1
|
Rakcho Y, Naboulsi A, Bouzid T, Abouliatim Y, Benhammou A, Abourriche A, Alami J. Treating waste with waste: Treatment of textile wastewater using upcycled food waste as a pore-forming agent in the fabrication of ceramic membranes employing DOE/FFD design. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:632-643. [PMID: 39492079 DOI: 10.1016/j.wasman.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
This study investigates a novel method for food waste management by using it as a sustainable replacement for conventional pore-forming agents in ceramic membrane production. The membranes were analyzed using various techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and a universal testing machine. The morphologies of the membranes were observed using scan electron microscopy (SEM). The effects of particle size (45-125 μm), pore-forming agent (5-20 wt%), and sintering temperature (900-1150 °C) on the porosity and mechanical strength of the membranes were investigated using the Design of Experiments (DoE) and Response Surface Methodology (RSM). The optimized membrane was evaluated for its performance in filtering industrial textile wastewater. It achieved impressive results, with approximately 98.4 % removal of turbidity and 71.3 % removal of chemical oxygen demand. This research paves the way for optimizing ceramic membrane fabrication using upcycled food waste, promoting sustainability and offering potential solutions for both food waste management and industrial wastewater treatment challenges.
Collapse
Affiliation(s)
- Yassine Rakcho
- Laboratory Materials, Processes, Environment and Quality, National School of Applied Sciences, Cadi Ayyad University (UCA), Route Sidi Bouzid BP 63, Safi 46000, Morocco.
| | - Aicha Naboulsi
- Laboratory Analytical and Molecular Chemistry, Faculty Poly Disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Taoufiq Bouzid
- Laboratory Analytical and Molecular Chemistry, Faculty Poly Disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Younes Abouliatim
- Laboratory of Process and Environmental Engineering (L.P.E.E), Higher School of Technology of Casablanca, Hassan II University, Route del Jadida, km 7, BP 8012 Oasis Casablanca, Morocco
| | - Abdelaziz Benhammou
- Laboratory Materials, Processes, Environment and Quality, National School of Applied Sciences, Cadi Ayyad University (UCA), Route Sidi Bouzid BP 63, Safi 46000, Morocco
| | - Abdelkrim Abourriche
- Laboratory Materials, Processes, Environment and Quality, National School of Applied Sciences, Cadi Ayyad University (UCA), Route Sidi Bouzid BP 63, Safi 46000, Morocco
| | - Jones Alami
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
2
|
Naboulsi A, Bouzid T, Grich A, Regti A, El Himri M, El Haddad M. Understanding the column and batch adsorption mechanism of pesticide 2,4,5-T utilizing alginate-biomass hydrogel capsule: A computational and economic investigation. Int J Biol Macromol 2024; 275:133762. [PMID: 38986974 DOI: 10.1016/j.ijbiomac.2024.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Water pollution has remained a pressing concern in recent years, presenting multifaceted challenges in search of effective mitigation strategies. Our study, which targets mitigating pollution caused by 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a significant aquatic pollutant, is innovative in its approach. We have identified adsorption as a promising, cost-effective method for its removal. Our research strategy involves dynamic adsorption utilizing a peristaltic pump and composite beads containing activated carbon and sodium alginate (CA/Alg), a novel combination that mimics industrial processes. To optimize column adsorption, we examine bead stability under varied pH conditions and optimize parameters such as concentration, adsorption time, and pH through batch adsorption experiments, employing experimental design techniques. Additionally, we optimize column adsorption factors, including bead height, circulation time, and flow rate, crucial for process efficiency, and under these optimum conditions (C2,4,5-T = 80 ppm. pH = 2, t = 27h30min, H = 30 cm and D = 0.5 mL/min) the capacity of adsorption equal to 748.25 mg/g. Characterization techniques like SEM, EDX, BET analysis, XRD, and FTIR provide insights into the morphology, composition, surface area (331 m2/g), pore volume (0.11 cm3/g), crystal structure, and functional groups of the CA-P/Alg adsorbent. Theoretical analysis elucidates the adsorption mechanism and interaction with pollutants. Economic analysis, encompassing CAPEX and OPEX estimation, evaluates the feasibility of implementing this cleanup method at an industrial scale, considering initial investment and ongoing operational costs, indicating potential savings of 64 % compared with the activated carbon normally used on the Moroccan market. This comprehensive and innovative approach addresses water pollution challenges effectively while ensuring economic viability for industry-scale implementation.
Collapse
Affiliation(s)
- Aicha Naboulsi
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco.
| | - Taoufiq Bouzid
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Abdelali Grich
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Abdelmajid Regti
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Mamoune El Himri
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| | - Mohammadine El Haddad
- Laboratory of Analytical and Molecular Chemistry, Faculty Poly-disciplinary of Safi, BP 4162, Safi 46 000, Morocco
| |
Collapse
|
3
|
Zandi-Darehgharibi F, Haddadi H, Asfaram A. A new tannin-based adsorbent synthesized for rapid and selective recovery of palladium and gold: Optimization using central composite design. Heliyon 2024; 10:e24639. [PMID: 38314278 PMCID: PMC10837505 DOI: 10.1016/j.heliyon.2024.e24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
A tannin-based adsorbent was synthesized by pomegranate peel tannin powder modified with ethylenediamine (PT-ED) for the rapid and selective recovery of palladium and gold. To characterize PT-ED, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS-Mapping), and Fourier transform infrared spectroscopy (FT-IR) were used. Central composite design (CCD) was used for optimization. The kinetic, isotherm, interference of coexisting metal ions, and thermodynamics were studied. The optimal conditions, including Au (III) concentration = 30 m g L - 1 , Pd (II) concentration = 30 m g L - 1 , adsorbent mass = 26 mg, pH = 2, and time = 26 min with the sorption percent more than 99 %, were anticipated for both metals using CCD. Freundlich model and pseudo-second-order expressed the isotherm and kinetic adsorption of the both metals. The inhomogeneity of the adsorbent surface and the multi-layer adsorption of gold and palladium ions on the PT-ED surface are depicted by the Freundlich model. The thermodynamic investigation showed that P d 2 + and A u 3 + ions adsorption via PT-ED was an endothermic, spontaneous, and feasible process. The maximum adsorption capacity of P d 2 + and A u 3 + ions on PT-ED was 261.189 m g g - 1 and 220.277 m g g - 1 , respectively. The probable adsorption mechanism of P d 2 + and A u 3 + ions can be ion exchange and chelation. PT-ED (26 mg) recovered gold and palladium rapidly from the co-existing metals in the printed circuit board (PCB) scrap, including Ca, Zn, Si, Cr, Pb, Ni, Cu, Ba, W, Co, Mn, and Mg with supreme selectivity toward gold and palladium. The results of this work suggest the use of PT-ED with high selectivity and efficiency to recover palladium and gold from secondary sources such as PCB scrap.
Collapse
Affiliation(s)
| | - Hedayat Haddadi
- Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
4
|
Vidovix TB, Quesada HB, Bergamasco R, Vieira MF, Vieira AMS. Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from Punica granatum leaf extract. ENVIRONMENTAL TECHNOLOGY 2022; 43:3047-3063. [PMID: 33826464 DOI: 10.1080/09593330.2021.1914180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The development of new technologies for water and wastewater treatment is a growing need due to the occurrence of micropollutants, such as dyes, in water resources. In this sense, green-synthesized nanoparticles are being extensively studied, due to their low cost, non-toxicity, and high efficiency in adsorption processes. Thus, the present study reports the green synthesis of copper oxide nanoparticles (CuO-NP), obtained from pomegranate (Punica granatum) leaf extract, employed for the removal of Safranin-O (SO) dye. CuO-NP was characterized by physicochemical analysis. These analyzes suggested that the redox process occurred efficiently. Also, the material presented interesting elements for the removal of cationic dyes such as negative surface charge, high specific surface area, and predominance of mesopores. The kinetic data fitted the pseudo-second-order model, reaching equilibrium in 480 min. The equilibrium study resulted in a maximum adsorption capacity of 189.54 mg g-1 at 298 K and the experimental data best fitted the Langmuir model. The effect of pH and ionic strength did not present significant changes, which demonstrates an advantage of this adsorbent over other materials. The regeneration study allowed to verify the possibility of reuse CuO-NP, since after 4 cycles the adsorption capacity was 44% of the initial value. Considering the results found, CuO-NP has a high potential for applicability in the treatment of water contaminated by dyes.
Collapse
|
5
|
Bayat R, Bingül Reçber Z, Bekmezci M, Nas MS, Calimli MH, Demirbas O, Akin M, Şen F. Synthesis and application of AuNi@AC nano adsorbents for the removal of Maxilon Blue 5G azo dye from aquatic mediums. Food Chem Toxicol 2022; 167:113303. [PMID: 35850400 DOI: 10.1016/j.fct.2022.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
In this research, gold-nicel supported on activated carbon (AC) nanoadsorbent (AuNi@AC) synthesized by following a series of physicochemical procedures was prepared for the removal of Maxilon Blue 5G (MB) which is a cationic textile dye. Experimental studies based on parameters specifically pH, contact time, nano catalytic adsorbent particle, initial MB dye concentration and temperature effect were conducted in aqueous solutions in a batch system. AuNi@AC nanoadsorbents (NAs) reached the equilibrium in 30 min under optimum conditions in adsorption of the dye. The pseudo-first, second-order, and intra-particle diffusion models were tested to evaluate a the experimental results. Adsorption kinetics were found to be represented by the pseudo-second-order model, and the maximum adsorption capacity (qmax.) was calculated to be 542.90 mg/g (or 2.041 mmol/g). The synthesized magnetic AuNi@AC nanoadsorbent showed a high-efficiency reusability effect of about 64% after five reuse runs. Also, thermodynamic function parameters such as activation energy (Ea), Gibbs free energy (ΔG *), and entropy (ΔS *) were investigated in the sorption study. After all evaluation of data, it was concluded that the novel AuNi@AC nanoadsorbent could be considered as an effective support material for the removal of various organic pollutants in aquation solution especially for the removal of MB.
Collapse
Affiliation(s)
- Ramazan Bayat
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Züleyha Bingül Reçber
- Faculty of Engineering, Environmental Engineering Department, Igdir University, Igdir, Turkey
| | - Muhammed Bekmezci
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Mehmet Salih Nas
- Faculty of Engineering, Environmental Engineering Department, Igdir University, Igdir, Turkey; Research Laboratory and Application Center (ALUM), Igdir University, Igdir, Turkey.
| | - Mehmet Harbi Calimli
- Tuzluca Vocational School, Igdir University, Igdir, Turkey; Research Laboratory and Application Center (ALUM), Igdir University, Igdir, Turkey.
| | - Ozkan Demirbas
- Department of Chemistry, Faculty of Science and Literature, University of Balikesir, Balikesir, Turkey
| | - Merve Akin
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Fatih Şen
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey.
| |
Collapse
|
6
|
Removal of malachite green by electrochemical oxidation polymerization and electrochemical reduction precipitation: its kinetics and intermediates. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Synthesis, Characterization, and Evaluation of the Remediation Activity of Cissus quadrangularis Zinc Oxide Nanoparticle-Activated Carbon Composite on Dieldrin in Aqueous Solution. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/2055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, zinc oxide-activated carbon nanocomposite was used as the adsorbent for the remediation of dieldrin in aqueous media. Zinc oxide nanoparticles (ZNPs) were synthesized from Cissus quadrangularis (C. quadrangularis) leaf extract, and activated carbon was derived from maize cobs. Nanocomposites were formulated by mixing the ZNPs with the activated carbon in a ratio of 1 : 50. The UV-Vis spectra showed a complete reduction of Zn2+ to Zn0 with plasmon resonance bands in the range of 361–376 nm, which is a characteristic of ZNPs. The SEM images of ZNPs showed hexagonal-shaped particles of 15–20 nm, with face-centered cubic crystals, as demonstrated by XRD analysis. FTIR results showed absorption bands in the ranges 3500–3100 cm−1 (N-H stretch), 3400–2400 cm−1 (O-H stretch), 988–830 cm−1 (C-H bend), 1612 cm−1 (C=C stretch), 400–600 cm−1 (Zn-O stretch), and 1271 cm−1 (C-O bend). Batch adsorption experiments were performed using 20 ml of dieldrin solution at varying pH values (1–14), concentrations (5–100 ppm), temperatures (293–323 K), adsorbent dosages (0.01–0.12 g), and contact times (30–180 minutes) to determine the optimum conditions. The calculated thermodynamic parameters (ΔH°, ΔS°, and ΔG°) indicated that the adsorption was spontaneous and exothermic in nature, implying decreasing randomness of dieldrin molecules at the solid-liquid interface. The isotherm and adsorption kinetics for the composite showed that the absorption process followed Langmuir isotherm and pseudo-second-order kinetics. Adsorption capacities of the nanoparticles, activated carbon, and nanocomposite at a reaction time of 120 minutes and pH of 7 were 3.72 ± 0.068 mg/g, 3.92 ± 0.061 mg/g, and 4.0 ± 0.102 mg/g, respectively, with corresponding percentage removals of 93.12 ± 0.044, 98.04 ± 0.044, and 99.76 ± 0.332. Thus, the nanocomposite exhibited a better sorbing potential for dieldrin in solution than activated carbon. This study recommends testing the remediation potential of the synthesized nanocomposite on other persistent organic pollutants.
Collapse
|
8
|
Experimental Design Analysis of Murexide Dye Removal by Carbon Produced from Waste Biomass Material. J CHEM-NY 2022. [DOI: 10.1155/2022/9735071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work is to investigate the adsorption of an anionic dye, the Murexide (MX) present in aqueous solution, on activated carbon, derived from prickly pear seed cake biomass after bio-oil extraction. The obtained adsorbent used was characterized by Bohem titration, pH of point of zero charge (pHPZC), FTIR spectroscopy, Brunauer–Emmett–Teller surface area (SBET), and scanning electron microscopy (SEM). The different experimental parameters of the adsorption process, such as temperature, contact time, initial dye concentration, and adsorbent dose, were studied. For the optimization of the process, the effects of these parameters were investigated using the full factorial experimental design methodology. Design Expert 11.1.2.0 Trial software was used for generating the statistical experimental design and analysing the observed data. Langmuir and Freundlich’s adsorption models were employed to provide a description of the equilibrium isotherm. The adsorption process was found to obey Langmuir, which indicates that the Murexide had formed a monolayer onto activated carbon. Furthermore, according to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-second-order model compared to the first-order Lagergren’s model. The thermodynamic studies indicated that the adsorption of Murexide occurs in a spontaneous and exothermic process. The regeneration process of the exhausted adsorbent was studied to assess the economic and operational feasibility. According to the obtained findings, it is proposed that the activated carbon prepared from prickly pear seed cake retains a high potential for Murexide removal and is suitable for repetitive usage.
Collapse
|
9
|
Soh EYS, Lim SS, Chew KW, Phuang XW, Ho VMV, Chu KYH, Wong RR, Lee LY, Tiong TJ. Valorization of spent brewery yeast biosorbent with sonication-assisted adsorption for dye removal in wastewater treatment. ENVIRONMENTAL RESEARCH 2022; 204:112385. [PMID: 34780790 DOI: 10.1016/j.envres.2021.112385] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The effluent of textile industries containing synthetic dyes contributed to substantial pollution to water bodies. The biosorption process of Congo Red dye was successfully performed by integrating ultrasonication in the adsorption step with spent brewery yeast as a novel and renewable biosorbent. The adsorption process was hindered when ultrasonication was employed together with the biosorbent, indicating that desorption process had occurred. The adsorption process showed that 4 g/L of biosorbent was the optimum dosage for adsorption of 50 mg/L of Congo Red dye, and that the adsorption equilibrium fitted to the Langmuir model, with kinetics best fitted with pseudo-second order model. The maximum capacity of the adsorption was 52.6 mg/g, showing the potential of spent brewery yeast to aid in removing wastewater pollutants. Maximal Congo Red dye recovery (100%) was achieved in the sonication-assisted desorption studies using 0.01M NaOH as the eluting agent. The ultrasonication effects contributed to the efficient recovery of dye and good conversion of spent brewery yeast to biosorbent can be beneficial for treating pollution from textile wastewater.
Collapse
Affiliation(s)
- Elaine Y S Soh
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor, 43500, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor, 43500, Malaysia.
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Xin Wei Phuang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor, 43500, Malaysia
| | - Victoria M V Ho
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor, 43500, Malaysia
| | - Kevin Y H Chu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor, 43500, Malaysia
| | - Rui Rui Wong
- Faculty of Health and Life Science, INTI International University, Persiaran Perdana BBN Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Lai Yee Lee
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor, 43500, Malaysia
| | - T Joyce Tiong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor, 43500, Malaysia
| |
Collapse
|
10
|
Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Du W, Fan J, Ma R, Yang G, Liu J, Zhang S, Chen T. Radiation‐initiated chitosan‐based double network hydrogel: Synthesis, characterization, and adsorption of methylene blue. J Appl Polym Sci 2021. [DOI: 10.1002/app.51531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wenjie Du
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jinxu Fan
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Rui Ma
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Gang Yang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jiaqi Liu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Shifan Zhang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology Hubei University of Science and Technology Xianning China
| |
Collapse
|
12
|
Iranifam M, Toolooe Gardeh Rasht M, Al Lawati HAJ. CuS nanoparticles-enhanced luminol-O 2 chemiluminescence reaction used for determination of paracetamol and vancomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120038. [PMID: 34118521 DOI: 10.1016/j.saa.2021.120038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
A new chemiluminescence (CL) method was proposed to measure two widely used drugs, including paracetamol (PCM) and vancomycin (VAN). The CL reaction used was the CuS nanoparticles (CuS NPs)-luminol-O2 system. In this system, CuS NPs played the role of catalyst and increased the CL intensity. CuS NPs were easily synthesized by quick-precipitation. CuS NPs were characterized by spectroscopic techniques, and the mean size of NPs was estimated to be about 9 nm. In the developed CL methods, PCM and VAN decreased the CL intensity. In the proposed method, the linear concentration ranges were 4.0 × 10-5-4.0 × 10-4 mol L-1 of PCM and 2.0 × 10-5-6.0 × 10-4 mol L-1 of VAN. The limit of detections were 2.9 × 10-5 mol L-1 and 8.9 × 10-6 mol L-1 for PCM and VAN, respectively. The relative standard deviations (RSD) of the CL method were 2.99 and 4.31 (n = 6) for the determination of 3.0 × 10-4 mol L-1 PCM and VAN, respectively. It was also shown that the CL methods can measure PCM and VAN concentrations in various real samples.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
13
|
Chauhan P, Bhasin KK, Chaudhary S. High selectivity and adsorption proficiency of surfactant-coated selenium nanoparticles for dye removal application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61344-61359. [PMID: 34173952 DOI: 10.1007/s11356-021-15024-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The rate of environmental pollution augmenting at an alarming rate due to the continuous disposal of toxic dyes directly into the environment and water streams. The direct contact of dyes with water resources directly affects the living beings. The identification of superior methods for the treatment of water pollution caused due to effluent dyes needs higher consideration among researchers for the well-being of living flora and fauna. The available methods for controlling the decontamination of water through toxic dyes have various drawbacks. So, it is highly significant to develop such materials which can easily adsorb the dyes without causing any toxic effect on the environment and living beings. While keeping all the facts in mind, the current work highlights the comparative enhancement in adsorption capacity and selectivity of Brij-58-coated selenium nanoparticles (Brij-58@Se NPs) towards the removal of bromophenol blue (BB) dye from series of chosen dyes in aqueous media. The fabricated Se NPs were methodically characterized and the adsorption behaviour displayed fast adsorption efficiency (98% within 6 min) for BB dye out of series of chosen dyes. The optimization studies were carried out to verify the influence of working variables such as pH (2.0-12.0), response time (1-10 min), dosage amount (0.1-80 mg/l) and concentration of BB dye (1-70 ppm). The adsorption process found to be best fitted for Freundlich adsorption isotherm and pseudo first-order kinetic model. The interference studies of different cationic, anionic species including dyes or metal ions suggested the higher efficiency of Brij-58@Se NPs for adsorptive removal of BB dye from aqueous media. The efficacy of the adsorbent was further tested in six different water resources and displayed 95% adsorption efficiency for BB dye in different wastewater samples. Therefore, Brij-58@Se NP is expected as a potential adsorbent for the adsorption of organic dyes from wastewater samples.
Collapse
Affiliation(s)
- Pooja Chauhan
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Kuldeep Kumar Bhasin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Tunç MS, Yıldız B, Taşar Ş. Removal of paracetamol from aqueous solution by wood sawdust-derived activated carbon: Process optimization using response surface methodology. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1978075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Müslün Sara Tunç
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Burçin Yıldız
- Department of Environmental Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey
| | - Şeyda Taşar
- Department of Chemical Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
| |
Collapse
|
15
|
Al-Aoh HA, Darwish AAA. Enhancement of the adsorptive performance of TiO 2nanoparticles towards methylene blue by adding suspended nanoparticles of Pt: kinetics, isotherm, and thermodynamic studies. NANOTECHNOLOGY 2021; 32:415706. [PMID: 34233310 DOI: 10.1088/1361-6528/ac121f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Methylene blue (MB) is one of the most dangerous dyes found in numerous industries' wastewaters. Thus, the effect of suspended Pt nanoparticles (NPs) on the adsorption capability of TiO2NPs towards MB was investigated in this research. Factors affecting (adsorbate initial concentration, agitation time, solution pH, and temperature) the adsorption capacity of MB on the modified TiO2NPs were also studied. It was found that the first two factors have a positive effect, the temperature has an adverse impact, and the maximum uptake was observed when pH is 11. Isotherm parameters of Langmuir, Freundlich, and Timken models were determined. Langmuir's model was found to be the best one for analyzing the experimental data. The adsorption capacities obtained were 100.61, 90.66, and 80.26 mg g-1at 25 °C, 40 °C, and 55 °C, respectively. 1storder, 2ndorder, and intra-particle diffusion kinetic models were utilized to analyze experimental data. It found that these data were explained well by the 2ndorder model, indicating that this adsorption is chemisorption. Thermodynamic parameters were also determined, and the results obtained suggest that this adsorption is an exothermic and spontaneous process. The findings show that TiO2NPs modified by suspended Pt NPs will get a strong attraction in the treatment of fluids and wastewaters.
Collapse
Affiliation(s)
- Hatem A Al-Aoh
- Water Treatment Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - A A A Darwish
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Physics, Faculty of Education at Al-Mahweet, Sana'a University, Al-Mahweet, Yemen
| |
Collapse
|
16
|
Selective adsorption of cationic/anionic tritoluene dyes on functionalized amorphous silica: A mechanistic correlation between the precursor, modifier and adsorbate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Chabalala MB, Al-Abri MZ, Mamba BB, Nxumalo EN. Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Örtün H, Karapınar N. Adsorption Performance of Cobalt, Manganese, and Iron Modified Graphene Oxide for Bromophenol Blue Removal from Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s003602442114017x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Alorabi AQ, Shamshi Hassan M, Azizi M. Fe3O4-CuO-activated carbon composite as an efficient adsorbent for bromophenol blue dye removal from aqueous solutions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Akpomie KG, Conradie J. Biogenic and chemically synthesized Solanum tuberosum peel-silver nanoparticle hybrid for the ultrasonic aided adsorption of bromophenol blue dye. Sci Rep 2020; 10:17094. [PMID: 33051565 PMCID: PMC7555862 DOI: 10.1038/s41598-020-74254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
This work was aimed at the synthesis of a hybrid (STpe-AgNP), obtained by impregnation of silver nanoparticles (AgNP) onto Solanum tuberosum peel (STpe), for the ultrasonic assisted adsorption of bromophenol blue (BB) dye. SEM, FTIR, XRD, EDX, TGA and BET techniques were used to characterize the adsorbents. The XRD, SEM and EDX confirmed successful impregnation of AgNPs onto STpe to form the hybrid. The AgNPs impregnated onto the hybrid were found to be water stable at various pH values of 2.0-9.0. Chi-square (χ2 < 0.024) and linear regression (R2 > 0.996) showed that the Freundlich model was best fitted among the isotherm models, corroborated by the oriented site model. Kinetic analysis conformed to the intraparticle diffusion and pseudo-first-order rate equations, while thermodynamics displayed a physical, spontaneous and endothermic adsorption process. The presence of competing Pb(II), Ni(II), Cd(II) and Zn(II) metal ions in solution interfered with the adsorption of BB onto the biosorbents. In terms of reusability, STpe and STpe-AgNP showed BB desorption of 91.3% and 88.5% respectively, using NaOH as eluent. Ultra-sonication significantly enhanced the adsorption of BB by both adsorbents, but the impregnation of AgNPs only slightly improved adsorption of the dye from the simulated wastewater. This study also illustrated that pristine STpe biomass waste is a cheap viable option for the decontamination of BB from water.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa.
- Industrial/Physical Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
21
|
Akpomie KG, Conradie J. Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Baytar O, Şahin Ö, Horoz S, Kutluay S. High-performance gas-phase adsorption of benzene and toluene on activated carbon: response surface optimization, reusability, equilibrium, kinetic, and competitive adsorption studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26191-26210. [PMID: 32361973 DOI: 10.1007/s11356-020-08848-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 05/24/2023]
Abstract
In recent years, volatile organic compounds (VOCs) have become a group of major pollutants that endanger human health and the ecological environment. The main purpose of this study was to investigate the gas-phase adsorption processes of benzene and toluene, which are important VOCs, on the activated carbon (AC) produced from Elaeagnus angustifolia seeds by physical activation method. In this context, the central composite design (CCD) approach-based response surface methodology (RSM) was applied to examine and optimize the effects of process parameters on the adsorption of benzene and toluene by AC adsorbent. The characterization of the produced AC was performed by the Brunauer-Emmett-Teller surface area, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The optimum process parameters were achieved (adsorption time of 74.98 min, initial benzene concentration of 16.68 ppm, and temperature of 26.97 °C, and adsorption time of 73.26 min, initial toluene concentration of 18.46 ppm and temperature of 29.80 °C) for benzene and toluene, respectively. The maximum adsorption capacities of benzene and toluene on AC were determined to be 437.36 and 512.03 mg/g, respectively, under optimum parameters. The adsorption process kinetics and equilibrium isotherms were also evaluated. Besides, AC reusability studies were performed five times for the gas-phase adsorption and desorption of benzene and toluene. After five cycles, it was observed that the benzene and toluene adsorption capacity of the AC decreased slightly by 8.10% and 7.42%, respectively. The results revealed that the produced AC could be utilized successfully for the removal of benzene and toluene in the gas-phase adsorption systems because of its high surface area, high adsorption capacity, and high reusability performance. Furthermore, the adsorption processes of benzene and toluene were investigated, both sole components and in a binary mixture. It was concluded that the adsorption behaviors of benzene and toluene against AC were quite different when they were in the competition (in a binary mixture) and without competition (sole components). Graphical abstract.
Collapse
Affiliation(s)
- Orhan Baytar
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sabit Horoz
- Department of Electrical &Electronics Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
23
|
Akerdi AG, Bahrami SH, Pajootan E. Modeling and optimization of Photocatalytic Decolorization of binary dye solution using graphite electrode modified with Graphene oxide and TiO 2. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:51-62. [PMID: 32399220 PMCID: PMC7203298 DOI: 10.1007/s40201-019-00437-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 12/30/2019] [Indexed: 06/11/2023]
Abstract
In this paper, the experimental design methodology was employed for modeling and optimizing the operational parameters of the photocatalytic degradation of a binary dye solution using a fixed photocatalytic compound. The compound used was modified graphite electrode (GE) with graphene oxide (GO) on which TiO2 nanoparticles were immobilized. GO nanoparticle was deposited on graphite electrode (GO-GE) using electrochemical approach. TiO2 nanoparticles were immobilized on GO-GE by solvent evaporation method. A binary solution containing mixture of methylene blue (MB) and acid red 14 (AR14) was chosen as dye model. The degradation intermediates were detected and analyzed using gas chromatography. Effect of different factors on the photocatalytic decolorization efficiency was investigated and optimized using response surface methodology (RSM). The obtained results indicated that the prepared TiO2-GO-CE can decolorize MB with high efficiency (93.43%) at pH 11, dye concentration of 10 mg/L and 0.04 g of immobilized TiO2 on the GO fabricated plates after 120 min of photocatalytic process. It was demonstrated that by modifying GE with GO the stability of the electrode was remarkably enhanced. The ANOVA results (R2 = 0.97 and P value <0.0001 for MB, R2 = 0.96 and P value <0.0001 for AR14) and numerical optimization showed that it is possible to make good prediction on decoloration behavior and save time and energy with less number of experiments using design of experiments (DoE) like the RSM. Graphical abstract Wastewater treatment processWastewater treatment process.
Collapse
Affiliation(s)
- Abdollah Gholami Akerdi
- Textile Engineering Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413 Iran
| | - S. Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413 Iran
| | - Elmira Pajootan
- Textile Engineering Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413 Iran
| |
Collapse
|
24
|
Chatterjee A, Shamim S, Jana AK, Basu JK. Insights into the competitive adsorption of pollutants on a mesoporous alumina-silica nano-sorbent synthesized from coal fly ash and a waste aluminium foil. RSC Adv 2020; 10:15514-15522. [PMID: 35495426 PMCID: PMC9052400 DOI: 10.1039/d0ra01397h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
A highly efficient and low-cost alumina-silica nano-sorbent was fabricated and characterized to understand the key factors responsible for its superiority over the existing adsorbents in treating the industry-discharged wastewater for the removal of dyes and heavy metals. As compared to the properties of raw fly ash, the following fundamental improvements were observed for the alumina-silica nano-sorbent: (a) transformation of throttled mesopores into slit-type pores, (b) increment in the surface area by 65-fold, (c) change in the morphology from spherical particles to a flake-type structure with sharp edges, (d) reduction in the average crystal size from 61.143 to 27.176 nm, and (e) increase in the pore volume from 0.005 to 0.50 cm3 g-1. These desired properties of the nano-sorbent were obtained by blending a waste aluminium foil with fly ash. This process increased the ratio of alumina to silica from 0.59 : 1 to an optimum ratio of 1.9 : 1, beyond which the particles agglomerated and the pore volume reduced. Eventually, the precipitated hydroxides were calcined at 700 °C that favoured the formation of γ-alumina. Moreover, this heat treatment changed its crystallinity and morphology of γ-alumina, which abruptly enhanced its activity towards the pollutants. The obtained product (nano-sorbent) was tested for the removal of lead and malachite green from a model wastewater solution over a wide range of initial pollutant concentrations and adsorbent dosages. After observing almost complete removal capacity and reusability for the pollutants, we propose this synthesized adsorbent as a universal material for treating industrial wastewater.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology-Kharagpur India-721302
| | - Shahnawaz Shamim
- Department of Chemical Engineering, Indian Institute of Technology-Kharagpur India-721302
| | - Amiya Kumar Jana
- Department of Chemical Engineering, Indian Institute of Technology-Kharagpur India-721302
| | - Jayanta Kumar Basu
- Department of Chemical Engineering, Indian Institute of Technology-Kharagpur India-721302
| |
Collapse
|
25
|
Dastkhoon M, Ghaedi M, Asfaram A, Alipanahpour Dil E. Comparative study of ability of sonochemistry combined ZnS:Ni nanoparticles-loaded activated carbon in reductive of organic pollutants from environmental water samples. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Wang Z, Gao M, Li X, Ning J, Zhou Z, Li G. Efficient adsorption of methylene blue from aqueous solution by graphene oxide modified persimmon tannins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110196. [DOI: 10.1016/j.msec.2019.110196] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/30/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023]
|
27
|
Effective removal of acetaminophen from aqueous solution using Ca (II)-doped chitosan/β-cyclodextrin composite. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112454] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Purification of Forest Clear-Cut Runoff Water Using Biochar: A Meso-Scale Laboratory Column Experiment. WATER 2020. [DOI: 10.3390/w12020478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar can be an effective sorbent material for removal of nutrients from water due to its high specific surface area, porous structure, and high cation and anion exchange capacity. The aim of this study was to test a biochar reactor and to evaluate its efficiency in runoff water purification and consecutive nutrient recycling in clear-cut peatland forests. The goodness of the method was tested in a meso-scale (water volume thousands of liters) reactor experiment by circulating runoff water through wood biochar-filled columns and by determining water nutrient concentrations in the column inlet and outlet. The pseudo-first and second order kinetic models were fitted to the experimental data and the adsorption rate (Kad) and maximum adsorption capacity (Qmax) of the biochar reactor were quantified. The concentration of total nitrogen (TN) decreased by 58% during the 8-week experiment; the majority of TN adsorption occurred within the first 3 days. In addition, NO3-N and NH4-N concentrations decreased below the detection limit in 5 days after the beginning of the experiment. The maximum adsorption capacity of the biochar reactor varied between 0.03–0.04 mg g−1 biochar for NH4-N, and was equal to 0.02 mg g−1 biochar for TN. The results demonstrated that the biochar reactor was not able to adsorb TN when the water TN concentration was below 0.4 mg L−1. These results suggest that a biochar reactor can be a useful and effective method for runoff water purification in clear-cut forests and further development and testing is warranted. Unlike traditional water protection methods in peatland forestry, the biochar reactor can effectively remove NO3-N from water. This makes the biochar reactor a promising water protection tool to be tested in sites where there is the risk of a high rate of nutrient export after forest harvesting or drainage.
Collapse
|
29
|
Deb A, Debnath A, Saha B. Ultrasound‐aided rapid and enhanced adsorption of anionic dyes from binary dye matrix onto novel hematite/polyaniline nanocomposite: Response surface methodology optimization. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Akash Deb
- Department of Civil EngineeringNational Institute of Technology Agartala Jirania West Tripura 799046 India
| | - Animesh Debnath
- Department of Civil EngineeringNational Institute of Technology Agartala Jirania West Tripura 799046 India
| | - Biswajit Saha
- Department of PhysicsNational Institute of Technology Agartala Jirania West Tripura 799046 India
| |
Collapse
|
30
|
Zhang L, Wei F, Zhao Q, Chen X, Yao Y. Electrochemical degradation of bromophenol blue on porous PbO2–ZrO2 composite electrodes. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04040-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Luo L, Wu X, Li Z, Zhou Y, Chen T, Fan M, Zhao W. Synthesis of activated carbon from biowaste of fir bark for methylene blue removal. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190523. [PMID: 31598293 PMCID: PMC6774956 DOI: 10.1098/rsos.190523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Activated carbon (AC) was successfully prepared from low-cost forestry fir bark (FB) waste using KOH activation method. Morphology and texture properties of ACFB were studied by scanning and high-resolution transmission electron microscopies (SEM and HRTEM), respectively. The resulting fir bark-based activated carbon (ACFB) demonstrated high surface area (1552 m2 g-1) and pore volume (0.84 cm3 g-1), both of which reflect excellent potential adsorption properties of ACFB towards methylene blue (MB). The effect of various factors, such as pH, initial concentration, adsorbent content as well as adsorption duration, was studied individually. Adsorption isotherms of MB were fitted using all three nonlinear models (Freundlich, Langmuir and Tempkin). The best fitting of MB adsorption results was obtained using Freundlich and Temkin. Experimental results showed that kinetics of MB adsorption by our ACFB adsorbent followed pseudo-second-order model. The maximum adsorption capacity obtained was 330 mg g-1, which indicated that FB is an excellent raw material for low-cost production of AC suitable for cationic dye removal.
Collapse
Affiliation(s)
- Lu Luo
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Xi Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Zeliang Li
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Yalan Zhou
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Tingting Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Mizi Fan
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
- College of Engineering Design and Physical Sciences, Brunel University, Uxbridge UB8 3PH, UK
| | - Weigang Zhao
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| |
Collapse
|
32
|
Factorial Design as a Tool for the Optimization of PLGA Nanoparticles for the Co-Delivery of Temozolomide and O6-Benzylguanine. Pharmaceutics 2019; 11:pharmaceutics11080401. [PMID: 31405159 PMCID: PMC6722980 DOI: 10.3390/pharmaceutics11080401] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 12/07/2022] Open
Abstract
Poly(d,l-lactic-co-glycolic) (PLGA) nanoparticles (NPs) have been widely studied for several applications due to their advantageous properties, such as biocompatibility and biodegradability. Therefore, these nanocarriers could be a suitable approach for glioblastoma multiforme (GBM) therapy. The treatment of this type of tumours remains a challenge due to intrinsic resistance mechanisms. Thus, new approaches must be envisaged to target GBM tumour cells potentially providing an efficient treatment. Co-delivery of temozolomide (TMZ) and O6-benzylguanine (O6BG), an inhibitor of DNA repair, could provide good therapeutic outcomes. In this work, a fractional factorial design (FFD) was employed to produce an optimal PLGA-based nanoformulation for the co-loading of both molecules, using a reduced number of observations. The developed NPs exhibited optimal physicochemical properties for brain delivery (dimensions below 200 nm and negative zeta potential), high encapsulation efficiencies (EE) for both drugs, and showed a sustained drug release for several days. Therefore, the use of an FFD allowed for the development of a nanoformulation with optimal properties for the co-delivery of TMZ and O6BG to the brain.
Collapse
|
33
|
Synthesis of a novel CoFe2O4/chitosan magnetic composite for fast adsorption of indigotine blue dye. Carbohydr Polym 2019; 217:6-14. [DOI: 10.1016/j.carbpol.2019.04.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 01/08/2023]
|
34
|
Xiang Y, Gao M, Shen T, Cao G, Zhao B, Guo S. Comparative study of three novel organo-clays modified with imidazolium-based gemini surfactant on adsorption for bromophenol blue. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110928] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Fathi S, Asgari S. Improving SAPO-34 performance for CO 2/CH 4 separation and optimization of adsorption conditions using central composite design. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1591451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sohrab Fathi
- Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
| | - Samane Asgari
- Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
| |
Collapse
|
36
|
Bees metaheuristic algorithm with the aid of artificial neural networks for optimization of acid red 27 dye adsorption onto novel polypyrrole/SrFe12O19/graphene oxide nanocomposite. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02700-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Ghaedi AM, Karamipour S, Vafaei A, Baneshi MM, Kiarostami V. Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network. ULTRASONICS SONOCHEMISTRY 2019; 51:264-280. [PMID: 30322764 DOI: 10.1016/j.ultsonch.2018.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The present study examines simultaneous adsorption of ternary dyes such as rose bengal (RB), safranin O (SO) and malachite green (MG) from aqueous media on copper oxide nanoparticles immobilized on activated carbon (CuO-NPs-AC) in a batch system. To forecast and optimize the adsorption, artificial neural network (ANN) and response surface methodology (RSM) were utilized. The effect of various factors, e.g. dye concentration, sonication time, adsorbent dosage and pH on the adsorption process were evaluated through five level six factor central composite design (CCD) using RSM. Maximum removal efficiency of MG, SO and RB dyes were seen 94.26%, 71% and 76% under optimal operating conditions. The suggested quadratic models revealed good fit with the actual data. To testing the data, the coefficients of determination (R2) of 0.9976, 0.9971 and 0.9952 and Fisher F-values of 2048.92, 1660.95 and 926.84 were obtained for MG, SO and RB dyes, respectively. The same data were utilized to construct the ANN models. The results revealed that both models yielded high R2 values, while the RSM models were slightly more accurate in predictions as compared to ANN models for MG, SO and RB dyes removal. The equilibrium data followed the Langmuir isotherm model, although the rate of the adsorption process well fitted to pseudo-second-order kinetics. The maximum adsorption capacity of the CuO-NPs-AC for MG, SO and RB were found to be 212.79, 149.25 and 172.42 mg/g, respectively.
Collapse
Affiliation(s)
- Abdol Mohammad Ghaedi
- Department of Chemistry, Gachsaran Branch, Islamic Azad University, P.O. Box 75818-63876, Gachsaran, Iran.
| | - Shahnaz Karamipour
- Department of Chemistry, Gachsaran Branch, Islamic Azad University, P.O. Box 75818-63876, Gachsaran, Iran
| | - Azam Vafaei
- Department of Chemistry, Gachsaran Branch, Islamic Azad University, P.O. Box 75818-63876, Gachsaran, Iran
| | - Mohammad Mehdi Baneshi
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Vahid Kiarostami
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
38
|
Liu Y, Huang Y, Xiao A, Qiu H, Liu L. Preparation of Magnetic Fe₃O₄/MIL-88A Nanocomposite and Its Adsorption Properties for Bromophenol Blue Dye in Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E51. [PMID: 30609718 PMCID: PMC6359112 DOI: 10.3390/nano9010051] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Metal-organic frameworks (MOFs) are considered as good materials for the adsorption of many environmental pollutants. In this study, magnetic Fe₃O₄/MIL-88A composite was prepared by modification of MIL-88A with magnetic nanoparticles using the coprecipitation method. The structures and magnetic property of magnetic Fe₃O₄/MIL-88A composite were characterized and the adsorption behavior and mechanism for Bromophenol Blue (BPB) were evaluated. The results showed that magnetic Fe₃O₄/MIL-88A composite maintained a hexagonal rod-like structure and has good magnetic responsibility for magnetic separation (the maximum saturation magnetization was 49.8 emu/g). Moreover, the maximum adsorption amount of Fe₃O₄/MIL-88A composite for BPB was 167.2 mg/g and could maintain 94% of the initial adsorption amount after five cycles. The pseudo-second order kinetics and Langmuir isotherm models mostly fitted to the adsorption for BPB suggesting that chemisorption is the rate-limiting step for this monomolecular-layer adsorption. The adsorption capacity for another eight dyes (Bromocresol Green, Brilliant Green, Brilliant Crocein, Amaranth, Fuchsin Basic, Safranine T, Malachite Green and Methyl Red) were also conducted and the magnetic Fe₃O₄/MIL-88A composite showed good adsorption for dyes with sulfonyl groups. In conclusion, magnetic Fe₃O₄/MIL-88A composite could be a promising adsorbent and shows great potential for the removal of anionic dyes containing sulfonyl groups.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Yumin Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
39
|
Gil A, Arrieta E, Vicente MÁ, Korili SA. Application of Industrial Wastes from Chemically Treated Aluminum Saline Slags as Adsorbents. ACS OMEGA 2018; 3:18275-18284. [PMID: 31458405 PMCID: PMC6643525 DOI: 10.1021/acsomega.8b02397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/12/2018] [Indexed: 06/10/2023]
Abstract
In this study, industrial wastes, which remain after aluminum extraction from saline slags, were used as adsorbents. The aluminum saline slags were treated under reflux with 2 mol/dm3 aqueous solutions of NaOH, H2SO4, and HCl for 2 h. After separation by filtration, aqueous solutions containing the extracted aluminum and residual wastes were obtained. The wastes were characterized by nitrogen adsorption at -196 °C, X-ray diffraction, scanning electron microscopy, and ammonia pulse chemisorption. The chemical treatment reduced the specific surface area, from 84 to 23 m2/g, and the pore volume, from 0.136 to 0.052 cm3/g, of the saline slag and increased the ammonia-adsorption capacity from 2.84 to 5.22 cm3/g, in the case of acid-treated solids. The materials were applied for the removal of Acid Orange 7 and Acid Blue 80 from aqueous solutions, considering both single and binary systems. The results showed interesting differences in the adsorption capacity between the samples. The saline slag treated with HCl rapidly adsorbed all of the dyes present in solution, whereas the other materials retained between 50 and 70% of the molecules present in solution. The amount of Acid Orange 7 removed by the nontreated material and by the material treated with NaOH increased in the presence of Acid Blue 80, which can be considered as a synergistic behavior. The CO2 adsorption of the solids at several temperatures up to 200 °C was also evaluated under dry conditions. The aluminum saline slag presented an adsorption capacity higher than the rest of treated samples, a behavior that can be explained by the specific sites of adsorption and the textural properties of the solids. The isosteric heats of CO2 adsorption, determined from the Clausius-Clapeyron equation, varied between 1.7 and 26.8 kJ/mol. The wastes should be used as adsorbents for the selective removal of organic contaminants in wastewater treatment.
Collapse
Affiliation(s)
- Antonio Gil
- INAMAT-Departamento
de Ciencias, Edificio de los Acebos, Universidad
Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Ekhine Arrieta
- INAMAT-Departamento
de Ciencias, Edificio de los Acebos, Universidad
Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Miguel Ángel Vicente
- GIR-QUESCAT,
Departamento de Química Inorgánica, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Sophia A. Korili
- INAMAT-Departamento
de Ciencias, Edificio de los Acebos, Universidad
Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain
| |
Collapse
|
40
|
Optimization of Pb (II) and Cd (II) adsorption onto ZnO nanoflowers using central composite design: isotherms and kinetics modelling. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.135] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Fabrication of polyethyleneimine modified cobalt ferrite as a new magnetic sorbent for the micro-solid phase extraction of tartrazine from food and water samples. J Colloid Interface Sci 2018; 531:343-351. [DOI: 10.1016/j.jcis.2018.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022]
|
42
|
|
43
|
Bhowmik K, Deb K, Bera A, Debnath A, Saha B. Interaction of anionic dyes with polyaniline implanted cellulose: Organic π-conjugated macromolecules in environmental applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Moussout H, Ahlafi H, Aazza M, Maghat H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2018. [DOI: 10.1016/j.kijoms.2018.04.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
45
|
Zhang JJ, Qi P, Li J, Zheng XC, Liu P, Guan XX, Zheng GP. Three-dimensional Fe2O3–TiO2–graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Zhou X, Yang Q, Wang H, Huang F, Zhang J, Xu S. Effects of Ni2+ concentration and vacuum annealing on structure, morphology and optical properties of Ni doped ZnS nanopowders synthesized by hydrothermal method. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Regti A, Laamari MR, Stiriba SE, El Haddad M. Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jaubas.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abdelmajid Regti
- Equipe de Chimie Analytique & Environnement, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi, Morocco
| | - My Rachid Laamari
- Equipe de Chimie Analytique & Environnement, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi, Morocco
| | - Salah-Eddine Stiriba
- Equipe de Chimie Moléculaire, Matériaux et Modélisation, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi, Morocco
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/. Catedrático José Beltrán, 2, 46980 Paterna, Valencia, Spain
| | - Mohammadine El Haddad
- Equipe de Chimie Analytique & Environnement, Faculté Poly-disciplinaire, Université Cadi Ayyad, BP 4162, 46000 Safi, Morocco
| |
Collapse
|
48
|
Taghipour T, Karimipour G, Ghaedi M, Asfaram A. Mild synthesis of a Zn(II) metal organic polymer and its hybrid with activated carbon: Application as antibacterial agent and in water treatment by using sonochemistry: Optimization, kinetic and isotherm study. ULTRASONICS SONOCHEMISTRY 2018; 41:389-396. [PMID: 29137766 DOI: 10.1016/j.ultsonch.2017.09.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
In this work, a room temperature and short method (30min) for synthesis of nanosized rod-like metal organic polymer (MOP) has been described. Reaction of 1,4-phenylenedioxy diacetic acid with zinc salt leads to the formation of [Zn(C10H8O6)(H2O)4]n and subsequently was loaded on activated carbon following sonication and structurally characterized by FTIR, SEM, EDX and XRD analysis. The combination of this new composite with sonication was applied for rapid and efficient adsorption of Bromocresol Purple (BCP). Effects of initial BCP concentration, mass of adsorbent and sonication time on response were investigated and optimized by central composite design (CCD). Analysis of variation (ANOVA) was adapted to experimental data to find best optimum conditions which was set at 15.22mgL-1, 2.41min, 0.02g and 0.009mg for initial BCP concentration, sonication time and adsorbent mass, respectively. Conduction of similar experiments at specified condition permit achievement of 98.69% removal percentage. 1,4-phenylenedioxy diacetic acid and Zn(NO3)2.4H2O which have applied for preparation of MOP are interesting antibacterial properties and accordingly MOP was screened in vitro for their antibacterial actively against Proteus vulgaris bacteria and experimental results reveal this MOP was able to inhibit growth of the tested bacteria. The experimental data were best fitted by pseudo-second order and Langmuir for kinetic model and the adsorption equilibrium isotherm, respectively.
Collapse
Affiliation(s)
- Tahere Taghipour
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | | | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
49
|
Adapting the release characteristics of aluminum phosphide from membrane-coated rice tablets by using activated carbon nanoparticles. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Rajeswari A, Jackcina Stobel Christy E, Pius A. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:7-17. [DOI: 10.1016/j.jphotobiol.2017.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022]
|