1
|
Pessentheiner AR, Spann NJ, Autran CA, Oh TG, Grunddal KV, Coker JK, Painter CD, Ramms B, Chiang AW, Wang CY, Hsiao J, Wang Y, Quach A, Booshehri LM, Hammond A, Tognaccini C, Latasiewicz J, Willemsen L, Zengler K, de Winther MP, Hoffman HM, Philpott M, Cribbs AP, Oppermann U, Lewis NE, Witztum JL, Yu R, Atkins AR, Downes M, Evans RM, Glass CK, Bode L, Gordts PL. The human milk oligosaccharide 3'sialyllactose reduces low-grade inflammation and atherosclerosis development in mice. JCI Insight 2024; 9:e181329. [PMID: 39325548 DOI: 10.1172/jci.insight.181329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of TLR4-induced low-grade inflammation in macrophages and endothelium. Transcriptome analysis in macrophages revealed that 3'SL attenuates mRNA levels of a selected set of inflammatory genes and promotes the activity of liver X receptor (LXR) and sterol regulatory element binding protein-1 (SREBP1). These acute antiinflammatory effects of 3'SL were associated with reduced histone H3K27 acetylation at a subset of LPS-inducible enhancers distinguished by preferential enrichment for CCCTC-binding factor (CTCF), IFN regulatory factor 2 (IRF2), B cell lymphoma 6 (BCL6), and other transcription factor recognition motifs. In a murine atherosclerosis model, both s.c. and oral administration of 3'SL significantly reduced atherosclerosis development and the associated inflammation. This study provides evidence that 3'SL attenuates inflammation by a transcriptional mechanism to reduce atherosclerosis development in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Ariane R Pessentheiner
- Department of Medicine, UCSD, La Jolla, California, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Chloe A Autran
- Department of Pediatrics at UCSD, La Jolla, California, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | | | - Joanna Kc Coker
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Bioengineering at UCSD, La Jolla, California, USA
| | | | - Bastian Ramms
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Austin Wt Chiang
- Department of Pediatrics at UCSD, La Jolla, California, USA
- Department of Bioengineering at UCSD, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, La Jolla, California, USA
| | - Chen-Yi Wang
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, United Kingdom
| | - Jason Hsiao
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Yiwen Wang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Anthony Quach
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | | | | | | | - Lisa Willemsen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Karsten Zengler
- Department of Bioengineering at UCSD, La Jolla, California, USA
- Center for Microbiome Innovation, UCSD, La Jolla, California, USA
| | - Menno Pj de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Hal M Hoffman
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pediatrics at UCSD, La Jolla, California, USA
- Rady Children's Hospital of San Diego, San Diego, California, USA
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, United Kingdom
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, NIH Research Oxford Biomedical Research Unit (BRU), and
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, United Kingdom
| | - Nathan E Lewis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Department of Bioengineering at UCSD, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, La Jolla, California, USA
| | | | - Ruth Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ron M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Christopher K Glass
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Cellular and Molecular Medicine and
| | - Lars Bode
- Department of Pediatrics at UCSD, La Jolla, California, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE) and
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Philip Lsm Gordts
- Department of Medicine, UCSD, La Jolla, California, USA
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| |
Collapse
|
2
|
Mehrani Y, Morovati S, Tieu S, Karimi N, Javadi H, Vanderkamp S, Sarmadi S, Tajik T, Kakish JE, Bridle BW, Karimi K. Vitamin D Influences the Activity of Mast Cells in Allergic Manifestations and Potentiates Their Effector Functions against Pathogens. Cells 2023; 12:2271. [PMID: 37759494 PMCID: PMC10528041 DOI: 10.3390/cells12182271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mast cells (MCs) are abundant at sites exposed to the external environment and pathogens. Local activation of these cells, either directly via pathogen recognition or indirectly via interaction with other activated immune cells and results in the release of pre-stored mediators in MC granules. The release of these pre-stored mediators helps to enhance pathogen clearance. While MCs are well known for their protective role against parasites, there is also significant evidence in the literature demonstrating their ability to respond to viral, bacterial, and fungal infections. Vitamin D is a fat-soluble vitamin and hormone that plays a vital role in regulating calcium and phosphorus metabolism to maintain skeletal homeostasis. Emerging evidence suggests that vitamin D also has immunomodulatory properties on both the innate and adaptive immune systems, making it a critical regulator of immune homeostasis. Vitamin D binds to its receptor, called the vitamin D receptor (VDR), which is present in almost all immune system cells. The literature suggests that a vitamin D deficiency can activate MCs, and vitamin D is necessary for MC stabilization. This manuscript explores the potential of vitamin D to regulate MC activity and combat pathogens, with a focus on its ability to fight viruses.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Sophie Tieu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14174-66191, Iran;
| | - Tahmineh Tajik
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| |
Collapse
|
3
|
TLR4-Endothelin Axis Controls Syncytiotrophoblast Motility and Confers Fetal Protection in Placental Malaria. Infect Immun 2021; 89:e0080920. [PMID: 34061587 DOI: 10.1128/iai.00809-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnancy-associated malaria is often associated with adverse pregnancy outcomes. Placental circulatory impairments are an intriguing and unsolved component of malaria pathophysiology. Here, we uncovered a Toll-like receptor 4 (TLR4)-TRIF-endothelin axis that controls trophoblast motility and is linked to fetal protection during Plasmodium infection. In a cohort of 401 pregnancies from northern Brazil, we found that infection during pregnancy reduced expression of endothelin receptor B in syncytiotrophoblasts, while endothelin expression was only affected during acute infection. We further show that quantitative expression of placental endothelin and endothelin receptor B proteins are differentially controlled by maternal and fetal TLR4 alleles. Using murine malaria models, we identified placental autonomous responses to malaria infection mediated by fetally encoded TLR4 that not only controlled placental endothelin gene expression but also correlated with fetal viability protection. In vitro assays showed that control of endothelin expression in fetal syncytiotrophoblasts exposed to Plasmodium-infected erythrocytes was dependent on TLR4 via the TRIF pathway but not MyD88 signaling. Time-lapse microscopy in syncytiotrophoblast primary cultures and cell invasion assays demonstrated that ablation of TLR4 or endothelin receptor blockade abrogates trophoblast collective motility and cell migration responses to infected erythrocytes. These results cohesively substantiate the hypothesis that fetal innate immune sensing, namely, the TRL4-TRIF pathway, exerts a fetal protective role during malaria infection by mediating syncytiotrophoblast vasoregulatory responses that counteract placental insufficiency.
Collapse
|
4
|
Kido‐Nakahara M, Wang B, Ohno F, Tsuji G, Ulzii D, Takemura M, Furue M, Nakahara T. Inhibition of mite-induced dermatitis, pruritus, and nerve sprouting in mice by the endothelin receptor antagonist bosentan. Allergy 2021; 76:291-301. [PMID: 32535962 DOI: 10.1111/all.14451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Endothelin-1 (EDN1) can evoke histamine-independent pruritus in mammals and is upregulated in the lesional epidermis of atopic dermatitis (AD). EDN1 increases the production of interleukin 25 (IL-25) from keratinocytes to accelerate T helper type 2 immune deviation. Plasma EDN1 levels are positively correlated with the clinical severity and itch intensity of AD. Therefore, we hypothesized that the inhibition of EDN1 might be useful for treating atopic inflammation and itch and investigated the effects of the topical application of the EDN1 receptor antagonist bosentan on the skin inflammation and itch in a murine AD model. METHODS We analyzed the mite-induced AD-like NC/Nga murine model, which was topically applied with bosentan or ethanol control every day for 3 weeks. We also subjected in vitro primary sensory neuron culture systems to nerve elongation and branching assays after EDN1 stimulation. RESULTS Topical application of bosentan significantly attenuated the development of mite-induced AD-like skin inflammation, dermatitis scores, ear thickness, scratching bouts, and serum level of thymus and activation-regulated chemokine in NC/Nga mice. Bosentan application also significantly reduced the gene expression of Il13, Il17, and Ifng in the treated lesions. Histologically, the number of infiltrated dermal cells, the epidermal EDN1 expression, and the number of intraepidermal nerve fibers were significantly inhibited upon bosentan application. While EDN1 significantly elongated the neurites of dorsal root ganglion cells in a dose- and time-dependent manner, bosentan treatment attenuated this. CONCLUSIONS EDN1 plays a significant role in mite-induced inflammation and itch. Topical bosentan is a potential protective candidate for AD.
Collapse
Affiliation(s)
- Makiko Kido‐Nakahara
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Bing Wang
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Fumitaka Ohno
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Gaku Tsuji
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
| | - Dugarmaa Ulzii
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Department of Dermatology National Dermatology Center of Mongolia Ulaanbaatar Mongolia
| | - Masaki Takemura
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Masutaka Furue
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin Kyushu University Hospital Fukuoka Japan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Takeshi Nakahara
- Department of Dermatology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
5
|
Jin YH, Kang B, Kang HS, Koh CS, Kim BS. Endothelin-1 contributes to the development of virus-induced demyelinating disease. J Neuroinflammation 2020; 17:307. [PMID: 33069239 PMCID: PMC7568825 DOI: 10.1186/s12974-020-01986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Experimental autoimmune encephalitis (EAE) and virally induced demyelinating disease are two major experimental model systems used to study human multiple sclerosis. Although endothelin-1 level elevation was previously observed in the CNS of mice with EAE and viral demyelinating disease, the potential role of endothelin-1 in the development of these demyelinating diseases is unknown. Methods and results In this study, the involvement of endothelin-1 in the development and progression of demyelinating diseases was investigated using these two experimental models. Administration of endothelin-1 significantly promoted the progression of both experimental diseases accompanied with elevated inflammatory T cell responses. In contrast, administration of specific endothelin-1 inhibitors (BQ610 and BQ788) significantly inhibited progression of these diseases accompanied with reduced T cell responses to the respective antigens. Conclusions These results strongly suggest that the level of endothelin-1 plays an important role in the pathogenesis of immune-mediated CNS demyelinating diseases by promoting immune responses.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA. .,KM Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea. .,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | - Bongsu Kang
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Hyun S Kang
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Chang-Sung Koh
- Department of Biomedical Laboratory Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Byung S Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg Medical School, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, van Bragt J, Costello HM, Menolascina F, Baudrie V, Webb DJ, Kluth DC, Bailey MA, Tharaux PL, Dhaun N. A novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J 2020; 40:768-784. [PMID: 30657897 PMCID: PMC6396028 DOI: 10.1093/eurheartj/ehy881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/04/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS Hypertension is common. Recent data suggest that macrophages (Mφ) contribute to, and protect from, hypertension. Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor with additional pro-inflammatory properties. We investigated the role of the ET system in experimental and clinical hypertension by modifying Mφ number and phenotype. METHODS AND RESULTS In vitro, Mφ ET receptor function was explored using pharmacological, gene silencing, and knockout approaches. Using the CD11b-DTR mouse and novel mice with myeloid cell-specific endothelin-B (ETB) receptor deficiency (LysMETB-/-), we explored the effects of modifying Mφ number and phenotype on the hypertensive effects of ET-1, angiotensin II (ANG II), a model that is ET-1 dependent, and salt. In patients with small vessel vasculitis, the impacts of Mφ depleting and non-depleting therapies on blood pressure (BP) and endothelial function were examined. Mouse and human Mφ expressed both endothelin-A and ETB receptors and displayed chemokinesis to ET-1. However, stimulation of Mφ with exogenous ET-1 did not polarize Mφ phenotype. Interestingly, both mouse and human Mφ cleared ET-1 through ETB receptor mediated, and dynamin-dependent, endocytosis. Mφ depletion resulted in an augmented chronic hypertensive response to both ET-1 and salt. LysMETB-/- mice displayed an exaggerated hypertensive response to both ET-1 and ANG II. Finally, in patients who received Mφ depleting immunotherapy BP was higher and endothelial function worse than in those receiving non-depleting therapies. CONCLUSION Mφ and ET-1 may play an important role in BP control and potentially have a critical role as a therapeutic target in hypertension.
Collapse
Affiliation(s)
- Alicja Czopek
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Rebecca Moorhouse
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Léa Guyonnet
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Tariq Farrah
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Olivia Lenoir
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Elizabeth Owen
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Job van Bragt
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Hannah M Costello
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Filippo Menolascina
- School of Engineering & SynthSys, Institute for Bioengineering, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK.,MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Véronique Baudrie
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - David J Webb
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - David C Kluth
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Matthew A Bailey
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Neeraj Dhaun
- BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.,Paris Cardiovascular Research Centre - PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
7
|
Manjili MH. The premise of personalized immunotherapy for cancer dormancy. Oncogene 2020; 39:4323-4330. [PMID: 32322001 PMCID: PMC7260096 DOI: 10.1038/s41388-020-1295-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Progress in cancer therapies has resulted in improved survival of patients with early stage breast cancer. However, mortality remains high in patients with distant recurrence of the disease after initially successful treatment of early stage breast cancer. To this end, tumor recurrences have been attributed to the presence of dormant tumor cells in breast cancer patients and cancer survivors. Current clinical practice guidelines recommend a “wait and watch” approach for tumor recurrence. This is because of our limited understanding of tumor dormancy. Dormant tumor cells are quiescent, and thus, do not respond to chemotherapies or radiation therapies, and they are not operable. Therefore, immunotherapy is the only option for the treatment of tumor dormancy. However, gaps in our knowledge as to dormancy-specific antigens prevent a relapse preventing vaccine design. Here, we provide a critical review of cancer immunotherapy, and discuss empirical evidence related to naturally-occurring tumor dormancy and treatment-induced tumor dormancy at the site of primary tumor and in distant organs before and after cancer therapies. Finally, we suggest that personalized vaccines targeting dormancy-associated neoantigens, which can be given to patients with early stage disease after the completion of neoadjuvant therapies and tumor resection as well as to cancer survivors could eliminate relapse causing dormant cells and offer a cure for cancer.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, VCU Institute of Molecular Medicine, Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
8
|
Wei HJ, Letterio JJ, Pareek TK. Development and Functional Characterization of Murine Tolerogenic Dendritic Cells. J Vis Exp 2018. [PMID: 29863666 DOI: 10.3791/57637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system operates by maintaining a tight balance between coordinating responses against foreign antigens and maintaining an unresponsive state against self-antigens as well as antigens derived from commensal organisms. The disruption of this immune homeostasis can lead to chronic inflammation and to the development of autoimmunity. Dendritic cells (DCs) are the professional antigen-presenting cells of the innate immune system involved in activating naïve T cells to initiate immune responses against foreign antigens. However, DCs can also be differentiated into TolDCs that act to maintain and promote T cell tolerance and to suppress effector cells contributing to the development of either autoimmune or chronic inflammation conditions. The recent advancement in our understanding of TolDCs suggests that DC tolerance can be achieved by modulating their differentiation conditions. This phenomenon has led to tremendous growth in developing TolDC therapies for numerous immune disorders caused due to break in immune tolerance. Successful studies in preclinical autoimmunity murine models have further validated the immunotherapeutic utility of TolDCs in the treatment of autoimmune disorders. Today, TolDCs have become a promising immunotherapeutic tool in the clinic for reinstating immune tolerance in various immune disorders by targeting pathogenic autoimmune responses while leaving protective immunity intact. Although an array of strategies has been proposed by multiple labs to induce TolDCs, there is no consistency in characterizing the cellular and functional phenotype of these cells. This protocol provides a step-by-step guide for the development of bone marrow-derived DCs in large numbers, a unique method used to differentiate them into TolDCs with a synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-difluoro-propyl-amide (CDDO-DFPA), and the techniques used to confirm their phenotype, including analyses of essential molecular signatures of TolDCs. Finally, we show a method to assess TolDC function by testing their immunosuppressive response in vitro and in vivo in a preclinical model of multiple sclerosis.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- Department of Biochemistry, School of Medicine, Case Western Reserve University
| | - John J Letterio
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland
| | - Tej K Pareek
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland;
| |
Collapse
|
9
|
Arababadi MK, Nosratabadi R, Asadikaram G. Vitamin D and toll like receptors. Life Sci 2018; 203:105-111. [PMID: 29596922 DOI: 10.1016/j.lfs.2018.03.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/10/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
It has been demonstrated that vitamin D (VD) significantly modulates immune responses. Toll like receptors (TLRs) are the main innate immunity receptors which are expressed on the cell membrane and intracellular vesicles and recognize several pathogen associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) to induce immune responses. Based on the important roles played by TLRs in physiologic and pathologic functions of immune responses and due to the immunomodulatory functions of VD, it has been hypothesized that VD may present its immunomodulatory functions via modulation of TLRs. This review article collates recent studies regarding the interactions between VD and TLRs and discussed the controversial investigations.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Immunology, Faculty of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Nakahara T, Kido-Nakahara M, Ohno F, Ulzii D, Chiba T, Tsuji G, Furue M. The pruritogenic mediator endothelin-1 shifts the dendritic cell-T-cell response toward Th17/Th1 polarization. Allergy 2018; 73:511-515. [PMID: 28960333 DOI: 10.1111/all.13322] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
Abstract
Endothelin-1 (ET-1) is associated with skin diseases such as atopic dermatitis (AD) and psoriasis. ET-1 is enhanced in the skin of patients AD and psoriasis. In addition, plasma levels of ET-1 are elevated in AD and psoriasis. Although both AD and psoriasis are T-cell-mediated skin diseases, the association between ET-1 and the T-cell immune response has not been clarified. To evaluate the role of ET-1 in inflammatory skin disease, we sought to investigate the effects of ET-1 on the functions of dendritic cells (DCs) and subsequent immune responses. For this purpose, we immunohistochemically confirmed the upregulation of ET-1 in the epidermis of patients with AD or psoriasis. ET-1 directly induced phenotypic maturation of bone marrow-derived DCs (BMDCs). In addition, ET-1 augmented the production of several cytokines and allogeneic stimulatory capacity of BMDCs. Interestingly, ET-1-activated BMDCs primed T cells to produce Th1 and Th17 cytokines, but not Th2 cytokines. These findings indicate that ET-1 polarizes the DC-T-cell response toward Th17/1 differentiation and may augment the persistent course of inflammatory skin diseases.
Collapse
Affiliation(s)
- T. Nakahara
- Division of Skin Surface Sensing; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - M. Kido-Nakahara
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - F. Ohno
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - D. Ulzii
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - T. Chiba
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - G. Tsuji
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - M. Furue
- Division of Skin Surface Sensing; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Research and Clinical Center for Yusho and Dioxin; Kyushu University; Fukuoka Japan
| |
Collapse
|
11
|
Manjili MH. A Theoretical Basis for the Efficacy of Cancer Immunotherapy and Immunogenic Tumor Dormancy: The Adaptation Model of Immunity. Adv Cancer Res 2018; 137:17-36. [PMID: 29405975 DOI: 10.1016/bs.acr.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the past decades, a variety of strategies have been explored to cure cancer by means of immunotherapy, which is less toxic compared with chemotherapy or radiation therapy, and could establish memory for long-lasting protection against tumor recurrence. These endeavors have been successful in offering therapeutic antibodies, vaccines, or cellular immunotherapies, which resulted in prolonging survival of some cancer patients; however, complete cures have not been consistently achieved. The conception, design, and implementation of these promising immunotherapeutic strategies have been influenced by two schools of thought in immunology, which include the "self-nonself" (SNS) model and the "danger" model. Further progress in cancer immunotherapy to achieve consistent cancer cures requires an evolution in our understanding of how the immune system works. The purpose of this review is to revisit premises and limitations of the SNS and danger models based on the outcomes of cancer immunotherapies by suggesting that both models are two sides of the same coin describing how the immune response is induced against cancer. However, neither explains how the immune response succeeds or fails in eliminating the tumor. To this end, the adaptation model has been proposed to explain efficacy of the immune response for achieving cancer cure.
Collapse
Affiliation(s)
- Masoud H Manjili
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
A unique tolerizing dendritic cell phenotype induced by the synthetic triterpenoid CDDO-DFPA (RTA-408) is protective against EAE. Sci Rep 2017; 7:9886. [PMID: 28851867 PMCID: PMC5575165 DOI: 10.1038/s41598-017-06907-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) have emerged as relevant clinical targets for the treatment of multiple sclerosis and other autoimmune disorders. However, the pathways essential for conferring the tolerizing DC phenotype and optimal methods for their induction remain an intense area of research. Triterpenoids are a class of small molecules with potent immunomodulatory activity linked to activation of Nrf2 target genes, and can also suppress the manifestations of experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that DCs are a principal target of the immune modulating activity of triterpenoids in the context of EAE. Exposure of DCs to the new class of triterpenoid CDDO-DFPA (RTA-408) results in the induction of HO-1, TGF-β, and IL-10, as well as the repression of NF-κB, EDN-1 and pro-inflammatory cytokines IL-6, IL-12, and TNFα. CDDO-DFPA exposed DCs retained expression of surface ligands and capacity for antigen uptake but were impaired to induce Th1 and Th17 cells. TGF-β was identified as the factor mediating suppression of T cell proliferation by CDDO-DFPA pretreated DCs, which failed to passively induce EAE. These findings demonstrate the potential therapeutic utility of CDDO-DFPA in the treatment and prevention of autoimmune disorders, and its capacity to induce tolerance via modulation of the DC phenotype.
Collapse
|
13
|
Aktar MK, Kido-Nakahara M, Furue M, Nakahara T. Mutual upregulation of endothelin-1 and IL-25 in atopic dermatitis. Allergy 2015; 70:846-54. [PMID: 25903653 DOI: 10.1111/all.12633] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Endothelin-1 (ET-1) has been reported to evoke histamine-independent pruritus in mammals. However, its association with pruritus or inflammation of atopic dermatitis (AD) has not been clarified. We sought to investigate the role of ET-1 in the skin inflammation of AD. METHODS To examine the role of ET-1 in AD, we investigated the expression of ET-1 and IL-25 in the skin of an AD mouse model and patients with AD and examined the mutual regulatory relationship between ET-1 and IL-25, one of the important cytokines in AD, using the human HaCaT keratinocyte cell line. RESULTS We immunohistochemically confirmed the upregulation of ET-1 and IL-25 expression in the epidermis of both the AD mouse model and patients with AD. In vitro, IL-25 upregulated ET-1 mRNA and protein expression in a concentration- and time-dependent fashion in HaCaT cells. This IL-25-induced ET-1 expression was inhibited by ERK1/2 or JNK inhibitor. In a reciprocal manner, ET-1 also induced IL-25 upregulation. The enhancing effect of ET-1 on IL-25 was inhibited by an endothelin A receptor antagonist, ERK1/2 inhibitor, or p38 inhibitor, but not by an endothelin B receptor antagonist or JNK inhibitor. CONCLUSION These findings suggest that mutual upregulation of ET-1 and IL-25 takes place in the epidermis of AD, which may be a future target for antipruritic agents.
Collapse
Affiliation(s)
- M. K. Aktar
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - M. Kido-Nakahara
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - M. Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Division of Skin Surface Sensing; Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - T. Nakahara
- Division of Skin Surface Sensing; Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
14
|
SUBRAMANI TAMILSELVAN, RATHNAVELU VIDHYA, ALITHEEN NOORJAHANBANU, PADMANABHAN PARASURAMAN. Cellular crosstalk mechanism of Toll-like receptors in gingival overgrowth (Review). Int J Mol Med 2015; 35:1151-8. [DOI: 10.3892/ijmm.2015.2144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
|
15
|
Kido-Nakahara M, Buddenkotte J, Kempkes C, Ikoma A, Cevikbas F, Akiyama T, Nunes F, Seeliger S, Hasdemir B, Mess C, Buhl T, Sulk M, Müller FU, Metze D, Bunnett NW, Bhargava A, Carstens E, Furue M, Steinhoff M. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest 2014; 124:2683-95. [PMID: 24812665 DOI: 10.1172/jci67323] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein-coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin-converting enzyme 1 (ECE-1) as a key regulator of ET-1-induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1-containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1-induced activation of ERK1/2, but not p38. In a murine itch model, ET-1-induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1-induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans.
Collapse
|
16
|
Rosanò L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2013; 13:637-51. [PMID: 23884378 DOI: 10.1038/nrc3546] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of autocrine and paracrine signalling by endothelin 1 (ET1) binding to its receptors elicits pleiotropic effects on tumour cells and on the host microenvironment. This activation modulates cell proliferation, apoptosis, migration, epithelial-to-mesenchymal transition, chemoresistance and neovascularization, thus providing a strong rationale for targeting ET1 receptors in cancer. In this Review, we discuss the advances in our understanding of the diverse biological roles of ET1 in cancer and describe the latest preclinical and clinical progress that has been made using small-molecule antagonists of ET1 receptors that inhibit ET1-driven signalling.
Collapse
Affiliation(s)
- Laura Rosanò
- Laboratory of Molecular Pathology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | | | | |
Collapse
|
17
|
Thaete LG, Qu XW, Jilling T, Crawford SE, Fitchev P, Hirsch E, Khan S, Neerhof MG. Impact of toll-like receptor 4 deficiency on the response to uterine ischemia/reperfusion in mice. Reproduction 2013; 145:517-26. [PMID: 23509372 DOI: 10.1530/rep-12-0433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our objective was to determine the role of toll-like receptor 4 (TLR4) in uterine ischemia/reperfusion (I/R)-induced fetal growth restriction (FGR). Pregnant TLR4-deficient and wild-type mice were subjected to I/R or a sham procedure. Fetal and placental weights were recorded and tissues were collected. Pep-1 (inhibits low-molecular-weight hyaluronan (LMW-HA) binding to TLR4) was used to determine whether LMW-HA-TLR4 interaction has a role in FGR. TLR4-deficient mice exhibited significantly lower baseline fetal weights compared with wild-type mice (P<0.05), along with extensive placental calcification that was not present in wild-type mice. Following I/R, fetal and placental weights were significantly reduced in wild-type (P<0.05) but not in TLR4-deficient mice. However, I/R increased fetal loss (P<0.05) only in TLR4-deficient mice. Corresponding with the reduced fetal weights, uterine myeloperoxidase activity increased in wild-type mice (P<0.001), indicating an inflammatory response, which was absent in TLR4-deficient mice. TLR4 was shown to have a regulatory role for two anti-inflammatory cytokines: interferon-B1 decreased only in wild-type mice (P<0.01) and interleukin-10 increased only in TLR4-deficient mice (P<0.001), in response to I/R. Pep-1 completely prevented I/R-induced FGR (P<0.001), indicating a potential role for the endogenous TLR4 ligand LMW-HA in I/R-induced FGR. In conclusion, uterine I/R in pregnancy produces FGR that is dependent on TLR4 and endogenous ligand(s), including breakdown products of HA. In addition, TLR4 may play a role in preventing pregnancy loss after uterine I/R.
Collapse
Affiliation(s)
- Larry G Thaete
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois 60201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Since its discovery over 20 years ago endothelin-1 (ET-1) has been implicated in a number of physiological and pathophysiological processes. Its role in the development and progression of chronic kidney disease (CKD) is well established and is an area of ongoing intense research. There are now available a number of ET receptor antagonists many of which have been used in trials with CKD patients and shown to reduce BP and proteinuria. However, ET-1 has a number of BP-independent effects. Importantly, and in relation to the kidney, ET-1 has clear roles to play in cell proliferation, podocyte dysfunction, inflammation and fibrosis, and arguably, these actions of ET-1 may be more significant in the progression of CKD than its prohypertensive actions. This review will focus on the potential role of ET-1 in renal disease with an emphasis on its BP-independent actions.
Collapse
Affiliation(s)
- Neeraj Dhaun
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
19
|
Bauer EM, Shapiro R, Zheng H, Ahmad F, Ishizawar D, Comhair SA, Erzurum SC, Billiar TR, Bauer PM. High mobility group box 1 contributes to the pathogenesis of experimental pulmonary hypertension via activation of Toll-like receptor 4. Mol Med 2013; 18:1509-18. [PMID: 23269975 DOI: 10.2119/molmed.2012.00283] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/16/2012] [Indexed: 01/24/2023] Open
Abstract
Survival rates for patients with pulmonary hypertension (PH) remain low, and our understanding of the mechanisms involved are incomplete. Here we show in a mouse model of chronic hypoxia (CH)-induced PH that the nuclear protein and damage-associate molecular pattern molecule (DAMP) high mobility group box 1 (HMGB1) contributes to PH via a Toll-like receptor 4 (TLR4)-dependent mechanism. We demonstrate extranuclear HMGB1 in pulmonary vascular lesions and increased serum HMGB1 in patients with idiopathic pulmonary arterial hypertension. The increase in circulating HMGB1 correlated with mean pulmonary artery pressure. In mice, we similarly detected the translocation and release of HMGB1 after exposure to CH. HMGB1-neutralizing antibody attenuated the development of CH-induced PH, as assessed by measurement of right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling and endothelial activation and inflammation. Genetic deletion of the pattern recognition receptor TLR4, but not the receptor for advanced glycation end products, likewise attenuated CH-induced PH. Finally, daily treatment of mice with recombinant human HMGB1 exacerbated CH-induced PH in wild-type (WT) but not Tlr4(-/-) mice. These data demonstrate that HMGB1-mediated activation of TLR4 promotes experimental PH and identify HMGB1 and/or TLR4 as potential therapeutic targets for the treatment of PH.
Collapse
Affiliation(s)
- Eileen M Bauer
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Clancy N, Onwuneme C, Carroll A, McCarthy R, McKenna MJ, Murphy N, Molloy EJ. Vitamin D and neonatal immune function. J Matern Fetal Neonatal Med 2012; 26:639-46. [DOI: 10.3109/14767058.2012.746304] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease. Cardiol Res Pract 2012; 2012:181394. [PMID: 22577589 PMCID: PMC3346970 DOI: 10.1155/2012/181394] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.
Collapse
|
22
|
Alvarez D, Briassouli P, Clancy RM, Zavadil J, Reed JH, Abellar RG, Halushka M, Fox-Talbot K, Barrat FJ, Buyon JP. A novel role of endothelin-1 in linking Toll-like receptor 7-mediated inflammation to fibrosis in congenital heart block. J Biol Chem 2011; 286:30444-30454. [PMID: 21730058 DOI: 10.1074/jbc.m111.263657] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autoimmune associated congenital heart block (CHB) may result from pathogenic cross-talk between inflammatory and profibrosing pathways. Incubation of macrophages with immune complexes (IC) composed of Ro60, a target of the pathologic maternal autoantibodies necessary for CHB, hY3 ssRNA, and affinity-purified anti-Ro60 antibody induces the Toll-like receptor 7 (TLR7)-dependent generation of supernatants that provoke a fibrosing phenotype in human fetal cardiac fibroblasts. We show herein that these cells are a major source of TGFβ and that endothelin-1 (ET-1) is one of the key components responsible for the profibrosing effects generated by stimulated macrophages. Supernatants from macrophages incubated with IC induced the fibroblast secretion of TGFβ, which was inhibited by treating the macrophages with an antagonist of TLR7. Under the same conditions, the induced fibroblast secretion of TGFβ was decreased by inhibitors of the ET-1 receptors ETa or ETb or by an anti-ET-1 antibody but not by an isotype control. Exogenous ET-1 induced a profibrosing phenotype, whereas fibroblasts transfected with either ETa or ETb siRNA were unresponsive to the profibrosing effects of the IC-generated macrophage supernatants. Immunohistochemistry of the hearts from two fetuses dying with CHB revealed the presence of ET-1-producing mononuclear cells in the septal region in areas of calcification and fibrosis. In conclusion, these data support a novel role of ET-1 in linking TLR7 inflammatory signaling to subsequent fibrosis and provide new insight in considering therapeutics for CHB.
Collapse
Affiliation(s)
- David Alvarez
- New York University Medical Center, New York, New York 10016
| | | | - Robert M Clancy
- New York University Medical Center, New York, New York 10016
| | - Jiri Zavadil
- New York University Medical Center, New York, New York 10016
| | - Joanne H Reed
- New York University Medical Center, New York, New York 10016
| | | | - Marc Halushka
- Johns Hopkins Medical Institutions, Baltimore, Maryland 21205
| | | | | | - Jill P Buyon
- New York University Medical Center, New York, New York 10016.
| |
Collapse
|
23
|
Farina G, York M, Collins C, Lafyatis R. dsRNA activation of endothelin-1 and markers of vascular activation in endothelial cells and fibroblasts. Ann Rheum Dis 2010; 70:544-50. [PMID: 21068089 DOI: 10.1136/ard.2010.132464] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND In patients with systemic sclerosis (SSc), the relationship between innate immune activation, represented by increased expression of interferon (IFN)-regulated genes, and vascular injury/activation, manifest by increased endothelin-1 (ET-1), endothelin converting enzyme-1 (ECE1) and intercellular adhesion molecule-1, is uncertain. OBJECTIVE To investigate the potential roles of innate immune ligands in both these pathogenic pathways. METHODS The effect of known Toll-like receptor (TLR) ligands was tested in vitro on dermal microvascular and pulmonary arterial endothelial cells, and on dermal fibroblasts cultured from healthy controls and patients with SSc. To test the effect of double-stranded RNA (dsRNA) on vascular activation/injury in vivo, polyinosinic/polycytidylic acid (poly(I:C)) was administered continuously over 7 days by subcutaneous osmotic pump. RESULTS dsRNA/poly(I:C), but not other TLR ligands, highly stimulated ET-1 protein and mRNA (EDN1), as well as intercellular adhesion molecule-1 (ICAM-1) and IFN-regulated MX2, by endothelial cells and dermal fibroblasts. Poly(I:C) induced EDN1, ECE1, and ICAM-1 mRNA expression in poly(I:C) treated skin. Poly(I:C)-induced EDN1, ECE1 and MX2 was not blocked in mice with the type I IFN receptor deleted. However, poly(I:C)-induced EDN1 and ECE1, but not poly(I:C)-induced ICAM-1 expression was blocked in mice with the TLR3 signalling protein TRIF/TICAM-1 deleted. CONCLUSION Together these data show that the dsRNA can regulate genes associated with vascular activation, as seen in SSc, that type I IFNs do not mediate these effects, and that EDN1 and ECE1 but not ICAM-1 activation is mediated by TLR3.
Collapse
Affiliation(s)
- Giuseppina Farina
- Boston University School of Medicine, Arthritis Center, E5, 72 E Concord Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Vitamin D supplementation is expected to increase as clinicians try to optimize their patients' vitamin D status. This review integrates newer information into a perspective on vitamin D disposition and effect. RECENT FINDINGS Vitamin D is being considered for indications beyond bone health. The limited dose-response data vary by indication, but generally target a goal serum 25(OH)D concentration of 80-120 nmol/l. Although oral vitamin D is adequately absorbed, distributed, metabolized, and utilized before being excreted, these factors may vary with baseline vitamin D status, genetic polymorphism, and the form of vitamin D being administered. Additionally, the responses to vitamin D can be tissue-specific and are not always well described. SUMMARY There is still a need to better characterize the disposition and effect of vitamin D supplementation. Data will need to be more specific to the therapeutic indication and demonstrate health outcomes. Long-term effects of high-dose supplementation at the tissue level will be especially important to describe.
Collapse
Affiliation(s)
- Joseph I Boullata
- Division of Biobehavioral & Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Abstract
Over two decades of research have demonstrated that the peptide hormone endothelin-1 (ET-1) plays multiple, complex roles in cardiovascular, neural, pulmonary, reproductive, and renal physiology. Differential and tissue-specific production of ET-1 must be tightly regulated in order to preserve these biologically diverse actions. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (edn1). Studies conducted on a variety of cell types have identified key transcription factors that govern edn1 expression. With few exceptions, the cis-acting elements bound by these factors have been mapped in the edn1 regulatory region. Recent evidence has revealed new roles for some factors originally believed to regulate edn1 in a tissue or hormone-specific manner. In addition, other mechanisms involved in epigenetic regulation and mRNA stability have emerged as important processes for regulated edn1 expression. The goal of this review is to provide a comprehensive overview of the specific factors and signaling systems that govern edn1 activity at the molecular level.
Collapse
Affiliation(s)
- Lisa R Stow
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Because the mechanism underlying the development of acute pancreatitis (AP) has not yet been fully clarified, it has been a hot but difficult topic in basic and clinical research for a long time. Currently, the dominant hypothesis for the pathogenesis of AP is that it is a disease of self-digestive acute chemical inflammation induced by trypsin activation. As proteins to trigger the inflammatory response cascade, Toll-like receptors (TLRs), especially TLR4, provide a new clue for studying the pathogenesis of AP from the source. Some studies have found that when TLR4 is activated by certain factors, it can amplify an inflammatory effect and aggravate the body's inflammatory response through a series of signal transduction. Toll-like receptor 4 may play an important role in the synthesis and release of proinflammatory cytokines, and the up-regulation of the TLR4 gene may be related with the development and progression of multiple organ injury during AP. As the "gate" of inflammatory response, TLR4 may be closely associated with the development and progression of multiple organ injury during AP. Understanding the roles of TLR4 in AP will help to further clarify the pathogenesis of AP and to search a new target for the treatment of AP.
Collapse
|