs of cells from head kidney and spleen of fish injected for 8, 24, and 72 h with inactivated TAD1. The results showed a differential basal expression of transcripts in the examined tissues, and a time-dependent strong up-regulation of IgT, TRβ, TRγ genes upon in vivo stimulation with TAD1. These results represent a first in vivo study on the mounting of a specific immune response in an Antarctic teleost species.
Collapse
Affiliation(s)
- Francesco Buonocore
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Chiara Bernini
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Maria Rosaria Coscia
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Stefano Giacomelli
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Donatella de Pascale
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Elisa Randelli
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Valentina Stocchi
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Giuseppe Scapigliati
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy.
| |
Collapse
|
33
|
Wei X, Li XZ, Zheng X, Jia P, Wang J, Yang X, Yu L, Shi X, Tong G, Liu H. Toll-like receptors and interferon associated immune factors responses to spring viraemia of carp virus infection in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2016; 55:568-576. [PMID: 27263115 DOI: 10.1016/j.fsi.2016.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Pattern recognition receptor (PRR) toll-like receptors (TLRs), antiviral agent interferon (IFN) and the effector IFN stimulated genes (ISGs) play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for spring viraemia of carp virus (Rhabdovirus carpio, SVCV), which belong to Rhabdoviridae family. The present in-vivo experiment was conducted to investigate the expression of these innate immune factors in early phase as well as during recovery of SVCV infection by real-time quantitative reverse transcriptase polymerase chain reaction. A less lethal SVCV infection was generated in common carp (Cyprinus carpio) and was sampled at 3, 6, 12 h post infection (hpi), 1, 3, 5, 7 and 10 days post infection (dpi). At 3 hpi, the SVCV N gene was detected in all three fish and all three fish showed a relative fold increase of TLR2, TLR3 and TLR7, IFNa1, ISG15 and Vig1. Viral copies rapidly increased at 12 hpi then remained high until 5 dpi. When viral copy numbers were high, a higher expression of immune genes TLR2, TLR3, TLR7, IFNa1, IFNa2, IFNa1S, IFN regulatory factor 3 (IRF3), IRF7, interleukin 1β (IL1β), IL6, IL10, ADAR, ISG15, Mx1, PKR and Vig1 were observed. Viral copies were gradually reduced in 5 to 10 dpi fish, and also the immune response was considerably reduced but remained elevated. A high degree of correlation was observed between immune genes and viral copy number in each of the sampled fish at 12 hpi. The quick and prolonged elevated expression of the immune genes indicates their crucial role in survival of host against SVCV.
Collapse
Affiliation(s)
- Xinxian Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Guangxi Academy of Fishery Science, Nanning 530021, China
| | - Xiao Zheng Li
- Guangxi Academy of Fishery Science, Nanning 530021, China
| | - Xiaocong Zheng
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China
| | - Peng Jia
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China
| | - Jinjin Wang
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China
| | - Xianle Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Li Yu
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China
| | - Xiujie Shi
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China
| | - Guixiang Tong
- Guangxi Academy of Fishery Science, Nanning 530021, China.
| | - Hong Liu
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen 518045, China.
| |
Collapse
|
34
|
Piazzon MC, Savelkoul HSJ, Pietretti D, Wiegertjes GF, Forlenza M. Carp Il10 Has Anti-Inflammatory Activities on Phagocytes, Promotes Proliferation of Memory T Cells, and Regulates B Cell Differentiation and Antibody Secretion. THE JOURNAL OF IMMUNOLOGY 2016; 194:187-99. [PMID: 25416810 DOI: 10.4049/jimmunol.1402093] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the current study, we investigated the effects of carp Il10 on phagocytes and lymphocytes. Carp Il10 shares several prototypical inhibitory activities on phagocytes with mammalian IL-10, including deactivation of neutrophils and macrophages, as shown by inhibition of oxygen and nitrogen radical production, as well as reduced expression of proinflammatory genes and mhc genes involved in Ag presentation. Similar to mammalian IL-10, carp Il10 acts through a signaling pathway involving phosphorylation of Stat3, ultimately leading to the early upregulation of socs3 expression. To our knowledge, this is the first study of the effects of Il10 on lymphocytes in fish. Although Il10 did not affect survival and proliferation of T cells from naive animals, it greatly promoted survival and proliferation of T cells in cultures from immunized animals, but only when used in combination with the immunizing Ag. Preliminary gene expression analysis suggests that, under these circumstances, carp Il10 stimulates a subset of CD8+ memory T cells while downregulating CD4+ memory Th1 and Th2 responses. In addition to the regulatory effect on T cells, carp Il10 stimulates proliferation, differentiation, and Ab secretion by IgM+ B cells. Overall, carp Il10 shares several prototypical activities with mammalian IL-10, including downregulation of the inflammatory response of phagocytes, stimulation of proliferation of subsets of memory T lymphocytes, and proliferation, differentiation, and Ab secretion by IgM+ B lymphocytes. To our knowledge, this is the first comprehensive analysis of biological activities of fish Il10 on both phagocytes and lymphocytes showing functional conservation of several properties of Il10.
Collapse
Affiliation(s)
- M Carla Piazzon
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands
| | - Huub S J Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands
| | - Danilo Pietretti
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands
| |
Collapse
|
35
|
Piazzon MC, Wentzel AS, Tijhaar EJ, Rakus KŁ, Vanderplasschen A, Wiegertjes GF, Forlenza M. Cyprinid Herpesvirus 3 Il10 Inhibits Inflammatory Activities of Carp Macrophages and Promotes Proliferation of Igm+ B Cells and Memory T Cells in a Manner Similar to Carp Il10. THE JOURNAL OF IMMUNOLOGY 2015; 195:3694-704. [PMID: 26371255 DOI: 10.4049/jimmunol.1500926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the causative agent of a lethal disease of carp and encodes for an Il10 homolog (ORF134). Our previous studies with a recombinant ORF134-deleted strain and the derived revertant strain suggested that cyprinid herpesvirus 3 Il10 (CyHV-3 Il10 [cyhv3Il10]) is not essential for viral replication in vitro, or virulence in vivo. In apparent contrast, cyhv3Il10 is one of the most abundant proteins of the CyHV-3 secretome and is structurally very similar to carp Il10 and also human IL10. To date, studies addressing the biological activity of cyhv3Il10 on cells of its natural host have not been performed. To address the apparent contradiction between the presence of a structurally conserved Il10 homolog in the genome of CyHV-3 and the lack of a clear phenotype in vivo using recombinant cyhv3Il10-deleted viruses, we used an in vitro approach to investigate in detail whether cyhv3Il10 exerts any biological activity on carp cells. In this study, we provide direct evidence that cyhv3Il10 is biologically active and, similarly to carp Il10, signals via a conserved Stat3 pathway modulating immune cells of its natural host, carp. In vitro, cyhv3Il10 deactivates phagocytes with a prominent effect on macrophages, while also promoting proliferation of Igm(+) B cells and memory T cells. Collectively, this study demonstrates a clear biological activity of cyhv3Il10 on cells of its natural host and indicates that cyhv3Il10 is a true viral ortholog of carp Il10. Furthermore, to our knowledge, this is the first report on biological activities of a nonmammalian viral Il10 homolog.
Collapse
Affiliation(s)
- M Carla Piazzon
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Annelieke S Wentzel
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Edwin J Tijhaar
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Krzysztof Ł Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| |
Collapse
|
36
|
Fink IR, Ribeiro CMS, Forlenza M, Taverne-Thiele A, Rombout JHWM, Savelkoul HFJ, Wiegertjes GF. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:146-154. [PMID: 25681740 DOI: 10.1016/j.dci.2015.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 06/04/2023]
Abstract
Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed.
Collapse
Affiliation(s)
- Inge R Fink
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Carla M S Ribeiro
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Anja Taverne-Thiele
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Jan H W M Rombout
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
37
|
Jiang Y, Husain M, Qi Z, Bird S, Wang T. Identification and expression analysis of two interleukin-23α (p19) isoforms, in rainbow trout Oncorhynchus mykiss and Atlantic salmon Salmo salar. Mol Immunol 2015; 66:216-28. [PMID: 25841173 DOI: 10.1016/j.molimm.2015.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 β-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1β in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.
Collapse
Affiliation(s)
- Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mansourah Husain
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal pool in Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Steve Bird
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Molecular Genetics, School of Science, University of Waikato, Hamilton, New Zealand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
38
|
Wang T, Husain M. The expanding repertoire of the IL-12 cytokine family in teleost fish: Identification of three paralogues each of the p35 and p40 genes in salmonids, and comparative analysis of their expression and modulation in Atlantic salmon Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:194-207. [PMID: 24759618 DOI: 10.1016/j.dci.2014.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Interleukin (IL)-12 family cytokines are heterodimers of an α-chain (p19, p28 and p35) and a β-chain (p40 and Ebi3), present as IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/Ebi3) and IL-35 (p35/Ebi3), and play key roles in immune responses in mammals. One p35 and up to three p40 genes have been cloned in some fish species. The identification of three active p35 genes, along with three p40 paralogues in salmonids in the current study further expands the repertoire of IL-12, IL-23 and IL-35 molecules in these species. The multiple p35 genes in teleost fish appear to have arisen via whole genome duplications. The different paralogues of the subunits are divergent, and differentially expressed and modulated by PAMPs and proinflammatory cytokines, hinting that distinct isoforms could be produced in response to infection. Therefore, the expanded IL-12 cytokine family may provide an unprecedented level of regulation to fine tune the immune response in fish.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Mansourah Husain
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
39
|
Zhang L, Zhang BC, Hu YH. Rock bream (Oplegnathus fasciatus) IL-12p40: identification, expression, and effect on bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2014; 39:312-320. [PMID: 24875010 DOI: 10.1016/j.fsi.2014.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
IL-12p40, also called IL-12β, is a subunit of the proinflammatory cytokines interleukin (IL)-12 and IL-23. In teleost, IL-12p40 homologues have been identified in several species, however, the biological function of fish IL-12p40 is essentially unknown. In this work, we reported the identification and analysis of an IL-12p40, OfIL-12p40, from rock bream (Oplegnathus fasciatus). OfIL-12p40 is composed of 361 amino acids and possesses a conserved IL-12p40 domain and a WSxWS signature motif characteristic of known IL-12p40. Constitutive expression of OfIL-12p40 occurred in multiple tissues and was highest in kidney. Experimental infection with bacterial pathogen upregulated the expression of OfIL-12p40 in kidney and spleen in a time-dependent manner. Purified recombinant OfIL-12p40 (rOfIL-12p40) stimulated the respiratory burst activity of peripheral blood leukocytes in a dose-dependent manner. rOfIL-12p40 also enhanced the resistance of rock bream against bacterial infection and upregulated the expression of innate immune genes in kidney. Taken together, these results indicate that OfIL-12p40 possesses cytokine-like property and plays a role in immune defense against bacterial infection.
Collapse
Affiliation(s)
- Lu Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Cun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Hua Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
40
|
Somamoto T, Koppang EO, Fischer U. Antiviral functions of CD8(+) cytotoxic T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:197-204. [PMID: 23938605 DOI: 10.1016/j.dci.2013.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Cytotoxic T-cells (CTLs) play a pivotal role in eliminating viruses in mammalian adaptive immune system. Many recent studies on T-cell immunity of fish have suggested that teleost CTLs are also important for antiviral immunity. Cellular functional studies using clonal ginbuan crucian carp and rainbow trout have provided in vivo and in vitro evidence that in many respects, virus-specific CTLs of fish have functions similar to those of mammalian CTLs. In addition, mRNA expression profiles of CTL-related molecules, such as CD8, TCR and MHC class I, have shown that in a wide range of fish species, CTLs are involved in antiviral adaptive immunity. These findings are a basis to formulate possible vaccination strategies to trigger effective antiviral CTL responses in teleost fish. This review describes recent advances in our understanding of antiviral CTL functions in teleost fish and discusses vaccination strategies for efficiently inducing CTL activities.
Collapse
Affiliation(s)
- Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Erling Olaf Koppang
- Section of Anatomy and Pathology, Institute of Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Ullevålsveien 72, 0033 Oslo, Norway
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
41
|
Pérez-Cordón G, Estensoro I, Benedito-Palos L, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Interleukin gene expression is strongly modulated at the local level in a fish-parasite model. FISH & SHELLFISH IMMUNOLOGY 2014; 37:201-208. [PMID: 24530812 DOI: 10.1016/j.fsi.2014.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
The goal of this work was to identify interleukin (IL)-related genes in the gilthead sea bream (GSB) (Sparus aurata L.) and how they are modulated by the parasite Enteromyxum leei, a myxozoan that causes severe enteritis with a strong inflammatory response. A Blast-X search of our transcriptomic GSB database (www.nutrigroup-iats.org/seabreamdb) identified 16 new sequences encompassing seven ILs (IL-7, IL-8, IL-10, IL-12β, IL-15, IL-18, and IL-34), the interleukin enhancer-binding factor 2 (ILF2), and eight IL receptors (IL-R); IL-R1, IL-6RA, IL-6RB, IL-8RA, IL-10RA, IL-10RB, IL-18R1, and IL-22R. Except for ILF2, their expression, plus that of IL-1β, IL-1R2, IL-6, and TNF-α (from public repositories), were analysed by 96-well PCR array of samples of blood, spleen, head kidney, and intestine of GSB that were anally intubated with E. leei (recipient group, RCPT). Only the expression profile of the intestine of RCPT fish showed significant difference as compared to samples from PBS-inoculated fish. At 17 days post intubation (dpi), the expression of key pro-inflammatory ILs, such as IL-8, IL-8R, IL-12β, and TNFα was significantly up-regulated, whereas at 64 dpi, anti-inflammatory IL expression (IL-6, IL-6RB, IL-7, IL-10, IL-10RA, and IL-15) was predominant. These results indicate a modification of the IL expression at late times post infection, probably to protect the fish intestine from the parasite and damage inflicted by an excessive inflammatory response. Furthermore, the response is mainly mediated at the local level as no significant changes were detected in blood, spleen and head kidney.
Collapse
Affiliation(s)
- Gregorio Pérez-Cordón
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Laura Benedito-Palos
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
42
|
Pietretti D, Scheer M, Fink IR, Taverne N, Savelkoul HFJ, Spaink HP, Forlenza M, Wiegertjes GF. Identification and functional characterization of nonmammalian Toll-like receptor 20. Immunogenetics 2013; 66:123-41. [DOI: 10.1007/s00251-013-0751-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/26/2013] [Indexed: 01/04/2023]
|
43
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
44
|
Wang L, Shang N, Feng H, Guo Q, Dai H. Molecular cloning of grass carp (Ctenopharyngodon idellus) T-bet and GATA-3, and their expression profiles with IFN-γ in response to grass carp reovirus (GCRV) infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:793-805. [PMID: 23108805 DOI: 10.1007/s10695-012-9741-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/17/2012] [Indexed: 06/01/2023]
Abstract
Both T-bet and GATA-3, Th1/Th2 lineage-specific transcription factors, play important roles in the development of T cells and Th1/Th2 differentiation. In this study, T-bet and GATA-3 genes were cloned from grass carp (Ctenopharyngodon idellus). The putative primary structure of the polypeptide deduced from the cDNA sequence of grass carp T-bet contained 608 aa, which possessed a T-box DNA binding domain. The putative primary structure of the polypeptide deduced from the cDNA sequence of grass carp GATA-3 contained 396 aa, which possessed two consensus zinc finger domains (C-X(2)-C-X(17)-C-X(2)-C). The YxKxHxxxRP motif, KRRLSA and LMEKs/n sequences were also conserved in this GATA-3. Phylogenetic analysis indicated that grass carp T-bet and GATA-3 group with their known counterparts with zebrafish T-bet and GATA-3 as the closest neighbor, respectively. RT-qPCR results showed that grass carp T-bet gene was highly expressed in head kidney, followed by spleen, and low expressed in gill, liver, kidney, and intestine, while GATA-3 gene was highly expressed in intestine, followed by spleen, and low expressed in gill, liver, kidney, and head kidney. Grass carp is one of the "four important domestic fish" in China and often infected by grass carp reovirus (GCRV). As yet, there is no evidence that T-bet and GATA-3 (Th1/Th2 subsets) are involved in anti-virus immune of teleost fish. In this study, by RT-qPCR, we analyzed the expression dynamics of grass carp T-bet and GATA-3 genes with IFN-γ gene in response to GCRV infection for the first time. The expression dynamics showed that three genes might be crucially modulated by in vivo GCRV infection: (1) GCRV mainly induced a T-bet expression profile comparing to the GATA-3 expression, while the higher expression profiles of IFN-γ correlated with the up-regulation of T-bet; (2) T-bet/IFN-γ and GATA-3 expression changes suggest that in GCRV-infected grass carp, the common immune state of head kidney further heightens, whereas the common physiological state of intestine transforms to an anti-virus immune state. From this finding, we realize that GCRV mainly induces a Th1 response, and Th1 cell-mediated recognition mechanisms play very important roles in anti-virus cellular immune of grass carp.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
45
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
46
|
Kono T, Takayama H, Nagamine R, Korenaga H, Sakai M. Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines. Vet Immunol Immunopathol 2012; 151:90-101. [PMID: 23237907 DOI: 10.1016/j.vetimm.2012.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
To monitor the expression of cytokine genes in Japanese pufferfish, a novel platform for quantitative multiplexed analysis was developed. This custom-designed multiplex RT-PCR assay was used to analyze the expression profiles of 19 cytokine genes, including pro-inflammatory (IL-1β, IL-6, IL-17A/F3, IL-18, TNF-α, TNF-N), anti-inflammatory (IL-4/13A, IL-4/13B, IL-10), T-cell proliferation/differentiation (IL-2, IL-15, IL-21, TGF-β1), B-cell activation/differentiation (IL-7, IL-6, IL-4/13A, IL-4/13B), NK cell stimulation (IL-12p35 and IL-12p40), induction of anti-viral activity (I-IFN-1 and IFN-γ), and monocyte/macrophage progenitor cell proliferation (M-CSF1b) cytokines in head kidney cells under immune stimulatory conditions. The expression profiles were dissimilar in the unstimulated control and immune-stimulated cells. Moreover, increased expression profile was observed due to different stimulations for IL-1β, IL-6, IL-10, IL-12p35, IL-12p40, IL-21, TNF-α, TNF-N, I-IFN-1 and IFN-γ genes. These results suggest that cytokine genes could be used as biomarkers to know the immune status of fish. The constructed multiplex RT-PCR assay will enhance understanding on immune regulation by cytokines in fish.
Collapse
Affiliation(s)
- Tomoya Kono
- Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki 889-2192, Japan.
| | | | | | | | | |
Collapse
|
47
|
Adamek M, Syakuri H, Harris S, Rakus KŁ, Brogden G, Matras M, Irnazarow I, Steinhagen D. Cyprinid herpesvirus 3 infection disrupts the skin barrier of common carp (Cyprinus carpio L.). Vet Microbiol 2012. [PMID: 23182910 DOI: 10.1016/j.vetmic.2012.10.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cyprinid herpesvirus-3 (CyHV-3) is recognised as a pathogen which causes mass mortality in populations of carp, Cyprinus carpio. One of the characteristic symptoms of the disease associated with CyHV-3 infection is the occurrence of skin lesions, sloughing off the epithelium and a lack of mucus. Furthermore, fish then seem to be more susceptible to secondary infections by bacterial, parasitic or fungal pathogens which may cause further mortality within the population. The observed pathological alterations lead to the assumption that the carp skin barrier is strongly challenged during CyHV-3 associated disease. Therefore we examined mRNA expression of genes encoding inflammatory mediators, type I interferons, and the following skin defence molecules: antimicrobial peptides, claudins, and mucin. In addition, we monitored changes in the bacterial flora of the skin during disease conditions. Our results show that CyHV-3 associated disease in the skin of common carp leads to a reduction in mRNA expression of genes encoding several important components of the mucosal barrier, in particular mucin 5B, beta defensin 1 and 2, and the tight junction proteins claudin 23 and 30. This caused changes in the bacterial flora and the development of secondary bacterial infection among some individual fish. To our knowledge this is the first report showing that under disease conditions associated with virus infection, the mucosal barrier of fish skin is disrupted resulting in a higher susceptibility to secondary infections. The reported clinical signs of CyHV-3 skin infection can now be explained by our results at the molecular level, although the mechanism of a probable virus induced immunomodulation has to be investigated further.
Collapse
Affiliation(s)
- Mikołaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany.
| | - Hamdan Syakuri
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany; Department of Fisheries and Marine Science, Faculty of Science and Technology, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Sarah Harris
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany; School of Life Sciences, Keele University, Keele, Staffs, ST5 5BG, UK; Tetra GmbH, Herrenteich 78, 49324 Melle, Germany
| | - Krzysztof Ł Rakus
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland
| | - Graham Brogden
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
48
|
Adamek M, Rakus KŁ, Chyb J, Brogden G, Huebner A, Irnazarow I, Steinhagen D. Interferon type I responses to virus infections in carp cells: In vitro studies on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. FISH & SHELLFISH IMMUNOLOGY 2012; 33:482-493. [PMID: 22683518 DOI: 10.1016/j.fsi.2012.05.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/06/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Interferons (IFNs) are secreted mediators that play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for two highly contagious viruses: spring viraemia of carp virus (Rhabdovirus carpio, SVCV) and the Cyprinid herpesvirus 3 (CyHV-3), which belong to Rhabdoviridae and Alloherpesviridae families, respectively. Both viruses are responsible for significant losses in carp aquaculture. In this paper we studied the mRNA expression profiles of genes encoding for proteins promoting various functions during the interferon pathway, from pattern recognition receptors to antiviral genes, during in vitro viral infection. Furthermore, we investigated the impact of the interferon pathway (stimulated with poly I:C) on CyHV-3 replication and the speed of virus spreading in cell culture. The results showed that two carp viruses, CyHV-3 and SVCV induced fundamentally different type I IFN responses in CCB cells. SVCV induced a high response in all studied genes, whereas CyHV-3 seems to induce no response in CCB cells, but it induces a response in head kidney leukocytes. The lack of an IFN type I response to CyHV-3 could be an indicator of anti-IFN actions of the virus, however the nature of this mechanism has to be evaluated in future studies. Our results also suggest that an activation of type I IFN in CyHV-3 infected cells can limit the spread of the virus in cell culture. This would open the opportunity to treat the disease associated with CyHV-3 by an application of poly I:C in certain cases.
Collapse
Affiliation(s)
- Mikołaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Mikalsen AB, Haugland O, Rode M, Solbakk IT, Evensen O. Atlantic salmon reovirus infection causes a CD8 T cell myocarditis in Atlantic salmon (Salmo salar L.). PLoS One 2012; 7:e37269. [PMID: 22693625 PMCID: PMC3367920 DOI: 10.1371/journal.pone.0037269] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022] Open
Abstract
Heart and skeletal inflammation (HSMI) of farmed Atlantic salmon (Salmo salar L.) is a disease characterized by a chronic myocarditis involving the epicardium and the compact and spongious part of the heart ventricle. Chronic myositis of the red skeletal muscle is also a typical finding of HSMI. Piscine reovirus (PRV) has been detected by real-time PCR from farmed and wild salmon with and without typical changes of HSMI and thus the causal relationship between presence of virus and the disease has not been fully determined. In this study we show that the Atlantic salmon reovirus (ASRV), identical to PRV, can be passaged in GF-1 cells and experimental challenge of naïve Atlantic salmon with cell culture passaged reovirus results in cardiac and skeletal muscle pathology typical of HSMI with onset of pathology from 6 weeks, peaking by 9 weeks post challenge. ASRV replicates in heart tissue and the peak level of virus replication coincides with peak of heart lesions. We further demonstrate mRNA transcript assessment and in situ characterization that challenged fish develop a CD8+ T cell myocarditis.
Collapse
Affiliation(s)
- Aase B. Mikalsen
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Oyvind Haugland
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | - Oystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
50
|
Rakus KŁ, Irnazarow I, Adamek M, Palmeira L, Kawana Y, Hirono I, Kondo H, Matras M, Steinhagen D, Flasz B, Brogden G, Vanderplasschen A, Aoki T. Gene expression analysis of common carp (Cyprinus carpio L.) lines during Cyprinid herpesvirus 3 infection yields insights into differential immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:65-76. [PMID: 22212509 DOI: 10.1016/j.dci.2011.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3), also known as koi herpesvirus (KHV), is the etiological agent of a virulent and lethal disease in common and koi carp. This study aimed to determine the genetic basis underlying the common carp immune response to the CyHV-3 virus. Two common carp lines (R3 and K) were infected with CyHV-3 by immersion. The R3 line presented a 20% higher survival rate compared to the K line and significantly lower viral loads as measured at day 3 post infection (p.i.). Microarray analysis using a common carp slides containing a number of 10,822 60-mer probes, revealed that 581 genes in line K (330 up-regulated, 251 down-regulated) and 107 genes in line R3 (77 up-regulated, 30 down-regulated), showed at least a 2-fold difference in expression at day 3 p.i. compared to day 0. Genes which showed at least a 4-fold difference in expression in both lines were selected as potential markers of a CyHV-3 infection in common carp. Additionally, 76 genes showed at least 2-fold differentially expression between K and R3 lines at day 3 p.i. Significantly higher expression of several immune-related genes including number of those which are involve in pathogen recognition, complement activation, MHC class I-restricted antigen presentation and development of adaptive mucosal immunity was noted in more resistant R3 line. Further real-time PCR based analysis provided evidence for higher activation of CD8(+) T cells in R3 line. This study uncovered wide array of immune-related genes involved into antiviral response of common carp toward CyHV-3. It is also demonstrated that the outcome of this severe disease in large extent could be controlled by genetic factors of the host.
Collapse
Affiliation(s)
- Krzysztof Ł Rakus
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|