1
|
Hetemäki I, Arstila TP, Kekäläinen E. Helios-Illuminating the way for lymphocyte self-control. Immunology 2024. [PMID: 39354708 DOI: 10.1111/imm.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
Transcription factor Helios, encoded by the IKZF2 gene, has an important role in regulatory T cells by stabilizing their suppressive phenotype. While Helios is prominently expressed in regulatory T cells, its expression extends beyond to include effector T cells, follicular regulatory T cells, B cells, and innate-like lymphocyte populations. Recent characterizations of patients with inborn error of immunity due to damaging IKZF2 variants coupled with translational research on lymphocytes from healthy individuals, have increased our understanding on Helios' multifaceted role in controlling the human adaptive immune system. A less studied role for Helios beyond the stabilizing of regulatory T cells has emerged in directing effector T cell maturation. In the absence of functional Helios, effector T cells acquire more inflammatory phenotype and are prone to senescence. Loss of Helios expression disrupts the regulation of the germinal centre reaction, often resulting in either hypogammaglobulinemia or B cell autoimmunity. This review summarizes findings from studies in both mice and men offering a comprehensive understanding of the impact of the transcription factor Helios on the adaptive immune system.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T Petteri Arstila
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Zou S, Liu B, Feng Y. CCL17, CCL22 and their receptor CCR4 in hematologic malignancies. Discov Oncol 2024; 15:412. [PMID: 39240278 PMCID: PMC11379839 DOI: 10.1007/s12672-024-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Hematological malignancies (HM) are common malignant tumors with high morbidity and mortality rates, and are malignant diseases that seriously affect human health, with chemotherapy prone to recurrence and toxic side effects. Therefore, the development of precise, effective, and safe targeted therapeutic agents has become a hotspot in the current research of antitumor technology. More and more studies have shown that the interaction of C-C chemokine ligand 17 (CCL17) and C-C chemokine ligand 22 (CCL22) with the receptor C-C chemokine receptor type 4 (CCR4) promotes the immune escape of tumors and is closely related to the occurrence, development, and prognosis of hematological tumors. In this regard, we present a review on the expression and role of the CCL17/CCL22-CCR4 axis in HM, including lymphoma, leukemia, and multiple myeloma, with the aim of providing latest ideas and directions for the diagnosis and treatment of HM. In addition, we discuss the role and related mechanisms of HM therapeutic agents targeting the CCL17/CCL22-CCR4 axis and the potential of humanized anti-CCR4 antibodies for the treatment of HM.
Collapse
Affiliation(s)
- Shasha Zou
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bo Liu
- Department of Key, Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yonghuai Feng
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Hematology, Dongguan People's Hospital, Dongguan, China.
| |
Collapse
|
3
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
4
|
Thomas RM, Pahl MC, Wang L, Grant SFA, Hancock WW, Wells AD. Foxp3 depends on Ikaros for control of regulatory T cell gene expression and function. eLife 2024; 12:RP91392. [PMID: 38655862 PMCID: PMC11042806 DOI: 10.7554/elife.91392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.
Collapse
Affiliation(s)
- Rajan M Thomas
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Liqing Wang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Struan FA Grant
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Wayne W Hancock
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania and The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| |
Collapse
|
5
|
Raineri D, Abreu H, Vilardo B, Kustrimovic N, Venegoni C, Cappellano G, Chiocchetti A. Deep Flow Cytometry Unveils Distinct Immune Cell Subsets in Inducible T Cell Co-Stimulator Ligand (ICOSL)- and ICOS-Knockout Mice during Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2024; 25:2509. [PMID: 38473756 DOI: 10.3390/ijms25052509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The inducible T cell co-stimulator ligand (ICOSL), expressed by antigen presenting cells, binds to the inducible T cell co-stimulator (ICOS) on activated T cells. Improper function of the ICOS/ICOSL pathway has been implicated in several autoimmune diseases, including multiple sclerosis (MS). Previous studies showed that ICOS-knockout (KO) mice exhibit severe experimental autoimmune encephalomyelitis (EAE), the animal model of MS, but data on ICOSL deficiency are not available. In our study, we explored the impact of both ICOS and ICOSL deficiencies on MOG35-55 -induced EAE and its associated immune cell dynamics by employing ICOSL-KO and ICOS-KO mice with a C57BL/6J background. During EAE resolution, MOG-driven cytokine levels and the immunophenotype of splenocytes were evaluated by ELISA and multiparametric flow cytometry, respectively. We found that both KO mice exhibited an overlapping and more severe EAE compared to C57BL/6J mice, corroborated by a reduction in memory/regulatory T cell subsets and interleukin (IL-)17 levels. It is noteworthy that an unsupervised analysis showed that ICOSL deficiency modifies the immune response in an original way, by affecting T central and effector memory (TCM, TEM), long-lived CD4+ TEM cells, and macrophages, compared to ICOS-KO and C57BL/6J mice, suggesting a role for other binding partners to ICOSL in EAE development, which deserves further study.
Collapse
Affiliation(s)
- Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Chiara Venegoni
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
6
|
Zhang Z, Guo J, Jia R. Treg plasticity and human diseases. Inflamm Res 2023; 72:2181-2197. [PMID: 37878023 DOI: 10.1007/s00011-023-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION As a subset of CD4+ T cells, regulatory T cells (Tregs) with the characteristic expression of transcription factor FOXP3 play a key role in maintaining self-tolerance and regulating immune responses. However, in some inflammatory circumstances, Tregs can express cytokines of other T help (Th) cells by internal reprogramming, which is called Treg plasticity. These reprogrammed Tregs with impaired suppressive ability contribute to the progression of diseases by secreting pro-inflammatory cytokines. However, in the tumor microenvironment (TME), such changes in phenotype rarely occur in Tregs, on the contrary, Tregs usually display a stronger suppressive function and inhibit anti-tumor immunity. It is important to understand the mechanisms of Treg plasticity in inflammatory diseases and cancers. OBJECTIVES In this review, we summarize the characteristics of different Th-like Tregs and discuss the potential mechanisms of these changes in phenotype. Furthermore, we summarize the Treg plasticity in human diseases and discuss the effects of these changes in phenotype on disease progression, as well as the potential application of drugs or reagents that regulate Treg plasticity in human diseases. CONCLUSIONS Treg plasticity is associated with inflammatory diseases and cancers. Regulating Treg plasticity is a promising direction for the treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Lukasik M, Telec M, Kazmierski R, Wojtasz I, Andrzejewska-Gorczyńska N, Kociemba W, Dworacki G, Kozubski WP, Frydrychowicz M. Temporal changes in regulatory T cell subsets defined by the transcription factor Helios in stroke and their potential role in stroke-associated infection: a prospective case-control study. J Neuroinflammation 2023; 20:275. [PMID: 37996909 PMCID: PMC10666369 DOI: 10.1186/s12974-023-02957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are involved in the systemic immune response after ischemic stroke. However, their role remains unclear, and the effect appears to be both neuroprotective and detrimental. Treg suppressor function may result in immunodepression and promote stroke-associated infection (SAI). Thus we assume that the bidirectional effects of Tregs may be in part attributed to the intracellular transcription factor Helios. Tregs with Helios expression (H+ Tregs) constitute 70-90% of all Treg cells and more frequently than Helios-negative Tregs (H- Tregs) express molecules recognized as markers of Tregs with suppressor abilities. METHODS AND RESULTS We prospectively assessed the circulating Treg population with flow cytometry in 52 subjects on days 1, 3, 10 and 90 after ischemic stroke and we compared the results with those obtained in concurrent age-, sex- and vascular risk factor-matched controls. At all studied time points the percentage of H+ Tregs decreased in stroke subjects-D1: 69.1% p < 0.0001; D3: 62.5% (49.6-76.6), p < 0.0001; D10: 60.9% (56.5-72.9), p < 0.0001; D90: 79.2% (50.2-91.7), p = 0.014 vs. controls: 92.7% (81.9-97.0) and the percentage of H- Tregs increased accordingly. In patients with SAI the percentage of pro-suppressor H+ Tregs on post-stroke day 3 was higher than in those without infection (p = 0.03). After adjustment for confounders, the percentage of H+ Tregs on day 3 independently correlated with SAI [OR 1.29; CI 95%: 1.08-1.27); p = 0.02]. Although the percentage of H+ Tregs on day 3 correlated positively with NIHSS score on day 90 (rS = 0.62; p < 0.01) and the infarct volume at day 90 (rS = 0.58; p < 0.05), in regression analysis it was not an independent risk factor. CONCLUSIONS On the first day after stroke the proportion of H+ vs. H- Tregs changes in favor of pro-inflammatory H- Tregs, and this shift continues toward normalization when assessed on day 90. A higher percentage of pro-suppressive H+ Tregs on day 3 independently correlates with SAI and is associated positively with NIHSS score, but it does not independently affect the outcome and stroke area in the convalescent phase of stroke.
Collapse
Affiliation(s)
- Maria Lukasik
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Magdalena Telec
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Radoslaw Kazmierski
- Department of Neurology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| | | | | | | | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech P Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
8
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Smith NP, Yan Y, Pan Y, Williams JB, Manakongtreecheep K, Pant S, Zhao J, Tian T, Pan T, Stingley C, Wu K, Zhang J, Kley AL, Sorger PK, Villani AC, Kupper TS. Resident memory T cell development is associated with AP-1 transcription factor upregulation across anatomical niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560006. [PMID: 37873428 PMCID: PMC10592877 DOI: 10.1101/2023.09.29.560006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tissue-resident memory T (T RM ) cells play a central role in immune responses to pathogens across all barrier tissues after infection. However, the underlying mechanisms that drive T RM differentiation and priming for their recall effector function remains unclear. In this study, we leveraged both newly generated and publicly available single-cell RNA-sequencing (scRNAseq) data generated across 10 developmental time points to define features of CD8 T RM across both skin and small-intestine intraepithelial lymphocytes (siIEL). We employed linear modeling to capture temporally-associated gene programs that increase their expression levels in T cell subsets transitioning from an effector to a memory T cell state. In addition to capturing tissue-specific gene programs, we defined a consensus T RM signature of 60 genes across skin and siIEL that can effectively distinguish T RM from circulating T cell populations, providing a more specific T RM signature than what was previously generated by comparing bulk T RM to naïve or non-tissue resident memory populations. This updated T RM signature included the AP-1 transcription factor family members Fos, Fosb and Fosl2 . Moreover, ATACseq analysis detected an enrichment of AP-1-specific motifs at open chromatin sites in mature T RM . CyCIF tissue imaging detected nuclear co-localization of AP-1 members Fosb and Junb in resting CD8 T RM >100 days post-infection. Taken together, these results reveal a critical role of AP-1 transcription factor members in T RM biology and suggests a novel mechanism for rapid reactivation of resting T RM in tissue upon antigen encounter.
Collapse
|
10
|
Polak K, Marchal P, Taroni C, Ebel C, Kirstetter P, Kastner P, Chan S. CD4 + regulatory T cells lacking Helios and Eos. Biochem Biophys Res Commun 2023; 674:83-89. [PMID: 37413709 DOI: 10.1016/j.bbrc.2023.06.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
The transcriptional regulators that drive regulatory T (Treg) cell development and function remain partially understood. Helios (Ikzf2) and Eos (Ikzf4) are closely-related members of the Ikaros family of transcription factors. They are highly expressed in CD4+ Treg cells and functionally important for Treg cell biology, as mice deficient for either Helios or Eos are susceptible to autoimmune diseases. However, it remains unknown if these factors exhibit specific or partially redundant functions in Treg cells. Here we show that mice with germline deletions of both Ikzf2 and Ikzf4 are not very different from animals with single Ikzf2 or Ikzf4 deletions. Double knockout Treg cells differentiate normally, and efficiently suppress effector T cell proliferation in vitro. Both Helios and Eos are required for optimal Foxp3 protein expression. Surprisingly, Helios and Eos regulate different, largely non-overlapping, sets of genes. Only Helios is required for proper Treg cell aging, as Helios deficiency results in reduced Treg cell frequencies in the spleen of older animals. These results indicate that Helios and Eos are required for distinct aspects of Treg cell function.
Collapse
Affiliation(s)
- Katarzyna Polak
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Patricia Marchal
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Chiara Taroni
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Claudine Ebel
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France; Flow Cytometry Service, IGBMC, Illkirch, France
| | - Peggy Kirstetter
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Philippe Kastner
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France; Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| | - Susan Chan
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France.
| |
Collapse
|
11
|
Blinova VG, Vasilyev VI, Rodionova EB, Zhdanov DD. The Role of Regulatory T Cells in the Onset and Progression of Primary Sjögren's Syndrome. Cells 2023; 12:1359. [PMID: 37408193 DOI: 10.3390/cells12101359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune balance and regulating the loss of self-tolerance mechanisms in various autoimmune diseases, including primary Sjögren's syndrome (pSS). With the development of pSS primarily in the exocrine glands, lymphocytic infiltration occurs in the early stages, mainly due to activated CD4+ T cells. Subsequently, in the absence of rational therapy, patients develop ectopic lymphoid structures and lymphomas. While the suppression of autoactivated CD4+ T cells is involved in the pathological process, the main role belongs to Tregs, making them a target for research and possible regenerative therapy. However, the available information about their role in the onset and progression of this disease seems unsystematized and, in certain aspects, controversial. In our review, we aimed to organize the data on the role of Tregs in the pathogenesis of pSS, as well as to discuss possible strategies of cell therapy for this disease. This review provides information on the differentiation, activation, and suppressive functions of Tregs and the role of the FoxP3 protein in these processes. It also highlights data on various subpopulations of Tregs in pSS, their proportion in the peripheral blood and minor salivary glands of patients as well as their role in the development of ectopic lymphoid structures. Our data emphasize the need for further research on Tregs and highlight their potential use as a cell-based therapy.
Collapse
Affiliation(s)
- Varvara G Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vladimir I Vasilyev
- Joint and Heart Treatment Center, Nizhnyaya Krasnoselskaya St. 4, 107140 Moscow, Russia
| | | | - Dmitry D Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| |
Collapse
|
12
|
Obradovic A, Ager C, Turunen M, Nirschl T, Khosravi-Maharlooei M, Iuga A, Jackson CM, Yegnasubramanian S, Tomassoni L, Fernandez EC, McCann P, Rogava M, DeMarzo AM, Kochel CM, Allaf M, Bivalacqua T, Lim M, Realubit R, Karan C, Drake CG, Califano A. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell 2023; 41:933-949.e11. [PMID: 37116491 PMCID: PMC10193511 DOI: 10.1016/j.ccell.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Due to their immunosuppressive role, tumor-infiltrating regulatory T cells (TI-Tregs) represent attractive immuno-oncology targets. Analysis of TI vs. peripheral Tregs (P-Tregs) from 36 patients, across four malignancies, identified 17 candidate master regulators (MRs) as mechanistic determinants of TI-Treg transcriptional state. Pooled CRISPR-Cas9 screening in vivo, using a chimeric hematopoietic stem cell transplant model, confirmed the essentiality of eight MRs in TI-Treg recruitment and/or retention without affecting other T cell subtypes, and targeting one of the most significant MRs (Trps1) by CRISPR KO significantly reduced ectopic tumor growth. Analysis of drugs capable of inverting TI-Treg MR activity identified low-dose gemcitabine as the top prediction. Indeed, gemcitabine treatment inhibited tumor growth in immunocompetent but not immunocompromised allografts, increased anti-PD-1 efficacy, and depleted MR-expressing TI-Tregs in vivo. This study provides key insight into Treg signaling, specifically in the context of cancer, and a generalizable strategy to systematically elucidate and target MR proteins in immunosuppressive subpopulations.
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey Ager
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mikko Turunen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Nirschl
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alina Iuga
- Department of Pathology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Lorenzo Tomassoni
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ester Calvo Fernandez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patrick McCann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo M DeMarzo
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamad Allaf
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity Bivalacqua
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ronald Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Cai H, Liu Y, Dong X, Jiang F, Li H, Ouyang S, Yin W, He T, Zeng Q, Yang H. Analysis of LAP + and GARP + Treg subsets in peripheral blood of patients with neuromyelitis optica spectrum disorders. Neurol Sci 2023; 44:1739-1747. [PMID: 36683084 DOI: 10.1007/s10072-023-06629-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is a group of antibody-mediated inflammatory demyelinating central nervous system diseases. T lymphocytes participate in NMOSD pathogenesis, with regulatory T cells (Treg) being the core in maintaining immune homeostasis. Studies have revealed that different Treg subsets play different roles in autoimmune diseases. The distribution of LAP+ or GARP+ Treg subsets in NMOSD may help us deeply understand their immune mechanism. METHODS This study reviewed 22 NMOSD patients and 20 normal controls. Flow cytometric analysis was utilized to detect subsets of Treg cells expressing Foxp3, Helios, LAP, or GARP in peripheral blood. ELISA was used to detect plasma TGF-β1 and IL-10. In addition, changes in the proportion of Treg cell subsets before and after glucocorticoid treatment in 10 patients were analyzed. RESULTS Compared with healthy controls, LAP and GARP expressions were significantly downregulated in the peripheral blood of NMOSD patients. TGF-β1 expression in NMOSD patients was lower and was positively correlated with the ratio of CD4+GARP+ Treg cells. After treatment with glucocorticoid, LAP and GARP expressions in the peripheral blood of NMOSD patients were upregulated. CONCLUSIONS The proportion of Treg cells expressing LAP and GARP is downregulated, implying that Treg cells with the best inhibitory function are insufficient to maintain autoimmune homeostasis in NMOSD patients. Upregulation of Treg cells expressing LAP and GARP in NMOSD patients may be one of the mechanisms of glucocorticoid treatment.
Collapse
Affiliation(s)
- Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, China
| | - Xiaohua Dong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Li
- Acupuncture and Tuina Rehabilitation Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Song Ouyang
- Medical Center of Neurology, The First Hospital of Changsha City, South China University, Changsha, China
| | - Weifan Yin
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Bittner S, Hehlgans T, Feuerer M. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol 2023; 44:468-483. [PMID: 37100644 DOI: 10.1016/j.it.2023.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Regulatory T (Treg) cells ensure tolerance against self-antigens, limit excessive inflammation, and support tissue repair processes. Therefore, Treg cells are currently attractive candidates for the treatment of certain inflammatory diseases, autoimmune disorders, or transplant rejection. Early clinical trials have proved the safety and efficacy of certain Treg cell therapies in inflammatory diseases. We summarize recent advances in engineering Treg cells, including the concept of biosensors for inflammation. We assess Treg cell engineering possibilities for novel functional units, including Treg cell modifications influencing stability, migration, and tissue adaptation. Finally, we outline perspectives of engineered Treg cells going beyond inflammatory diseases by using custom-designed receptors and read-out systems, aiming to use Treg cells as in vivo diagnostic tools and drug delivery vehicles.
Collapse
Affiliation(s)
- Sebastian Bittner
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
15
|
Wang Y, Zhao H, He Y, Zhang P, Zeng C, Du T, Shen Q, Chen Y, Zhao S. IKZF4 acts as a novel tumor suppressor in non-small cell lung cancer by suppressing Notch signaling pathway. Cell Signal 2023; 107:110679. [PMID: 37044192 DOI: 10.1016/j.cellsig.2023.110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the predominant cause of cancer-related mortality globally, although many clinical efforts have been developed to improve the outcomes. The Ikaros zing-finger family transcription factors (IKZFs) have been proved to play pivotal roles in lymphopoiesis and myeloma progression, but their roles in solid tumors development remain unclear. We performed integrative bioinformatical analysis to determine the dysregulation expression of IKZFs in multiple tumors and the correlation between IKZF4 and NSCLC tumor environment. We showed that IKZFs were dysregulated in multiple tumors and IKZF4 was significantly decreased in NSCLC tissues and cell lines due to promoter hypermethylation. We found that low IKZF4 expression obviously correlated with patients' poor clinical outcome. We revealed that IKZF4 overexpression inhibited NSCLC cell growth, migration and xenograft tumor growth, supporting the inhibitory role of IKZF4 in NSCLC tumorigenesis. Additionally, integrative bioinformatical analysis showed that IKZF4 was involved in NSCLC tumor microenvironment. Mechanically, RNA-seq results showed that IKZF4 forced-expression remarkably suppressed Notch signaling pathway in NSCLC, which was validated by qRT-PCR and immunoblot assays. Moreover, we screened several potential agonists for IKZF4.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Hanqing Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yaomei He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Cheng Zeng
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tongxuan Du
- Institute of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiushuo Shen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Institute of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Yongbin Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Hess NJ, Kink JA, Hematti P. Exosomes, MDSCs and Tregs: A new frontier for GVHD prevention and treatment. Front Immunol 2023; 14:1143381. [PMID: 37063900 PMCID: PMC10090348 DOI: 10.3389/fimmu.2023.1143381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The development of graft versus host disease (GVHD) represents a long-standing complication of allogeneic hematopoietic cell transplantation (allo-HCT). Different approaches have been used to control the development of GVHD with most relying on variations of chemotherapy drugs to eliminate allo-reactive T cells. While these approaches have proven effective, it is generally accepted that safer, and less toxic GVHD prophylaxis drugs are required to reduce the health burden placed on allo-HCT recipients. In this review, we will summarize the emerging concepts revolving around three biologic-based therapies for GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells (MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will highlight how each specific modality is unique in its mechanism of action, but also share a common theme in their ability to preferentially activate and expand Treg populations in vivo. As these three GVHD prevention/treatment modalities continue their path toward clinical application, it is imperative the field understand both the biological advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - John A. Kink
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
17
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Alvisi G, Termanini A, Soldani C, Portale F, Carriero R, Pilipow K, Costa G, Polidoro M, Franceschini B, Malenica I, Puccio S, Lise V, Galletti G, Zanon V, Colombo FS, De Simone G, Tufano M, Aghemo A, Di Tommaso L, Peano C, Cibella J, Iannacone M, Roychoudhuri R, Manzo T, Donadon M, Torzilli G, Kunderfranco P, Di Mitri D, Lugli E, Lleo A. Multimodal single-cell profiling of intrahepatic cholangiocarcinoma defines hyperactivated Tregs as a potential therapeutic target. J Hepatol 2022; 77:1359-1372. [PMID: 35738508 DOI: 10.1016/j.jhep.2022.05.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). METHODS We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. RESULTS We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. CONCLUSIONS We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. LAY SUMMARY Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type.
Collapse
Affiliation(s)
- Giorgia Alvisi
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Alberto Termanini
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Cristiana Soldani
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Federica Portale
- Laboratory of Tumor Microenvironment, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Karolina Pilipow
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Guido Costa
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy; Division of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Michela Polidoro
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Barbara Franceschini
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Ines Malenica
- Laboratory of Hepatobiliary Immunopathology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy
| | - Veronica Lise
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Veronica Zanon
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Gabriele De Simone
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Michele Tufano
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Alessio Aghemo
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Di Tommaso
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy; Department of Pathology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy; Genomic Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy; Human Technopole, Viale Rita Levi Montalcini 1, 20157, Milan, Italy
| | - Javier Cibella
- Genomic Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, CB2 3QP, United Kingdom
| | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology- IRCCS, Milan, Italy
| | - Matteo Donadon
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy; Division of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Guido Torzilli
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy; Division of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Diletta Di Mitri
- Laboratory of Tumor Microenvironment, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Ana Lleo
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
19
|
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, Astier A, Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 2022; 4:fcac171. [PMID: 35813882 PMCID: PMC9260308 DOI: 10.1093/braincomms/fcac171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood–brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood–brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.
Collapse
Affiliation(s)
- Manon Galoppin
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
| | - Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Arindam Pal
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Manon Rival
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| | | | - Anne Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| |
Collapse
|
20
|
Mahlobo B, Laher F, Smidt W, Ogunshola F, Khaba T, Nkosi T, Mbatha A, Ngubane T, Dong K, Jajbhay I, Pansegrouw J, Ndhlovu ZM. The impact of HIV infection on the frequencies, function, spatial localization and heterogeneity of T follicular regulatory cells (TFRs) within human lymph nodes. BMC Immunol 2022; 23:34. [PMID: 35778692 PMCID: PMC9250173 DOI: 10.1186/s12865-022-00508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND HIV eradication efforts have been unsuccessful partly due to virus persistence in immune sanctuary sites such as germinal centres within lymph node (LN) tissues. Recent evidence suggests that LNs harbour a novel subset of regulatory T cells, termed follicular regulatory T cells (TFRs), but their role in HIV pathogenesis is not fully elucidated. RESULTS Paired excisional LN and peripheral blood samples obtained from 20 HIV-uninfected and 31 HIV-infected treated and 7 chronic untreated, were used to determine if and how HIV infection modulate frequencies, function and spatial localization of TFRs within LN tissues. Imaging studies showed that most TFRs are localized in extra-follicular regions. Co-culture assays showed TFRs suppression of TFH help to B cells. Importantly, epigenetic and transcriptional studies identified DPP4 and FCRL3 as novel phenotypic markers that define four functionally distinct TFR subpopulations in human LNs regardless of HIV status. Imaging studies confirmed the regulatory phenotype of DPP4+TFRs. CONCLUSION Together these studies describe TFRs dynamic changes during HIV infection and reveal previously underappreciated TFR heterogeneity within human LNs.
Collapse
Affiliation(s)
- Bongiwe Mahlobo
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Faatima Laher
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Werner Smidt
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Trevor Khaba
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Krista Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA
| | - Ismail Jajbhay
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Johan Pansegrouw
- KwaZulu-Natal Department of Health, Prince Mshiyeni Memorial Hospital, Durban, South Africa
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
21
|
Lin F, Hu X, Zhang Y, Ye S, Gu Y, Yan B, Wang L, Jiang Y. Upregulated TIGIT+ and Helios+ regulatory T cell levels in bronchoalveolar lavage fluid of NSCLC patients. Mol Immunol 2022; 147:40-49. [DOI: 10.1016/j.molimm.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/17/2022] [Accepted: 04/17/2022] [Indexed: 12/09/2022]
|
22
|
Chen W, Huang W, Xue Y, Chen Y, Qian W, Ma J, August A, Wang J, Zheng SG, Lin J. Neuropilin-1 Identifies a New Subpopulation of TGF-β-Induced Foxp3 + Regulatory T Cells With Potent Suppressive Function and Enhanced Stability During Inflammation. Front Immunol 2022; 13:900139. [PMID: 35603221 PMCID: PMC9114772 DOI: 10.3389/fimmu.2022.900139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) play a crucial role in preventing autoimmunity and inflammation. There are naturally-derived in the thymus (tTreg), generated extrathymically in the periphery (pTreg), and induced in vitro culture (iTreg) with different characteristics of suppressiveness, stability, and plasticity. There is an abundance of published data on neuropilin-1 (Nrp-1) as a tTreg marker, but little data exist on iTreg. The fidelity of Nrp-1 as a tTreg marker and its role in iTreg remains to be explored. This study found that Nrp-1 was expressed by a subset of Foxp3+CD4+T cells in the central and peripheral lymphoid organs in intact mice, as well as in iTreg. Nrp-1+iTreg and Nrp-1-iTreg were adoptively transferred into a T cell-mediated colitis model to determine their ability to suppress inflammation. Differences in gene expression between Nrp-1+ and Nrp-1-iTreg were analyzed by RNA sequencing. We demonstrated that the Nrp-1+ subset of the iTreg exhibited enhanced suppressive function and stability compared to the Nrp-1- counterpart both in vivo and in vitro, partly depending on IL-10. We found that Nrp-1 is not an exclusive marker of tTreg, however, it is a biomarker identifying a new subset of iTreg with enhanced suppressive function, implicating a potential for Nrp-1+iTreg cell therapy for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Weiqian Chen
- Division of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Rheumatology, Department of Medicine, Pennsylvania State University Hershey College of Medicine, Hershey, PA, United States
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, LA, United States
| | - Youqiu Xue
- Division of Rheumatology, Department of Medicine, Pennsylvania State University Hershey College of Medicine, Hershey, PA, United States.,Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenbin Qian
- Division of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jilin Ma
- Division of Rheumatology, Department of Medicine, Pennsylvania State University Hershey College of Medicine, Hershey, PA, United States
| | - Avery August
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, LA, United States
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Pennsylvania State University Hershey College of Medicine, Hershey, PA, United States.,Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Pennsylvania State University Hershey College of Medicine, Hershey, PA, United States.,Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Lin
- Division of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Mansour R, Bsat YE, Fadel A, El-Orfali Y, Noun D, Tarek N, Kabbara N, Abboud M, Massaad MJ. Diagnosis and Treatment of a Patient With Severe Combined Immunodeficiency Due to a Novel Homozygous Mutation in the IL-7Rα Chain. Front Immunol 2022; 13:867837. [PMID: 35418989 PMCID: PMC8996178 DOI: 10.3389/fimmu.2022.867837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The interleukin-7 receptor (IL-7R) is expressed on lymphoid cells and plays an important role in the development, homeostasis, survival, and proliferation of T cells. Bi-allelic mutations in the IL-7Rα chain abolish T cell development and function resulting in severe combined immunodeficiency disease. In this manuscript, we investigate a 1 year-old patient born to consanguineous parents, who suffered from autoimmune hemolytic anemia since birth associated with recurrent severe infections. Flow cytometric analysis of the patient’s peripheral blood demonstrated elevated numbers of B and NK cells, decreased numbers of T cells, defective thymic output, a predominance of memory T cells, and absent T cell proliferation. Next Generation Sequencing identified a novel homozygous pathogenic mutation in IL7RA (c.379G>A) that resulted in aberrant IL7RA RNA splicing and absent IL-7Rα expression. The patient was successfully transplanted using her HLA-matched relative as donor. One year after transplant, the patient is clinically stable with normal reconstitution of donor T cells that express IL-7Rα, a significant increase in the percentages of recent thymic emigrant and peripheral T cells, normalization of naïve and memory T cells, and restoration of her T cell’s proliferative response. Therefore, using genetic and functional approaches, we identified a novel deleterious mutation in IL-7Rα that results in T-B+NK+ phenotype, and report successful hematopoietic stem cell transplantation of the patient. This represents the first bedside-to-bench-and-back case entirely performed on a patient with severe combined immunodeficiency at the American University of Beirut Medical Center.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yasmin El Bsat
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Anthony Fadel
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dolly Noun
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nidale Tarek
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nabil Kabbara
- Division of Pediatric Hematology Oncology, Rafic Hariri University Hospital, Beirut, Lebanon.,Division of Pediatric Hematology Oncology, Centre Hospitalier du Nord, Zgharta, Lebanon
| | - Miguel Abboud
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
The Association between Regulatory T Cell Subpopulations and Severe Pneumonia Post Renal Transplantation. J Immunol Res 2022; 2022:8720438. [PMID: 35437510 PMCID: PMC9013297 DOI: 10.1155/2022/8720438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Severe pneumonia accounts for the majority of morbidity and mortality in renal allograft recipients due to immunosuppressant maintenance. Regulatory T cells (Tregs), which are involved in tackling infections under immunosuppressive conditions, are rarely uncovered. We aimed to investigate the relationship between various Treg subpopulations and severe pneumonia after kidney transplantation (KTx). KTx recipients with pneumonia were divided into severe pneumonia and mild pneumonia groups. The frequencies and absolute numbers (Ab No.) of total Tregs (CD4+CD25+FoxP3+), six subsets of Tregs (Helios+/-, CD39+/-, and CD45RA+/-), and T cells, B cells, and NK cells were assessed from peripheral blood via flow cytometry using the
or Mann-Whitney test and receiver operating curve analysis. We also determined the median fluorescence intensity (MFI) of human leukocyte antigen- (HLA-) DR on monocytes and CD64 on neutrophils. Logistic regression was used to identify the risk factors of disease progression, and Pearson’s correlation analysis was performed to identify relationships between the measured immune indices and patients’ clinical information. Our research indicated that Treg subpopulations were strongly associated with severe pneumonia progression post KTx. Based on the monitoring of Treg subpopulations, better-individualized prevention and therapy might be achieved for patients with severe pneumonia post KTx.
Collapse
|
25
|
Matavele Chissumba R, Magul C, Macamo R, Monteiro V, Enosse M, Macicame I, Cumbane V, Bhatt N, Viegas E, Imbach M, Eller LA, Polyak CS, Kestens L. Helios expressing regulatory T cells are correlated with decreased IL-2 producing CD8 T cells and antibody diversity in Mozambican individuals living chronically with HIV-1. BMC Immunol 2022; 23:12. [PMID: 35287587 PMCID: PMC8922818 DOI: 10.1186/s12865-022-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) causes impairment of T and B cell responses, which begins during the acute phase of infection and is not completely restored by antiretroviral treatment. Regulatory T cell (Tregs) can improve overall disease outcome by controlling chronic inflammation but may also suppress beneficial HIV-1 specific immune responses. We aimed to analyze the profile of Tregs and their correlation with the status of T cells activation, the expression of IL-2 and IFNγ and the profile of HIV-1 specific antibodies response in Mozambican people living chronically with HIV-1 (PLWH-C). Results In PLWH-C, the proportion of total Tregs was positively correlated with the proportion of IL-2+CD4 T cells (r = 0.647; p = 0.032) and IL-2+IFNγ+CD8 T cells (r = 0.551; p = 0.014), while the proportions of Helios+Tregs correlated inversely with levels of IL-2+CD8 T cells (r = − 0.541; p = 0.017). Overall, PLWH-C, with (82%) or without virologic suppression (64%), were seronegative for at least HIV-1 p31, gp160 or p24, and the breadth of antibody responses was positively correlated with proportions of CD38+HLA-DR+CD8 T cells (r = 0.620; p = 0.012), viral load (r = 0.452; p = 0.040) and inversely with absolute CD4 T cells count (r = − 0.481; p = 0.027). Analysis of all individuals living HIV-1 showed that the breadth of HIV-1 antibody responses was inversely correlated with the proportion of Helios+Tregs (r = − 0.45; p = 0.02). Conclusion Among Mozambican people living with HIV-1, seronegativity to some HIV-1 proteins is common, particularly in virologically suppressed individuals. Furthermore, lower diversity of HIV-specific antibodies is correlated to lower immune activation, lower viral replication and higher CD4 counts, in PLWH-C. Elevation in the proportion of Helios+Tregs is related to a reduction of CD8 T expressing intracellular IL-2, in PLWH-C, but may contribute to impairment of B cell function. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00487-3.
Collapse
Affiliation(s)
- Raquel Matavele Chissumba
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique. .,Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Cacildo Magul
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Rosa Macamo
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Vânia Monteiro
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Maria Enosse
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Ivalda Macicame
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Victória Cumbane
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Nilesh Bhatt
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Edna Viegas
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Michelle Imbach
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Christina S Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Luc Kestens
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
26
|
Janssens I, Campillo Davó D, Van den Bos J, De Reu H, Berneman ZN, Wens I, Cools N. Engineering of regulatory T cells by means of mRNA electroporation in a GMP-compliant manner. Cytotherapy 2022; 24:659-672. [DOI: 10.1016/j.jcyt.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
27
|
Shahin T, Kuehn HS, Shoeb MR, Gawriyski L, Giuliani S, Repiscak P, Hoeger B, Yüce Petronczki Ö, Bal SK, Zoghi S, Dmytrus J, Seruggia D, Castanon I, Rezaei N, Varjosalo M, Halbritter F, Rosenzweig SD, Boztug K. Germline biallelic mutation affecting the transcription factor Helios causes pleiotropic defects of immunity. Sci Immunol 2021; 6:eabe3981. [PMID: 34826259 DOI: 10.1126/sciimmunol.abe3981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tala Shahin
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mohamed R Shoeb
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Lisa Gawriyski
- Institute of Biotechnology, Helsinki Institute of Life Science, Proteomics Unit, University of Helsinki, Helsinki, Finland
| | - Sarah Giuliani
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Peter Repiscak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Birgit Hoeger
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Özlem Yüce Petronczki
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sevgi Köstel Bal
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Samaneh Zoghi
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Jasmin Dmytrus
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Davide Seruggia
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, Proteomics Unit, University of Helsinki, Helsinki, Finland
| | | | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Chuang HC, Chen MH, Chen YM, Yang HY, Ciou YR, Hsueh CH, Tsai CY, Tan TH. BPI overexpression suppresses Treg differentiation and induces exosome-mediated inflammation in systemic lupus erythematosus. Theranostics 2021; 11:9953-9966. [PMID: 34815797 PMCID: PMC8581436 DOI: 10.7150/thno.63743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Serum-derived exosomes are correlated with disease severity of human systemic lupus erythematosus (SLE). The proteins in the T-cell-derived exosomes from SLE patients could contribute to inflammation. Methods: We characterized proteins of T cell-derived exosomes from SLE patients and healthy controls by proteomics. To study the potential pathogenic role of the identified exosomal protein, we generated and characterized T-cell-specific transgenic mice that overexpressed the identified protein in T cells using immunohistochemistry, immunoblotting, and single-cell RNA sequencing. Results: We identified an overexpressed protein, bactericidal/permeability-increasing protein (BPI), in SLE T cells and T-cell-derived exosomes. T-cell-specific BPI transgenic (Lck-BPI Tg) mice showed multi-tissue inflammation with early induction of serum IL-1β levels, as well as serum triglyceride and creatinine levels. Interestingly, exosomes of Lck-BPI Tg T cells stimulated IL-1β expression of wild-type recipient macrophages. Remarkably, adoptive transfer of BPI-containing exosomes increased serum IL-1β and autoantibody levels in recipient mice. The transferred exosomes infiltrated into multiple tissues of recipient mice, resulting in hepatitis, nephritis, and arthritis. ScRNA-seq showed that Lck-BPI Tg T cells displayed a decrease of Treg population, which was concomitant with ZFP36L2 upregulation and Helios downregulation. Furthermore, in vitro Treg differentiation was reduced by BPI transgene and enhanced by BPI knockout. Conclusions: BPI is a negative regulator of Treg differentiation. BPI overexpression in T-cell-derived exosomes or peripheral blood T cells may be a biomarker and pathogenic factor for human SLE nephritis, hepatitis, and arthritis.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Han Chen
- Division of Allergy, Immunology, and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Huang-Yu Yang
- Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ru Ciou
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Hsin Hsueh
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Ching-Yi Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
29
|
Bernard-Raichon L, Colom A, Monard SC, Namouchi A, Cescato M, Garnier H, Leon-Icaza SA, Métais A, Dumas A, Corral D, Ghebrendrias N, Guilloton P, Vérollet C, Hudrisier D, Remot A, Langella P, Thomas M, Cougoule C, Neyrolles O, Lugo-Villarino G. A Pulmonary Lactobacillus murinus Strain Induces Th17 and RORγt + Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2021; 207:1857-1870. [PMID: 34479945 DOI: 10.4049/jimmunol.2001044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/24/2021] [Indexed: 12/31/2022]
Abstract
The lungs harbor multiple resident microbial communities, otherwise known as the microbiota. There is an emerging interest in deciphering whether the pulmonary microbiota modulate local immunity, and whether this knowledge could shed light on mechanisms operating in the response to respiratory pathogens. In this study, we investigate the capacity of a pulmonary Lactobacillus strain to modulate the lung T cell compartment and assess its prophylactic potential upon infection with Mycobacterium tuberculosis, the etiological agent of tuberculosis. In naive mice, we report that a Lactobacillus murinus (Lagilactobacillus murinus) strain (CNCM I-5314) increases the presence of lung Th17 cells and of a regulatory T cell (Treg) subset known as RORγt+ Tregs. In particular, intranasal but not intragastric administration of CNCM I-5314 increases the expansion of these lung leukocytes, suggesting a local rather than systemic effect. Resident Th17 and RORγt+ Tregs display an immunosuppressive phenotype that is accentuated by CNCM I-5314. Despite the well-known ability of M. tuberculosis to modulate lung immunity, the immunomodulatory effect by CNCM I-5314 is dominant, as Th17 and RORγt+ Tregs are still highly increased in the lung at 42-d postinfection. Importantly, CNCM I-5314 administration in M. tuberculosis-infected mice results in reduction of pulmonary inflammation, without increasing M. tuberculosis burden. Collectively, our findings provide evidence for an immunomodulatory capacity of CNCM I-5314 at steady state and in a model of chronic inflammation in which it can display a protective role, suggesting that L. murinus strains found in the lung may shape local T cells in mice and, perhaps, in humans.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France;
| | - André Colom
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah C Monard
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Amine Namouchi
- Centre for Integrative Genetics, Norwegian University of Life Sciences, As, Norway; and
| | - Margaux Cescato
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Hugo Garnier
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stephen A Leon-Icaza
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alexia Dumas
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dan Corral
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Natsinet Ghebrendrias
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Guilloton
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denis Hudrisier
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aude Remot
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Thomas
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France;
| |
Collapse
|
30
|
Lam AJ, Uday P, Gillies JK, Levings MK. Helios is a marker, not a driver, of human Treg stability. Eur J Immunol 2021; 52:75-84. [PMID: 34561855 DOI: 10.1002/eji.202149318] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/24/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Treg therapy holds promise as a potentially curative approach to establish immune tolerance in transplantation and autoimmune disease. An outstanding question is whether therapeutic Tregs have the potential to transdifferentiate into effector T-cells and, thus, exacerbate rather than suppress immune responses. In mice, the transcription factor Helios is thought to promote Treg lineage stability in a range of inflammatory contexts. In humans, the role of Helios in Tregs is less clear, in part, due to the inability to enrich and study subsets of Helios-positive versus Helios-negative Tregs. Using an in vitro expansion system, we found that loss of high Helios expression and emergence of an intermediate Helios (Heliosmid )-expressing population correlated with Treg destabilization. We used CRISPR/Cas9 to genetically ablate Helios expression in human naive or memory Tregs and found that Helios-KO and unedited Tregs were equivalent in their suppressive function and stability in inflammation. Thus, high Helios expression is a marker, but not a driver, of human Treg stability in vitro. These data highlight the importance of monitoring Helios expression in therapeutic Treg manufacturing and provide new insight into the biological function of this transcription factor in human T-cells.
Collapse
Affiliation(s)
- Avery J Lam
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Prakruti Uday
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jana K Gillies
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
31
|
Baeten P, Van Zeebroeck L, Kleinewietfeld M, Hellings N, Broux B. Improving the Efficacy of Regulatory T Cell Therapy. Clin Rev Allergy Immunol 2021; 62:363-381. [PMID: 34224053 PMCID: PMC8256646 DOI: 10.1007/s12016-021-08866-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Autoimmunity is caused by an unbalanced immune system, giving rise to a variety of organ-specific to system disorders. Patients with autoimmune diseases are commonly treated with broad-acting immunomodulatory drugs, with the risk of severe side effects. Regulatory T cells (Tregs) have the inherent capacity to induce peripheral tolerance as well as tissue regeneration and are therefore a prime candidate to use as cell therapy in patients with autoimmune disorders. (Pre)clinical studies using Treg therapy have already established safety and feasibility, and some show clinical benefits. However, Tregs are known to be functionally impaired in autoimmune diseases. Therefore, ex vivo manipulation to boost and stably maintain their suppressive function is necessary when considering autologous transplantation. Similar to autoimmunity, severe coronavirus disease 2019 (COVID-19) is characterized by an exaggerated immune reaction and altered Treg responses. In light of this, Treg-based therapies are currently under investigation to treat severe COVID-19. This review provides a detailed overview of the current progress and clinical challenges of Treg therapy for autoimmune and hyperinflammatory diseases, with a focus on recent successes of ex vivo Treg manipulation.
Collapse
Affiliation(s)
- Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Lauren Van Zeebroeck
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium. .,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
32
|
Coexpression of Helios in Foxp3 + Regulatory T Cells and Its Role in Human Disease. DISEASE MARKERS 2021; 2021:5574472. [PMID: 34257746 PMCID: PMC8245237 DOI: 10.1155/2021/5574472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/15/2021] [Indexed: 12/03/2022]
Abstract
Regulatory T cells (Tregs) expressing the Foxp3 transcription factor are indispensable for the maintenance of immune system homeostasis. Tregs may lose Foxp3 expression or be reprogrammed into cells that produce proinflammatory cytokines, for example, Th1-like Tregs, Th2-like Tregs, Th17-like Tregs, and Tfh-like Tregs. Accordingly, selective therapeutic molecules that manipulate Treg lineage stability and/or functional activity might have the potential to improve aberrant immune responses in human disorders. In particular, the transcription factor Helios has emerged as an important marker and modulator of Tregs. Therefore, the current review focuses on recent findings on the expression, function, and mechanisms of Helios, as well as the patterns of Foxp3+ Tregs coexpressing Helios in various human disorders, in order to explore the potential of Helios for the improvement of many immune-related diseases. The studies were selected from PubMed using the library of the Nanjing Medical University in this review. The findings of the included studies indicate that Helios expression stabilizes the phenotype and function of Foxp3+ Tregs in certain inflammatory environments. Further, Tregs coexpressing Helios and Foxp3 were identified as a specific phenotype of stronger suppressor immune cells in both humans and animal models. Importantly, there is ample evidence that Helios-expressing Foxp3+ Tregs are relevant to various human disorders, including connective tissue diseases, infectious diseases, solid organ transplantation-related immunity, and cancer. Thus, Helios+Foxp3+CD4+ Tregs could be a valuable target in human diseases, and their potential should be explored further in the clinical setting.
Collapse
|
33
|
Ramos-Ramírez P, Malmhäll C, Tliba O, Rådinger M, Bossios A. Adiponectin/AdipoR1 Axis Promotes IL-10 Release by Human Regulatory T Cells. Front Immunol 2021; 12:677550. [PMID: 34084174 PMCID: PMC8167046 DOI: 10.3389/fimmu.2021.677550] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Adiponectin is an important immunomodulatory mediator in inflammatory conditions. While we previously showed that adiponectin receptor 1 (AdipoR1) is expressed in murine regulatory T cells (Tregs), its expression in human Tregs remain unknown. Here, we examined the expression of AdipoR1 in human Tregs and whether its ligand, globular adiponectin (gAd) affects the Treg ability to secrete IL-10 and the role of Type 2 (T2) inflammation in such process. Methods Human Tregs from peripheral blood were analyzed by flow cytometry for AdipoR1, Helios and IL-10 expression. CD4+ T cells enriched from peripheral blood mononuclear cells (PBMCs) were cultured in the presence or the absence of gAd or the chemical adiponectin receptor agonist, AdipoRon, or in a T2 cytokine milieu. Flow cytometry was then used to assess intracellular IL-10, IL-10 secreting cells, FOXP3 and Helios expression, and phosphorylated p38 MAP kinase (MAPK). IL-10 levels in CD4+ T cell supernatants were quantified by ELISA. Results We found that a subset of human Tregs expressed AdipoR1. Importantly, more Helios- cells expressed AdipoR1 than Helios+ cells. Likewise, there was a higher frequency of IL-10+ cells within Helios- AdipoR1+ Tregs compared to Helios+ AdipoR1+ Tregs. In contrast, the IL-10 mean fluorescence intensity (MFI) was higher in Helios+ AdipoR1+ Tregs compared to Helios-AdipoR1+ Tregs. When human CD4+ T cells were treated with gAd or AdipoRon, a significant increase in IL-10 secretion, FOXP3 expression, and p38 MAPK phosphorylation was observed in Helios- AdipoR1+ Tregs. Interestingly, gAd under T2 cytokine milieu significantly increased the intracellular levels of IL-10, mainly in Helios+ AdipoR1+ Tregs, and IL-10 levels in supernatants of CD4+ T cells. Conclusions Collectively, our findings suggest that adiponectin/AdipoR1 axis promotes IL-10 release by Tregs, mainly in Helios- Tregs, and the effect was amplified by T2 inflammation in Helios+ Tregs.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Apostolos Bossios
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge and Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Zhang Y, Zhang J, Shi Y, Shen M, Lv H, Chen S, Feng Y, Chen H, Xu X, Yang T, Xu K. Differences in Maturation Status and Immune Phenotypes of Circulating Helios + and Helios - Tregs and Their Disrupted Correlations With Monocyte Subsets in Autoantibody-Positive T1D Individuals. Front Immunol 2021; 12:628504. [PMID: 34054801 PMCID: PMC8149963 DOI: 10.3389/fimmu.2021.628504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
CD4 Tregs are involved in the regulation of various autoimmune diseases but believed to be highly heterogeneous. Studies have indicated that Helios controls a distinct subset of functional Tregs. However, the immunological changes in circulating Helios+ and Helios− Tregs are not fully explored in type 1 diabetes (T1D). Here, we elucidated the differences in maturation status and immune regulatory phenotypes of Helios+ and Helios− Tregs and their correlations with monocyte subsets in T1D individuals. As CD25−/low FOXP3+ Tregs also represent a subset of functional Tregs, we defined Tregs as FOXP3+CD127−/low and examined circulating Helios+ and Helios− Treg subpopulations in 68 autoantibody-positive T1D individuals and 68 age-matched healthy controls. We found that expression of both FOXP3 and CTLA4 diminished in Helios− Tregs, while the proportion of CD25−/low Tregs increased in Helios+ Tregs of T1D individuals. Although the frequencies of neither Helios+ nor Helios− Tregs were affected by investigated T1D genetic risk loci, Helios+ Tregs correlated with age at T1D diagnosis negatively and disease duration positively. Moreover, the negative correlation between central and effector memory proportions of Helios+ Tregs in healthy controls was disrupted in T1D individuals. Finally, regulatory non-classical and intermediate monocytes also decreased in T1D individuals, and positive correlations between these regulatory monocytes and Helios+/Helios− Treg subsets in healthy controls disappeared in T1D individuals. In conclusion, we demonstrated the alternations in maturation status and immune phenotypes in Helios+ and Helios− Treg subsets and revealed the missing association between these Treg subsets and monocyte subsets in T1D individuals, which might point out another option for elucidating T1D mechanisms.
Collapse
Affiliation(s)
- Yuyue Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Lv
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingjie Feng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Liu MF, Jin C, Wu T, Chen EH, Lu M, Qin HL. Helios serves as a suppression marker to reduce regulatory T cell function in pancreatic cancer patients. Immunol Res 2021; 69:275-284. [PMID: 33959834 DOI: 10.1007/s12026-021-09200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Destabilizing and reprogramming regulatory T (Treg) cells have become a potential strategy to treat tumor. Mounting evidence indicates that the transcription factor Helios is required for the stable differentiation of Treg lineage. Hence, we investigated whether Helios suppression could be a potential treatment option for pancreatic cancer patients. We found that Helios+ cells were predominantly in Foxp3+ Treg cells. By contrast, Foxp3+ Treg cells can be Helios+ or Helios-, but the level of Foxp3 expression was significantly higher in Helios+Foxp3+ Treg cells than in Helios-Foxp3+ Treg cells. Resected pancreatic tumors were highly enriched with both Helios+Foxp3+ Treg cells and Helios-Foxp3+ Treg cells. Also, the proportion of Helios+ cells in total Foxp3+ Treg cells was significantly higher in peripheral blood mononuclear cells (PBMCs) of patients than in PBMCs of healthy controls and further increased in patient tumors. Using shRNA, we knocked down Helios expression without significant downregulation of Foxp3. After Helios knockdown, CD4+CD25+CD127- Treg cells presented significantly lower levels of TGF-β secretion, lower levels of IL-10 secretion, and higher levels of IFN-γ secretion. In addition, Helios shRNA-transfected CD4+CD25+CD127- Treg cells presented lower capacity to inhibit CD4+CD25-CD127+ T conventional cell proliferation than control shRNA-transfected CD4+CD25+CD127- Treg cells. Of note, CD4+CD25+CD127- Treg cells from pancreatic cancer patients demonstrated higher TGF-β expression and higher suppression capacity than the cells from healthy controls. Overall, these results suggest that in pancreatic cancer patients, Helios may serve as a candidate to suppress Treg function, which could be used as a target to treat pancreatic cancer.
Collapse
Affiliation(s)
- Min-Feng Liu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - En-Hong Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Minxue Lu
- Department of Gastroenterology, Zhebei Mingzhou Hospital, 255 Gongyuan Road, Huzhou, Zhejiang, China.
| | - Huan-Long Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
5-Aminoisoquinolinone, a PARP-1 Inhibitor, Ameliorates Immune Abnormalities through Upregulation of Anti-Inflammatory and Downregulation of Inflammatory Parameters in T Cells of BTBR Mouse Model of Autism. Brain Sci 2021; 11:brainsci11020249. [PMID: 33671196 PMCID: PMC7922312 DOI: 10.3390/brainsci11020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 12/02/2022] Open
Abstract
Autism spectrum disorder (ASD) covers a range of neurodevelopmental disorders involving impairments in communication and repetitive and stereotyped patterns of behavior and reciprocal social interaction. 5-Aminoisoquinolinone (5-AIQ), a PARP-1 inhibitor, has neuroprotective and anti-inflammatory effects. We investigated the influence of 5-AIQ-treatment in BTBR T+ Itpr3tf/J (BTBR) mice as an autism model and used flow cytometry to assess the effect of 5-AIQ on FOXP3, Helios, GATA3, IL-9, IL-10 and IL-17A production by CXCR6+ and CD4+ T cells in the spleen. We also confirmed the effect of 5-AIQ treatment on expression of FOXP3, Helios, GATA3, IL-17A, IL-10, and IL-9 mRNA and protein expression levels in the brain tissue by quantitative PCR and western blotting. Our results demonstrated that 5-AIQ-treated BTBR mice had significantly increased numbers of CXCR6+FOXP3+, CXCR6+IL-10+, and CXCR6+Helios+ cells and decreased numbers of CD4+GATA3+, CD4+IL-9+, and CD4+IL-17A+ cells as compared with those in untreated BTBR mice. Our results further demonstrated that treatment with 5-AIQ in BTBR mice increased expression for FOXP3, IL-10, and Helios, and decreased expression for GATA3, IL-17A, and IL-9 mRNA. Our findings support the hypotheses that 5-AIQ has promising novel therapeutic effects on neuroimmune dysfunction in autism and is associated with modulation of Treg and Th17 cells.
Collapse
|
37
|
González-Navajas JM, Fan DD, Yang S, Yang FM, Lozano-Ruiz B, Shen L, Lee J. The Impact of Tregs on the Anticancer Immunity and the Efficacy of Immune Checkpoint Inhibitor Therapies. Front Immunol 2021; 12:625783. [PMID: 33717139 PMCID: PMC7952426 DOI: 10.3389/fimmu.2021.625783] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Although cancers arise from genetic mutations enabling cells to proliferate uncontrollably, they cannot thrive without failure of the anticancer immunity due in a large part to the tumor environment's influence on effector and regulatory T cells. The field of immune checkpoint inhibitor (ICI) therapy for cancer was born out of the fact that tumor environments paralyze the immune cells that are supposed to clear them by activating the immune checkpoint molecules such as PD-1. While various subsets of effector T cells work collaboratively to eliminate cancers, Tregs enriched in the tumor environment can suppress not only the native anticancer immunity but also diminish the efficacy of ICI therapies. Because of their essential role in suppressing autoimmunity, various attempts to specifically deplete tumor-associated Tregs are currently underway to boost the efficacy of ICI therapies without causing systemic autoimmune responses. A better understanding the roles of Tregs in the anti-cancer immunity and ICI therapies should provide more specific targets to deplete intratumoral Tregs. Here, we review the current understanding on how Tregs inhibit the anti-cancer immunity and ICI therapies as well as the advances in the targeted depletion of intratumoral Tregs.
Collapse
Affiliation(s)
- Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, Elche, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández, Elche, Spain
- Jose M. González-Navajas
| | - Dengxia Denise Fan
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuang Yang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fengyuan Mandy Yang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain
| | - Liya Shen
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jongdae Lee
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jongdae Lee ;
| |
Collapse
|
38
|
Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev 2020; 300:82-99. [PMID: 33331000 DOI: 10.1111/imr.12936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Ikaros zinc finger transcription factors are important regulators of the gene programs underlying the development of hematopoietic cell lineages. The family consists of five members: Ikaros, Helios, Aiolos, Eos, and Pegasus, which engage in both homo- and heterotypic intrafamilial interactions to exert diverse functional effects. Pioneering studies focused on the role of these factors in early lymphoid development, as their absence resulted in severe defects in lymphocyte populations. More recent work has now begun to define nuanced, stage-specific roles for Ikaros family members in the differentiation and function of mature T, B, and innate lymphoid cell populations including natural killer (NK) cells. The precise transcriptional mechanisms by which these factors function, both independently and collaboratively, is an area of active investigation. However, several key themes appear to be emerging regarding the pathways influenced by Ikaros family members, including the end-to-end regulation of cytokine signaling. Here, we review roles for Ikaros factors in lymphoid cell development, differentiation, and function, including a discussion of the current understanding of the transcriptional mechanisms they employ and considerations for the future study of this important transcription factor family.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Aharon G Freud
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
39
|
Tapia-Maltos MA, Treviño-Frenk I, García-González HB, Rosetti M, Barriga-Maldonado V, Morales-Ramírez F, López-Hernández DC, Rosetti F, Crispín JC. Identification of regulatory T cell molecules associated with severity of multiple sclerosis. Mult Scler 2020; 27:1695-1705. [PMID: 33300840 DOI: 10.1177/1352458520977045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Regulatory CD4+ T cells (Tregs) exhibit functional alterations in patients with multiple sclerosis (MS). Transforming growth factor (TGF)-β is a key regulator of Treg development and function. OBJECTIVE The objective of this study is to determine whether the expression of functionally relevant TGF-β-regulated molecules is altered in Tregs from patients with MS. METHODS Expression of nine Treg markers was analyzed by multi-color flow cytometry in CD4+ T cells and Treg subpopulations of 31 untreated MS patients and age- and sex-matched healthy donors (HDs). Correlations between Treg marker expression and clinical variables were sought. RESULTS Expression of the transcription factor Helios, which defines thymic-derived Tregs, was decreased in this Treg subpopulation. The frequency of peripherally generated Tregs was increased in patients with MS, particularly in patients with progressive MS. Low frequencies of thymic-derived Tregs were associated with magnetic resonance imaging (MRI) lesion-burden and a high relapse rate. Four surface markers associated with TGF-β signaling (ABCA1, BTLA, DNAM-1, and GARP) were differentially expressed on Tregs from patients with MS and HDs. Expression levels of CD73, CD103, ABCA1, and PAR2 showed strong correlations with disease severity. CONCLUSION We have identified novel markers abnormally expressed on Tregs from patients with MS that could detect patients with severe disease.
Collapse
Affiliation(s)
- M A Tapia-Maltos
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico/Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - I Treviño-Frenk
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - H B García-González
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Rosetti
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - V Barriga-Maldonado
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - F Morales-Ramírez
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - D C López-Hernández
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - F Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J C Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico/Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
40
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Janssens I, Cools N. Regulating the regulators: Is introduction of an antigen-specific approach in regulatory T cells the next step to treat autoimmunity? Cell Immunol 2020; 358:104236. [PMID: 33137651 DOI: 10.1016/j.cellimm.2020.104236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
In autoimmunity, the important and fragile balance between immunity and tolerance is disturbed, resulting in abnormal immune responses to the body's own tissues and cells. CD4+CD25hiFoxP3+ regulatory T cells (Tregs) induce peripheral tolerance in vivo by means of direct cell-cell contact and release of soluble factors, or indirectly through antigen-presenting cells (APC), thereby controlling auto-reactive effector T cells. Based on these unique capacities of Tregs, preclinical studies delivered proof-of-principle for the clinical use of Tregs for the treatment of autoimmune diseases. To date, the first clinical trials using ex vivo expanded polyclonal Tregs have been completed. These pioneering studies demonstrate the feasibility of generating large numbers of polyclonal Tregs in a good manufacturing practices (GMP)-compliant manner, and that infusion of Tregs is well tolerated by patients with no evidence of general immunosuppression. Nonetheless, only modest clinical results were observed, arguing that a more antigen-specific approach might be needed to foster a durable patient-specific clinical cell therapy without the risk for general immunosuppression. In this review, we discuss current knowledge, applications and future goals of adoptive immune-modulatory Treg therapy for the treatment of autoimmune disease and transplant rejection. We describe the key advances and prospects of the potential use of T cell receptor (TCR)- and chimeric antigen receptor (CAR)-engineered Tregs in future clinical applications. These approaches could deliver the long-awaited breakthrough in stopping undesired autoimmune responses and transplant rejections.
Collapse
Affiliation(s)
- Ibo Janssens
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
42
|
Ng MSF, Roth TL, Mendoza VF, Marson A, Burt TD. Helios enhances the preferential differentiation of human fetal CD4 + naïve T cells into regulatory T cells. Sci Immunol 2020; 4:4/41/eaav5947. [PMID: 31757834 DOI: 10.1126/sciimmunol.aav5947] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
T cell receptor (TCR) stimulation and cytokine cues drive the differentiation of CD4+ naïve T cells into effector T cell populations with distinct proinflammatory or regulatory functions. Unlike adult naïve T cells, human fetal naïve CD4+ T cells preferentially differentiate into FOXP3+ regulatory T (Treg) cells upon TCR activation independent of exogenous cytokine signaling. This cell-intrinsic predisposition for Treg differentiation is implicated in the generation of tolerance in utero; however, the underlying mechanisms remain largely unknown. Here, we identify epigenetic and transcriptional programs shared between fetal naïve T and committed Treg cells that are inactive in adult naïve T cells and show that fetal-derived induced Treg (iTreg) cells retain this transcriptional program. We show that a subset of Treg-specific enhancers is accessible in fetal naïve T cells, including two active superenhancers at Helios Helios is expressed in fetal naïve T cells but not in adult naïve T cells, and fetal iTreg cells maintain Helios expression. CRISPR-Cas9 ablation of Helios in fetal naïve T cells impaired their differentiation into iTreg cells upon TCR stimulation, reduced expression of immunosuppressive genes in fetal iTreg cells such as IL10, and increased expression of proinflammatory genes including IFNG Consequently, Helios knockout fetal iTreg cells had reduced IL-10 and increased IFN-γ cytokine production. Together, our results reveal important roles for Helios in enhancing preferential fetal Treg differentiation and fine-tuning eventual Treg function. The Treg-biased programs identified within fetal naïve T cells could potentially be used to engineer enhanced iTreg populations for adoptive cellular therapies.
Collapse
Affiliation(s)
- Melissa S F Ng
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore 138648, Singapore
| | - Theodore L Roth
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA. .,Department of Pediatrics, Division of Neonatology, UCSF, San Francisco, CA 94110, USA
| |
Collapse
|
43
|
Mohammadzadeh A. Co-inhibitory receptors, transcription factors and tolerance. Int Immunopharmacol 2020; 84:106572. [DOI: 10.1016/j.intimp.2020.106572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
|
44
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
45
|
Honaker Y, Hubbard N, Xiang Y, Fisher L, Hagin D, Sommer K, Song Y, Yang SJ, Lopez C, Tappen T, Dam EM, Khan I, Hale M, Buckner JH, Scharenberg AM, Torgerson TR, Rawlings DJ. Gene editing to induce FOXP3 expression in human CD4+ T cells leads to a stable regulatory phenotype and function. Sci Transl Med 2020; 12:12/546/eaay6422. [DOI: 10.1126/scitranslmed.aay6422] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Thymic regulatory T cells (tTregs) are potent inhibitors of autoreactive immune responses, and loss of tTreg function results in fatal autoimmune disease. Defects in tTreg number or function are also implicated in multiple autoimmune diseases, leading to growing interest in use of Treg as cell therapies to establish immune tolerance. Because tTregs are present at low numbers in circulating blood and may be challenging to purify and expand and also inherently defective in some subjects, we designed an alternative strategy to create autologous Treg-like cells from bulk CD4+ T cells. We used homology-directed repair (HDR)–based gene editing to enforce expression of FOXP3, the master transcription factor for tTreg. Targeted insertion of a robust enhancer/promoter proximal to the first coding exon bypassed epigenetic silencing, permitting stable and robust expression of endogenous FOXP3. HDR-edited T cells, edTregs, manifested a transcriptional program leading to sustained expression of canonical markers and suppressive activity of tTreg. Both human and murine edTregs mediated immunosuppression in vivo in models of inflammatory disease. Further, this engineering strategy permitted generation of antigen-specific edTreg with robust in vitro and in vivo functional activity. Last, edTreg could be enriched and expanded at scale using clinically relevant methods. Together, these findings suggest that edTreg production may permit broad future clinical application.
Collapse
Affiliation(s)
- Yuchi Honaker
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Nicholas Hubbard
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yufei Xiang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Logan Fisher
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - David Hagin
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yumei Song
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Christina Lopez
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Tori Tappen
- Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Iram Khan
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jane H. Buckner
- Benaroya Research Institute, Seattle, WA 98101, USA
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - Andrew M. Scharenberg
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Troy R. Torgerson
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
46
|
Extending flow cytometry sample stability by freezing lysed whole blood for clinical monitoring of Treg. Bioanalysis 2020; 12:655-663. [PMID: 32489119 DOI: 10.4155/bio-2020-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A major challenge for flow cytometry assays supporting clinical trials is postcollection sample stability. Here we present an approach that could mitigate the stability issue while preserving sample integrity and cellular markers, especially when enumerating rare populations such as Tregs. Materials & methods: Stability was evaluated using whole blood stored at room temperature and lysed whole blood stored at -80°C. Results: Freezing of lysed whole blood preserved sample integrity and prolonged sample stability for Treg percentage, absolute cell count and median fluorescent intensity values to 11 versus 3 days at room temperature storage. Conclusion: Frozen storage of lysed whole blood can extend sample stability, improve data quality and facilitate sample batch processing during clinical study sample analysis.
Collapse
|
47
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4+ Th17 cells over protective CD4+ Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D3 signaling from microglia to CD4+ T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate DRB1*1501 expression were observed in MS patient CD4+ T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of DRB1*1501 and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4+ T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.
Collapse
Affiliation(s)
- Colleen E. Hayes
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - James M. Ntambi
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
48
|
Daneshvar Kakhaki R, Kouchaki E, Dadgostar E, Behnam M, Tamtaji OR, Nikoueinejad H, Akbari H. The correlation of helios and neuropilin-1 frequencies with parkinson disease severity. Clin Neurol Neurosurg 2020; 192:105833. [PMID: 32305590 DOI: 10.1016/j.clineuro.2020.105833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/11/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Parkinson disease (PD), a neurodegenerative disease, has also some immunologic basis in which several regulatory factors, like Helios and Neuropilin-1 (NRP-1) may show some roles in its pathogenesis. We aimed to evaluate the circulatory frequency of T regulatory cells (Tregs) expressing Helios and NRP-1 in PD. PATIENTS AND METHODS In this case-control study, 83 patients with PD and 83 healthy controls were enrolled. The diagnosis of PD was accomplished in accordance with clinical diagnostic criteria of the UK Parkinson Disease Society Brain Bank. The modified Hoehn and Yahr (H and Y) were used to measure the severity of PD. Flow cytometry was used to evaluate the circulatory frequency of CD4+CD25+Foxp3+Tregs expressing and Helios and NRP-1 in all participants. Also, correlation of H and Y with such frequencies was evaluated. RESULTS Our findings showed that frequency of CD4+CD25+Foxp3+Tregs expressing NRP-1 (P = 0.04) and Helios (P = 0.01) in patients with PD was significantly higher than those in healthy subjects. The frequency of Tregs expressing Helios and NRP-1 showed a negative correlation with H and Y criteria and disease duration. Multiple linear regression analysis indicated that the severity of PD is the only effective factor on the frequency of CD4+CD25+Foxp3+NRP-1+Tregs (P = 0.012) and CD4+CD25+FoxP3+ Helios + Tregs (P = 0.038). CONCLUSION Our study showed that the increased frequency of Tregs expressing Helios and NRP-1 is associated with the severity of PD.
Collapse
Affiliation(s)
- Reza Daneshvar Kakhaki
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ebrahim Kouchaki
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohammad Behnam
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hassan Nikoueinejad
- Department of Immunology, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Baqiyatallah Hospital, Mollasadra Ave., Vanak Sq., P.O. Box: 19395-5487, Tehran, Iran.
| | - Hossein Akbari
- Department of Biostatistics and Public Health, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
49
|
Liu C, Xu L, Xia C, Long Y, Liu C, Lu S, Song Y. Increased proportion of functional subpopulations in circulating regulatory T cells in patients with chronic hepatitis B. Hepatol Res 2020; 50:439-452. [PMID: 31840342 DOI: 10.1111/hepr.13472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022]
Abstract
AIM This study was designed to investigate the levels of circulating regulatory T cells (Tregs), and their functional subpopulations and related cytokines in chronic hepatitis B patients (CHB) and inactive hepatitis B surface antigen carriers. METHODS The peripheral blood of 24 hepatitis B virus inactive carriers, 26 CHB patients, and 34 healthy controls was collected and analyzed by flow cytometry for Tregs and CD4+ CXCR5+ FoxP3+ follicular regulatory T cells. Interleukin (IL)-10, transforming growth factor-β, and IL-21 levels in plasma were determined by enzyme-linked immunosorbent assay. Proportions of functional Treg subpopulations were analyzed by staining of Helios, CD45RA and FoxP3, TIGIT, and CD226, and the correlations between Treg subsets and clinical indicators were explored. RESULTS CD4+ FoxP3+ levels in the peripheral blood of CHB patients were significantly increased, and the inhibitory ability of Tregs in CHB patients for cytokine secretion was stronger, and CD4+ CXCR5+ FoxP3+ follicular Tregs were also significantly higher than inactive carriers and healthy controls. Transforming growth factor-β and IL-10 in the plasma of CHB patients were significantly higher than those of healthy controls, with IL-21 levels not significantly changed. Circulating CD4+ CXCR5-FoxP3+ Treg cells in CHB patients were positively correlated with hepatitis B surface antigen, hepatitis B e antigen, and hepatitis B virus DNA. The proportions of Helios+ FoxP3+ , CD45RA- FoxP3hi , and CD226- TIGIT+ functional subpopulations in CD4+ CXCR5- FoxP3+ Tregs in CHB patients were significantly increased, and they were significantly correlated with clinical indicators. CONCLUSIONS Circulating Tregs in CHB patients not only have elevated levels, but their follicular Treg subpopulations are also increased, and Tregs tend to have stronger immunosuppressive functions.
Collapse
Affiliation(s)
- Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Lijuan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changsheng Xia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yan Long
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Caoyi Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Songsong Lu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ying Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
50
|
Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21072356. [PMID: 32235291 PMCID: PMC7177531 DOI: 10.3390/ijms21072356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are important mediators of immunological self-tolerance and homeostasis. Being cluster of differentiation 4+Forkhead box protein3+ (CD4+FOXP3+), these cells are a subset of CD4+ T lymphocytes and can originate from the thymus (tTregs) or from the periphery (pTregs). The malfunction of CD4+ Tregs is associated with autoimmune responses such as rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), inflammatory bowel diseases (IBD), psoriasis, systemic lupus erythematosus (SLE), and transplant rejection. Recent evidence supports an opposed role in sepsis. Therefore, maintaining functional Tregs is considered as a therapy regimen to prevent autoimmunity and allograft rejection, whereas blocking Treg differentiation might be favorable in sepsis patients. It has been shown that Tregs can be generated from conventional naïve T cells, called iTregs, due to their induced differentiation. Moreover, Tregs can be effectively expanded in vitro based on blood-derived tTregs. Taking into consideration that the suppressive role of Tregs has been mainly attributed to the expression and function of the transcription factor Foxp3, modulating its expression and binding to the promoter regions of target genes by altering the chromatin histone acetylation state may turn out beneficial. Hence, we discuss the role of histone deacetylation inhibitors as epigenetic modulators of Tregs in this review in detail.
Collapse
|