1
|
Dudler T, Yaseen S, Cummings WJ. Development and characterization of narsoplimab, a selective MASP-2 inhibitor, for the treatment of lectin-pathway-mediated disorders. Front Immunol 2023; 14:1297352. [PMID: 38022610 PMCID: PMC10663225 DOI: 10.3389/fimmu.2023.1297352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Overactivation of the lectin pathway of complement plays a pathogenic role in a broad range of immune-mediated and inflammatory disorders; mannan-binding lectin-associated serine protease-2 (MASP-2) is the key effector enzyme of the lectin pathway. We developed a fully human monoclonal antibody, narsoplimab, to bind to MASP-2 and specifically inhibit lectin pathway activation. Herein, we describe the preclinical characterization of narsoplimab that supports its evaluation in clinical trials. Methods and results ELISA binding studies demonstrated that narsoplimab interacted with both zymogen and enzymatically active forms of human MASP-2 with high affinity (KD 0.062 and 0.089 nM, respectively) and a selectivity ratio of >5,000-fold relative to closely related serine proteases C1r, C1s, MASP-1, and MASP-3. Interaction studies using surface plasmon resonance and ELISA demonstrated approximately 100-fold greater binding affinity for intact narsoplimab compared to a monovalent antigen binding fragment, suggesting an important contribution of functional bivalency to high-affinity binding. In functional assays conducted in dilute serum under pathway-specific assay conditions, narsoplimab selectively inhibited lectin pathway-dependent activation of C5b-9 with high potency (IC50 ~ 1 nM) but had no observable effect on classical pathway or alternative pathway activity at concentrations up to 500 nM. In functional assays conducted in 90% serum, narsoplimab inhibited lectin pathway activation in human serum with high potency (IC50 ~ 3.4 nM) whereas its potency in cynomolgus monkey serum was approximately 10-fold lower (IC50 ~ 33 nM). Following single dose intravenous administration to cynomolgus monkeys, narsoplimab exposure increased in an approximately dose-proportional manner. Clear dose-dependent pharmacodynamic responses were observed at doses >1.5 mg/kg, as evidenced by a reduction in lectin pathway activity assessed ex vivo that increased in magnitude and duration with increasing dose. Analysis of pharmacokinetic and pharmacodynamic data revealed a well-defined concentration-effect relationship with an ex vivo EC50 value of approximately 6.1 μg/mL, which was comparable to the in vitro functional potency (IC50 33 nM; ~ 5 μg/mL). Discussion Based on these results, narsoplimab has been evaluated in clinical trials for the treatment of conditions associated with inappropriate lectin pathway activation, such as hematopoietic stem cell transplantation-associated thrombotic microangiopathy.
Collapse
Affiliation(s)
- Thomas Dudler
- Discovery, Omeros Corporation, Seattle, WA, United States
| | | | | |
Collapse
|
2
|
Parsons NB, Annamalai B, Rohrer B. Regulatable Complement Inhibition of the Alternative Pathway Mitigates Wet Age-Related Macular Degeneration Pathology in a Mouse Model. Transl Vis Sci Technol 2023; 12:17. [PMID: 37462980 PMCID: PMC10362922 DOI: 10.1167/tvst.12.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Purpose Risk for developing age-related macular degeneration (AMD) is linked to an overactive complement system. In the mouse model of laser-induced choroidal neovascularization (CNV), elevated levels of complement effector molecules, including complement C3, have been identified, and the alternative pathway (AP) is required for pathology. The main soluble AP regular is complement factor H (fH). We have previously shown that AP inhibition via subretinal AAV-mediated delivery of CR2-fH using a constitutive promoter is efficacious in reducing CNV. Here we ask whether the C3 promoter (pC3) effectively drives CR2-fH bioavailability for gene therapy. Methods Truncated pC3 was used to generate plasmids pC3-mCherry/CR2-fH followed by production of corresponding AAV5 vectors. pC3 activation was determined in transiently transfected ARPE-19 cells stimulated with H2O2 or normal human serum (+/- antioxidant or humanized CR2-fH, respectively). CNV was analyzed in C57BL/6J mice treated subretinally with AAV5-pC3-mCherry/CR2-fH using imaging (optical coherence tomography [OCT] and fundus imaging), functional (electroretinography [ERG]), and molecular (protein expression) readouts. Results Modulation of pC3 in vitro is complement and oxidative stress dependent, as shown by mCherry fluorescence. AAV5-pC3-CR2-fH were identified as safe and effective using OCT and ERG. CR2-fH expression significantly reduced CNV compared to mCherry and was correlated with reduced levels of C3dg/C3d in the retinal pigment epithelium/choroid fraction. Conclusions We conclude that complement-dependent regulation of AP inhibition ameliorates AMD pathology as effectively as using a constitutive promoter. Translational Relevance The goal of anticomplement therapy is to restore homeostatic levels of complement activation, which might be more easily achievable using a self-regulating system.
Collapse
Affiliation(s)
- Nathaniel B. Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| |
Collapse
|
3
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
4
|
Yednock T, Fong DS, Lad EM. C1q and the classical complement cascade in geographic atrophy secondary to age-related macular degeneration. Int J Retina Vitreous 2022; 8:79. [PMID: 36348407 PMCID: PMC9641935 DOI: 10.1186/s40942-022-00431-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is a retinal neurodegenerative disorder. Human genetic data support the complement system as a key component of pathogenesis in AMD, which has been further supported by pre-clinical and recent clinical studies. However, the involvement of the different complement pathways (classical, lectin, alternative), and thus the optimal complement inhibition target, has yet to be fully defined. There is evidence that C1q, the initiating molecule of the classical pathway, is a key driver of complement activity in AMD. C1q is expressed locally by infiltrating phagocytic cells and C1q-activating ligands are present at disease onset and continue to accumulate with disease progression. The accumulation of C1q on photoreceptor synapses with age and disease is consistent with its role in synapse elimination and neurodegeneration that has been observed in other neurodegenerative disorders. Furthermore, genetic deletion of C1q, local pharmacologic inhibition within the eye, or genetic deletion of downstream C4 prevents photoreceptor cell damage in mouse models. Hence, targeting the classical pathway in GA could provide a more specific therapeutic approach with potential for favorable efficacy and safety.
Collapse
Affiliation(s)
- Ted Yednock
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA
| | - Donald S Fong
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Rd, Durham, NC, 27705, USA
| |
Collapse
|
5
|
Alfaar AS, Stürzbecher L, Diedrichs-Möhring M, Lam M, Roubeix C, Ritter J, Schumann K, Annamalai B, Pompös IM, Rohrer B, Sennlaub F, Reichhart N, Wildner G, Strauß O. FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. J Neuroinflammation 2022; 19:260. [PMID: 36273134 PMCID: PMC9588251 DOI: 10.1186/s12974-022-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood–retina barrier of the immune privileged eye. Methods We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1β and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. Results RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1β to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. Conclusion Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02620-w.
Collapse
Affiliation(s)
- Ahmad Samir Alfaar
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.,Department of Ophthalmology, University Hospital of Ulm, 89075, Ulm, Germany
| | - Lucas Stürzbecher
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Marion Lam
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Christophe Roubeix
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Julia Ritter
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Kathrin Schumann
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Inga-Marie Pompös
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Florian Sennlaub
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany.
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.
| |
Collapse
|
6
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Yang S, Li T, Jia H, Gao M, Li Y, Wan X, Huang Z, Li M, Zhai Y, Li X, Yang X, Wang T, Liang J, Gu Q, Luo X, Qian L, Lu S, Liu J, Song Y, Wang F, Sun X, Yu D. Targeting C3b/C4b and VEGF with a bispecific fusion protein optimized for neovascular age-related macular degeneration therapy. Sci Transl Med 2022; 14:eabj2177. [PMID: 35648811 DOI: 10.1126/scitranslmed.abj2177] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiangiogenesis therapies targeting vascular endothelial growth factor (VEGF) have revolutionized the treatment of neovascular ocular diseases, including neovascular age-related macular degeneration (nAMD). Compelling evidence has implicated the vital role of complement system dysregulation in AMD pathogenesis, implying it as a potential therapeutic strategy for geographic atrophy in dry AMD and to enhance the efficacy of anti-VEGF monotherapies in nAMD. This study reports the preclinical assessment and phase 1 clinical outcomes of a bispecific fusion protein, efdamrofusp alfa (code: IBI302), which is capable of neutralizing both VEGF isoforms and C3b/C4b. Efdamrofusp alfa showed superior efficacy over anti-VEGF monotherapy in a mouse laser-induced choroidal neovascularization (CNV) model after intravitreal delivery. Dual inhibition of VEGF and the complement activation was found to further inhibit macrophage infiltration and M2 macrophage polarization. Intravitreal efdamrofusp alfa demonstrated favorable safety profiles and exhibited antiangiogenetic efficacy in a nonhuman primate laser-induced CNV model. A phase 1 dose-escalating clinical trial (NCT03814291) was thus conducted on the basis of the preclinical data. Preliminary results showed that efdamrofusp alfa was well tolerated in patients with nAMD. These data suggest that efdamrofusp alfa might be effective for treating nAMD and possibly other complement-related ocular conditions.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Min Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yiming Li
- Innovent Biologics Inc., Suzhou 215000, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Zhen Huang
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Region, Wuhan 430070, China
| | - Min Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Xiaotong Yang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Lei Qian
- Innovent Biologics Inc., Suzhou 215000, China
| | - Shujie Lu
- Innovent Biologics Inc., Suzhou 215000, China
| | - Junjian Liu
- Innovent Biologics Inc., Suzhou 215000, China
| | - Yanping Song
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Region, Wuhan 430070, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China
| | - Dechao Yu
- Innovent Biologics Inc., Suzhou 215000, China
| |
Collapse
|
8
|
Wang SK, Cepko CL. Targeting Microglia to Treat Degenerative Eye Diseases. Front Immunol 2022; 13:843558. [PMID: 35251042 PMCID: PMC8891158 DOI: 10.3389/fimmu.2022.843558] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia have been implicated in many degenerative eye disorders, including retinitis pigmentosa, age-related macular degeneration, glaucoma, diabetic retinopathy, uveitis, and retinal detachment. While the exact roles of microglia in these conditions are still being discovered, evidence from animal models suggests that they can modulate the course of disease. In this review, we highlight current strategies to target microglia in the eye and their potential as treatments for both rare and common ocular disorders. These approaches include depleting microglia with chemicals or radiation, reprogramming microglia using homeostatic signals or other small molecules, and inhibiting the downstream effects of microglia such as by blocking cytokine activity or phagocytosis. Finally, we describe areas of future research needed to fully exploit the therapeutic value of microglia in eye diseases.
Collapse
Affiliation(s)
- Sean K. Wang
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- *Correspondence: Constance L. Cepko,
| |
Collapse
|
9
|
Clare AJ, Liu J, Copland DA, Theodoropoulou S, Dick AD. Unravelling the therapeutic potential of IL-33 for atrophic AMD. Eye (Lond) 2022; 36:266-272. [PMID: 34531552 PMCID: PMC8807696 DOI: 10.1038/s41433-021-01725-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease affecting the retinal pigment epithelium (RPE) and photoreceptors in the macula, is the leading cause of central blindness in the elderly. AMD progresses to advanced stages of the disease, atrophic AMD (aAMD), or in 15% of cases "wet" or neovascular AMD (nAMD), associated with substantial vision loss. Whilst there has been advancement in therapies treating nAMD, to date, there are no licenced effective treatments for the 85% affected by aAMD, with disease managed by changes to diet, vitamin supplements, and regular monitoring. AMD has a complex pathogenesis, involving highly integrated and common age-related disease pathways, including dysregulated complement/inflammation, impaired autophagy, and oxidative stress. The intricacy of AMD pathogenesis makes therapeutic development challenging and identifying a target that combats the converging disease pathways is essential to provide a globally effective treatment. Interleukin-33 is a cytokine, classically known for the proinflammatory role it plays in allergic disease. Recent evidence across degenerative and inflammatory disease conditions reveals a diverse immune-modulatory role for IL-33, with promising therapeutic potential. Here, we will review IL-33 function in disease and discuss the future potential for this homeostatic cytokine in treating AMD.
Collapse
Affiliation(s)
- Alison J. Clare
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Jian Liu
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A. Copland
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sofia Theodoropoulou
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Andrew D. Dick
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK ,grid.439257.e0000 0000 8726 5837NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK ,grid.83440.3b0000000121901201UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
10
|
Liisborg C, Skov V, Kjær L, Hasselbalch HC, Sørensen TL. Patients with MPNs and retinal drusen show signs of complement system dysregulation and a high degree of chronic low-grade inflammation. EClinicalMedicine 2022; 43:101248. [PMID: 35128362 PMCID: PMC8808164 DOI: 10.1016/j.eclinm.2021.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The hematopoietic stem cell disorders, myeloproliferative neoplasms (MPNs), are characterised by chronic low-grade inflammation (CLI). Recently, we showed that patients with MPNs have an increased prevalence of drusen and age-related macular degeneration (AMD), and drusen prevalence seemed associated with higher CLI. Studying MPNs may reveal more about drusen pathophysiology. This study investigated CLI further by measuring cytokine levels and complement system markers, comparing these between patients with MPNs and AMD. METHODS This cross-sectional study, between July 2018 and November 2020 conducted at Zealand University Hospital (ZUH) - Roskilde, Denmark, included 29 patients with neovascular AMD (nAMD), 28 with intermediate-stage AMD (iAMD), 62 with MPNs (35 with drusen - MPNd and 27 with healthy retinas - MPNn). With flow cytometry, we measured complement-regulatory-proteins (Cregs). With immunoassays, we investigated cytokine levels combined into a summary-inflammation-score (SIS). FINDINGS The MPNd and nAMD groups had similar SIS, significantly higher than the MPNn and iAMD groups. Additionally, we found SIS to increase over the MPN biological continuum from early cancer stage, essential thrombocytaemia (ET), over polycythaemia vera (PV) to the late-stage primary myelofibrosis (PMF). MPNs showed signs of complement dysregulation, with Cregs expression lower in PV than ET and PMF and even lower in PV patients with drusen. INTERPRETATION This study suggests that MPNd have a higher CLI than MPNn and may indicate systemic CLI to play a greater part in, and even initiate drusen formation. We suggest using MPNs as a "Human Inflammation Model" of drusen development. The CLI in MPNs elicits drusen formation, triggering more CLI creating a vicious cycle, increasing the risk of developing AMD. FUNDING Fight for Sight, Denmark, and Region Zealand's research promotion fund.
Collapse
Affiliation(s)
- Charlotte Liisborg
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Corresponding author.
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Hans Carl Hasselbalch
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
11
|
Murray H, Qiu B, Ho SY, Wang X. Complement Factor B Mediates Ocular Angiogenesis through Regulating the VEGF Signaling Pathway. Int J Mol Sci 2021; 22:ijms22179580. [PMID: 34502486 PMCID: PMC8431595 DOI: 10.3390/ijms22179580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Complement factor B (CFB), a 95-kDa protein, is a crucial catalytic element of the alternative pathway (AP) of complement. After binding of CFB to C3b, activation of the AP depends on the proteolytic cleavage of CFB by factor D to generate the C3 convertase (C3bBb). The C3 convertase contains the catalytic subunit of CFB (Bb), the enzymatic site for the cleavage of a new molecule of C3 into C3b. In addition to its role in activating the AP, CFB has been implicated in pathological ocular neovascularization, a common feature of several blinding eye diseases, however, with somewhat conflicting results. The focus of this study was to investigate the direct impact of CFB on ocular neovascularization in a tightly controlled environment. Using mouse models of laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), our study demonstrated an increase in CFB expression during pathological angiogenesis. Results from several in vitro and ex vivo functionality assays indicated a promoting effect of CFB in angiogenesis. Mechanistically, CFB exerts this pro-angiogenic effect by mediating the vascular endothelial growth factor (VEGF) signaling pathway. In summary, we demonstrate compelling evidence for the role of CFB in driving ocular angiogenesis in a VEGF-dependent manner. This work provides a framework for a more in-depth exploration of CFB-mediated effects in ocular angiogenesis in the future.
Collapse
Affiliation(s)
- Hannah Murray
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Proteos, 61 Biopolis Dr., Singapore 138673, Singapore;
| | - Beiying Qiu
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (S.Y.H.)
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
| | - Sze Yuan Ho
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (S.Y.H.)
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Xiaomeng Wang
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Proteos, 61 Biopolis Dr., Singapore 138673, Singapore;
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (S.Y.H.)
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
- Correspondence: ; Tel.: +65-6576-7248
| |
Collapse
|
12
|
Kim BJ, Mastellos DC, Li Y, Dunaief JL, Lambris JD. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog Retin Eye Res 2021; 83:100936. [PMID: 33321207 PMCID: PMC8197769 DOI: 10.1016/j.preteyeres.2020.100936] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) remains a major cause of legal blindness, and treatment for the geographic atrophy form of AMD is a significant unmet need. Dysregulation of the complement cascade is thought to be instrumental for AMD pathophysiology. In particular, C3 and C5 are pivotal components of the complement cascade and have become leading therapeutic targets for AMD. In this article, we discuss C3 and C5 in detail, including their roles in AMD, biochemical and structural aspects, locations of expression, and the functions of C3 and C5 fragments. Further, the article critically reviews developing therapeutics aimed at C3 and C5, underscoring the potential effects of broad inhibition of complement at the level of C3 versus more specific inhibition at C5. The relationships of complement biology to the inflammasome and microglia/macrophage activity are highlighted. Concepts of C3 and C5 biology will be emphasized, while we point out questions that need to be settled and directions for future investigations.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Yafeng Li
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Annamalai B, Parsons N, Nicholson C, Joseph K, Coughlin B, Yang X, Jones BW, Tomlinson S, Rohrer B. Natural immunoglobulin M-based delivery of a complement alternative pathway inhibitor in mouse models of retinal degeneration. Exp Eye Res 2021; 207:108583. [PMID: 33878326 PMCID: PMC8504679 DOI: 10.1016/j.exer.2021.108583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Age-related macular degeneration is a slowly progressing disease. Studies have tied disease risk to an overactive complement system. We have previously demonstrated that pathology in two mouse models, the choroidal neovascularization (CNV) model and the smoke-induced ocular pathology (SIOP) model, can be reduced by specifically inhibiting the alternative complement pathway (AP). Here we report on the development of a novel injury-site targeted inhibitor of the alternative pathway, and its characterization in models of retinal degeneration. METHODS Expression of the danger associated molecular pattern, a modified annexin IV, in injured ARPE-19 cells was confirmed by immunohistochemistry and complementation assays using B4 IgM mAb. Subsequently, a construct was prepared consisting of B4 single chain antibody (scFv) linked to a fragment of the alternative pathway inhibitor, fH (B4-scFv-fH). ARPE-19 cells stably expressing B4-scFv-fH were microencapsulated and administered intravitreally or subcutaneously into C57BL/6 J mice, followed by CNV induction or smoke exposure. Progression of CNV was analyzed using optical coherence tomography, and SIOP using structure-function analyses. B4-scFv-fH targeting and AP specificity was assessed by Western blot and binding experiments. RESULTS B4-scFv-fH was secreted from encapsulated RPE and inhibited complement in RPE monolayers. B4-scFv-fH capsules reduced CNV and SIOP, and western blotting for breakdown products of C3α, IgM and IgG confirmed a reduction in complement activation and antibody binding in RPE/choroid. CONCLUSIONS Data supports a role for natural antibodies and neoepitope expression in ocular disease, and describes a novel strategy to target AP-specific complement inhibition to diseased tissue in the eye. PRECIS AMD risk is tied to an overactive complement system, and ocular injury is reduced by alternative pathway (AP) inhibition in experimental models. We developed a novel inhibitor of the AP that targets an injury-specific danger associated molecular pattern, and characterized it in disease models.
Collapse
Affiliation(s)
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Crystal Nicholson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Kusumam Joseph
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaofeng Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan W Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Associations between the Complement System and Choroidal Neovascularization in Wet Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21249752. [PMID: 33371261 PMCID: PMC7765894 DOI: 10.3390/ijms21249752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness affecting the elderly in the Western world. The most severe form of AMD, wet AMD (wAMD), is characterized by choroidal neovascularization (CNV) and acute vision loss. The current treatment for these patients comprises monthly intravitreal injections of anti-vascular endothelial growth factor (VEGF) antibodies, but this treatment is expensive, uncomfortable for the patient, and only effective in some individuals. AMD is a complex disease that has strong associations with the complement system. All three initiating complement pathways may be relevant in CNV formation, but most evidence indicates a major role for the alternative pathway (AP) and for the terminal complement complex, as well as certain complement peptides generated upon complement activation. Since the complement system is associated with AMD and CNV, a complement inhibitor may be a therapeutic option for patients with wAMD. The aim of this review is to (i) reflect on the possible complement targets in the context of wAMD pathology, (ii) investigate the results of prior clinical trials with complement inhibitors for wAMD patients, and (iii) outline important considerations when developing a future strategy for the treatment of wAMD.
Collapse
|
15
|
Cheng X, He D, Liao C, Lin S, Tang L, Wang YL, Hu J, Li W, Liu Z, Wu Y, Liao Y. IL-1/IL-1R signaling induced by all-trans-retinal contributes to complement alternative pathway activation in retinal pigment epithelium. J Cell Physiol 2020; 236:3660-3674. [PMID: 33034385 DOI: 10.1002/jcp.30103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
The underlying mechanisms of complement activation in Stargardt disease type 1 (STGD1) and age-related macular degeneration (AMD) are not fully understood. Overaccumulation of all-trans-retinal (atRAL) has been proposed as the pathogenic factor in both diseases. By incubating retinal pigment epithelium (RPE) cells with atRAL, we showed that C5b-9 membrane attack complexes (MACs) were generated mainly through complement alternative pathway. An increase in complement factor B (CFB) expression as well as downregulation of complement regulatory proteins CD46, CD55, CD59, and CFH were observed in RPE cells after atRAL treatment. Furthermore, interleukin-1β production was provoked in both atRAL-treated RPE cells and microglia/macrophages. Coincubation of RPE cells with interleukin-1 receptor antagonist (IL1Ra) and atRAL ameliorated complement activation and downregulated CFB expression by attenuating both p38 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings demonstrate that atRAL induces an autocrine/paracrine IL-1/IL-1R signaling to promote complement alternative pathway activation in RPE cells and provide a novel perspective on the pathomechanism of macular degeneration.
Collapse
Affiliation(s)
- Xinxuan Cheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Danxue He
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Sijie Lin
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Liying Tang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,Section of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Jiaoyue Hu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Wei Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yi Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| |
Collapse
|
16
|
Pilotti C, Greenwood J, Moss SE. Functional Evaluation of AMD-Associated Risk Variants of Complement Factor B. Invest Ophthalmol Vis Sci 2020; 61:19. [PMID: 32407521 PMCID: PMC7405614 DOI: 10.1167/iovs.61.5.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose The 32W and 32Q variants of complement factor B (CFB) are associated with reduced risk of developing neovascular age-related macular degeneration (AMD) compared with the common 32R allele. The objective of this study was to determine if the most protective R32Q variant affects the neovascular process in a manner consistent with the reported reduced disease association. Methods The 32R, 32W, and 32Q human CFB variants were expressed in human embryonic kidney 293T cells and purified from culture supernatant. The ex vivo mouse fetal metatarsal explant model was used to investigate the effect of these three human CFB variants on angiogenesis. Metatarsal bones were isolated from mouse embryos and cultured in the presence of the three CFB variants, and angiogenesis was measured following immunostaining of fixed samples. ELISAs were used to quantify C3 and VEGF protein levels in metatarsal culture and quantitative PCR to measure Cfb, C3, and Vegf expression. Results We show here that the three CFB variants have different biological activities in the mouse metatarsal assay, with CFBR32 exhibiting significantly greater angiogenic activity than CFBQ32 or CFBW32, which were broadly similar. We also observed differences in macrophage phenotype with these two variants that may contribute to their activities in this experimental model. Conclusions We have demonstrated that the biological activities of CFBR32, CFBW32, and CFBQ32 are consistent with their AMD risk association, and we provide functional evidence of roles for these variants in angiogenesis that may be relevant to the pathogenesis of the neovascular form of AMD.
Collapse
|
17
|
Takasumi M, Omori T, Machida T, Ishida Y, Hayashi M, Suzuki T, Homma Y, Endo Y, Takahashi M, Ohira H, Fujita T, Sekine H. A novel complement inhibitor sMAP-FH targeting both the lectin and alternative complement pathways. FASEB J 2020; 34:6598-6612. [PMID: 32219899 DOI: 10.1096/fj.201902475r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 03/08/2020] [Indexed: 02/02/2023]
Abstract
Inhibition of the complement activation has emerged as an option for treatment of a range of diseases. Activation of the lectin and alternative pathways (LP and AP, respectively) contribute to the deterioration of conditions in certain diseases such as ischemia-reperfusion injuries and age-related macular degeneration (AMD). In the current study, we generated dual complement inhibitors of the pathways MAp44-FH and sMAP-FH by fusing full-length MAp44 or small mannose-binding lectin-associated protein (sMAP), LP regulators, with the N-terminal five short consensus repeat (SCR) domains of complement factor H (SCR1/5-FH), an AP regulator. The murine forms of both fusion proteins formed a complex with endogenous mannose-binding lectin (MBL) or ficolin A in the circulation when administered in mice intraperitoneally. Multiple complement activation assays revealed that sMAP-FH had significantly higher inhibitory effects on activation of the LP and AP in vivo as well as in vitro compared to MAp44-FH. Human form of sMAP-FH also showed dual inhibitory effects on LP and AP activation in human sera. Our results indicate that the novel fusion protein sMAP-FH inhibits both the LP and AP activation in mice and in human sera, and could be an effective therapeutic agent for diseases in which both the LP and AP activation are significantly involved.
Collapse
Affiliation(s)
- Mika Takasumi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Tomoko Omori
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yumi Ishida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Manabu Hayashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Toshiyuki Suzuki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima-City, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| |
Collapse
|
18
|
Wang X, Shang QL, Ma JX, Liu SX, Wang CX, Ma C. Complement factor B knockdown by short hairpin RNA inhibits laser-induced choroidal neovascularization in rats. Int J Ophthalmol 2020; 13:382-389. [PMID: 32309173 DOI: 10.18240/ijo.2020.03.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/20/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate whether recombinant complement factor B (CFB) short hairpin RNA (shRNA) reduces laser-induced choroidal neovascularization (CNV) in rats. METHODS Laser-induced rat CNV model was established, and then the animals underwent fundus fluorescence angiography (FFA) and hematoxylin and eosin (HE) staining. On day 3 and 7 after photocoagulation, the expression of CFB and membrane attack complex (MAC) was detected by immunhischemistry. A recombinant CFB-shRNA plasmid was constructed. CFB and scrambled shRNA plasmids were intravenous injected into rats via the tail vein on the day of laser treatment, respectively. On day 7, the incidence of CNV was determined by FFA, and the expression of CFB and vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE)/choroidal tissues was detected by immunhischemistry, Western blot and/or semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) in CFB and scrambled shRNA groups. The possible adverse effects of CFB-shRNA injection were assessed by transmission electron microscopy and electroretinography. RESULTS FFA and HE results indicated that a laser-induced rat CNV model was successfully established on day 7 after photocoagulation. The expression of CFB and MAC was extremely weak in normal retina and choroid, and increased on day 3 after photocoagulation. However, it started to reduce on day 7. CFB shRNA plasmid was successfully constructed and induced CFB knockdown in the retinal and choroidal tissues. FFA showed CFB knockdown significantly inhibited incidence of CNV in rats. Moreover, CFB knockdown significantly inhibited the expression of VEGF in RPE/choroidal tissues. CFB shRNA caused no obvious side effects in eyes. CONCLUSION CFB knockdown significantly inhibits the formation and development of CNV in vivo through reducing the expression of VEGF, which is a potential therapy target. The alternative pathway of complement activation plays an important role in CNV formation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Qing-Li Shang
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Jing-Xue Ma
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Xia Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Cai-Xia Wang
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Cheng Ma
- Department of Ophthalmology, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
19
|
Inhibition of the alternative complement pathway accelerates repair processes in the murine model of choroidal neovascularization. Mol Immunol 2019; 108:8-12. [PMID: 30763805 DOI: 10.1016/j.molimm.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the US. Polymorphisms in complement components are associated with increased AMD risk, and it has been hypothesized that an overactive complement system is partially responsible for AMD pathology. Choroidal neovascularization (CNV) has two phases, injury/angiogenesis and repair/fibrosis. Complement activation has been shown to be involved in the angiogenesis phase of murine CNV, but has not been investigated during repair. Anaphylatoxin (C3a and C5a) signaling in particular has been shown to be involved in both tissue injury and repair in other models. CNV was triggered by laser-induced photocoagulation in C57BL/6 J mice, and lesion sizes measured by optical coherence tomography. Alternative pathway (AP) activation or C3a-receptor (C3aR) and C5a-receptor (C5aR) engagement was inhibited during the repair phase only of CNV with the AP-inhibitor CR2-fH, a C3aR antagonist (N2-[(2,2-diphenylethoxy)acetyl]-l-arginine, TFA), or a C5a blocking antibody (CLS026), respectively. Repair after CNV was also investigated in C3aR/C5aR double knockout mice. CR2-fH treatment normalized anaphylatoxin levels in the eye and accelerated regression of CNV lesions. In contrast, blockade of anaphylatoxin-receptor signaling pharmacologically or genetically did not significantly alter the course of lesion repair. These results suggest that continued complement activation prevents fibrotic scar resolution, and emphasizes the importance of reducing anaphylatoxins to homeostatic levels. This duality of complement, playing a role in injury and repair, will need to be considered when selecting a complement inhibitory strategy for AMD.
Collapse
|
20
|
Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol 2018; 11:1856-1864. [PMID: 30450319 DOI: 10.18240/ijo.2018.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Pathological neovascularisation, which is a critical component of diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP), is a frequent cause of compromised vision or blindness. Researchers continuously investigate the role of the complement system in the pathogenesis of retinopathy. Studies have confirmed the role of factors H and I in the development of AMD, and factors H and B in the development of DR. Other components, such as C2, C3, and C5, have also been considered. However, findings on the involvement of the complement system in the pathogenesis of ROP are still inconclusive. This paper presents a review of the current literature data, pointing to the novel results and achievements from research into the role of complement components in the development of retinopathy. There is still a need to continue research in new directions, and to gather more detailed information about this problem which will be useful in the treatment of these diseases.
Collapse
Affiliation(s)
- Martyna Chrzanowska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Anna Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Monika Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| |
Collapse
|
21
|
Jiao H, Rutar M, Fernando N, Yednock T, Sankaranarayanan S, Aggio-Bruce R, Provis J, Natoli R. Subretinal macrophages produce classical complement activator C1q leading to the progression of focal retinal degeneration. Mol Neurodegener 2018; 13:45. [PMID: 30126455 PMCID: PMC6102844 DOI: 10.1186/s13024-018-0278-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of the alternative complement pathway and its mediation by retinal microglia and macrophages, is well-established in the pathogenesis of Age-Related Macular Degeneration (AMD). However, the contribution of the classical complement pathway towards the progression of retinal degenerations is not fully understood, including the role of complement component 1q (C1q) as a critical activator molecule of the classical pathway. Here, we investigated the contribution of C1q to progressive photoreceptor loss and neuroinflammation in retinal degenerations. METHODS Wild-type (WT), C1qa knockout (C1qa-/-) and mice treated with a C1q inhibitor (ANX-M1; Annexon Biosciences), were exposed to photo-oxidative damage (PD) and were observed for progressive lesion development. Retinal function was assessed by electroretinography, followed by histological analyses to assess photoreceptor degeneration. Retinal inflammation was investigated through complement activation, macrophage recruitment and inflammasome expression using western blotting, qPCR and immunofluorescence. C1q was localised in human AMD donor retinas using immunohistochemistry. RESULTS PD mice had increased levels of C1qa which correlated with increasing photoreceptor cell death and macrophage recruitment. C1qa-/- mice did not show any differences in photoreceptor loss or inflammation at 7 days compared to WT, however at 14 days after the onset of damage, C1qa-/- retinas displayed less photoreceptor cell death, reduced microglia/macrophage recruitment to the photoreceptor lesion, and higher visual function. C1qa-/- mice displayed reduced inflammasome and IL-1β expression in microglia and macrophages in the degenerating retina. Retinal neutralisation of C1q, using an intravitreally-delivered anti-C1q antibody, reduced the progression of retinal degeneration following PD, while systemic delivery had no effect. Finally, retinal C1q was found to be expressed by subretinal microglia/macrophages located in the outer retina of early AMD donor eyes, and in mouse PD retinas. CONCLUSIONS Our data implicate subretinal macrophages, C1q and the classical pathway in progressive retinal degeneration. We demonstrate a role of local C1q produced by microglia/macrophages as an instigator of inflammasome activation and inflammation. Crucially, we have shown that retinal C1q neutralisation during disease progression may slow retinal atrophy, providing a novel strategy for the treatment of complement-mediated retinal degenerations including AMD.
Collapse
Affiliation(s)
- Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | | | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,ANU Medical School, The Australian National University, ACT, Canberra, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia. .,ANU Medical School, The Australian National University, ACT, Canberra, Australia.
| |
Collapse
|
22
|
S100B immunization triggers NFκB and complement activation in an autoimmune glaucoma model. Sci Rep 2018; 8:9821. [PMID: 29959432 PMCID: PMC6026137 DOI: 10.1038/s41598-018-28183-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
In glaucoma, latest studies revealed an involvement of the complement system with and without an elevated intraocular pressure. In the experimental autoimmune glaucoma model, immunization with antigens, such as S100B, lead to retinal ganglion cell (RGC) loss and optic nerve degeneration after 28 days. Here, we investigated the timeline of progression of the complement system, toll-like-receptor 4 (TLR4), and the transcription factor nucleus factor-kappa B (NFκB). Therefore, rats were immunized with S100B protein (S100) and analyzed at 3, 7, and 14 days. RGC numbers were comparable at all points in time, whereas a destruction of S100 optic nerves was noted at 14 days. A significant increase of mannose binding lectin (MBL) was observed in S100 retinas at 3 days. Subsequently, significantly more MBL+ cells were seen in S100 optic nerves at 7 and 14 days. Accordingly, C3 was upregulated in S100 retinas at 14 days. An increase of interleukin-1 beta was noted in S100 aqueous humor samples at 7 days. In this study, activation of complement system via the lectin pathway was obvious. However, no TLR4 alterations were noted in S100 retinas and optic nerves. Interestingly, a significant NFκB increase was observed in S100 retinas at 7 and 14 days. We assume that NFκB activation might be triggered via MBL leading to glaucomatous damage.
Collapse
|
23
|
Jo DH, Kim JH, Yang W, Kim H, Chang S, Kim D, Chang M, Lee K, Chung J, Kim JH. Anti-complement component 5 antibody targeting MG4 domain inhibits choroidal neovascularization. Oncotarget 2018; 8:45506-45516. [PMID: 28477014 PMCID: PMC5542204 DOI: 10.18632/oncotarget.17221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the main causes of visual impairment in adults. Visual deterioration is more prominent in neovascular AMD with choroidal neovascularization (CNV). Clinical and postmortem studies suggested that complement system activation might induce CNV. In this study, we demonstrated that an anti-mouse complement component 5 (C5) antibody targeting MG4 domain of β chain effectively inhibited CNV which was induced by laser photocoagulation in mice. The targeted epitope of this anti-C5 antibody was different from that of currently utilized anti-C5 antibody (eculizumab) in the MG7 domain in which a single nucleotide polymorphism (R885H/C) results in poor response to eculizumab. Even with targeting MG4 domain, this anti-C5 antibody reduced production of C5a, monocyte chemoattractant protein-1 and vascular endothelial growth factor to prevent infiltration of F4/80-positive cells into CNV lesions and formation of CNV. Furthermore, anti-C5 antibody targeting MG4 domain induced no definite toxicity in normal retina. These results demonstrated that anti-C5 antibody targeting MG4 domain inhibited CNV in neovascular AMD.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences and Protein Metabolism, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wonjun Yang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyori Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Shinjae Chang
- Biotechnology Research Institute, Celltrion, Inc., Incheon, Republic of Korea
| | - Dongjo Kim
- Biotechnology Research Institute, Celltrion, Inc., Incheon, Republic of Korea
| | - Minseok Chang
- Biotechnology Research Institute, Celltrion, Inc., Incheon, Republic of Korea
| | - Kihwang Lee
- Department of Ophthalmology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences and Protein Metabolism, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Fernando N, Natoli R, Racic T, Wooff Y, Provis J, Valter K. The use of the vaccinia virus complement control protein (VCP) in the rat retina. PLoS One 2018; 13:e0193740. [PMID: 29534078 PMCID: PMC5849281 DOI: 10.1371/journal.pone.0193740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 01/11/2023] Open
Abstract
The complement system is highly implicated in both the prevalence and progression of Age-Related Macular Degeneration (AMD). Complement system inhibitors therefore have potential therapeutic value in managing excessive activation of the complement pathways in retinal degenerations. The vaccinia virus complement control protein (VCP) has been shown to be effective as a complement inhibitor in neuroinflammatory models including traumatic brain injury and spinal cord injury. We aimed to investigate the potential of VCP as a therapeutic molecule for retinal degenerations. In this study, we investigated the effect, localisation and delivery of VCP to the rodent retina. Complement inhibition activity of VCP was tested using a hemolytic assay. Photoreceptor cell death, inflammation and retinal stress were assayed to determine if any retinal toxicity was induced by an intravitreal injection of VCP. The effect of VCP was investigated in a model of photo-oxidative retinal degeneration. Localisation of VCP after injection was determined using a fluorescein-tagged form of VCP, as well as immunohistochemistry. Finally, a copolymer resin (Elvax) was trialled for the slow-release delivery of VCP to the retina. We found that a dose equivalent to 20μg VCP when intravitreally injected into the rat eye did not cause any photoreceptor cell death or immune cell recruitment, but led to an increase in GFAP. In photo-oxidative damaged retinas, there were no differences in photoreceptor loss, retinal stress (Gfap) and inflammation (Ccl2 and C3) between VCP and saline-injected groups; however, Jun expression was reduced in VCP-treated retinas. After VCP was injected into the eye, it was taken up in all layers of the retina but was cleared within 1-3 hours of delivery. This study indicates that a method to sustain the delivery of VCP to the retina is necessary to further investigate the effect of VCP as a complement inhibitor for retinal degenerations.
Collapse
Affiliation(s)
- Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Tanja Racic
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| |
Collapse
|
25
|
Iyer A, Xu W, Reid RC, Fairlie DP. Chemical Approaches to Modulating Complement-Mediated Diseases. J Med Chem 2017; 61:3253-3276. [DOI: 10.1021/acs.jmedchem.7b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weijun Xu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C. Reid
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Complement factor H in AMD: Bridging genetic associations and pathobiology. Prog Retin Eye Res 2017; 62:38-57. [PMID: 28928087 DOI: 10.1016/j.preteyeres.2017.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
Age-Related Macular Degeneration (AMD) is a complex multifactorial disease characterized in its early stages by lipoprotein accumulations in Bruch's Membrane (BrM), seen on fundoscopic exam as drusen, and in its late forms by neovascularization ("wet") or geographic atrophy of the Retinal Pigmented Epithelial (RPE) cell layer ("dry"). Genetic studies have strongly supported a relationship between the alternative complement cascade, in particular the common H402 variant in Complement Factor H (CFH) and development of AMD. However, the functional significance of the CFH Y402H polymorphism remains elusive. In this article, we critically review the literature surrounding the functional significance of this polymorphism. Furthermore, based on our group's studies we propose a model in which CFH H402 affects CFH binding to heparan sulfate proteoglycans leading to accelerated lipoprotein accumulation in BrM and drusen progression. We also review the literature on the role of other complement components in AMD pathobiologies, including C3a, C5a and the membrane attack complex (MAC), and on transgenic mouse models developed to interrogate in vivo the effects of the CFH Y402H polymorphism.
Collapse
|
27
|
Schäfer N, Grosche A, Schmitt SI, Braunger BM, Pauly D. Complement Components Showed a Time-Dependent Local Expression Pattern in Constant and Acute White Light-Induced Photoreceptor Damage. Front Mol Neurosci 2017; 10:197. [PMID: 28676742 PMCID: PMC5476694 DOI: 10.3389/fnmol.2017.00197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
Background: Photoreceptor cell death due to extensive light exposure and induced oxidative-stress are associated with retinal degeneration. A correlated dysregulation of the complement system amplifies the damaging effects, but the local and time-dependent progression of this mechanism is not thoroughly understood. Methods: Light-induced photoreceptor damage (LD) was induced in Balb/c mice with white light illumination either for 24 h with 1000 lux (constant model) or 0.5 h with 5000 lux (acute model). Complement protein and mRNA expression levels were compared at 1 and 3 days post-LD for C1s, complement factor B (CFB), mannose binding lectin A, mannose-binding protein-associated serine protease 1 (MASP-1), C3, C4, C9, and complement factor P in retina and RPE/choroid. Histological analyses visualized apoptosis, microglia/macrophage migration, gliosis and deposition of the complement activation marker C3d. Systemic anaphylatoxin serum concentrations were determined using an ELISA. Results: Apoptosis, gliosis and microglia/macrophage migration into the outer nuclear layer showed similar patterns in both models. Local complement factor expression revealed an early upregulation of complement factor mRNA in the acute and constant light regimen at 1 day post-treatment for c1s, cfb, masp-1, c3, c4 and c9 in the RPE/choroid. However, intraretinal complement mRNA expression for c1s, cfb, c3 and c4 was increased at 1 day in the constant and at 3 days in the acute model. A corresponding regulation on protein level in the retina following both LD models was observed for C3, which was upregulated at 1 day and correlated with increased C3d staining in the ganglion cell layer and at the RPE. In the RPE/choroid C1s-complex protein detection was increased at 3 days after LD irrespectively of the light intensities used. Conclusion: LD in mouse eyes is correlated with local complement activity. The time-dependent local progression of complement regulation on mRNA and protein levels were equivalent in the acute and constant LD model, except for the intraretinal, time-dependent mRNA expression. Knowing the relative time courses of local complement expression and cellular activity can help to elucidate novel therapeutic options in retinal degeneration indicating at which time point of disease complement has to be rebalanced.
Collapse
Affiliation(s)
- Nicole Schäfer
- Department of Ophthalmology, University Hospital RegensburgRegensburg, Germany
| | - Antje Grosche
- Institute of Human Genetics, University RegensburgRegensburg, Germany
| | - Sabrina I Schmitt
- Institute of Human Anatomy and Embryology, University RegensburgRegensburg, Germany
| | - Barbara M Braunger
- Institute of Human Anatomy and Embryology, University RegensburgRegensburg, Germany
| | - Diana Pauly
- Department of Ophthalmology, University Hospital RegensburgRegensburg, Germany
| |
Collapse
|
28
|
Busch C, Annamalai B, Abdusalamova K, Reichhart N, Huber C, Lin Y, Jo EAH, Zipfel PF, Skerka C, Wildner G, Diedrichs-Möhring M, Rohrer B, Strauß O. Anaphylatoxins Activate Ca 2+, Akt/PI3-Kinase, and FOXO1/FoxP3 in the Retinal Pigment Epithelium. Front Immunol 2017; 8:703. [PMID: 28663750 PMCID: PMC5472091 DOI: 10.3389/fimmu.2017.00703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The retinal pigment epithelium (RPE) is a main target for complement activation in age-related macular degeneration (AMD). The anaphylatoxins C3a and C5a have been thought to mostly play a role as chemoattractants for macrophages and immune cells; here, we explore whether they trigger RPE alterations. Specifically, we investigated the RPE as a potential immunoregulatory gate, allowing for active changes in the RPE microenvironment in response to complement. DESIGN In vitro and in vivo analysis of signaling pathways. METHODS Individual activities of and interaction between the two anaphylatoxin receptors were tested in cultured RPE cells by fluorescence microscopy, western blot, and immunohistochemistry. MAIN OUTCOME MEASURES Intracellular free calcium, protein phosphorylation, immunostaining of tissues/cells, and multiplex secretion assay. RESULTS Similar to immune cells, anaphylatoxin exposure resulted in increases in free cytosolic Ca2+, PI3-kinase/Akt activation, FoxP3 and FOXO1 phosphorylation, and cytokine/chemokine secretion. Differential responses were elicited depending on whether C3a and C5a were co-administered or applied consecutively, and response amplitudes in co-administration experiments ranged from additive to driven by C5a (C3a + C5a = C5a) or being smaller than those elicited by C3a alone (C3a + C5a < C3a). CONCLUSION We suggest that this combination of integrative signaling between C3aR and C5aR helps the RPE to precisely adopt its immune regulatory function. These data further contribute to our understanding of AMD pathophysiology.
Collapse
Affiliation(s)
- Catharina Busch
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Khava Abdusalamova
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Nadine Reichhart
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Christian Huber
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
- Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany
| | - Yuchen Lin
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Emeraldo A. H. Jo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, Section of Immunobiology, Clinic of the LMU Munich, Munich, Germany
| | - Maria Diedrichs-Möhring
- Department of Ophthalmology, Section of Immunobiology, Clinic of the LMU Munich, Munich, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, United States
| | - Olaf Strauß
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
29
|
Keir LS, Firth R, Aponik L, Feitelberg D, Sakimoto S, Aguilar E, Welsh GI, Richards A, Usui Y, Satchell SC, Kuzmuk V, Coward RJ, Goult J, Bull KR, Sharma R, Bharti K, Westenskow PD, Michael IP, Saleem MA, Friedlander M. VEGF regulates local inhibitory complement proteins in the eye and kidney. J Clin Invest 2017; 127:199-214. [PMID: 27918307 PMCID: PMC5199702 DOI: 10.1172/jci86418] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Outer retinal and renal glomerular functions rely on specialized vasculature maintained by VEGF that is produced by neighboring epithelial cells, the retinal pigment epithelium (RPE) and podocytes, respectively. Dysregulation of RPE- and podocyte-derived VEGF is associated with neovascularization in wet age-related macular degeneration (ARMD), choriocapillaris degeneration, and glomerular thrombotic microangiopathy (TMA). Since complement activation and genetic variants in inhibitory complement factor H (CFH) are also features of both ARMD and TMA, we hypothesized that VEGF and CFH interact. Here, we demonstrated that VEGF inhibition decreases local CFH and other complement regulators in the eye and kidney through reduced VEGFR2/PKC-α/CREB signaling. Patient podocytes and RPE cells carrying disease-associated CFH genetic variants had more alternative complement pathway deposits than controls. These deposits were increased by VEGF antagonism, a common wet ARMD treatment, suggesting that VEGF inhibition could reduce cellular complement regulatory capacity. VEGF antagonism also increased markers of endothelial cell activation, which was partially reduced by genetic complement inhibition. Together, these results suggest that VEGF protects the retinal and glomerular microvasculature, not only through VEGFR2-mediated vasculotrophism, but also through modulation of local complement proteins that could protect against complement-mediated damage. Though further study is warranted, these findings could be relevant for patients receiving VEGF antagonists.
Collapse
Affiliation(s)
- Lindsay S. Keir
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Rachel Firth
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Lyndsey Aponik
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel Feitelberg
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Susumu Sakimoto
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Gavin I. Welsh
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Anna Richards
- Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Tokyo Medical University Hospital, Tokyo, Japan
| | - Simon C. Satchell
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Valeryia Kuzmuk
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard J. Coward
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Jonathan Goult
- Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Katherine R. Bull
- Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Ruchi Sharma
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Kapil Bharti
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Peter D. Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- The Lowy Medical Research Institute, La Jolla, California, USA
| | | | - Moin A. Saleem
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
30
|
Williams JAE, Stampoulis D, Gunter CE, Greenwood J, Adamson P, Moss SE. Regulation of C3 Activation by the Alternative Complement Pathway in the Mouse Retina. PLoS One 2016; 11:e0161898. [PMID: 27564415 PMCID: PMC5001704 DOI: 10.1371/journal.pone.0161898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to examine the retinas of mice carrying hemizygous and null double deletions of Cfb-/- and Cfh-/-, and to compare these with the single knockouts of Cfb, Cfh and Cfd. Retinas were isolated from wild type (WT), Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfh-/-/Cfb+/-, Cfb-/-, Cfh-/-Cfd-/-, and Cfd+/- mice. Complement proteins were evaluated by western blotting, ELISA and immunocytochemistry, and retinal morphology was assessed using toluidine blue stained semi-thin sections. WT mice showed staining for C3 and its breakdown products in the retinal vasculature and the basal surface of the retinal pigment epithelium (RPE). Cfb-/- mice exhibited a similar C3 staining pattern to WT in the retinal vessels but a decrease in C3 and its breakdown products at the basal surface of the RPE. Deletion of both Cfb and Cfh restored C3 to levels similar to those observed in WT mice, however this reversal of phenotype was not observed in Cfh-/-/Cfb+/- or Cfb-/-/Cfh+/- mice. Loss of CFD caused an increase in C3 and a decrease in C3 breakdown products along the basal surface of the RPE. Overall the retinal morphology and retinal vasculature did not appear different across the various genotypes. We observed that C3 accumulates at the basal RPE in Cfb-/-, Cfb-/-/Cfh-/-, Cfb-/-/Cfh+/-, Cfd-/- and WT mice, but is absent in Cfh-/- and Cfh-/-/Cfb+/- mice, consistent with its consumption in the serum of mice lacking CFH when CFB is present. C3 breakdown products along the surface of the RPE were either decreased or absent when CFB, CFH or CFD was deleted or partially deleted.
Collapse
Affiliation(s)
- Jennifer A. E. Williams
- Department of Cell Biology, UCL Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, United Kingdom
| | - Dimitris Stampoulis
- Department of Cell Biology, UCL Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, United Kingdom
| | - Chloe E. Gunter
- Department of Cell Biology, UCL Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, United Kingdom
| | - John Greenwood
- Department of Cell Biology, UCL Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, United Kingdom
| | - Peter Adamson
- Ophthiris Discovery Performance Unit and Department of Laboratory Animal Science, GlaxoSmithKline, Medicines Research Centre, Gunnelswood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - Stephen E. Moss
- Department of Cell Biology, UCL Institute of Ophthalmology, 11–43 Bath Street, London EC1V 9EL, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
A model of progressive photo-oxidative degeneration and inflammation in the pigmented C57BL/6J mouse retina. Exp Eye Res 2016; 147:114-127. [PMID: 27155143 DOI: 10.1016/j.exer.2016.04.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/31/2016] [Accepted: 04/19/2016] [Indexed: 12/23/2022]
Abstract
Light-induced degeneration in rodent retinas is an established model for of retinal degeneration, including the roles of oxidative stress and neuroinflammatory activity. In these models, photoreceptor death is elicited via photo-oxidative stress, and is exacerbated by recruitment of subretinal macrophages and activation of immune pathways including complement propagation. Existing light damage models have relied heavily on albino rodents, and mostly using acute light stimuli. These albino models have proven valuable in uncovering the pathogenic mechanisms of such pathways in the context of retinal disease. However, their inherent albinism hinders comparability to normal retinal physiology, and also makes gene technology analysis time-consuming due to the predominance of the pigmented mouse strains in these applications. In this study, we characterise a new light damage model utilising C57BL/6J mice over a 7 day period of chronic light exposure. We use high-efficiency LED technology to deliver a sustained intensity of 100 k lux with negligible modulation of ambient temperature. We show that in the C57BL/6J mouse, chronic light exposure elicits the cardinal features of light damage including photoreceptor degeneration, atrophy of the choriocapillaris, decreased retinal function and increases in oxidative stress markers 4-HNE and 8-OHG, which emerge progressively over the 7 day period of exposure. These changes are accompanied by robust recruitment of IBA1+ and F4/80 + microglia/macrophages to the ONL and subretinal space, followed the strong up-regulation of monocyte-chemoattractants Ccl2, Ccl3, and Ccl12, as well as increases in expression of complement component C3. These findings are in agreement with prior damage models conducted in albino rodents such as Balb/c mice, and support the use of this new model in further investigating the causative features of oxidative stress and inflammation in retinal disease.
Collapse
|
32
|
Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and γδT-cells. Sci Rep 2016; 6:23794. [PMID: 27029558 PMCID: PMC4814842 DOI: 10.1038/srep23794] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 01/12/2023] Open
Abstract
Neovascular age-related macular degeneration (AMD) is characterized by choroidal neovascularization (CNV). An overactive complement system is associated with AMD pathogenesis, and serum pro-inflammatory cytokines, including IL-17, are elevated in AMD patients. IL-17 is produced by complement C5a-receptor-expressing T-cells. In murine CNV, infiltrating γδT- rather than Th17-cells produce the IL-17 measurable in lesioned eyes. Here we asked whether C5a generated locally in response to CNV recruits IL-17-producing T-cells to the eye. CNV lesions were generated using laser photocoagulation and quantified by imaging; T-lymphocytes were characterized by QRT-PCR. CNV resulted in an increase in splenic IL-17-producing γδT- and Th17-cells; yet in the CNV eye, only elevated levels of γδT-cells were observed. Systemic administration of anti-C5- or anti-C5a-blocking antibodies blunted the CNV-induced production of splenic Th17- and γδT-cells, reduced CNV size and eliminated ocular γδT-cell infiltration. In ARPE-19 cell monolayers, IL-17 triggered a pro-inflammatory state; and splenocyte proliferation was elevated in response to ocular proteins. Thus, we demonstrated that CNV lesions trigger a systemic immune response, augmenting local ocular inflammation via the infiltration of IL-17-producing γδT-cells, which are presumably recruited to the eye in a C5a-dependent manner. Understanding the complexity of complement-mediated pathological mechanisms will aid in the development of an AMD treatment.
Collapse
|
33
|
Zeng S, Whitmore SS, Sohn EH, Riker MJ, Wiley LA, Scheetz TE, Stone EM, Tucker BA, Mullins RF. Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration. J Pathol 2015; 238:446-56. [PMID: 26564985 DOI: 10.1002/path.4669] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/15/2015] [Accepted: 11/04/2015] [Indexed: 12/29/2022]
Abstract
Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that endothelial cell drop-out is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat-inactivated serum, which lacks complement components. Cells exposed to complement components in human serum showed increased labelling with antibodies directed against the MAC, time- and dose-dependent cell death, as assessed by lactate dehydrogenase assay and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteinase (MMP)-3 and -9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5-depleted serum compared to C5-reconstituted serum. Increased levels of MMP9 were also established, using western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells.
Collapse
Affiliation(s)
- Shemin Zeng
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - S Scott Whitmore
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Elliott H Sohn
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Megan J Riker
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Luke A Wiley
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Todd E Scheetz
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
34
|
Kleinman ME, Ambati J. Complement Activation and Inhibition in Retinal Diseases. DEVELOPMENTS IN OPHTHALMOLOGY 2015; 55:46-56. [PMID: 26501209 DOI: 10.1159/000431141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Within the past several decades, a brigade of dedicated researchers from around the world has provided essential insights into the critical niche of immune-mediated inflammation in the pathogenesis of age-related macular degeneration (AMD). Yet, the question has lingered as to whether disease-initiating events are more or less dependent on isolated immune-related responses, unimpeded inflammation, endogenous pathways of age-related cell senescence and oxidative stress, or any of the other numerous molecular derangements that have been identified in the natural history of AMD. There is now an abundant cache of data signifying immune system activation as an impetus in the pathogenesis of this devastating condition. Furthermore, recent rigorous investigations have revealed multiple inciting factors, including several important complement-activating components, thus creating a new array of disease-modulating targets for the research and development of molecular therapeutic interventions. While the precise in vivo effects of complement activation and inhibition in the progression and treatment of AMD remain to be determined, ongoing clinical trials of the first generation of complement-targeted therapeutics are hoped to yield critical data on the contribution of this pathway to the disease process.
Collapse
|
35
|
Osthoff M, Dean MM, Baird PN, Richardson AJ, Daniell M, Guymer RH, Eisen DP. Association Study of Mannose-Binding Lectin Levels and Genetic Variants in Lectin Pathway Proteins with Susceptibility to Age-Related Macular Degeneration: A Case-Control Study. PLoS One 2015; 10:e0134107. [PMID: 26207622 PMCID: PMC4514807 DOI: 10.1371/journal.pone.0134107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In age-related macular degeneration (AMD) the complement system is thought to be activated by chronic oxidative damage with genetic variants identified in the alternative pathway as susceptibility factors. However, the involvement of the lectin pathway of complement, a key mediator of oxidative damage, is controversial. This study investigated whether mannose-binding lectin (MBL) levels and genetic variants in lectin pathway proteins, are associated with the predisposition to and severity of AMD. METHODS MBL levels and single nucleotide polymorphisms (SNPs) in the MBL2 and the ficolin-2 (FCN2) gene were determined in 109 patients with AMD and 109 age- and sex-matched controls. RESULTS MBL expression levels were equally distributed in both cases (early and late AMD) and controls (p>0.05). However, there was a trend towards higher median MBL levels in cases with late AMD compared to cases with early AMD (1.0 vs. 0.4 μg/ml, p = 0.09) and MBL deficiency (<0.5 μg/ml) was encountered less frequently in the late AMD group (35% vs 56%, p = 0.03). FCN2 and MBL2 allele frequencies were similarly distributed in early and late AMD cases compared with controls (p>0.05 for all analyses) as were MBL2 genotypes. Similarly, there was no significant difference in allele frequencies in any SNPs in either the MBL2 or FCN2 gene in cases with early vs. late AMD. CONCLUSIONS SNPs of lectin pathway proteins investigated in this study were not associated with AMD or AMD severity. However, MBL levels deserve further study in a larger cohort of early vs. late AMD patients to elucidate any real effect on AMD severity.
Collapse
Affiliation(s)
- Michael Osthoff
- Victorian Infectious Diseases Service at the Doherty Institute, Melbourne Health, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Melinda M. Dean
- Research and Development, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Paul N. Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Andrea J. Richardson
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Robyn H. Guymer
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Damon P. Eisen
- Victorian Infectious Diseases Service at the Doherty Institute, Melbourne Health, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Complement-Targeted Therapies in Lupus. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2015. [DOI: 10.1007/s40674-014-0009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Tian Y, Kijlstra A, Webers CAB, Berendschot TTJM. Lutein and Factor D: two intriguing players in the field of age-related macular degeneration. Arch Biochem Biophys 2015; 572:49-53. [PMID: 25637656 DOI: 10.1016/j.abb.2015.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/11/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive eye disease that impairs central vision among elderly populations in Western, industrialized countries. In this review we will focus on the role of factor D (FD) and lutein in AMD. FD is a rate-limiting enzyme of the alternative complement activation pathway that may play an important role in the development of AMD. Several independent studies have shown a significant increase in the level of a number of complement factors of the alternative pathway, including factor D in the blood of AMD patients as compared to healthy individuals, which suggests a systemic involvement in the pathogenesis of AMD. FD, also called adipsin, is mainly produced by adipose tissue. Besides playing a role in the activation of the alternative pathway, FD is also known to regulate the immune system. Of interest is our preliminary finding that lutein supplementation of early AMD cases was shown to lower the level of systemic FD. If confirmed, these findings provide further support for the application of anti-factor D intervention as a new approach to control the development of this disease.
Collapse
Affiliation(s)
- Yuan Tian
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | | | | |
Collapse
|
38
|
Schnabolk G, Coughlin B, Joseph K, Kunchithapautham K, Bandyopadhyay M, O'Quinn EC, Nowling T, Rohrer B. Local production of the alternative pathway component factor B is sufficient to promote laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 2015; 56:1850-63. [PMID: 25593023 DOI: 10.1167/iovs.14-15910] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Complement factor B (CFB) is a required component of the alternative pathway (AP) of complement, and CFB polymorphisms are associated with age-related macular degeneration (AMD) risk. Complement factor B is made in the liver, but expression has also been detected in retina and retinal pigment epithelium (RPE)-choroid. We investigated whether production of CFB by the RPE can promote AP activation in mouse choroidal neovascularization (CNV). METHODS Transgenic mice expressing CFB under the RPE65 promoter were generated and crossed onto factor B-deficient (CFB-KO) mice. Biological activity was determined in vitro using RPE monolayers and in vivo using laser-induced CNV. Contribution of systemic CFB was investigated using CFB-KO reconstituted with CFB-sufficient serum. RESULTS Transgenic mice (CFB-tg) expressed CFB in RPE-choroid; no CFB was detected in serum. Cultured CFB-tg RPE monolayers secreted CFB apically and basally upon exposure to oxidative stress that was biologically active. Choroidal neovascularization sizes were comparable between wild-type and CFB-tg mice, but significantly increased when compared to lesions in CFB-KO mice. Injections of CFB-sufficient serum into CFB-KO mice resulted in partial reconstitution of systemic AP activity and significantly increased CNV size. CONCLUSIONS Mouse RPE cells express and secrete CFB sufficient to promote RPE damage and CNV. This further supports that local complement production may regulate disease processes; however, the reconstitution experiments suggest that additional components may be sequestered from the bloodstream. Understanding the process of ocular complement production and regulation will further our understanding of the AMD disease process and the requirements of a complement-based therapeutic.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kusumam Joseph
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kannan Kunchithapautham
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mausumi Bandyopadhyay
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Elizabeth C O'Quinn
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Tamara Nowling
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bärbel Rohrer
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
39
|
Warwick A, Khandhadia S, Ennis S, Lotery A. Age-Related Macular Degeneration: A Disease of Systemic or Local Complement Dysregulation? J Clin Med 2014; 3:1234-57. [PMID: 26237601 PMCID: PMC4470180 DOI: 10.3390/jcm3041234] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. The role of complement in the development of AMD is now well-established. While some studies show evidence of complement dysregulation within the eye, others have demonstrated elevated systemic complement activation in association with AMD. It is unclear which one is the primary driver of disease. This has important implications for designing novel complement-based AMD therapies. We present a summary of the current literature and suggest that intraocular rather than systemic modulation of complement may prove more effective.
Collapse
Affiliation(s)
- Alasdair Warwick
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Samir Khandhadia
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| | - Sarah Ennis
- Genomic Informatics, Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Andrew Lotery
- Clinical Neurosciences Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
- Eye Unit, University Southampton NHS Trust, Southampton SO16 6YD, UK.
| |
Collapse
|
40
|
Mullins RF, Schoo DP, Sohn EH, Flamme-Wiese MJ, Workamelahu G, Johnston RM, Wang K, Tucker BA, Stone EM. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3142-53. [PMID: 25204844 DOI: 10.1016/j.ajpath.2014.07.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/18/2014] [Accepted: 07/10/2014] [Indexed: 01/19/2023]
Abstract
Age-related macular degeneration (AMD) is a common disease that can result in severe visual impairment. Abnormal regulation of the complement system has been implicated in its pathogenesis, and CFH polymorphisms contribute substantially to risk. How these polymorphisms exert their effects is poorly understood. We performed enzyme-linked immunosorbent assay (ELISA) analysis on young, aged, and AMD choroids to determine the abundance of the membrane attack complex (MAC) and performed immunofluorescence studies on eyes from 117 donors to evaluate the MAC in aging, early AMD, and advanced AMD. Morphometric studies were performed on eyes with high- or low-risk CFH genotypes. ELISA confirmed that MAC increases significantly with aging and with AMD. MAC was localized to Bruch's membrane and the choriocapillaris and was detectable at low levels as early as 5 years of age. Hard drusen were labeled with anti-MAC antibody, but large or confluent drusen and basal deposits were generally unlabeled. Labeling of retinal pigment epithelium was observed in some cases of advanced AMD, but not in early disease. Eyes homozygous for the high-risk CFH genotype had thinner choroids than low-risk homozygotes (P < 0.05). These findings suggest that increased complement activation in AMD and in high-risk genotypes can lead to loss of endothelial cells in early AMD. Treatments to protect the choriocapillaris in early AMD are needed.
Collapse
Affiliation(s)
- Robert F Mullins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa.
| | - Desi P Schoo
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Miles J Flamme-Wiese
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Grefachew Workamelahu
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Rebecca M Johnston
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Kai Wang
- Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa; Department of Biostatistics, The University of Iowa, Iowa City, Iowa
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa; Stephen A. Wynn Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
41
|
Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 2014; 15:151-71. [PMID: 24773320 DOI: 10.1146/annurev-genom-090413-025610] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic and genomic studies have enhanced our understanding of complex neurodegenerative diseases that exert a devastating impact on individuals and society. One such disease, age-related macular degeneration (AMD), is a major cause of progressive and debilitating visual impairment. Since the pioneering discovery in 2005 of complement factor H (CFH) as a major AMD susceptibility gene, extensive investigations have confirmed 19 additional genetic risk loci, and more are anticipated. In addition to common variants identified by now-conventional genome-wide association studies, targeted genomic sequencing and exome-chip analyses are uncovering rare variant alleles of high impact. Here, we provide a critical review of the ongoing genetic studies and of common and rare risk variants at a total of 20 susceptibility loci, which together explain 40-60% of the disease heritability but provide limited power for diagnostic testing of disease risk. Identification of these susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment.
Collapse
Affiliation(s)
- Lars G Fritsche
- Center for Statistical Genetics, Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109; ,
| | | | | | | | | | | |
Collapse
|
42
|
Cholesterol in the retina: the best is yet to come. Prog Retin Eye Res 2014; 41:64-89. [PMID: 24704580 DOI: 10.1016/j.preteyeres.2014.03.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
Abstract
Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because of eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes' roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link.
Collapse
|
43
|
Abstract
Although new activation and regulatory mechanisms are still being identified, the basic architecture of the complement system has been known for decades. Two major roles of complement are to control certain bacterial infections and to promote clearance of apoptotic cells. In addition, although inappropriate complement activation has long been proposed to cause tissue damage in human inflammatory and autoimmune diseases, whether this is indeed true has been uncertain. However, recent studies in humans, especially those using newly available biological therapeutics, have now clearly demonstrated the pathophysiologic importance of the complement system in several rare diseases. Beyond these conditions, recent genetic studies have strongly supported an injurious role for complement in a wide array of human inflammatory, degenerative, and autoimmune diseases. This review includes an overview of complement activation, regulatory, and effector mechanisms. It then focuses on new understandings gained from genetic studies, ex vivo analyses, therapeutic trials, and animal models as well as on new research opportunities.
Collapse
Affiliation(s)
- V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045;
| |
Collapse
|
44
|
The role of the immune response in age-related macular degeneration. Int J Inflam 2013; 2013:348092. [PMID: 23762772 PMCID: PMC3676958 DOI: 10.1155/2013/348092] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/09/2013] [Indexed: 01/01/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries; with the aging population, the negative health impacts and costs of the disease will increase dramatically over the next decade. Although the exact cause of AMD is unknown, genetic studies have implicated the complement system as well as other immune responses in disease pathogenesis and severity. Furthermore, histologic studies have shown the presence of macrophages, lymphocytes, and mast cells, as well as fibroblasts, in both atrophic lesions and with retinal neovascularization. This review summarizes discussions from the fifth annual conference of the Arnold and Mabel Beckman Initiative for Macular Research by the Inflammation and Immune Response Task Force. These deliberations focused on the role of inflammatory immune responses, including complement, inflammasomes, adaptive immune responses, and para-inflammation, unanswered questions and studies to address these questions, and potential immune-related therapeutic targets for AMD.
Collapse
|
45
|
Joseph K, Kulik L, Coughlin B, Kunchithapautham K, Bandyopadhyay M, Thiel S, Thielens NM, Holers VM, Rohrer B. Oxidative stress sensitizes retinal pigmented epithelial (RPE) cells to complement-mediated injury in a natural antibody-, lectin pathway-, and phospholipid epitope-dependent manner. J Biol Chem 2013; 288:12753-65. [PMID: 23493397 DOI: 10.1074/jbc.m112.421891] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Uncontrolled activation of the alternative complement pathway (AP) is thought to be associated with age-related macular degeneration. Previously, we have shown that in retinal pigmented epithelial (RPE) monolayers, oxidative stress reduced complement inhibition on the cell surface, resulting in sublytic complement activation and loss of transepithelial resistance (TER), but the potential ligand and pathway involved are unknown. ARPE-19 cells were grown as monolayers on transwell plates, and sublytic complement activation was induced with H2O2 and normal human serum. TER deteriorated rapidly in H2O2-exposed monolayers upon adding normal human serum. Although the effect required AP activation, AP was not sufficient, because elimination of MASP, but not C1q, prevented TER reduction. Reconstitution experiments to unravel essential components of the lectin pathway (LP) showed that both ficolin and mannan-binding lectin can activate the LP through natural IgM antibodies (IgM-C2) that recognize phospholipid cell surface modifications on oxidatively stressed RPE cells. The same epitopes were found on human primary embryonic RPE monolayers. Likewise, mouse laser-induced choroidal neovascularization, an injury that involves LP activation, could be increased in antibody-deficient rag1(-/-) mice using the phospholipid-specific IgM-C2. In summary, using a combination of depletion and reconstitution strategies, we have shown that the LP is required to initiate the complement cascade following natural antibody recognition of neoepitopes, which is then further amplified by the AP. LP activation is triggered by IgM bound to phospholipids. Taken together, we have defined novel mechanisms of complement activation in oxidatively stressed RPE, linking molecular events involved in age-related macular degeneration, including the presence of natural antibodies and neoepitopes.
Collapse
Affiliation(s)
- Kusumam Joseph
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miller JW. Age-related macular degeneration revisited--piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 2013; 155:1-35.e13. [PMID: 23245386 DOI: 10.1016/j.ajo.2012.10.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022]
Abstract
PURPOSE To present the current understanding of age-related macular degeneration (AMD) pathogenesis, based on clinical evidence, epidemiologic data, histopathologic examination, and genetic data; to provide an update on current and emerging therapies; and to propose an integrated model of the pathogenesis of AMD. DESIGN Review of published clinical and experimental studies. METHODS Analysis and synthesis of clinical and experimental data. RESULTS We are closer to a complete understanding of the pathogenesis of AMD, having progressed from clinical observations to epidemiologic observations and clinical pathologic correlation. More recently, modern genetic and genomic studies have facilitated the exploration of molecular pathways. It seems that AMD is a complex disease that results from the interaction of genetic susceptibility with aging and environmental factors. Disease progression also seems to be driven by a combination of genetic and environmental factors. CONCLUSIONS Therapies based on pathophysiologic features have changed the paradigm for treating neovascular AMD. With improved understanding of the underlying genetic susceptibility, we can identify targets to halt early disease and to prevent progression and vision loss.
Collapse
|
47
|
CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:137-54. [PMID: 23402024 DOI: 10.1007/978-1-4614-4118-2_9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent approval of the first human complement pathway-directed therapeutics, along with high-profile genetic association studies, has catalyzed renewed biopharmaceutical interest in developing drugs that modulate the complement system. Substantial challenges remain, however, that must be overcome before widespread application of complement inhibitors in inflammatory and autoimmune diseases becomes possible. Among these challenges are the following: (1) defining the complement pathways and effector mechanisms that cause tissue injury in humans and determining whether the relative importance of each varies by disease, (2) blocking or modulating, using traditional small molecule or biologic approaches, the function of complement proteins whose circulating levels are very high and whose turnover rates are relatively rapid, especially in the setting of acute and chronic autoimmune diseases, and (3) avoiding infectious complications or impairment of other important physiological functions of complement when using systemically active complement-blocking agents. This chapter will review data that address these challenges to therapeutic development, with a focus on the development of a novel strategy of blocking specific complement pathways by targeting inhibitors using a recombinant portion of the human complement receptor type 2 (CR2/CD21) which specifically targets to sites of local complement C3 activation where C3 fragments are covalently fixed. Recently, the first of these CR2-targeted proteins has entered human phase I studies in the human disease paroxysmal nocturnal hemoglobinuria. The results of murine translational studies using CR2-targeted inhibitors strongly suggest that a guiding principle going forward in complement therapeutic development may well be to focus on developing strategies to modulate the pathway as precisely as possible by physically localizing therapeutic inhibitory effects.
Collapse
|
48
|
Elvington A, Atkinson C, Zhu H, Yu J, Takahashi K, Stahl GL, Kindy MS, Tomlinson S. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. THE JOURNAL OF IMMUNOLOGY 2012; 189:4640-7. [PMID: 23028050 DOI: 10.4049/jimmunol.1201904] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is mounting evidence indicating an important role for complement in the pathogenesis of cerebral ischemia-reperfusion injury, or ischemic stroke. The role of the alternative complement pathway in ischemic stroke has not been investigated, and there is conflicting data on the role of the terminal pathway. In this study, we show that compared with wild-type mice, mice deficient in the alternative pathway protein factor B or mice treated with the alternative pathway inhibitor CR2-fH have improved outcomes after 60-min middle cerebral artery occlusion and 24-h reperfusion. Factor B-deficient or CR2-fH-treated mice were protected in terms of improved neurologic function and reduced cerebral infarct, demyelination, P-selectin expression, neutrophil infiltration, and microthrombi formation. Mice deficient in both the classical and lectin pathways (C1q/MBL deficient) were also protected from cerebral ischemia-reperfusion injury, and there was no detectable C3d deposition in the ipsilateral brain of these mice. These data demonstrate that the alternative pathway is not alone sufficient to initiate complement activation and indicate that the alternative pathway propagates cerebral injury via amplification of the cascade. Deficiency of C6, a component of the terminal cytolytic membrane attack complex, had no effect on outcome after ischemic stroke, indicating that the membrane attack complex is not involved in mediating injury in this model. We additionally show that the protective effect of factor B deficiency and CR2-fH treatment is sustained in the subacute stage of infarct development, adding to the clinical relevance of these findings.
Collapse
Affiliation(s)
- Andrew Elvington
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Altered expression of CD46 and CD59 on leukocytes in neovascular age-related macular degeneration. Am J Ophthalmol 2012; 154:193-199.e2. [PMID: 22541656 DOI: 10.1016/j.ajo.2012.01.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the expression of the complement regulatory proteins CD46, CD55, and CD59 on peripheral leukocytes in neovascular age-related macular degeneration (AMD). DESIGN Prospective, case-control study. METHODS Thirty-five unrelated patients with neovascular AMD and 30 control individuals were included in this case-control study. All participants were subjected to a structured interview and detailed imaging (autofluorescence, digital funduscopy, spectral-domain optical coherence tomography, and fluorescein and indocyanine green angiography in patients suspected of having neovascular AMD) was performed. Fresh ethylenediamine-tetraacetic acid blood was obtained and stained with monoclonal antibodies. Using flow cytometry, the percentage of CD14(+) monocytes, CD45(+) lymphocytes, and CD45(+) granulocytes positive for CD46, CD55, and CD59 was determined in patients with neovascular AMD and was compared with that of controls. RESULTS We found that the expression of CD46 and CD59 was significantly lower on CD14(+) monocytes in patients with neovascular AMD compared with controls (P = .0070). A significantly lower expression of CD46 on lymphocytes was observed in patients with fibrosis compared with patients without fibrosis (P = .010). CONCLUSIONS Our study suggests that neovascular AMD is associated with an inadequate regulation of the complement system, supporting current evidence on the role of complement dysregulation in the pathogenesis of AMD.
Collapse
|
50
|
Bandyopadhyay M, Rohrer B. Matrix metalloproteinase activity creates pro-angiogenic environment in primary human retinal pigment epithelial cells exposed to complement. Invest Ophthalmol Vis Sci 2012; 53:1953-61. [PMID: 22408008 DOI: 10.1167/iovs.11-8638] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Mechanistic studies have shown that inflammation, complement activation, extracellular matrix (ECM) turnover, growth factor imbalance, and oxidative stress are fundamental components of age-related macular degeneration (AMD). Matrix metalloproteinases (MMPs) mediate ECM turnover but also process various bioactive molecules. Here, we tested whether complement attack on RPE monolayers changes MMP secretion and activation, thereby altering the availability of growth factors in the extracellular space. METHODS Human embryonic RPE monolayers with stable transepithelial resistance (TER) were established. Complement activation was induced with H₂O₂ and normal human serum. MMP-2/9, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) protein, and mRNA levels were analyzed by Western blotting, ELISA, and real-time PCR; activity of MMP-2/9 by gelatin zymography. RESULTS Complement activation resulted in a loss of TER, which required transient membrane attack complex formation, activation of the alternative pathway, and VEGF secretion and signaling. Despite the generation of reactive oxygen species, cellular integrity or intracellular adenosine triphosphate (ATP) levels were unaffected. However, expression of MMP-2/9 and their protease activity was elevated. Inhibition of MMP-2/9 activity increased PEDF and decreased VEGF levels in the apical and basal supernatants but had no effect on their expression levels. VEGF levels in the supernatant correlated with the level TER reduction. CONCLUSIONS These studies suggest that complement activation, by altering the expression and activation of MMPs, has the ability to generate a proangiogenic environment by altering the balance between VEGF and PEDF. Our findings link reported results that have been associated with AMD pathogenesis; oxidative stress; complement activation; VEGF/PEDF ratio; and MMP activity.
Collapse
Affiliation(s)
- Mausumi Bandyopadhyay
- Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|