1
|
Shi H, Liu Q, He W, Ma X, Shen X, Zou Y. Triptolide attenuates LPS-induced chondrocyte inflammation by inhibiting inflammasome activation via the Wnt/β-catenin and NF-κB signaling pathways. Cytotechnology 2025; 77:13. [PMID: 39665044 PMCID: PMC11628479 DOI: 10.1007/s10616-024-00680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Osteoarthritis (OA) is a common form of arthritis characterized by subchondral bone proliferation and articular cartilage degeneration. Recently, the Nod-like receptor pyrin domain 3 (NLRP3) inflammasome has gained attention due to its association with synovial inflammation in OA. Triptolide (TP), known for its immunosuppressive and anti-inflammatory effects, has been studied in various diseases. However, the specific impact of TP on OA and its underlying mechanism remains largely unexplored. In this study, chondrocytes were treated with a specific concentration of TP, and subsequent analysis through Western blotting and immunofluorescence staining revealed decreased expression levels of MMP-13, NLRP3, Caspase-1, ASC, β-catenin, p-p65, and IκB compared to the model group. ELISA results demonstrated significantly lower levels of IL-1β, IL-18, and TNF-α in the TP treatment group compared to the model group. In addition, triptolide ameliorates the degradation of the extracellular matrix (ECM) by enhancing the expression of collagen-II. In conclusion, our findings suggest that TP exhibits anti-inflammatory effects on chondrocytes in the presence of LPS-induced inflammation by inhibiting the activation of the NLRP3 inflammasome via the Wnt/β-catenin and NF-κB pathway. These results contribute to a better understanding of TP's potential therapeutic benefits in managing OA.
Collapse
Affiliation(s)
- Hangchu Shi
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Qiming Liu
- Department of Orthopedics Surgery, Fuyang Orthopedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wang He
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Xuming Ma
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Xiaoqiang Shen
- Department of Orthopedics, The Third People’s Hospital of Yuhang District, Hangzhou, China
| | - Yang Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Zeng M, Chen Z, Wang Y, Yang Z, Xiang J, Wang X, Wang X. LncRNA MALAT1 to Enhance Pyroptosis in Viral Myocarditis Through UPF1-Mediated SIRT6 mRNA Decay and Wnt-β-Catenin Signal Pathway. Cardiovasc Toxicol 2024; 24:1439-1454. [PMID: 39367210 DOI: 10.1007/s12012-024-09922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
Viral myocarditis (VMC) is an inflammatory disease of the myocardium caused by cardioviral infection, especially coxsackievirus B3 (CVB3), and is a major contributor to acute heart failure and sudden cardiac death in children and adolescents. LncRNA MALAT1 knockdown reportedly inhibits the differentiation of Th17 cells to attenuate CVB3-induced VMC in mice. Moreover, long non-coding RNAs (lncRNAs) interact with RNA-binding proteins (RBPs) to regulate UPF1-mediated mRNA decay. However, it remains unclear whether MALAT1 can bind to UPF1 to mediate the mRNA decay of its target genes in VMC. Herein, we aimed to explore the effect of lncRNA MALAT1 on UPF1-mediated SIRT6 mRNA decay in VMC using in vivo and in vitro experiments. CVB3-infected BABL/C mice were used as VMC models, and MALAT1 interfering adenovirus was injected to achieve MALAT1 knockdown. The heart function of the VMC mice was assessed using echocardiography. Pathological changes in myocardial tissues were assessed after hematoxylin-eosin staining. Myocardial injury and inflammation were evaluated by measuring creatine kinase isoenzyme B, cardiac troponin T, interleukin (IL)-1β, and IL-18. TUNEL staining was performed to assess apoptosis in myocardial tissues. In vitro experiments were performed using H9c2 cells after transfection and CVB3 infection. The lactic dehydrogenase release, caspase-1 activity, and IL-1β and IL-18 levels in the cellular supernatant were detected. Western blotting was performed to determine the expression of pyroptosis-related proteins (GSDMD-N, NLRP3, ASC, and Cleaved-Caspase-1) and Wnt/β-catenin signal pathway-related proteins (Wnt1, β-catenin, and p-GSK-3β). RNA immunoprecipitation and RNA stability assays assessed the relationship between MALAT1, UPF1, and SIRT6. CVB3-infected mice and H9c2 cells exhibited elevated MALAT1 and reduced SIRT6 expression. MALAT1 knockdown or SIRT6 overexpression suppressed inflammation and pyroptosis and inhibited the activation of the Wnt/β-catenin signal pathway in myocardial tissues and cells. MALAT1 enhanced the enrichment of SIRT6 mRNA by UPF1 and disturbed the stability of SIRT6 mRNA to promote the development of VMC. MALAT1 can bind UPF1 to mediate SIRT6 mRNA decay and activate the Wnt/β-catenin signal pathway in VMC.
Collapse
Affiliation(s)
- Min Zeng
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China.
| | - Zhi Chen
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Yefeng Wang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Zhou Yang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Jinxing Xiang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Xiang Wang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| | - Xun Wang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86 Ziyuan Road, Yuhua District, Changsha, Hunan, 410007, People's Republic of China
| |
Collapse
|
3
|
Li H, Zhang J, Yu B, Yang T, Liu B, Li F, Jin X, Li Q. RSPO3 regulates the radioresistance of Non-Small cell lung cancer cells via NLRP3 Inflammasome-Mediated pyroptosis. Radiother Oncol 2024; 200:110528. [PMID: 39245068 DOI: 10.1016/j.radonc.2024.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Radioresistance is a significant challenge in the radiotherapy of non-small cell lung cancer (NSCLC). This study aimed to investigate the role of R-spondin 3 (RSPO3) in regulating NSCLC radioresistance. METHODS AND MATERIALS RNA sequencing was performed to analyze genes that are differentially expressed in radioresistant NSCLC cell lines. RSPO3 overexpression and knockdown experiments were conducted to assess its impact on radiosensitivity. The involvement of the β-catenin-NF-κB signaling pathway and the NLRP3 inflammasome in RSPO3-mediated radiosensitivity was also evaluated. In vivo experiments were conducted using a clinical-grade anti-RSPO3 antibody (OMP-131R10/rosmantuzumab) to assess its impact on radiation-induced pyroptosis and subsequent anti-tumor immunity. RESULTS RSPO3 expression was downregulated in radioresistant NSCLC cells. Overexpression of RSPO3 increased NSCLC radiosensitivity through the induction of pyroptosis, which was mediated by the β-catenin-NF-κB signaling pathway and the NLRP3 inflammasome. The anti-RSPO3 antibody effectively blocked radiation-induced pyroptosis and anti-tumor immunity in vivo. Conversely, upregulation of RSPO3 enhanced NSCLC tumor radiosensitivity. CONCLUSIONS The findings demonstrated that RSPO3 plays a crucial role in regulating NSCLC radioresistance via NLRP3 mediated pyroptosis. Targeting the RSPO3-NLRP3 inflammasome axis may offer a potential therapeutic strategy to enhance the efficacy of radiotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Bingtao Liu
- Radiotherapy center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, 730050, China
| | - Feifei Li
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China.
| |
Collapse
|
4
|
Huang X, Xiu L, An Y, Gong Y, Li S, Chen X, Liu C, Lu J, Shan H, Chang J, Zhang M. Preventive Effect of Royal Jelly and 10-HDA on Skin Damage in Diabetic Mice through Regulating Keratinocyte Wnt/β-Catenin and Pyroptosis Pathway. Mol Nutr Food Res 2024; 68:e2400098. [PMID: 39246232 DOI: 10.1002/mnfr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The objective of this study is to elucidate how Royal jelly (RJ) and 10-hydroxy-2-decanoic acid (10-HDA) prevents diabetic skin dysfunction by modulating the pyroptosis pathway. Type 2 diabetes models are induced by fat diet consumption and low dose of streptozotocin (STZ) in C57BL/6J mice and treated with RJ (100 mg kg-1 day-1) and 10-HDA, the major lipid component of royal jelly (100 mg kg-1 day-1) for 28 weeks. The results show that serum concentrations of glucose and triglyceride are significantly lower in the RJ group or 10-HDA than diabetes mellitus (DM) group. Compared to the control group, pyroptosis proteins, GSDMD, ASC, Caspase-1, and IL-1β are increased in the skin of the diabetic model, accompanied by the activation of the Wnt/β-catenin signal pathway. Further evaluations by RJ exhibit superior improvement of skin damage, repress activation of the Wnt/β-catenin pathway, and attenuate keratinocyte pyroptosis, but 10-HDA cannot completely suppress the activation of Wnt/β-catenin pathway and pyroptosis, which shows a relatively weak protective effect on skin damage which shows that RJ is a better effect on skin injury after DM.
Collapse
Affiliation(s)
- Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Lu Xiu
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yuan Gong
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Sunao Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Chao Liu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jianghuiwen Lu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215123, China
| | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Wang P, Yang J, Dai S, Gao P, Qi Y, Zhao X, Liu J, Wang Y, Gao Y. miRNA-193a-mediated WT1 suppression triggers podocyte injury through activation of the EZH2/β-catenin/NLRP3 pathway in children with diabetic nephropathy. Exp Cell Res 2024; 442:114238. [PMID: 39251057 DOI: 10.1016/j.yexcr.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Diabetic nephropathy (DN), an eminent etiology of renal disease in patients with diabetes, involves intricate molecular mechanisms. Recent investigations have elucidated microRNA-193a (miR-193a) as a pivotal modulator in DN, although its precise function in podocyte impairment remains obscure. The present study investigated the role of miR-193a in podocyte injury via the WT1/EZH2/β-catenin/NLRP3 pathway. This study employed a comprehensive experimental approach involving both in vitro and in vivo analyses. We utilized human podocyte cell lines and renal biopsy samples from pediatric patients with DN. The miR-193a expression levels in podocytes and glomeruli were quantified via qRT‒PCR. Western blotting and immunofluorescence were used to assess the expression of WT1, EZH2, β-catenin, and NLRP3 inflammasome components. Additionally, the study used luciferase reporter assays to confirm the interaction between miR-193a and WT1. The impact of miR-193a manipulation was observed by overexpressing WT1 and inhibiting miR-193a in podocytes, followed by analysis of downstream pathway activation and inflammatory markers. We found upregulated miR-193a in podocytes and glomeruli, which directly targeted and suppressed WT1, a crucial podocyte transcription factor. WT1 suppression, in turn, activated the EZH2/β-catenin/NLRP3 pathway, leading to inflammasome assembly and proinflammatory cytokine production. Overexpression of WT1 or inhibition of miR-193a attenuated these effects, protecting podocytes from injury. This study identified a novel mechanism by which miR-193a-mediated WT1 suppression triggers podocyte injury in DN via the EZH2/β-catenin/NLRP3 pathway. Targeting this pathway or inhibiting miR-193a may be potential therapeutic strategies for DN.
Collapse
Affiliation(s)
- Peng Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Jing Yang
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Shasha Dai
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Pinli Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Ying Qi
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Xiaowei Zhao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Juan Liu
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yingying Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yang Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China.
| |
Collapse
|
6
|
Meng H, Deng Y, Liao J, Wu DD, Li LX, Chen X, Lan WF. β-catenin mediates monocrotaline-induced pulmonary hypertension via glycolysis in rats. BMC Cardiovasc Disord 2024; 24:381. [PMID: 39044140 PMCID: PMC11264393 DOI: 10.1186/s12872-024-04000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Metabolic abnormalities and immune inflammation are deeply involved in pulmonary vascular remodelling and the development of pulmonary hypertension (PH). However, the regulatory mechanisms of glycolysis in macrophages are still elusive. Cumulative evidence indicates that β-catenin plays a crucial role in metabolic reprogramming. This study aimed to investigate the effect of β-catenin on macrophage glycolysis in PH. METHODS LPS-induced BMDMs were generated via in vitro experiments. A monocrotaline (MCT)-induced PH rat model was established, and the β-catenin inhibitor XAV939 was administered in vivo. The role of β-catenin in glycolysis was analysed. The degree of pulmonary vascular remodelling was measured. RESULTS β-catenin was significantly increased in both in vitro and in vivo models. In LPS-induced BMDMs, β-catenin increased the levels of hexokinase 2 (HK2), phosphofructokinase (PFK), M2-pyruvate kinase (PKM2), lactate dehydrogenase (LDH), and lactate (LA) and the expression of inflammatory cytokines and promoted PASMC proliferation and migration in vitro. XAV939 decreased the level of glycolysis and downregulated the expression of inflammatory cytokines in vivo. MCT promoted pulmonary arterial structural remodelling and right ventricular hypertrophy, and XAV939 alleviated these changes. CONCLUSIONS Our findings suggest that β-catenin is involved in the development of PH by promoting glycolysis and the inflammatory response in macrophages. Inhibition of β-catenin could improve the progression of PH.
Collapse
MESH Headings
- Animals
- Glycolysis/drug effects
- Monocrotaline
- beta Catenin/metabolism
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Disease Models, Animal
- Male
- Rats, Sprague-Dawley
- Vascular Remodeling/drug effects
- Macrophages/metabolism
- Macrophages/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Signal Transduction
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/chemically induced
- Inflammation Mediators/metabolism
- Rats
- Cell Movement/drug effects
Collapse
Affiliation(s)
- Hui Meng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yan Deng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China.
- Department of Echocardiography of Cardiovascular Disease Institute, First Affiliated Hospital of Guangxi Medical University, 6 Shuang Yong Road, Nanning, 530021, People's Republic of China.
| | - Juan Liao
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Dan-Dan Wu
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Li-Xiang Li
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xing Chen
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wei-Fang Lan
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
7
|
Chen M, Huang S, Weng S, Weng J, Guo R, Shi B, Liu D. Songorine ameliorates LPS-induced sepsis cardiomyopathy by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4713-4725. [PMID: 38133657 DOI: 10.1007/s00210-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Septic cardiomyopathy (SCM) is manifested by impairment of cardiac contractile function with myocardial mitochondrial dysregulation. Natural product, songorine (SGR), a diterpenoid alkaloid derived from the lateral root of Aconitum carmichaeli, has been reported for the treatment of heart failure. Here, the protective role of SGR in heart injury of SCM was investigated and its underlying action of mechanism was explored. Firstly, the mouse and cardiomyocytes (H9C2 cell) SCM model induced by LPS were established to evaluate the therapeutic effect of SGR. The in vivo results exhibited that SGR rescued the survival rate of SCM mice, restored the loss of ejection fraction (EF) and fractional shortening (FS), and reduced left ventricular systolic diameter and left ventricular diastole diameter (LVIDs, LVIDd) by echocardiography. SGR improved the mitochondrial biosynthesis and myocardial fiber structure and arranged them neatly by transmission electron microscope (TEM). Further, SGR inhibited inflammatory targets myeloperoxidase (MPO) and tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and plasminogen activator inhibitor-1 (PAI-1). And SGR activated the mitochondrial biosynthesis-related peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), β-catenin, and matrix metallopeptidase 2 (MMP2) proteins. Meanwhile, the in vitro results showed that SGR promoted the increased the myocardial H9C2 cell viability, and mitochondrial biosynthesis and structure. SGR also blocked the inflammatory factors and reversed PGC-1α, β-catenin, and MMP2 in vitro, while SGR alleviated the myocardial cell apoptosis via flow cytometry. The findings indicate that SGR mitigates sepsis-caused myocardial damage by Wnt/β-catenin signaling pathway-mediated mitochondrial biosynthesis. SGR may be a promising candidate for treatment of SCM.
Collapse
Affiliation(s)
- Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Shanjiao Huang
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Shuoyun Weng
- School of Ophthalmology&Optometry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China
| | - Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian, 351100, Fujian, China.
| |
Collapse
|
8
|
Xu Y, Fang X, Zhao Z, Wu H, Fan H, Zhang Y, Meng Q, Rong Q, Fukunaga K, Guo Q, Liu Q. GPR124 induces NLRP3 inflammasome-mediated pyroptosis in endothelial cells during ischemic injury. Eur J Pharmacol 2024; 962:176228. [PMID: 38042462 DOI: 10.1016/j.ejphar.2023.176228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE G protein-coupled receptor 124 (GPR124) regulates central nervous system angiogenesis and blood-brain barrier (BBB) integrity, and its deficiency aggravates BBB breakdown and hemorrhagic transformation in ischemic mice. However, excessive GPR124 expression promotes inflammation in atherosclerotic mice. In this study, we aimed to elucidate the role of GPR124 in hypoxia/ischemia-induced cerebrovascular endothelial cell injury. METHODS bEnd.3 cells were exposed to oxygen-glucose deprivation (OGD), and time-dependent changes in GPR124 mRNA and protein expression were evaluated using reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The effects of GPR124 overexpression or knockdown on the expression of pyroptosis-related genes were assessed at the mRNA and protein levels. Tadehaginoside (TA) was screened as a potential small molecule targeting GPR124, and its effects on pyroptosis-related signaling pathways were investigated. Finally, the therapeutic efficacy of TA was evaluated using a rat model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R). RESULTS During OGD, the expression of GPR124 initially increased and then decreased over time, with the highest levels observed 1 h after OGD. The overexpression of GPR124 enhanced the OGD-induced expression of NLRP3, Caspase-1, and Gasdermin D (GSDMD) in bEnd.3 cells, whereas GPR124 knockdown reduced pyroptosis. Additionally, TA exhibited a high targeting ability to GPR124, significantly inhibiting its function and expression and suppressing the expression of pyroptosis-related proteins during OGD. Furthermore, TA treatment significantly reduced the cerebral infarct volume and pyroptotic signaling in tMCAO/R rats. CONCLUSIONS Our findings suggest that GPR124 mediates pyroptotic signaling in endothelial cells during the early stages of hypoxia/ischemia, thereby exacerbating ischemic injury.
Collapse
Affiliation(s)
- Yiqian Xu
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Xingyue Fang
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Zhenqiang Zhao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Haolin Wu
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Haofei Fan
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Ya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| | - Qingwen Meng
- Department of Pharmacology, School of Basic and Life Science, Hainan Medical University, Haikou 571199, China
| | - Qiongwen Rong
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Qingyun Guo
- Department of Pharmacology, School of Basic and Life Science, Hainan Medical University, Haikou 571199, China; Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China.
| | - Qibing Liu
- Department of Pharmacy & Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; Department of Pharmacology, School of Basic and Life Science, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
9
|
Li Z, Wang C, Zhang X, Xu X, Wang M, Dong L. Crosstalk between septic shock and venous thromboembolism: a bioinformatics and immunoassay analysis. Front Cell Infect Microbiol 2023; 13:1235269. [PMID: 38029239 PMCID: PMC10666789 DOI: 10.3389/fcimb.2023.1235269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Herein, we applied bioinformatics methods to analyze the crosstalk between septic shock (SS) and venous thromboembolism (VTE), focusing on the correlation with immune infiltrating cells. Methods Expression data were obtained from the Gene Expression Omnibus (GEO) database, including blood samples from SS patients (datasets GSE64457, GSE95233, and GSE57065) and VTE patients (GSE19151). We used the R package "limma" for differential expression analysis (p value<0.05,∣logFC∣≥1). Venn plots were generated to identify intersected differential genes between SS and VTE and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment analysis. The protein-protein interaction (PPI) network of intersected genes was constructed by Cytoscape software. The xCell analysis identified immune cells with significant changes in VTE and SS and correlated them with significant molecular pathways of crosstalk. Finally, we validated the mRNA expression of crosstalk genes by qPCR, while Matrix Metalloprotein-9 (MMP-9) protein levels were assessed through Western blotting (WB) and Immunohistochemistry (IHC) in human umbilical vein endothelial cells (HUVECs) and mice. Results In the present study, we conducted a comparison between 88 patients with septic shock and 55 control subjects. Additionally, we compared 70 patients with venous thromboembolism to 63 control subjects. Twelve intersected genes and their corresponding three important molecular pathways were obtained: Metabolic, Estrogen, and FOXO signaling pathways. The resulting PPI network has 194 nodes and 388 edges. The immune microenvironment analysis of the two diseases showed that the infiltration levels of M2 macrophages and Class-switched memory B cells were correlated with the enrichment scores of metabolic, estrogen, and FOXO signaling pathways. Finally, qPCR confirmed that the expression of MMP9, S100A12, ARG1, SLPI, and ANXA3 mRNA in the SS with VTE group was significantly elevated. WB and IHC experiments revealed that MMP9 protein was significantly elevated in the experimental group. Conclusion Metabolic, estrogen, and FOXO pathways play important roles in both SS and VTE and are related to the immune cell microenvironment of M2 macrophages and Class-switched memory B cells. MMP9 shows promise as a biomarker for diagnosing sepsis with venous thrombosis and a potential molecular target for treating this patient population.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaolan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Zhang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Xiaolin Xu
- School of Statistics, Renmin University of China, Bejing, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Pinheiro da Silva F, Gonçalves ANA, Duarte‐Neto AN, Dias TL, Barbeiro HV, Breda CNS, Breda LCD, Câmara NOS, Nakaya HI. Transcriptome analysis of six tissues obtained post-mortem from sepsis patients. J Cell Mol Med 2023; 27:3157-3167. [PMID: 37731199 PMCID: PMC10568675 DOI: 10.1111/jcmm.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Septic shock is a life-threatening clinical condition characterized by a robust immune inflammatory response to disseminated infection. Little is known about its impact on the transcriptome of distinct human tissues. To address this, we performed RNA sequencing of samples from the prefrontal cortex, hippocampus, heart, lung, kidney and colon of seven individuals who succumbed to sepsis and seven uninfected controls. We identified that the lungs and colon were the most affected organs. While gene activation dominated, strong inhibitory signals were also detected, particularly in the lungs. We found that septic shock is an extremely heterogeneous disease, not only when different individuals are investigated, but also when comparing different tissues of the same patient. However, several pathways, such as respiratory electron transport and other metabolic functions, revealed distinctive alterations, providing evidence that tissue specificity is a hallmark of sepsis. Strikingly, we found evident signals of accelerated ageing in our sepsis population.
Collapse
Affiliation(s)
| | | | | | | | - Hermes Vieira Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | | | | | | | - Helder I. Nakaya
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
- Hospital Israelita Albert EinsteinSão PauloBrazil
| |
Collapse
|
11
|
Roger E, Chadjichristos CE, Kavvadas P, Price GW, Cliff CL, Hadjadj S, Renciot J, Squires PE, Hills CE. Connexin-43 hemichannels orchestrate NOD-like receptor protein-3 (NLRP3) inflammasome activation and sterile inflammation in tubular injury. Cell Commun Signal 2023; 21:263. [PMID: 37770948 PMCID: PMC10536814 DOI: 10.1186/s12964-023-01245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Without a viable cure, chronic kidney disease is a global health concern. Inflammatory damage in and around the renal tubules dictates disease severity and is contributed to by multiple cell types. Activated in response to danger associated molecular patterns (DAMPs) including ATP, the NOD-like receptor protein-3 (NLRP3) inflammasome is integral to this inflammation. In vivo, we have previously observed that increased expression of Connexin 43 (Cx43) is linked to inflammation in chronic kidney disease (CKD) whilst in vitro studies in human proximal tubule cells highlight a role for aberrant Cx43 hemichannel mediated ATP release in tubule injury. A role for Cx43 hemichannels in priming and activation of the NLRP3 inflammasome in tubule epithelial cells remains to be determined. METHODS Using the Nephroseq database, analysis of unpublished transcriptomic data, examined gene expression and correlation in human CKD. The unilateral ureteral obstruction (UUO) mouse model was combined with genetic (tubule-specific Cx43 knockout) and specific pharmacological blockade of Cx43 (Peptide5), to explore a role for Cx43-hemichannels in tubule damage. Human primary tubule epithelial cells were used as an in vitro model of CKD. RESULTS Increased Cx43 and NLRP3 expression correlates with declining glomerular filtration rate and increased proteinuria in biopsies isolated from patients with CKD. Connexin 43-tubule deletion prior to UUO protected against tubular injury, increased expression of proinflammatory molecules, and significantly reduced NLRP3 expression and downstream signalling mediators. Accompanied by a reduction in F4/80 macrophages and fibroblast specific protein (FSP1+) fibroblasts, Cx43 specific hemichannel blocker Peptide5 conferred similar protection in UUO mice. In vitro, Peptide5 determined that increased Cx43-hemichannel activity primes and activates the NLRP3 inflammasome via ATP-P2X7 receptor signalling culminating in increased secretion of chemokines and cytokines, each of which are elevated in individuals with CKD. Inhibition of NLRP3 and caspase 1 similarly decreased markers of tubular injury, whilst preventing the perpetual increase in Cx43-hemichannel activity. CONCLUSION Aberrant Cx43-hemichannel activity in kidney tubule cells contributes to tubule inflammation via activation of the NLRP3 inflammasome and downstream paracrine mediated cell signalling. Use of hemichannel blockers in targeting Cx43-hemichannels is an attractive future therapeutic target to slow or prevent disease progression in CKD. Video Abstract.
Collapse
Affiliation(s)
- Elena Roger
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Christos E Chadjichristos
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Panagiotis Kavvadas
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Gareth W Price
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Safia Hadjadj
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Jessy Renciot
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
12
|
Wu D, Li Y, Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front Immunol 2023; 14:1155606. [PMID: 37426634 PMCID: PMC10324035 DOI: 10.3389/fimmu.2023.1155606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of undefined etiology, with persistent synovial inflammation and destruction of articular cartilage and bone. Current clinical drugs for RA mainly include non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs) and so on, which can relieve patients' joint symptoms. If we want to have a complete cure for RA, there are still some limitations of these drugs. Therefore, we need to explore new mechanisms of RA to prevent and treat RA radically. Pyroptosis is a newly discovered programmed cell death (PCD) in recent years, which is characterized by the appearance of holes in cell membranes, cell swelling and rupture, and the release of intracellular pro-inflammatory factors into the extracellular space, resulting in a strong inflammatory response. The nature of pyroptosis is pro-inflammatory, and whether it is participating in the development of RA has attracted a wide interest among scholars. This review describes the discovery and mechanism of pyroptosis, the main therapeutic strategies for RA, and the role of pyroptosis in the mechanism of RA development. From the perspective of pyroptosis, the study of new mechanisms of RA may provide a potential target for the treatment of RA and the development of new drugs in the clinics.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| | - Yujie Li
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ranxing Xu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| |
Collapse
|
13
|
Pan H, Li H, Guo S, Wang C, Long L, Wang X, Shi H, Zhang K, Chen H, Li S. The mechanisms and functions of TNF-α in intervertebral disc degeneration. Exp Gerontol 2023; 174:112119. [PMID: 36758650 DOI: 10.1016/j.exger.2023.112119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Low back pain (LBP) is one of the most common health problems in people's lives, which brings a massive burden to clinicians, and the leading cause of LBP is intervertebral disc degeneration (IDD). IDD is mainly caused by factors such as aging, mechanical stress, and lack of nutrition. The pathological mechanism of IDD is very complex, involving inflammatory response, cell metabolism disorder, and so on. Unfortunately, in the current treatment of IDD, only relieving symptoms as the primary means of relieving a patient's pain cannot effectively inhibit or reverse the progression of IDD. Tumor necrosis factor-α (TNF-α) is a multifunctional pro-inflammatory factor involved in many diseases' pathological processes. With the in-depth study of the pathological mechanism of IDD, more and more evidence has shown that TNF-α is an essential activator of IDD, which is related to the metabolic disorder, inflammatory responses, apoptosis, and other pathological processes of extracellular dissociation in the intervertebral disc. Therefore, anti-TNF-α therapy is an effective therapeutic target for alleviating IDD, especially in inhibiting extracellular matrix degradation and reducing inflammatory responses. This article reviews the pathological role of TNF-α in IDD and the latest research progress of TNF-α inhibitors in treating IDD.
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaiquan Zhang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
14
|
Yu XJ, Wang YG, Lu R, Guo XZ, Qu YK, Wang SX, Xu HR, Kang H, You HB, Xu Y. BMP7 ameliorates intervertebral disc degeneration in type 1 diabetic rats by inhibiting pyroptosis of nucleus pulposus cells and NLRP3 inflammasome activity. Mol Med 2023; 29:30. [PMID: 36858954 PMCID: PMC9979491 DOI: 10.1186/s10020-023-00623-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that intervertebral disc degeneration (IDD) is associated with diabetes mellitus (DM), while the underlying mechanisms still remain elusive. Herein, the current study sought to explore the potential molecular mechanism of IDD in diabetic rats based on transcriptome sequencing data. METHODS Streptozotocin (STZ)-induced diabetes mellitus type 1 (T1DM) rats were used to obtain the nucleus pulposus tissues for transcriptome sequencing. Next, differentially expressed genes (DEGs) in transcriptome sequencing data and GSE34000 microarray dataset were obtained and intersected to acquire the candidate genes. Moreover, GO and KEGG enrichment analyses were performed to analyze the cellular functions and molecular signaling pathways primarily regulated by candidate DEGs. RESULTS A total of 35 key genes involved in IDD of T1DM rats were mainly enriched in the extracellular matrix (ECM) and cytokine adhesion binding-related pathways. NLRP3 inflammasome activation promoted the pyroptosis of nucleus pulposus cells (NPCs). Besides, BMP7 could affect the IDD of T1DM rats by regulating the inflammatory responses. Additionally, NPCs were isolated from STZ-induced T1DM rats to illustrate the effects of BMP7 on IDD of T1DM rats using the ectopic expression method. Both in vitro and in vivo experiments validated that BMP7 alleviated IDD of T1DM rats by inhibiting NLRP3 inflammasome activation and pyroptosis of NPCs. CONCLUSION Collectively, our findings provided novel mechanistic insights for understanding of the role of BMP7 in IDD of T1DM, and further highlighted BMP7 as a potential therapeutic target for preventing IDD in T1DM.
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Ying-Guang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Xin-Zhen Guo
- Yantai Affiliated Hospital of Binzhou Medical College, Yantai, 264100, People's Republic of China
| | - Yun-Kun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Shan-Xi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Hao-Ran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Hong-Bo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yong Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
15
|
Ward GA, Dalton RP, Meyer BS, McLemore AF, Aldrich AL, Lam NB, Onimus AH, Vincelette ND, Trinh TL, Chen X, Calescibetta AR, Christiansen SM, Hou HA, Johnson JO, Wright KL, Padron E, Eksioglu EA, List AF. Oxidized Mitochondrial DNA Engages TLR9 to Activate the NLRP3 Inflammasome in Myelodysplastic Syndromes. Int J Mol Sci 2023; 24:ijms24043896. [PMID: 36835307 PMCID: PMC9966808 DOI: 10.3390/ijms24043896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Myelodysplastic Syndromes (MDSs) are bone marrow (BM) failure malignancies characterized by constitutive innate immune activation, including NLRP3 inflammasome driven pyroptotic cell death. We recently reported that the danger-associated molecular pattern (DAMP) oxidized mitochondrial DNA (ox-mtDNA) is diagnostically increased in MDS plasma although the functional consequences remain poorly defined. We hypothesized that ox-mtDNA is released into the cytosol, upon NLRP3 inflammasome pyroptotic lysis, where it propagates and further enhances the inflammatory cell death feed-forward loop onto healthy tissues. This activation can be mediated via ox-mtDNA engagement of Toll-like receptor 9 (TLR9), an endosomal DNA sensing pattern recognition receptor known to prime and activate the inflammasome propagating the IFN-induced inflammatory response in neighboring healthy hematopoietic stem and progenitor cells (HSPCs), which presents a potentially targetable axis for the reduction in inflammasome activation in MDS. We found that extracellular ox-mtDNA activates the TLR9-MyD88-inflammasome pathway, demonstrated by increased lysosome formation, IRF7 translocation, and interferon-stimulated gene (ISG) production. Extracellular ox-mtDNA also induces TLR9 redistribution in MDS HSPCs to the cell surface. The effects on NLRP3 inflammasome activation were validated by blocking TLR9 activation via chemical inhibition and CRISPR knockout, demonstrating that TLR9 was necessary for ox-mtDNA-mediated inflammasome activation. Conversely, lentiviral overexpression of TLR9 sensitized cells to ox-mtDNA. Lastly, inhibiting TLR9 restored hematopoietic colony formation in MDS BM. We conclude that MDS HSPCs are primed for inflammasome activation via ox-mtDNA released by pyroptotic cells. Blocking the TLR9/ox-mtDNA axis may prove to be a novel therapeutic strategy for MDS.
Collapse
Affiliation(s)
- Grace A. Ward
- Cancer Biology PhD Program, University of South Florida and H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Robert P. Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Benjamin S. Meyer
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Amy F. McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Amy L. Aldrich
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nghi B. Lam
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexis H. Onimus
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nicole D. Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Thu Le Trinh
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | - Sean M. Christiansen
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Taipei, Taipei 100229, Taiwan
| | - Joseph O. Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kenneth L. Wright
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Erika A. Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8560
| | - Alan F. List
- Precision BioSciences, Inc., Durham, NC 27701, USA
| |
Collapse
|
16
|
Ge Y, Chen Y, Guo C, Luo H, Fu F, Ji W, Wu C, Ruan H. Pyroptosis and Intervertebral Disc Degeneration: Mechanistic Insights and Therapeutic Implications. J Inflamm Res 2022; 15:5857-5871. [PMID: 36263145 PMCID: PMC9575467 DOI: 10.2147/jir.s382069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Low back pain (LBP) is a common problem worldwide, resulting in great patient suffering and great challenges for the social health system. Intervertebral disc (IVD) degeneration (IVDD) is widely acknowledged as one of the key causes of LBP. Accumulating evidence suggests that aberrant pyroptosis of IVD cells is involved in the pathogenesis of IVDD progression, however, the comprehensive roles of pyroptosis in IVDD have not been fully established, leaving attempts to treat IVDD with anti-pyroptosis approaches questionable. In this review, we summarize the characteristics of pyroptosis and emphasize the effects of IVD cell pyroptosis on the pathological progression of IVDD, including secretion of cytokines, nucleus pulposus cell apoptosis and autophagy, accelerated extracellular matrix degradation, annulus fibrosus rupture, cartilage endplate calcification, vascularization, sensory and sympathetic fiber neoinnervation, and infiltrating lymphatic vessels. Finally, we discuss several interventions used to treat IVDD by targeting pyroptosis. This review provides novel insights into the crucial role of IVD cell pyroptosis in IVDD pathogenesis, and could be informative for developing novel therapeutic approaches for IVDD and LBP.
Collapse
Affiliation(s)
- Yuying Ge
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Chijiao Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fangda Fu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China
| | - Weifeng Ji
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China
| | - Chengliang Wu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China,Correspondence: Chengliang Wu, Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, People’s Republic of China, Email
| | - Hongfeng Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, People’s Republic of China,Hongfeng Ruan, Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, People’s Republic of China, Email
| |
Collapse
|
17
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
18
|
Wang Y, Cao C, Zhu Y, Fan H, Liu Q, Liu Y, Chen K, Wu Y, Liang S, Li M, Li L, Liu X, Zhang Y, Wu C, Lu G, Wu M. TREM2/β-catenin attenuates NLRP3 inflammasome-mediated macrophage pyroptosis to promote bacterial clearance of pyogenic bacteria. Cell Death Dis 2022; 13:771. [PMID: 36068223 PMCID: PMC9448748 DOI: 10.1038/s41419-022-05193-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Triggering receptors expressed on myeloid cells 2 (TREM2) is considered a protective factor to protect host from bacterial infection, while how it elicits this role is unclear. In the present study, we demonstrate that deficiency of triggering receptors expressed on myeloid cells 2 (TREM2) significantly enhanced macrophage pyroptosis induced by four common pyogenic bacteria including Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Escherichia coli. TREM2 deficiency also decreased bacterial killing ratio of macrophage, while Caspase-1 or GSDMD inhibition promoted macrophage-mediated clearance to these bacteria. Further study demonstrated that the effect of TREM2 on macrophage pyroptosis and bacterial eradication mainly dependents on the activated status of NLRP3 inflammasome. Moreover, as the key downstream of TREM2, β-catenin phosphorylated at Ser675 by TREM2 signal and accumulated in nucleus and cytoplasm. β-catenin mediated the effect of TREM2 on NLRP3 inflammasome and macrophage pyroptosis by reducing NLRP3 expression, and inhibiting inflammasome complex assembly by interacting with ASC. Collectively, TREM2/β-catenin inhibits NLRP3 inflammasome to regulate macrophage pyroptosis, and enhances macrophage-mediated pyogenic bacterial clearance.
Collapse
Affiliation(s)
- Yi Wang
- grid.411866.c0000 0000 8848 7685Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Can Cao
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yanting Zhu
- grid.411866.c0000 0000 8848 7685Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Huifeng Fan
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yiting Liu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Kang Chen
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yongjian Wu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Siping Liang
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Meiyu Li
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Lexi Li
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Liu
- grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuanqing Zhang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Chenglin Wu
- grid.12981.330000 0001 2360 039XOrgan Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gen Lu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- grid.12981.330000 0001 2360 039XProgram of Infection and Immunity, Affiliated Guangzhou Women and Children’s Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XKey Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XGuangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
19
|
Cheng X, Liu D, Ren X, Nie Y, Zhao Y, Chen R, Wang H. The β-catenin/CBP signaling axis participates in sepsis-induced inflammatory lung injury. Exp Biol Med (Maywood) 2022; 247:1548-1557. [PMID: 35665630 PMCID: PMC9554161 DOI: 10.1177/15353702221097316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sepsis-induced inflammatory lung injury is a key factor causing failure of the lungs and other organs, as well as death, during sepsis. In the present study, a caecal ligation and puncture (CLP)-induced sepsis model was established to investigate the effect of β-catenin on sepsis-induced inflammatory lung injury and the corresponding underlying mechanisms. C57BL/6 mice were randomly divided into five groups, namely, the sham, CLP, β-catenin knockout (KO) + CLP, XAV-939 + CLP, and ICG-001 + CLP groups; the XAV-939 + CLP and ICG-001 + CLP groups were separately subjected to intraperitoneal injections of the β-catenin inhibitors XAV-939 and ICG-001 for 1 week preoperatively and 2 days postoperatively, respectively. Forty-eight hours after CLP, we measured β-catenin expression in lung tissues and evaluated mouse mortality, histopathological characteristics of hematoxylin and eosin (H&E)-stained lung tissues, serum cytokine (tumor necrosis factor [TNF]-α, interleukin [IL]-10, and IL-1β) levels, lung myeloperoxidase (MPO) activity, and the number of apoptotic cells in the lung tissues. Our results indicated that both the inhibition of β-catenin expression and blockage of β-catenin/CREB-binding protein (CBP) interactions by ICG-001 effectively decreased mouse mortality, alleviated pathological lung injury, and reduced the serum TNF-α, IL-10, and IL-1β levels, in addition to reducing the lung MPO activity and the number of apoptotic cells in lung tissues of the sepsis model mice. Therefore, it can be deduced that the β-catenin/CBP signaling axis participates in regulating sepsis-induced inflammatory lung injury.
Collapse
Affiliation(s)
- Xia Cheng
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Dandan Liu
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xinxin Ren
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - You Nie
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yibing Zhao
- Department of Oncology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ruyu Chen
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China,Hongwei Wang.
| |
Collapse
|
20
|
Jiang P, Wei K, Chang C, Zhao J, Zhang R, Xu L, Jin Y, Xu L, Shi Y, Guo S, Schrodi SJ, He D. SFRP1 Negatively Modulates Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis: A Review. Front Immunol 2022; 13:903475. [PMID: 35795672 PMCID: PMC9251540 DOI: 10.3389/fimmu.2022.903475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/β-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Davies J, Muralidhar S, Randerson-Moor J, Harland M, O'Shea S, Diaz J, Walker C, Nsengimana J, Laye J, Mell T, Chan M, Appleton L, Birkeälv S, Adams DJ, Cook GP, Ball G, Bishop DT, Newton-Bishop JA. Ulcerated melanoma: Systems biology evidence of inflammatory imbalance towards pro-tumourigenicity. Pigment Cell Melanoma Res 2022; 35:252-267. [PMID: 34826184 DOI: 10.1111/pcmr.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023]
Abstract
Microscopic ulceration is an independent predictor of melanoma death. Here, we used systems biology to query the role of host and tumour-specific processes in defining the phenotype. Albumin level as a measure of systemic inflammation was predictive of fewer tumour-infiltrating lymphocytes and poorer survival in the Leeds Melanoma Cohort. Ulcerated melanomas were thicker and more mitotically active (with corresponding transcriptomic upregulated cell cycle pathways). Sequencing identified tumoural p53 and APC mutations, and TUBB2B amplification as associated with the phenotype. Ulcerated tumours had perturbed expression of cytokine genes, consistent with protumourigenic inflammation and histological and transcriptomic evidence for reduced adaptive immune cell infiltration. Pathway/network analysis of multiomic data using neural networks highlighted a role for the β-catenin pathway in the ulceration, linking genomic changes in the tumour to immunosuppression and cell proliferation. In summary, the data suggest that ulceration is in part associated with genomic changes but that host factors also predict melanoma death with evidence of reduced immune responses to the tumour.
Collapse
Affiliation(s)
- John Davies
- Leeds Institute of Data Analytics, University of Leeds, Leeds, UK
| | - Sathya Muralidhar
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Sally O'Shea
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Dermatology Department, South Infirmary-Victoria University Hospital Cork and University College Cork, Cork, Ireland
| | - Joey Diaz
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Christy Walker
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jérémie Nsengimana
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Population Health Sciences Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Jon Laye
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tracey Mell
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - May Chan
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Lizzie Appleton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Sofia Birkeälv
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Graham P Cook
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - David T Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | |
Collapse
|
22
|
Causal Biological Network Model for Inflammasome Signaling Applied for Interpreting Transcriptomic Changes in Various Inflammatory States. Int J Inflam 2022; 2022:4071472. [PMID: 35126992 PMCID: PMC8813300 DOI: 10.1155/2022/4071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Virtually any stressor that alters the cellular homeostatic state may result in an inflammatory response. As a critical component of innate immunity, inflammasomes play a prominent role in the inflammatory response. The information on inflammasome biology is rapidly growing, thus creating the need for structuring it into a model that can help visualize and enhance the understanding of underlying biological processes. Causal biological network (CBN) models provide predictive power for novel disease mechanisms and treatment outcomes. We assembled the available literature information on inflammasome activation into the CBN model and scored it with publicly available transcriptomic datasets that address viral infection of the lungs, osteo- and rheumatoid arthritis, psoriasis, and aging. The scoring inferred pathway activation leading to NLRP3 inflammasome activation in these diverse conditions, demonstrating that the CBN model provides a platform for interpreting transcriptomic data in the context of inflammasome activation.
Collapse
|
23
|
Chen L, Cao SQ, Lin ZM, He SJ, Zuo JP. NOD-like receptors in autoimmune diseases. Acta Pharmacol Sin 2021; 42:1742-1756. [PMID: 33589796 PMCID: PMC8564530 DOI: 10.1038/s41401-020-00603-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023] Open
Abstract
Autoimmune diseases are chronic immune diseases characterized by dysregulation of immune system, which ultimately results in a disruption in self-antigen tolerance. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) play essential roles in various autoimmune diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, multiple sclerosis (MS), etc. NLR proteins, consisting of a C-terminal leucine-rich repeat (LRR), a central nucleotide-binding domain, and an N-terminal effector domain, form a group of pattern recognition receptors (PRRs) that mediate the immune response by specifically recognizing cellular pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and triggering numerous signaling pathways, including RIP2 kinase, caspase-1, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and so on. Based on their N-terminal domain, NLRs are divided into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX1. In this review, we briefly describe the structures and signaling pathways of NLRs, summarize the recent progress on NLR signaling in the occurrence and development of autoimmune diseases, as well as highlight numerous natural products and synthetic compounds targeting NLRs for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Li Chen
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shi-qi Cao
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ze-min Lin
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Shi-jun He
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jian-ping Zuo
- grid.9227.e0000000119573309Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.412540.60000 0001 2372 7462Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
24
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
25
|
Xu X, Li J, Long X, Tao S, Yu X, Ruan X, Zhao K, Tian L. C646 Protects Against DSS-Induced Colitis Model by Targeting NLRP3 Inflammasome. Front Pharmacol 2021; 12:707610. [PMID: 34322027 PMCID: PMC8313226 DOI: 10.3389/fphar.2021.707610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Numerous pieces of evidence have identified that the NLRP3 inflammasome plays a pivotal role in the development and pathogenesis of colitis. Targeting the NLRP3 inflammasome represents a potential therapeutic treatment. Our previous studies have suggested that acetylation of NLRP3 is indispensable to NLRP3 inflammasome activation, and some acetyltransferase inhibitors could suppress the NLRP3 inflammasome activation. Here, we identified that C646, an inhibitor of histone acetyltransferase p300, exerts anti-inflammatory effects in DSS-induced colitis mice by targeting the NLRP3 inflammasome. Mechanistically, C646 not only inhibits NF-κB activation, leading to the decreased expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and NLRP3, but also suppresses the NLRP3 inflammasome assembly by disrupting the interaction between NLRP3 and ASC. In addition, C646 attenuated the LPS-induced acute systemic inflammation model. Thus, our results demonstrate the ability of C646 to suppress the NLRP3 inflammasome activity and its potential application in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Hunan Province, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Hunan Province, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiuyan Long
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Sifan Tao
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Yu
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xixian Ruan
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Kai Zhao
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Hunan Province, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Tian
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
VEGF-Independent Activation of Müller Cells by the Vitreous from Proliferative Diabetic Retinopathy Patients. Int J Mol Sci 2021; 22:ijms22042179. [PMID: 33671690 PMCID: PMC7926720 DOI: 10.3390/ijms22042179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR), a major complication of diabetes mellitus, results from an inflammation-sustained interplay among endothelial cells, neurons, and glia. Even though anti-vascular endothelial growth factor (VEGF) interventions represent the therapeutic option for PDR, they are only partially efficacious. In PDR, Müller cells undergo reactive gliosis, produce inflammatory cytokines/chemokines, and contribute to scar formation and retinal neovascularization. However, the impact of anti-VEGF interventions on Müller cell activation has not been fully elucidated. Here, we show that treatment of MIO-M1 Müller cells with vitreous obtained from PDR patients stimulates cell proliferation and motility, and activates various intracellular signaling pathways. This leads to cytokine/chemokine upregulation, a response that was not mimicked by treatment with recombinant VEGF nor inhibited by the anti-VEGF drug ranibizumab. In contrast, fibroblast growth factor-2 (FGF2) induced a significant overexpression of various cytokines/chemokines in MIO-M1 cells. In addition, the FGF receptor tyrosine kinase inhibitor BGJ398, the pan-FGF trap NSC12, the heparin-binding protein antagonist N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe Boc2, and the anti-inflammatory hydrocortisone all inhibited Müller cell activation mediated by PDR vitreous. These findings point to a role for various modulators beside VEGF in Müller cell activation and pave the way to the search for novel therapeutic strategies in PDR.
Collapse
|
27
|
Lin TY, Tsai MC, Tu W, Yeh HC, Wang SC, Huang SP, Li CY. Role of the NLRP3 Inflammasome: Insights Into Cancer Hallmarks. Front Immunol 2021; 11:610492. [PMID: 33613533 PMCID: PMC7886802 DOI: 10.3389/fimmu.2020.610492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
In response to a variety of stresses, mammalian cells activate the inflammasome for targeted caspase-dependent pyroptosis. The research community has recently begun to deduce that the activation of inflammasome is instigated by several known oncogenic stresses and metabolic perturbations; nevertheless, the role of inflammasomes in the context of cancer biology is less understood. In manipulating the expression of inflammasome, researchers have found that NLRP3 serves as a deterministic player in conducting tumor fate decisions. Understanding the mechanistic underpinning of pro-tumorigenic and anti-tumorigenic pathways might elucidate novel therapeutic onco-targets, thereby providing new opportunities to manipulate inflammasome in augmenting the anti-tumorigenic activity to prevent tumor expansion and achieve metastatic control. Accordingly, this review aims to decode the complexity of NLRP3, whereby summarizing and clustering findings into cancer hallmarks and tissue contexts may expedite consensus and underscore the potential of the inflammasome in drug translation.
Collapse
Affiliation(s)
- Ting-Yi Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chun Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei Tu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Engelbrecht E, MacRae CA, Hla T. Lysolipids in Vascular Development, Biology, and Disease. Arterioscler Thromb Vasc Biol 2020; 41:564-584. [PMID: 33327749 DOI: 10.1161/atvbaha.120.305565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane phospholipid metabolism forms lysophospholipids, which possess unique biochemical and biophysical properties that influence membrane structure and dynamics. However, lysophospholipids also function as ligands for G-protein-coupled receptors that influence embryonic development, postnatal physiology, and disease. The 2 most well-studied species-lysophosphatidic acid and S1P (sphingosine 1-phosphate)-are particularly relevant to vascular development, physiology, and cardiovascular diseases. This review summarizes the role of lysophosphatidic acid and S1P in vascular developmental processes, endothelial cell biology, and their roles in cardiovascular disease processes. In addition, we also point out the apparent connections between lysophospholipid biology and the Wnt (int/wingless family) pathway, an evolutionarily conserved fundamental developmental signaling system. The discovery that components of the lysophospholipid signaling system are key genetic determinants of cardiovascular disease has warranted current and future research in this field. As pharmacological approaches to modulate lysophospholipid signaling have entered the clinical sphere, new findings in this field promise to influence novel therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Department of Medicine (C.A.M.), Harvard Medical School, Boston, MA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery (E.E., T.H.), Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Cicaloni V, Pecorelli A, Cordone V, Tinti L, Rossi M, Hayek J, Salvini L, Tinti C, Valacchi G. A proteomics approach to further highlight the altered inflammatory condition in Rett syndrome. Arch Biochem Biophys 2020; 696:108660. [PMID: 33159892 DOI: 10.1016/j.abb.2020.108660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with perturbed redox homeostasis and inflammation, which appear as possible key factors in RTT pathogenesis. In this study, using primary dermal fibroblasts from control and RTT subjects, we performed a proteomic analysis that, together with data mining approaches, allowed us to carry out a comprehensive characterization of RTT cellular proteome. Functional and pathway enrichment analyses showed that differentially expressed proteins in RTT were mainly enriched in biological processes related to immune/inflammatory responses. Overall, by using proteomic data mining as supportive approach, our results provide a detailed insight into the molecular pathways involved in RTT immune dysfunction that, causing tissue and organ damage, can increase the vulnerability of affected patients to unknown endogenous factors or infections.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Laura Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Marco Rossi
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Joussef Hayek
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Laura Salvini
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Cristina Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
30
|
Yu C, Zhang C, Kuang Z, Zheng Q. The Role of NLRP3 Inflammasome Activities in Bone Diseases and Vascular Calcification. Inflammation 2020; 44:434-449. [PMID: 33215255 PMCID: PMC7985100 DOI: 10.1007/s10753-020-01357-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Continuous stimulation of inflammation is harmful to tissues of an organism. Inflammatory mediators not only have an effect on metabolic and inflammatory bone diseases but also have an adverse effect on certain genetic and periodontal diseases associated with bone destruction. Inflammatory factors promote vascular calcification in various diseases. Vascular calcification is a pathological process similar to bone development, and vascular diseases play an important role in the loss of bone homeostasis. The NLRP3 inflammasome is an essential component of the natural immune system. It can recognize pathogen-related molecular patterns or host-derived dangerous signaling molecules, recruit, and activate the pro-inflammatory protease caspase-1. Activated caspase-1 cleaves the precursors of IL-1β and IL-18 to produce corresponding mature cytokines or recognizes and cleaves GSDMD to mediate cell pyroptosis. In this review, we discuss the role of NLRP3 inflammasome in bone diseases and vascular calcification caused by sterile or non-sterile inflammation and explore potential treatments to prevent bone loss.
Collapse
Affiliation(s)
- Chenyang Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Caihua Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Qiang Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
31
|
Irrera N, Russo M, Pallio G, Bitto A, Mannino F, Minutoli L, Altavilla D, Squadrito F. The Role of NLRP3 Inflammasome in the Pathogenesis of Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21176204. [PMID: 32867310 PMCID: PMC7503761 DOI: 10.3390/ijms21176204] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) represents an important problem of global health. The damage related to TBI is first due to the direct injury and then to a secondary phase in which neuroinflammation plays a key role. NLRP3 inflammasome is a component of the innate immune response and different diseases, such as neurodegenerative diseases, are characterized by NLRP3 activation. This review aims to describe NLRP3 inflammasome and the consequences related to its activation following TBI. NLRP3, caspase-1, IL-1β, and IL-18 are significantly upregulated after TBI, therefore, the use of nonspecific, but mostly specific NLRP3 inhibitors is useful to ameliorate the damage post-TBI characterized by neuroinflammation. Moreover, NLRP3 and the molecules associated with its activation may be considered as biomarkers and predictive factors for other neurodegenerative diseases consequent to TBI. Complications such as continuous stimuli or viral infections, such as the SARS-CoV-2 infection, may worsen the prognosis of TBI, altering the immune response and increasing the neuroinflammatory processes related to NLRP3, whose activation occurs both in TBI and in SARS-CoV-2 infection. This review points out the role of NLRP3 in TBI and highlights the hypothesis that NLRP3 may be considered as a potential therapeutic target for the management of neuroinflammation in TBI.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphologic and Functional Imaging Sciences, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy;
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
- Correspondence:
| |
Collapse
|