1
|
Verma S, Ghatak A. Involvement of E3 Ubiquitin Ligases in Viral Infections of the Human Host. Viral Immunol 2024; 37:419-431. [PMID: 39469796 DOI: 10.1089/vim.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Viral infections are one of the principal causes of global primary health crises, with increased rate of infection and mortality demonstrated by the newer progeny of viruses. Viral invasion of the host involves utilization of various cellular machinery. Ubiquitination is one of a few central regulatory systems used by viruses for establishment of the infections in the host. Members of the ubiquitination system are involved in carrying out proteasomal degradation or functional modification of proteins in numerous cellular processes. E3 ubiquitin ligases play a major role in this system through recognition and recruitment of protein substrates and catalyzing the transfer of ubiquitin to these substrates. The versatility of ubiquitin ligases frequently makes them useful tools for the viruses, for either utilizing or degrading other cellular machineries, for carrying out their multiplication or inactivating the defensive strategies of the host. Therefore, these ligases are important targets for aiming at major pathways causing viral protein degradation or functional modification of the infection process. In this review, we have discussed the role and mechanism of different types of ubiquitin ligases in the context of infections of mainly human viruses, highlighting the viral proteins directly interacting with the ligases. Knowledge about these direct interactions is central in understanding the ubiquitin-dependent processes. This comprehensive account may also be beneficial for pharmaceutical exploration of E3 ligase-based broad-spectrum antiviral treatment.
Collapse
Affiliation(s)
- Suchanda Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Archana Ghatak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
2
|
Berquez M, Li AL, Luy MA, Venida AC, O'Loughlin T, Rademaker G, Barpanda A, Hu J, Yano J, Wiita A, Gilbert LA, Bruno PM, Perera RM. A multi-subunit autophagic capture complex facilitates degradation of ER stalled MHC-I in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620516. [PMID: 39554122 PMCID: PMC11565957 DOI: 10.1101/2024.10.27.620516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) evades immune detection partly via autophagic capture and lysosomal degradation of major histocompatibility complex class I (MHC-I). Why MHC-I is susceptible to capture via autophagy remains unclear. By synchronizing exit of proteins from the endoplasmic reticulum (ER), we show that PDAC cells display prolonged retention of MHC-I in the ER and fail to efficiently route it to the plasma membrane. A capture-complex composed of NBR1 and the ER-phagy receptor TEX264 facilitates targeting of MHC-I for autophagic degradation, and suppression of either receptor is sufficient to increase total levels and re-route MHC-I to the plasma membrane. Binding of MHC-I to the capture complex is linked to antigen presentation efficiency, as inhibiting antigen loading via knockdown of TAP1 or beta 2-Microglobulin led to increased binding between MHC-I and the TEX264-NBR1 capture complex. Conversely, expression of ER directed high affinity antigenic peptides led to increased MHC-I at the cell surface and reduced lysosomal degradation. A genome-wide CRISPRi screen identified NFXL1, as an ER-resident E3 ligase that binds to MHC-I and mediates its autophagic capture. High levels of NFXL1 are negatively correlated with MHC-I protein expression and predicts poor patient prognosis. These data highlight an ER resident capture complex tasked with sequestration and degradation of non-conformational MHC-I in PDAC cells, and targeting this complex has the potential to increase PDAC immunogenicity.
Collapse
|
3
|
Jing Z, Wu L, Pan Y, Zhang L, Zhang X, Shi D, Shi H, Chen J, Ji Z, Zhang J, Feng T, Tian J, Feng L. Rotavirus infection inhibits SLA-I expression on the cell surface by degrading β2 M via ERAD-proteasome pathway. Vet Microbiol 2024; 292:110036. [PMID: 38458048 DOI: 10.1016/j.vetmic.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. β2-microglobulin (β2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. β2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated β2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of β2 M occurred on the protein level. Mechanismly, RVA infection triggered β2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of β2 M, leading to the degradation of β2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of β2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades β2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.
Collapse
Affiliation(s)
- Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Ling Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Zhaoyang Ji
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Harbin, People's Republic of China.
| |
Collapse
|
4
|
Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q, Long J. Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett 2024; 588:216758. [PMID: 38401885 DOI: 10.1016/j.canlet.2024.216758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Immune checkpoint molecules play a pivotal role in the initiation, regulation, and termination of immune responses. Tumor cells exploit these checkpoints to dampen immune cell function, facilitating immune evasion. Clinical interventions target this mechanism by obstructing the binding of immune checkpoints to their ligands, thereby restoring the anti-tumor capabilities of immune cells. Notably, therapies centered on immune checkpoint inhibitors, particularly PD-1/PD-L1 and CTLA-4 blocking antibodies, have demonstrated significant clinical promise. However, a considerable portion of patients still encounter suboptimal efficacy and develop resistance. Recent years have witnessed an exponential surge in preclinical and clinical trials investigating novel immune checkpoint molecules such as TIM3, LAG3, TIGIT, NKG2D, and CD47, along with their respective ligands. The processes governing immune checkpoint molecules, from their synthesis to transmembrane deployment, interaction with ligands, and eventual degradation, are intricately tied to post-translational modifications. These modifications encompass glycosylation, phosphorylation, ubiquitination, neddylation, SUMOylation, palmitoylation, and ectodomain shedding. This discussion proceeds to provide a concise overview of the structural characteristics of several novel immune checkpoints and their ligands. Additionally, it outlines the regulatory mechanisms governed by post-translational modifications, offering insights into their potential clinical applications in immune checkpoint blockade.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meifang Xu
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meifeng Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Boshu Zheng
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qi Ke
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Hunter LM, Kite J, Fletcher-Etherington A, Nightingale K, Nobre L, Antrobus R, Fielding CA, Stanton RJ, Weekes MP. HCMV US2 co-opts TRC8 to degrade the endoplasmic reticulum-resident protein LMAN2L. J Gen Virol 2024; 105:001980. [PMID: 38687323 PMCID: PMC11083459 DOI: 10.1099/jgv.0.001980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.
Collapse
Affiliation(s)
- Leah M. Hunter
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Alice Fletcher-Etherington
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| | - Ceri A. Fielding
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J. Stanton
- Cardiff University School of Medicine, Division of Infection and Immunity, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 2QQ, UK
| |
Collapse
|
6
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
7
|
Hu R, Yao C, Li Y, Qu J, Yu S, Han Y, Chen G, Tang J, Wei H. Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE1α/XBP1s pathway in mouse Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114332. [PMID: 36446169 DOI: 10.1016/j.ecoenv.2022.114332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) widely exist in human living environment and enter the body through water, food chain and breathing. Several studies have shown that MPs or NPs disrupt the blood-testis barrier in rodents. However, the molecular mechanism by which MPs and NPs damage the blood-testis barrier remains unclear. In the present study, our aim was to investigate the molecular mechanism of the destruction of blood-testis barrier induced by polystyrene (PS)-NPs. Mice were treated with 50 μg/kg·day PS-NPs by tail vein injection once daily for two consecutive days. The results showed that PS-NPs exposure significantly decreased the levels of tight junction (TJ) proteins ZO-2, occludin and claudin-11 in testis of mice. In vitro, we used TM4 Sertoli cells to explore the underlying mechanism of the decrease in TJ proteins induced by PS-NPs. We found that PS-NPs activated IRE1α and induced its downstream XBP1 splicing, which in turn elevated the expression of the E3 ubiquitin ligase CHIP, then CHIP triggers proteasomal degradation of ZO-2, occludin, and claudin-11 proteins. Our findings suggest that IRE1α/XBP1s/CHIP pathway is a pivotal mechanism of TJ proteins degradation induced by PS-NPs in mouse Sertoli cells. In conclusion, our results reveal that the degradation of TJ proteins is one of the mechanisms of blood-testis barrier destruction caused by acute exposure to PS-NPs.
Collapse
Affiliation(s)
- Runzhi Hu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
8
|
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells 2021; 10:cells10123309. [PMID: 34943817 PMCID: PMC8699390 DOI: 10.3390/cells10123309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibitors and immune pathway–targeted therapies, are promising clinical strategies for treating cancer. However, drug resistance and adverse reactions remain the main challenges for immunotherapy management. The future direction of immunotherapy is mainly to reduce side effects and improve the treatment response rate by finding new targets and new methods of combination therapy. Ubiquitination plays a crucial role in regulating the degradation of immune checkpoints and the activation of immune-related pathways. Some drugs that target E3 ubiquitin ligases have exhibited beneficial effects in preclinical and clinical antitumor treatments. In this review, we discuss mechanisms through which E3 ligases regulate tumor immune checkpoints and immune-related pathways as well as the opportunities and challenges for integrating E3 ligases targeting drugs into cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea;
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Shahang Luo
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Guanghui Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Correspondence: (X.Y.); (W.-H.Y.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (X.Y.); (W.-H.Y.)
| |
Collapse
|
9
|
Shen Y, Zhang J. Tight Regulation of Major Histocompatibility Complex I for the Spatial and Temporal Expression in the Hippocampal Neurons. Front Cell Neurosci 2021; 15:739136. [PMID: 34658795 PMCID: PMC8517433 DOI: 10.3389/fncel.2021.739136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The expression and function of immune molecules, such as major histocompatibility complex (MHC), within the developing and adult brain have been discovered over the past few years. Studies utilizing classical class I MHC knockout animals suggest that these molecules, in fact, play essential roles in the establishment, function, and modification of synapses in the CNS. Altered neuronal expression of class I MHC, as has been reported in pathological conditions, leads to aberrations in neuronal development and repair. In the hippocampus, cellular and molecular mechanisms that regulate synaptic plasticity have heretofore been extensively studied. It is for this reason that multiple studies directed at better understanding the expression, regulation, and function of class I MHC within the hippocampus have been undertaken. Since several previous reviews have addressed the roles of class I MHC in the formation and function of hippocampal connections, the present review will focus on describing the spatial and temporal expression of class I MHC in developing, healthy adult, and aging hippocampus. Herein, we also review current literatures exploring mechanisms that regulate class I MHC expression in murine hippocampus. With this review, we aim to facilitate a deeper mechanistic understanding into the complex tight regulation of MHC I expression in hippocampus, which are needed as we explore the potential for targeting MHC I for therapeutic intervention in normal aging and in neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Liu X, Yu J, Xu L, Umphred-Wilson K, Peng F, Ding Y, Barton BM, Lv X, Zhao MY, Sun S, Hong Y, Qi L, Adoro S, Chen X. Notch-induced endoplasmic reticulum-associated degradation governs mouse thymocyte β-selection. eLife 2021; 10:e69975. [PMID: 34240701 PMCID: PMC8315795 DOI: 10.7554/elife.69975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Signals from the pre-T cell receptor and Notch coordinately instruct β-selection of CD4-CD8-double negative (DN) thymocytes to generate αβ T cells in the thymus. However, how these signals ensure a high-fidelity proteome and safeguard the clonal diversification of the pre-selection TCR repertoire given the considerable translational activity imposed by β-selection is largely unknown. Here, we identify the endoplasmic reticulum (ER)-associated degradation (ERAD) machinery as a critical proteostasis checkpoint during β-selection. Expression of the SEL1L-HRD1 complex, the most conserved branch of ERAD, is directly regulated by the transcriptional activity of the Notch intracellular domain. Deletion of Sel1l impaired DN3 to DN4 thymocyte transition and severely impaired mouse αβ T cell development. Mechanistically, Sel1l deficiency induced unresolved ER stress that triggered thymocyte apoptosis through the PERK pathway. Accordingly, genetically inactivating PERK rescued T cell development from Sel1l-deficient thymocytes. In contrast, IRE1α/XBP1 pathway was induced as a compensatory adaptation to alleviate Sel1l-deficiency-induced ER stress. Dual loss of Sel1l and Xbp1 markedly exacerbated the thymic defect. Our study reveals a critical developmental signal controlled proteostasis mechanism that enforces T cell development to ensure a healthy adaptive immunity.
Collapse
Affiliation(s)
- Xia Liu
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Jingjing Yu
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Longyong Xu
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Katharine Umphred-Wilson
- Department of Pathology, School of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Brendan M Barton
- Department of Pathology, School of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Michael Y Zhao
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe UniversityMelbourneAustralia
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Stanley Adoro
- Department of Pathology, School of Medicine, Case Western Reserve UniversityClevelandUnited States
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
11
|
Lee BJ, Min CK, Hancock M, Streblow DN, Caposio P, Goodrum FD, Yurochko AD. Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Front Microbiol 2021; 12:660901. [PMID: 34025614 PMCID: PMC8138183 DOI: 10.3389/fmicb.2021.660901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses have evolved diverse strategies to manipulate cellular signaling pathways in order to promote infection and/or persistence. Human cytomegalovirus (HCMV) possesses a number of unique properties that allow the virus to alter cellular events required for infection of a diverse array of host cell types and long-term persistence. Of specific importance is infection of bone marrow derived and myeloid lineage cells, such as peripheral blood monocytes and CD34+ hematopoietic progenitor cells (HPCs) because of their essential role in dissemination of the virus and for the establishment of latency. Viral induced signaling through the Epidermal Growth Factor Receptor (EGFR) and other receptors such as integrins are key control points for viral-induced cellular changes and productive and latent infection in host organ systems. This review will explore the current understanding of HCMV strategies utilized to hijack cellular signaling pathways, such as EGFR, to promote the wide-spread dissemination and the classic life-long herpesvirus persistence.
Collapse
Affiliation(s)
- Byeong-Jae Lee
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | | | - Andrew D Yurochko
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
12
|
A slowly cleaved viral signal peptide acts as a protein-integral immune evasion domain. Nat Commun 2021; 12:2061. [PMID: 33824318 PMCID: PMC8024260 DOI: 10.1038/s41467-021-21983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
Stress can induce cell surface expression of MHC-like ligands, including MICA, that activate NK cells. Human cytomegalovirus (HCMV) glycoprotein US9 downregulates the activating immune ligand MICA*008 to avoid NK cell activation, but the underlying mechanism remains unclear. Here, we show that the N-terminal signal peptide is the major US9 functional domain targeting MICA*008 to proteasomal degradation. The US9 signal peptide is cleaved with unusually slow kinetics and this transiently retained signal peptide arrests MICA*008 maturation in the endoplasmic reticulum (ER), and indirectly induces its degradation via the ER quality control system and the SEL1L-HRD1 complex. We further identify an accessory, signal peptide-independent US9 mechanism that directly binds MICA*008 and SEL1L. Collectively, we describe a dual-targeting immunoevasin, demonstrating that signal peptides can function as protein-integral effector domains. Glycoprotein US9 of human cytomegalovirus downregulates the activating immune ligand MICA*008 to avoid NK cell activation. Here, Seidel et al. show that the signal peptide of US9 is cleaved unusually slowly, causing MICA*008 to be retained in the endoplasmic reticulum (ER) and degraded via the ER quality control system.
Collapse
|
13
|
Padariya M, Kalathiya U, Mikac S, Dziubek K, Tovar Fernandez MC, Sroka E, Fahraeus R, Sznarkowska A. Viruses, cancer and non-self recognition. Open Biol 2021; 11:200348. [PMID: 33784856 PMCID: PMC8061760 DOI: 10.1098/rsob.200348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Sara Mikac
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Maria C. Tovar Fernandez
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Ewa Sroka
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Building 6M, 901 85 Umeå, Sweden
| | - Alicja Sznarkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
14
|
Liu J, Cheng Y, Zheng M, Yuan B, Wang Z, Li X, Yin J, Ye M, Song Y. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct Target Ther 2021; 6:28. [PMID: 33479196 PMCID: PMC7819986 DOI: 10.1038/s41392-020-00418-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system initiates robust immune responses to defend against invading pathogens or tumor cells and protect the body from damage, thus acting as a fortress of the body. However, excessive responses cause detrimental effects, such as inflammation and autoimmune diseases. To balance the immune responses and maintain immune homeostasis, there are immune checkpoints to terminate overwhelmed immune responses. Pathogens and tumor cells can also exploit immune checkpoint pathways to suppress immune responses, thus escaping immune surveillance. As a consequence, therapeutic antibodies that target immune checkpoints have made great breakthroughs, in particular for cancer treatment. While the overall efficacy of immune checkpoint blockade (ICB) is unsatisfactory since only a small group of patients benefited from ICB treatment. Hence, there is a strong need to search for other targets that improve the efficacy of ICB. Ubiquitination is a highly conserved process which participates in numerous biological activities, including innate and adaptive immunity. A growing body of evidence emphasizes the importance of ubiquitination and its reverse process, deubiquitination, on the regulation of immune responses, providing the rational of simultaneous targeting of immune checkpoints and ubiquitination/deubiquitination pathways to enhance the therapeutic efficacy. Our review will summarize the latest findings of ubiquitination/deubiquitination pathways for anti-tumor immunity, and discuss therapeutic significance of targeting ubiquitination/deubiquitination pathways in the future of immunotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Yicheng Cheng
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ming Zheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Bingxiao Yuan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| |
Collapse
|
15
|
Schuren A, Boer I, Bouma E, Van de Weijer M, Costa A, Hubel P, Pichlmair A, Lebbink R, Wiertz E. The UFM1 Pathway Impacts HCMV US2-Mediated Degradation of HLA Class I. Molecules 2021; 26:molecules26020287. [PMID: 33430125 PMCID: PMC7827699 DOI: 10.3390/molecules26020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
To prevent accumulation of misfolded proteins in the endoplasmic reticulum, chaperones perform quality control on newly translated proteins and redirect misfolded proteins to the cytosol for degradation by the ubiquitin-proteasome system. This pathway is called ER-associated protein degradation (ERAD). The human cytomegalovirus protein US2 induces accelerated ERAD of HLA class I molecules to prevent immune recognition of infected cells by CD8+ T cells. Using US2-mediated HLA-I degradation as a model for ERAD, we performed a genome-wide CRISPR/Cas9 library screen to identify novel cellular factors associated with ERAD. Besides the identification of known players such as TRC8, p97, and UBE2G2, the ubiquitin-fold modifier1 (UFM1) pathway was found to affect degradation of HLA-I. UFMylation is a post-translational modification resembling ubiquitination. Whereas we observe ubiquitination of HLA-I, no UFMylation was detected on HLA-I or several other proteins involved in degradation of HLA-I, suggesting that the UFM1 pathway impacts ERAD in a different manner than ubiquitin. Interference with the UFM1 pathway seems to specifically inhibit the ER-to-cytosol dislocation of HLA-I. In the absence of detectable UFMylation of HLA-I, UFM1 may contribute to US2-mediated HLA-I degradation by misdirecting protein sorting indirectly. Mass spectrometry analysis of US2-expressing cells showed that ribosomal proteins are a major class of proteins undergoing extensive UFMylation; the role of these changes in protein degradation may be indirect and remains to be established.
Collapse
Affiliation(s)
- A.B.C. Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
| | - I.G.J. Boer
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
| | - E.M. Bouma
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Department of Medical Microbiology, University Medical Center Groningen, Postbus 30001, 9700 RB Groningen, The Netherlands
| | - M.L. Van de Weijer
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - A.I. Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
| | - P. Hubel
- Innate Immunity Laboratory, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried, D-82152 Munich, Germany; (P.H.); (A.P.)
- Core Facility Hohenheim, Universität Hohenheim, Emil-Wolff-Straße 12, D-70599 Stuttgart, Germany
| | - A. Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried, D-82152 Munich, Germany; (P.H.); (A.P.)
- School of Medicine, Institute of Virology, Technical University of Munich, Schneckenburgerstr 8, D-81675 Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, D-85764 Neuherberg, Germany
| | - R.J. Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Correspondence: (R.J.L.); (E.J.H.J.W.); Tel.: +31-887550627 (R.J.L.); +31-887550862 (E.J.H.J.W.)
| | - E.J.H.J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands; (A.B.C.S.); (I.G.J.B.); (E.M.B.); (M.L.v.d.W.); (A.I.C.)
- Correspondence: (R.J.L.); (E.J.H.J.W.); Tel.: +31-887550627 (R.J.L.); +31-887550862 (E.J.H.J.W.)
| |
Collapse
|
16
|
Fenech EJ, Lari F, Charles PD, Fischer R, Laétitia-Thézénas M, Bagola K, Paton AW, Paton JC, Gyrd-Hansen M, Kessler BM, Christianson JC. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. eLife 2020; 9:e57306. [PMID: 32614325 PMCID: PMC7332293 DOI: 10.7554/elife.57306] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.
Collapse
Affiliation(s)
- Emma J Fenech
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Federica Lari
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Philip D Charles
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Marie Laétitia-Thézénas
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - John C Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
| |
Collapse
|
17
|
Wang Y, Wang X, Cui X, Zhuo Y, Li H, Ha C, Xin L, Ren Y, Zhang W, Sun X, Ge L, Liu X, He J, Zhang T, Zhang K, Yao Z, Yang X, Yang J. Oncoprotein SND1 hijacks nascent MHC-I heavy chain to ER-associated degradation, leading to impaired CD8 + T cell response in tumor. SCIENCE ADVANCES 2020; 6:eaba5412. [PMID: 32917674 PMCID: PMC7259962 DOI: 10.1126/sciadv.aba5412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/25/2020] [Indexed: 05/16/2023]
Abstract
SND1 is highly expressed in various cancers. Here, we identify oncoprotein SND1 as a previously unidentified endoplasmic reticulum (ER) membrane-associated protein. The amino-terminal peptide of SND1 predominantly associates with SEC61A, which anchors on ER membrane. The SN domain of SND1 catches and guides the nascent synthesized heavy chain (HC) of MHC-I to ER-associated degradation (ERAD), hindering the normal assembly of MHC-I in the ER lumen. In mice model bearing tumors, especially in transgenic OT-I mice, deletion of SND1 promotes the presentation of MHC-I in both B16F10 and MC38 cells, and the infiltration of CD8+ T cells is notably increased in tumor tissue. It was further confirmed that SND1 impaired tumor antigen presentation to cytotoxic CD8+ T cells both in vivo and in vitro. These findings reveal SND1 as a novel ER-associated protein facilitating immune evasion of tumor cells through redirecting HC to ERAD pathway that consequently interrupts antigen presentation.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinting Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhuo
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hongshuai Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chuanbo Ha
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingbiao Xin
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoming Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tao Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology, Excellent Talent Project, Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
18
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
19
|
McClellan AJ, Laugesen SH, Ellgaard L. Cellular functions and molecular mechanisms of non-lysine ubiquitination. Open Biol 2019; 9:190147. [PMID: 31530095 PMCID: PMC6769291 DOI: 10.1098/rsob.190147] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protein ubiquitination is of great cellular importance through its central role in processes such as degradation, DNA repair, endocytosis and inflammation. Canonical ubiquitination takes place on lysine residues, but in the past 15 years non-lysine ubiquitination on serine, threonine and cysteine has been firmly established. With the emerging importance of non-lysine ubiquitination, it is crucial to identify the responsible molecular machinery and understand the mechanistic basis for non-lysine ubiquitination. Here, we first provide an overview of the literature that has documented non-lysine ubiquitination. Informed by these examples, we then discuss the molecular mechanisms and cellular implications of non-lysine ubiquitination, and conclude by outlining open questions and future perspectives in the field.
Collapse
Affiliation(s)
- Amie J McClellan
- Division of Science and Mathematics, Bennington College, 1 College Drive, Bennington, VT 05201, USA
| | - Sophie Heiden Laugesen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
20
|
Zimmermann C, Kowalewski D, Bauersfeld L, Hildenbrand A, Gerke C, Schwarzmüller M, Le-Trilling VTK, Stevanovic S, Hengel H, Momburg F, Halenius A. HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11. PLoS Pathog 2019; 15:e1008040. [PMID: 31527904 PMCID: PMC6764698 DOI: 10.1371/journal.ppat.1008040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/27/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with β2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome. The human immune system can cover the presentation of a wide array of pathogen derived antigens owing to the three extraordinary polymorphic MHC class I (MHC-I) gene loci, called HLA-A, -B and -C in humans. Studying the HLA peptide ligands of human cytomegalovirus (HCMV) infected cells, we realized that the HCMV encoded glycoprotein US11 targeted different HLA gene products in distinct manners. More than 20 years ago the first HCMV encoded MHC-I inhibitors were identified, including US11, targeting MHC-I for proteasomal degradation. Here, we describe that the prime target for US11-mediated degradation is HLA-A, whereas HLA-B can resist degradation. Our further mechanistic analysis revealed that US11 uses various domains for distinct functions. Remarkably, the ability of US11 to interact with assembled MHC-I and modify peptide loading of degradation-resistant HLA-B was dependent on a low-complexity region (LCR) located between the signal peptide and the immunoglobulin-like domain of US11. To redirect MHC-I for proteasomal degradation the LCR was dispensable. These findings now raise the intriguing question why US11 has evolved to target HLA-A and -B differentially. Possibly, HLA-B molecules are spared in order to dampen NK cell attack against infected cells.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hildenbrand
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Magdalena Schwarzmüller
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
21
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
22
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
23
|
Menzies SA, Volkmar N, van den Boomen DJH, Timms RT, Dickson AS, Nathan JA, Lehner PJ. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1. eLife 2018; 7:e40009. [PMID: 30543180 PMCID: PMC6292692 DOI: 10.7554/elife.40009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Mammalian HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the cholesterol biosynthetic pathway and the therapeutic target of statins, is post-transcriptionally regulated by sterol-accelerated degradation. Under cholesterol-replete conditions, HMGCR is ubiquitinated and degraded, but the identity of the E3 ubiquitin ligase(s) responsible for mammalian HMGCR turnover remains controversial. Using systematic, unbiased CRISPR/Cas9 genome-wide screens with a sterol-sensitive endogenous HMGCR reporter, we comprehensively map the E3 ligase landscape required for sterol-accelerated HMGCR degradation. We find that RNF145 and gp78 independently co-ordinate HMGCR ubiquitination and degradation. RNF145, a sterol-responsive ER-resident E3 ligase, is unstable but accumulates following sterol depletion. Sterol addition triggers RNF145 recruitment to HMGCR via Insigs, promoting HMGCR ubiquitination and proteasome-mediated degradation. In the absence of both RNF145 and gp78, Hrd1, a third UBE2G2-dependent E3 ligase, partially regulates HMGCR activity. Our findings reveal a critical role for the sterol-responsive RNF145 in HMGCR regulation and elucidate the complexity of sterol-accelerated HMGCR degradation. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Sam A Menzies
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Norbert Volkmar
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | | | - Richard T Timms
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Anna S Dickson
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - James A Nathan
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Paul J Lehner
- Department of MedicineCambridge Institute for Medical ResearchCambridgeUnited Kingdom
| |
Collapse
|
24
|
Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, Li CW, Kim T, Chang SS, Lee HH, Hsu JL, Wang HL, Kuo CW, Chang WC, Hadad S, Purdie CA, McCoy AM, Cai S, Tu Y, Litton JK, Mittendorf EA, Moulder SL, Symmans WF, Thompson AM, Piwnica-Worms H, Chen CH, Khoo KH, Hung MC. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol Cell 2018; 71:606-620.e7. [PMID: 30118680 PMCID: PMC6786495 DOI: 10.1016/j.molcel.2018.07.030] [Citation(s) in RCA: 536] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022]
Abstract
Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/immunology
- Animals
- Antineoplastic Agents/pharmacology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Cell Line, Tumor
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/genetics
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum-Associated Degradation
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/immunology
- Female
- Gene Expression Regulation, Neoplastic
- Glycosylation
- Humans
- Hypoglycemic Agents/pharmacology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Metformin/pharmacology
- Mice
- Mice, Inbred NOD
- Phosphorylation
- Serine/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jong-Ho Cha
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Wen-Hao Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taewan Kim
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Hung-Ling Wang
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wei-Chao Chang
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Sirwan Hadad
- Department of Surgery, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Colin A Purdie
- Department of Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Aaron M McCoy
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shirong Cai
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yizheng Tu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alastair M Thompson
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
25
|
Cytomegalovirus gp40/m152 Uses TMED10 as ER Anchor to Retain MHC Class I. Cell Rep 2018; 23:3068-3077. [DOI: 10.1016/j.celrep.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 03/12/2018] [Accepted: 05/03/2018] [Indexed: 02/03/2023] Open
|
26
|
Frascaroli G, Lecher C, Varani S, Setz C, van der Merwe J, Brune W, Mertens T. Human Macrophages Escape Inhibition of Major Histocompatibility Complex-Dependent Antigen Presentation by Cytomegalovirus and Drive Proliferation and Activation of Memory CD4 + and CD8 + T Cells. Front Immunol 2018; 9:1129. [PMID: 29887865 PMCID: PMC5981096 DOI: 10.3389/fimmu.2018.01129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/04/2018] [Indexed: 12/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) persistently infects 40–90% of the human population but in the face of a normal immune system, viral spread and dissemination are efficiently controlled thus preventing clinically signs and disease. HCMV-infected hosts produce a remarkably large amount of HCMV-specific CD4+ and CD8+ T cells that can even reach 20–50% of total T memory cells in the elderly. How HCMV may elicit such large and long-lasting T-cell responses in the absence of detectable viremia has not been elucidated yet. Additionally, HCMV is known to encode several gene products that potently inhibit T-cell recognition of infected cells. The best characterized are the four immune evasive US2, US3, US6, and US11 genes that by different mechanisms account for major histocompatibility complex (MHC) class I and class II degradation and intracellular retention in infected cells. By infecting M1 and M2 human macrophages (Mφ) with the wild-type HCMV strain TB40E or a mutant virus deleted of the four immune evasive genes US2, US3, US6, and US11, we demonstrated that human Mφ counteract the inhibitory potential of the US2-11 genes and remain capable to present peptides via MHC class I and class II molecules. Moreover, by sorting the infected and bystander cells, we provide evidence that both infected and bystander Mφ contribute to antigen presentation to CD4+ and CD8+ T cells. The T cells responding to TB40E-infected Mφ show markers of the T effector memory compartment, produce interferon-γ, and express the lytic granule marker CD107a on the cell surface, thus mirroring the HCMV-specific T cells present in healthy seropositive individuals. All together, our findings reveal that human Mφ escape inhibition of MHC-dependent antigen presentation by HCMV and continue to support T cell proliferation and activation after HCMV infection. Taking into account that Mφ are natural targets of HCMV infection and a site of viral reactivation from latency, our findings support the hypothesis that Mφ play crucial roles for the lifelong maintenance and expansion of HCMV-committed T cells in the human host.
Collapse
Affiliation(s)
- Giada Frascaroli
- Institute of Virology, Ulm University Medical Center, Ulm, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carina Lecher
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Stefania Varani
- Department of Diagnostic, Experimental and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Corinna Setz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Mertens
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
27
|
Cardano M, Diaferia GR, Conti L, Baronchelli S, Sessa A, Broccoli V, Barbieri A, De Blasio P, Biunno I. mSEL-1L deficiency affects vasculogenesis and neural stem cell lineage commitment. J Cell Physiol 2017; 233:3152-3163. [PMID: 28816361 DOI: 10.1002/jcp.26153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022]
Abstract
mSEL-1L is a highly conserved ER-resident type I protein, involved in the degradation of misfolded peptides through the ubiquitin-proteasome system (UPS), a pathway known to control the plasticity of the vascular smooth muscle cells (VSMC) phenotype and survival. In this article, we demonstrate that mSEL-1L deficiency interferes with the murine embryonic vascular network, showing particular irregularities in the intracranic and intersomitic neurovascular units and in the cerebral capillary microcirculation. During murine embryogenesis, mSEL-1L is expressed in cerebral areas known to harbor progenitor neural cells, while in the adult brain the protein is specifically restricted to the stem cell niches, co-localizing with Sox2 and Nestin. Null mice are characterized by important defects in the development of telenchephalic regions, revealing conspicuous aberration in neural stem cell lineage commitment. Moreover, mSEL-1L depletion in vitro and in vivo appears to affect the harmonic differentiation of the NSCs, by negatively influencing the corticogenesis processes. Overall, the data presented suggests that the drastic phenotypic characteristics exhibited in mSEL-1L null mice can, in part, be explained by the negative influence it plays on Notch1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Luciano Conti
- Laboratory of Stem Cell Biology, Centre for Integrative Biology-CIBIO, Università degli Studi di Trento, Trento, Italy
| | - Simona Baronchelli
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council, Milano, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Andrea Barbieri
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council, Milano, Italy
| | | | - Ida Biunno
- Institute of Genetic and Biomedical Research (IRGB) of the National Research Council, Milano, Italy.,IRCCS Multimedica, Milano, Italy
| |
Collapse
|
28
|
van de Weijer ML, Schuren ABC, van den Boomen DJH, Mulder A, Claas FHJ, Lehner PJ, Lebbink RJ, Wiertz EJHJ. Multiple E2 ubiquitin-conjugating enzymes regulate human cytomegalovirus US2-mediated immunoreceptor downregulation. J Cell Sci 2017; 130:2883-2892. [PMID: 28743740 DOI: 10.1242/jcs.206839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Anouk B C Schuren
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | | | - Arend Mulder
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frans H J Claas
- Dept. Immunohematology and blood transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Robert Jan Lebbink
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Dept. Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
29
|
Thiel N, Keyser KA, Lemmermann NAW, Oduro JD, Wagner K, Elsner C, Halenius A, Lenac Roviš T, Brinkmann MM, Jonjić S, Cicin-Sain L, Messerle M. The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages. PLoS Pathog 2016; 12:e1006057. [PMID: 27926943 PMCID: PMC5142792 DOI: 10.1371/journal.ppat.1006057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023] Open
Abstract
The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tail-anchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction. Human cytomegalovirus (HCMV) is a tenacious pathogen, which can be life-threatening for immunocompromised patients and immunologically immature newborns. The pathogenicity of HCMV is owed to a plethora of immunomodulatory functions that interfere with host defense mechanisms. Such viral functions can teach us about viral pathogenesis mechanisms, and also about the functioning of immune cells. In this study we report that the mouse cytomegalovirus (MCMV)–a close relative of HCMV–influences surface expression of the cellular protein CD45 on macrophages and we identified the viral gene m42 mediating this effect. CD45 has long been known to be essential for the functioning of lymphocytes, however, its role in macrophages is less well understood. Growth analysis of a viral mutant indicated that the m42 gene confers a replication advantage to MCMV in vivo. We found that the m42 protein induces internalization of CD45 from the plasma membrane and degradation in lysosomes—most likely triggered by interaction of m42 with a ubiquitin ligase. In our study we detected a new element in the complex interaction of cytomegaloviruses with host cells, and further investigation into this mechanism may provide us with new insights into the functions of CD45 in myeloid cells.
Collapse
Affiliation(s)
- Nadine Thiel
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kirsten A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Niels A W Lemmermann
- Institute of Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Carina Elsner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tihana Lenac Roviš
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Melanie M Brinkmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Luka Cicin-Sain
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Van Damme E, Thys K, Tuefferd M, Van Hove C, Aerssens J, Van Loock M. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types. PLoS One 2016; 11:e0164843. [PMID: 27760232 PMCID: PMC5070835 DOI: 10.1371/journal.pone.0164843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/01/2016] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential of HCMV to adapt to or influence different cellular environments to promote its own survival.
Collapse
Affiliation(s)
- Ellen Van Damme
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kim Thys
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Carl Van Hove
- Discovery Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marnix Van Loock
- Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
- * E-mail:
| |
Collapse
|
31
|
Frabutt DA, Zheng YH. Arms Race between Enveloped Viruses and the Host ERAD Machinery. Viruses 2016; 8:v8090255. [PMID: 27657106 PMCID: PMC5035969 DOI: 10.3390/v8090255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Enveloped viruses represent a significant category of pathogens that cause serious diseases in animals. These viruses express envelope glycoproteins that are singularly important during the infection of host cells by mediating fusion between the viral envelope and host cell membranes. Despite low homology at protein levels, three classes of viral fusion proteins have, as of yet, been identified based on structural similarities. Their incorporation into viral particles is dependent upon their proper sub-cellular localization after being expressed and folded properly in the endoplasmic reticulum (ER). However, viral protein expression can cause stress in the ER, and host cells respond to alleviate the ER stress in the form of the unfolded protein response (UPR); the effects of which have been observed to potentiate or inhibit viral infection. One important arm of UPR is to elevate the capacity of the ER-associated protein degradation (ERAD) pathway, which is comprised of host quality control machinery that ensures proper protein folding. In this review, we provide relevant details regarding viral envelope glycoproteins, UPR, ERAD, and their interactions in host cells.
Collapse
Affiliation(s)
- Dylan A Frabutt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
32
|
Gan J, Qiao N, Strahan R, Zhu C, Liu L, Verma SC, Wei F, Cai Q. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection. Rev Med Virol 2016; 26:435-445. [DOI: 10.1002/rmv.1900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/03/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Jin Gan
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Niu Qiao
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Roxanne Strahan
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Caixia Zhu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Lei Liu
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Subhash C. Verma
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|
33
|
McClure ML, Barnes S, Brodsky JL, Sorscher EJ. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am J Physiol Lung Cell Mol Physiol 2016; 311:L719-L733. [PMID: 27474090 DOI: 10.1152/ajplung.00431.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Posttranslational modifications add diversity to protein function. Throughout its life cycle, the cystic fibrosis transmembrane conductance regulator (CFTR) undergoes numerous covalent posttranslational modifications (PTMs), including glycosylation, ubiquitination, sumoylation, phosphorylation, and palmitoylation. These modifications regulate key steps during protein biogenesis, such as protein folding, trafficking, stability, function, and association with protein partners and therefore may serve as targets for therapeutic manipulation. More generally, an improved understanding of molecular mechanisms that underlie CFTR PTMs may suggest novel treatment strategies for CF and perhaps other protein conformational diseases. This review provides a comprehensive summary of co- and posttranslational CFTR modifications and their significance with regard to protein biogenesis.
Collapse
Affiliation(s)
- Michelle L McClure
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
34
|
Ravindran MS, Bagchi P, Cunningham CN, Tsai B. Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nat Rev Microbiol 2016; 14:407-420. [PMID: 27265768 PMCID: PMC5272919 DOI: 10.1038/nrmicro.2016.60] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses exploit the functions of the endoplasmic reticulum (ER) to promote both early and later stages of their life cycle, including entry, translation, replication, assembly, morphogenesis and egress. This observation reveals a shared principle that underlies virus–host cell relationships. Viral entry often requires disassembly of the incoming virus particle. This is best exemplified in the case of polyomavirus entry, in which ER-associated machineries are hijacked to disassemble the virus and promote entry to the cytosol en route to the nucleus. Many enveloped viruses, such as HIV and influenza virus, co-opt the ER-associated protein biosynthetic machinery to translate their genome and produce structural proteins that are necessary for the formation of virus particles and non-structural proteins that are essential during genome replication. Replication of the viral genome, particularly for positive-sense RNA ((+)RNA) viruses including hepatitis C virus (HCV), dengue virus (DENV) and West Nile virus (WNV), occurs in virus-induced membranous structures that are most often derived from the ER. The formation of these structures requires morphological changes to the ER membrane, involving membrane rearrangements that are induced by viral non-structural proteins that are targeted to the ER. As virus assembly is often coupled to genome replication, the assembly process frequently relies on the ER membrane. This strategy is seen for both RNA and DNA viruses. Morphogenesis of assembled virus particles can also take advantage of the ER. This is best observed in the non-enveloped rotavirus, for which a transient enveloped intermediate is converted to the mature and infectious particle in the lumen of the ER. After maturation in the ER, progeny virus particles egress the host through the ER-dependent secretory pathway, which provides a physical conduit to the extracellular environment. The overall observations that the ER actively promotes all steps of viral infection have therapeutic implications. The development of chemical inhibitors of selective ER-associated components is emerging as a potential avenue of antiviral therapy, provided that these inhibitors have minimal toxicity to the host cell.
Many host structures are vital for viral infection and the endoplasmic reticulum (ER), in particular, is essential. In this Review, Tsai and colleagues highlight examples of subversion of the ER by diverse viruses to promote all stages of their life cycle, from entry to egress. Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co-opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Corey Nathaniel Cunningham
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
35
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
36
|
Jan Bergmann T, Brambilla Pisoni G, Molinari M. Quality control mechanisms of protein biogenesis: proteostasis dies hard. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Chapman DC, Stocki P, Williams DB. Cyclophilin C Participates in the US2-Mediated Degradation of Major Histocompatibility Complex Class I Molecules. PLoS One 2015; 10:e0145458. [PMID: 26691022 PMCID: PMC4686535 DOI: 10.1371/journal.pone.0145458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus uses a variety of mechanisms to evade immune recognition through major histocompatibility complex class I molecules. One mechanism mediated by the immunoevasin protein US2 causes rapid disposal of newly synthesized class I molecules by the endoplasmic reticulum-associated degradation pathway. Although several components of this degradation pathway have been identified, there are still questions concerning how US2 targets class I molecules for degradation. In this study we identify cyclophilin C, a peptidyl prolyl isomerase of the endoplasmic reticulum, as a component of US2-mediated immune evasion. Cyclophilin C could be co-isolated with US2 and with the class I molecule HLA-A2. Furthermore, it was required at a particular expression level since depletion or overexpression of cyclophilin C impaired the degradation of class I molecules. To better characterize the involvement of cyclophilin C in class I degradation, we used LC-MS/MS to detect US2-interacting proteins that were influenced by cyclophilin C expression levels. We identified malectin, PDIA6, and TMEM33 as proteins that increased in association with US2 upon cyclophilin C knockdown. In subsequent validation all were shown to play a functional role in US2 degradation of class I molecules. This was specific to US2 rather than general ER-associated degradation since depletion of these proteins did not impede the degradation of a misfolded substrate, the null Hong Kong variant of α1-antitrypsin.
Collapse
Affiliation(s)
- Daniel C. Chapman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Pawel Stocki
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David B. Williams
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|