1
|
Sah MK, Thakuri BS, Pant J, Gardas RL, Bhattarai A. The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy. SUSTAINABLE CHEMISTRY 2024; 5:40-59. [DOI: 10.3390/suschem5020004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The current economic development paradigm, which is based on steadily rising resource consumption and pollution emissions, is no longer viable in a world with limited resources and ecological capacity. The “green economy” idea has presented this context with a chance to alter how society handles the interplay between the environmental and economic spheres. The related concept of “green nanotechnology” aims to use nano-innovations within the fields of materials science and engineering to generate products and processes that are economically and ecologically sustainable, enabling society to establish and preserve a green economy. Many different economic sectors are anticipated to be impacted by these applications, including those related to corrosion inhibitor nanofertilizers, nanoremediation, biodegradation, heavy metal detection, biofuel, insecticides and pesticides, and catalytic CO2 reduction. These innovations might make it possible to use non-traditional water sources safely and to create construction materials that are enabled by nanotechnology, improving living and ecological conditions. Therefore, our aim is to highlight how nanotechnology is being used in the green economy and to present promises for nano-applications in this domain. In the end, it emphasizes how critical it is to attain a truly sustainable advancement in nanotechnology.
Collapse
Affiliation(s)
- Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Biraj Shah Thakuri
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Jyoti Pant
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44613, Nepal
| | - Ramesh L. Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Parimelazhagan V, Natarajan K, Shanbhag S, Madivada S, Kumar HS. Effective Adsorptive Removal of Coomassie Violet Dye from Aqueous Solutions Using Green Synthesized Zinc Hydroxide Nanoparticles Prepared from Calotropis gigantea Leaf Extract. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The removal of color from dye wastewater is crucial, since dyes are extremely toxic and can cause cancer in a variety of life forms. Studies must be done to use cost-effective adsorbents for the removal of color from dye effluents to protect the environment. To our knowledge, virtually no research has been done to describe the possibility of using Calotropis gigantea leaf extract zinc hydroxide nanoparticles (CG-Zn(OH)2NPs) as an adsorbent for the decolorization of Coomassie violet (CV) from the aqueous emulsion, either in batch mode or continuously. In the present batch investigation, CV dye is removed from the synthetic aqueous phase using CG-Zn(OH)2NPs as an adsorbent. The synthesized nanoparticles were characterized using various instrumental techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and Brunauer–Emmett–Teller (BET) surface area and pore volume, a particle size analyser, and zero-point charge. The decolorization efficacy of CV dye from an aqueous phase by the adsorbent was examined in batch mode by varying process parameters. The consequences of various experimental variables were optimized using response surface methodology (RSM) to achieve the maximum decolorization efficiency (90.74%) and equilibrium dye uptake, qe (35.12 mg g−1). The optimum pH, dye concentration, CG-Zn(OH)2NPs adsorbent dosage, and particle size were found to be 1.8, 225 mg L−1, 5 g L−1, and 78 μm, respectively for CV dye adsorption capacity at equilibrium. The adsorbent zero-point charge was found to be at pH 8.5. The Langmuir isotherm model provided a good representation of the equilibrium data in aqueous solutions, with a maximum monolayer adsorption capability (qmax) of 40.25 mg g−1 at 299 K. The dye adsorption rate follows a pseudo-second-order kinetic model at various dye concentrations, which indicated that the reaction is more chemisorption than physisorption. The negative values of ΔG and positive values of ΔH at different temperatures indicate that the adsorption process is spontaneous and endothermic, respectively. Reusability tests revealed that the prepared nanoparticles may be used for up to three runs, indicating that the novel CG-Zn(OH)2NPs seems to be a very promising adsorbent for the removal of Coomassie violet dye from wastewater.
Collapse
Affiliation(s)
- Vairavel Parimelazhagan
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kannan Natarajan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Srinath Shanbhag
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Sumanth Madivada
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Harish S. Kumar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|
3
|
Bagtash M, Zolgharnein J. Response surface optimization for simultaneous removal of Alizarin Red S and Alizarin Yellow dyes from aqueous solution using magnetic Zn-Al-Zr layered double hydroxide. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2188459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Maryam Bagtash
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Javad Zolgharnein
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
4
|
Çifçi Dİ, Aydın N. Comparison of H3PO4 and ZnCl2 Activated Filtered Coffee Waste Carbon-Based Adsorbents in Methylene Blue Removal by Using Ultrasonic-Assisted Adsorption. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Memetova A, Tyagi I, Singh L, Karri RR, Tyagi K, Kumar V, Memetov N, Zelenin A, Tkachev A, Bogoslovskiy V, Shigabaeva G, Galunin E, Mubarak NM, Agarwal S. Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155943. [PMID: 35577088 DOI: 10.1016/j.scitotenv.2022.155943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Due to rapidly deteriorating water resources, the world is looking forward to a sustainable alternative for the remediation of noxious pollutants such as heavy metals and organic and gaseous contaminants. To address this global issue of environmental pollution, nanoporous carbon materials (NPCMs) can be used as a one-stop solution. They are widely applied as adsorbents for many toxic impurities and environmental contaminants. The present review provides a detailed overview of the role of different synthesis factors on the porous characteristics of carbon materials, activating agents, reagent-precursor ratio and their potential application in the remediation. Findings revealed that synthetic parameters result in the formation of microporous NPCMs (SBET: >4000 m3/g; VTotal (cm3/g) ≥ 2; VMicro (cm3/g) ≥ 1), micromesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.7) and mesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.5) NPCMs. Moreover, it was observed that a narrow pore size distribution (0.5-2.0 nm) yields excellent results in the remediation of noxious contaminants. Further, chemical activating agents such as NaOH, KOH, ZnCl2, and H3PO4 were compared. It was observed that activating agents KОН, H3PO4, and ZnCl2 were generally used and played a significant role in the possible large-scale production and commercialization of NPCMs. Thus, it can be interpreted that with a well-planned strategy for the synthesis, NPCMs with a "tuned" porosity for a specific application, in particular, microporosity for the accumulation and adsorption of energetically important gases (CO2, CH4, H2), micro-mesoporosity and mesoporosity for high adsorption capacity for towards metal ions and a large number of dyes, respectively.
Collapse
Affiliation(s)
- Anastasia Memetova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India.
| | - Lipi Singh
- Department of Environmental Engineering, Delhi Technological University, New Delhi 110042, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Nariman Memetov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Andrey Zelenin
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Alexey Tkachev
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Vladimir Bogoslovskiy
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenina Ave., Tomsk 634050, Russian Federation
| | - Gulnara Shigabaeva
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Evgeny Galunin
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Shilpi Agarwal
- Center for Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Debnath B, Haldar D, Purkait MK. Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. CHEMOSPHERE 2022; 300:134480. [PMID: 35395270 DOI: 10.1016/j.chemosphere.2022.134480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The rising consumption of the popular non-alcoholic beverage tea and its derivative products caused massive growth in worldwide tea production in the last decade, leading to the generation of huge quantities of waste tea residues every year. Most of these wastes are usually burnt or disposed in landfills without proper treatment which results in serious environmental issues by polluting water, air and soil. In the recent times, 'waste to wealth' is a fast-growing concept for environment friendly sustainable development. Utilization of the large amount of tea wastes for the production of low-cost adsorbents to reduce the expenses of water and wastewater treatment can be a sustainable way of management of these wastes which at the same time will improve circular economy also. This review endeavours to evaluate the potential of both raw and modified tea wastes towards the adsorption of pollutants from wastewater. The production of various adsorptive materials such as biochar, activated carbon, nanocomposites, hydrogels, nanoparticles from tea wastes are summarized. The advancements in their applications for the removal of different emerging contaminants from wastewater as well as potable water, air and soil are exhaustively reviewed. The outcome of the present review reveals that tea waste and its derivatives are appropriate candidates to be used as adsorbents that show tremendous effectiveness in cleaning the environment. This article will provide the readers with an in-depth knowledge on the sustainable utilization of tea waste as adsorbent materials and will assist them to explore this abundant cheap waste biomass for environmental remediation.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Joshi UR, Roy R, Satsangi PG. Investigation of Bamboo Leaves as an Alternative Source of Silica: Extraction, Characterization and Its Application as an Adsorbent for Methylene Blue Sequestration. ChemistrySelect 2022. [DOI: 10.1002/slct.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uttara R. Joshi
- Department of Chemistry Savitribai Phule Pune University formerly University of Pune Pune 411007
| | - Ritwika Roy
- Department of Chemistry Savitribai Phule Pune University formerly University of Pune Pune 411007
| | - P. Gursumeeran Satsangi
- Department of Chemistry Savitribai Phule Pune University formerly University of Pune Pune 411007
| |
Collapse
|
8
|
A Review of the Modeling of Adsorption of Organic and Inorganic Pollutants from Water Using Artificial Neural Networks. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9384871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The application of artificial neural networks on adsorption modeling has significantly increased during the last decades. These artificial intelligence models have been utilized to correlate and predict kinetics, isotherms, and breakthrough curves of a wide spectrum of adsorbents and adsorbates in the context of water purification. Artificial neural networks allow to overcome some drawbacks of traditional adsorption models especially in terms of providing better predictions at different operating conditions. However, these surrogate models have been applied mainly in adsorption systems with only one pollutant thus indicating the importance of extending their application for the prediction and simulation of adsorption systems with several adsorbates (i.e., multicomponent adsorption). This review analyzes and describes the data modeling of adsorption of organic and inorganic pollutants from water with artificial neural networks. The main developments and contributions on this topic have been discussed considering the results of a detailed search and interpretation of more than 250 papers published on Web of Science ® database. Therefore, a general overview of the training methods, input and output data, and numerical performance of artificial neural networks and related models utilized for adsorption data simulation is provided in this document. Some remarks for the reliable application and implementation of artificial neural networks on the adsorption modeling are also discussed. Overall, the studies on adsorption modeling with artificial neural networks have focused mainly on the analysis of batch processes (87%) in comparison to dynamic systems (13%) like packed bed columns. Multicomponent adsorption has not been extensively analyzed with artificial neural network models where this literature review indicated that 87% of references published on this topic covered adsorption systems with only one adsorbate. Results reported in several studies indicated that this artificial intelligence tool has a significant potential to develop reliable models for multicomponent adsorption systems where antagonistic, synergistic, and noninteraction adsorption behaviors can occur simultaneously. The development of reliable artificial neural networks for the modeling of multicomponent adsorption in batch and dynamic systems is fundamental to improve the process engineering in water treatment and purification.
Collapse
|
9
|
WANG C, LI N, WU L, XIA L, HU Z, LI X, QU Z, YANG J. Optimization of ultrasound-homogenization combined extraction of phenolics in peony roots and leaves. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Nana LI
- North University of China, China
| | | | | | | | - Xiaojun LI
- North University of China, China; Nanolattix Biotech Corporation, China
| | - Zhican QU
- Nanolattix Biotech Corporation, China
| | | |
Collapse
|
10
|
Catalytic Oxidation of Ponceau 4R in Aqueous Solution using Iron-impregnated Al-pillared Bentonite: Optimization of the Process. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10757.491-506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application of the Fenton-like process for the oxidation of an aqueous solution of Ponceau 4R dye, using an aluminum pillared clay impregnated with iron (Fe(wt%)/Al-PILC) as catalyst, was investigated. The Response Surface Methodology (RSM), based on a Central Composite Design (CCD) was used to evaluate and optimize the oxidation process of a Ponceau 4R solution. Three independent variables were studied in the experimental design: the amount of H2O2 expressed in multiples of times of stoichiometry dose, iron concentration incorporated by impregnation onto aluminum pillared clay (Fe(wt%)), and amount of catalyst (Fe(wt%)/Al-PILC). The response variables were decolorization and total organic carbon (TOC) removal. The significance of independent variables and their interactions were tested by means of analysis of variance (ANOVA), with a 95% confidence level. With low stoichiometric dose of H2O2 (0.96 and 1.54 times), medium amount of catalyst (374.4 and 391.3 mg) and high Fe concentration impregnated in pillared clay (9.3 and 7.7 wt%), the total decolorization and high TOC removal were achieved. Under multi-objective optimization conditions (3.0 times the stoichiometric dose of H2O2, 420 mg Fe(wt%)/Al-PILC and 5.5 wt% Fe impregnated in Al-PILC), it was possible to achieve 86.18% decolorization and 66.81% TOC removal after 5 h of reaction at 25 °C, with the additional advantage of showing an iron leaching of less than 0.10 mg/L. The established models' soundness is confirmed by a good fit between predictive models and experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
11
|
Baite TN, Mandal B, Purkait MK. Ultrasound assisted extraction of gallic acid from Ficus auriculata leaves using green solvent. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Multi-frequency multi-mode ultrasound treatment for removing pesticides from lettuce (Lactuca sativa L.) and effects on product quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Degradation and mineralization of methylene blue dye by peroxymonosulfate/ Mn3O4 nanoparticles using central composite design: Kinetic study. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Das PP, Mondal P, Anweshan, Sinha A, Biswas P, Sarkar S, Purkait MK. Treatment of steel plant generated biological oxidation treated (BOT) wastewater by hybrid process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Effect of ultrasound, high-pressure processing, and enzymatic hydrolysis on carbohydrate hydrolyzing enzymes and antioxidant activity of lemon (Citrus limon) flavedo. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Chowdhury A, Kumari S, Khan AA, Chandra MR, Hussain S. Activated carbon loaded with Ni-Co-S nanoparticle for superior adsorption capacity of antibiotics and dye from wastewater: Kinetics and isotherms. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125868] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Das PP, Mondal P, Sinha A, Biswas P, Sarkar S, Purkait MK. Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. CHEMOSPHERE 2021; 263:128370. [PMID: 33297281 DOI: 10.1016/j.chemosphere.2020.128370] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
This work focuses on the removal of cyanide, chemical oxygen demand (COD), biological oxygen demand (BOD), and chloride from biological oxidation treated (BOT) effluent of the steel industry by integrated ozonation assisted electrocoagulation method. The removal efficiency of the pollutants was found to be inefficient when the electrocoagulation or ozonation process was performed separately. However, a combination of ozonation and electrocoagulation gives a highly satisfactory result. Such an integrated approach for the treatment of BOT effluent has not been previously investigated. The effects of operating variables viz. ozone generation rate, current density, and analysis time on pollutant removal were primarily analyzed for the hybrid process. The experimental operating condition was optimized and was seen that ozone generation rate of 1.33 mg s-1, ozonation time of 40 min, a current density of 100 A m-2, and electrolysis time of 30 min were sufficient for reducing the pollutant concentration below its permissible limits. The removal efficiencies of the combined process at optimum conditions were 99.8%, 94.7%, 95%, and 46.5% for cyanide, COD, BOD, and chloride ions, respectively. A kinetic study was performed for the degradation of the pollutants during ozonation. The pseudo-first-order kinetic model was found to be best suited for the analysis with the highest R2 value of 0.99 for cyanide, COD, BOD, and chloride, respectively. The mass transfer study conducted further showed that the volumetric mass transfer coefficient, Kla, was increased with that of the ozone generation rate. Cost estimation of the hybrid process was done and compared with that of the other reported integrated process.
Collapse
Affiliation(s)
- Pranjal P Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Piyal Mondal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - A Sinha
- Environmental Research Group, Tata Steel Limited, Jamshedpur, 831007, India
| | - P Biswas
- Environmental Research Group, Tata Steel Limited, Jamshedpur, 831007, India
| | - S Sarkar
- Environmental Research Group, Tata Steel Limited, Jamshedpur, 831007, India
| | - M K Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
18
|
Liu Y, Zhao Y, Cheng W, Zhang T. Targeted reclaiming cationic dyes from dyeing wastewater with a dithiocarbamate-functionalized material through selective adsorption and efficient desorption. J Colloid Interface Sci 2020; 579:766-777. [DOI: 10.1016/j.jcis.2020.06.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/19/2023]
|
19
|
Ciğeroğlu Z, Küçükyıldız G, Haşimoğlu A, Taktak F, Açıksöz N. Fast and effective methylene blue adsorption onto graphene oxide/amberlite nanocomposite: Evaluation and comparison of optimization techniques. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0600-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Bahrani S, Ghaedi M, Asfaram A, Mansoorkhani MJK, Javadian H. Rapid ultrasound-assisted microextraction of atorvastatin in the sample of blood plasma by nickel metal organic modified with alumina nanoparticles. J Sep Sci 2020; 43:4469-4479. [PMID: 33048447 DOI: 10.1002/jssc.202000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
In the present work, nickel-1,4-benzenedioxyacetic acid was synthesized as a rod-like metal organic material and then modified with alumina nanoparticles to synthesize nickel metal organic modified-Al2 O3 nanoparticles. The material was found as an efficient sorbent for the enrichment of atorvastatin in human blood plasma. After the extraction of the sample of plasma by ultrasound-assisted dispersive solid phase extraction, high performance liquid chromatography-ultraviolet was used to determine the quantitatively pre-concentrated interest analyte. The conditions for optimum extraction were achieved by the optimization of the volume of eluent, dosage of the sorbent, and time of sonication. Solution pH of 7.0, 250 μL of ethanol, 45 mg of the sorbent, and 10 min of sonication time were the conditions for extracting the atorvastatin maximum recovery of higher than 97.0%. By using desirability function for the optimization of the process, the present method showed a response that was linear ranging from 0.2 to 800 ng/mL with regression coefficient of 0.999 in the plasma of human blood with a satisfactory detection limit of 0.05 ng/mL, while the precision of interday for the current method was found to be <5%. It can be concluded that dispersive solid phase extraction method is effective for the extraction of atorvastatin from human plasma samples (97.4-102%) due to its easy operation, simplicity, repeatability, and reliability.
Collapse
Affiliation(s)
- Sonia Bahrani
- Department of Chemistry, Yasouj University, Yasuj, Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, Barcelona, Spain
| |
Collapse
|
21
|
Duarah P, Haldar D, Purkait MK. Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agro-industrial waste residues: A review. Int J Biol Macromol 2020; 163:1828-1843. [PMID: 32950524 DOI: 10.1016/j.ijbiomac.2020.09.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Over the years, lignin has drawn a great deal of interest for their potential use as bio-polymers due to the presence of high amount of phenolic compounds, non-polluting feature and cost-competitiveness as compared to synthetic polymers. However, in order to fast-track their development, different attempts are made towards the usage of lignin in nano form since it exhibits some unique properties in nanoscale range. The present review article provides a detail analysis on the recent advancement in the synthesis and applications of lignin nanoparticles (LNPs) derived from agro-industrial waste residues. In view of that, an in-depth morphological analysis was reviewed to assess the structural influence on the characteristics of LNPs. Further, application of LNPs is explored in different fields including bio-medical engineering, pharmaceuticals, skin-care products and food industries. Finally, the paper is concluded discussing various challenges associated with the synthesis, modification and development with an aspiration of futuristic developments. The readers of this review article will be highly benefitted after acquiring a comprehensive knowledge on LNPs and its different synthesis processes along with various applications.
Collapse
Affiliation(s)
- Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Mihir Kumar Purkait
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
22
|
Ahmad MA, Eusoff MA, Oladoye PO, Adegoke KA, Bello OS. Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100426] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Haldar D, Duarah P, Purkait MK. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. CHEMOSPHERE 2020; 251:126388. [PMID: 32443223 DOI: 10.1016/j.chemosphere.2020.126388] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Over the last few decades, the global pollution of surface and groundwater poses a serious threat not only to human beings but also towards aquatic lives due to the presence of emerging contaminants. Among the others, the presence of arsenic, fluoride, and iron are considered as the most common toxic pollutants in water bodies. The emergence of metal organic frameworks (MOFs) with high porosity and surface area is represented as significant inclusion into the era of entrapping contaminants present in drinking water. In the present review article, an in-depth insight is provided on the recent developments in the removal of arsenic, fluoride, and iron from drinking water using MOFs. Various aspects related to the synthesis, latest technologies adopted for the modifications in the synthesis process and advanced applications of MOFs for the removal of such contaminants are explicitly discussed. A detailed insight was provided to understand the mechanism of various interactions of MOFs with arsenic and fluoride. With respect to arsenic, fluoride, and iron removal the ultrastructural morphology of MOFs is assessed based on different molecular arrangements. Further, commercial aspects of various MOFs are presented in order to highlight the process feasibility. Finally, various perspectives and challenges involved in process scale up are comprehensively narrated with an aspiration of futuristic developments. The paper will be beneficial to the readers for acquiring a piece of in-depth knowledge on MOFs and its various synthesis approaches along with remarkable achievements for the removal of arsenic, fluoride, and iron from contaminated drinking water.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Mihir Kumar Purkait
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
24
|
Qi R, Pan Y, Cao J, Jia Z, Jiang J. The cytotoxicity of nanomaterials: Modeling multiple human cells uptake of functionalized magneto-fluorescent nanoparticles via nano-QSAR. CHEMOSPHERE 2020; 249:126175. [PMID: 32078856 DOI: 10.1016/j.chemosphere.2020.126175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
The vast majority of nanomaterials have attracted an upsurge of interest since their discovery and considerable researches are being carried out about their adverse outcomes for human health and the environment. In this study, two regression-based quantitative structure-activity relationship models for nanoparticles (nano-QSAR) were established to predict the cellular uptakes of 109 functionalized magneto-fluorescent nanoparticles to pancreatic cancer cells (PaCa2) and human umbilical vein endothelial cells (HUVEC) lines, respectively. The improved SMILES-based optimal descriptors encoded with certain easily available physicochemical properties were proposed to describe the molecular structure characteristics of the involved nanoparticles, and the Monte Carlo method was used for calculating the improved SMILES-based optimal descriptors. Both developed nano-QSAR models for cellular uptake prediction provided satisfactory statistical results, with the squared correlation coefficient (R2) being 0.852 and 0.905 for training sets, and 0.822 and 0.885 for test sets, respectively. Both models were rigorously validated and further extensively compared to literature models. Predominant physicochemical features responsible for cellular uptake were identified by model interpretation. The proposed models could be reasonably expected to provide guidance for synthesizing or choosing safer, more suitable surface modifiers of desired properties prior to their biomedical applications.
Collapse
Affiliation(s)
- Ronghua Qi
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Yong Pan
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Jiakai Cao
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Juncheng Jiang
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
25
|
Bayomie OS, Kandeel H, Shoeib T, Yang H, Youssef N, El-Sayed MMH. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci Rep 2020; 10:7824. [PMID: 32385345 PMCID: PMC7210991 DOI: 10.1038/s41598-020-64727-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 11/09/2022] Open
Abstract
Fava bean peels, Vicia faba (FBP) are investigated as biosorbents for the removal of Methylene Blue (MB) dye from aqueous solutions through a novel and efficient sorption process utilizing ultrasonic-assisted (US) shaking. Ultrasonication remarkably enhanced sorption rate relative to conventional (CV) shaking, while maintaining the same sorption capacity. Ultrasonic sorption rate amounted to four times higher than its conventional counterpart at 3.6 mg/L initial dye concentration, 5 g/L adsorbent dose, and pH 5.8. Under the same adsorbent dose and pH conditions, percent removal ranged between 70-80% at the low dye concentration range (3.6-25 mg/L) and reached about 90% at 50 mg/L of the initial dye concentration. According to the Langmuir model, maximum sorption capacity was estimated to be 140 mg/g. A multiple linear regression statistical model revealed that adsorption was significantly affected by initial concentration, adsorbent dose and time. FBP could be successfully utilized as a low-cost biosorbent for the removal of MB from wastewater via US biosorption as an alternative to CV sorption. US biosorption yields the same sorption capacities as CV biosorption, but with significant reduction in operational times.
Collapse
Affiliation(s)
- Omar S Bayomie
- Department of Chemistry, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt.,Department of Energy and Processes, PSL Research University, Paris, France
| | - Haitham Kandeel
- Department of Chemistry, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt.,Department of Chemistry and Chemical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tamer Shoeib
- Department of Chemistry, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Noha Youssef
- Department of Mathematics and Actuarial Science, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt
| | - Mayyada M H El-Sayed
- Department of Chemistry, American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Egypt.
| |
Collapse
|
26
|
Saidi FZ, Mokhtari M. Central Composite Design To Optimize The Degradation Of Methylene Blue By Fenton Process. ChemistrySelect 2019. [DOI: 10.1002/slct.201902466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatima Zahra Saidi
- Inorganic Chemistry and EnvironmentUniversity of Tlemcen, P.O. Box 119 Tlemcen 13000 Algeria
| | - Malika Mokhtari
- Inorganic Chemistry and EnvironmentUniversity of Tlemcen, P.O. Box 119 Tlemcen 13000 Algeria
| |
Collapse
|
27
|
Xing X, Jiang W, Li S, Zhang X, Wang W. Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl 2-H 3PO 4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:64-72. [PMID: 31079760 DOI: 10.1016/j.wasman.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
In this paper, wheat straw (WS), corn straw (CS) and sorghum straw (SS) were used as raw materials. ZnCl2 and H3PO4 were used as catalysts. Hydrothermal carbonization combined with pyrolysis were used to co-activate with the ultrasonic auxiliary impregnation method in order to prepare straw activated carbon (SAC). Methylene blue adsorption value and iodine value were used as the main evaluation index to optimize the process conditions. The activation process was analyzed and the optimum preparation conditions were obtained. The results showed that it was feasible to combine hydrothermal carbonization with ultrasonic assisted immersion pyrolysis using ZnCl2 and H3PO4 as catalysts for preparing SAC. WS, CS and SS showed similar characteristics in the preparation of SAC. The best preparation conditions of hydrothermal temperature and the impregnation ratio of ZnCl2 were 200 °C and 2:1. The optimum pyrolysis condition was at a heating rate of 5 °C/min and an impregnation ratio of H3PO4 equal to 2:1 with 1 h of pyrolysis at 500 °C. The temperature and time of ultrasonic auxiliary conditions were 40 °C and 30 min. For WSHUPC, CSHUPC and SSHUPC, the MB adsorption values were 165, 166 and 164 mg/g and the iodine values reached 764, 725 and 701 mg/g. It was demonstrated the three kinds of straws were highly efficient precursor for the preparation of activated carbon used to remove dyes from wastewater. The preparation method in this study combines the advantages of physical and chemical activation.
Collapse
Affiliation(s)
- Xianjun Xing
- School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Wen Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Shan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xianwen Zhang
- School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Wenquan Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
28
|
Saleh SM. ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:141-147. [PMID: 30530067 DOI: 10.1016/j.saa.2018.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 05/27/2023]
Abstract
This novel work presents a promising application to use Zinc oxide nanospheres as nanocatalysts in photocatalytic degradation of methyl orange dye. The hydrothermal route was utilized in the synthesis process of ZnO nanospheres. The size of the synthesized ZnO nanoparticles is around 200-250 nm diameter. The synthesized nano-oxides were characterized utilizing several instruments such as X-ray diffraction, Brunauer, Emmett, and Teller (BET), and scanning electron microscope (SEM). The resulting nanoparticles are utilized as an efficient tool for degradation of methyl orange (MO) dye under UV radiation. Essential parameters were studied on degradation process involving the initial concentration of MO, pH, stirring the solution, dose of the ZnO nanospheres, the oxygen content of the solution, calcination of the nanomaterials. All activity experiments under UV radiation provide excellent results for the degradation process of MO. Also, the recovery of ZnO nanomaterials was investigated based on the photocatalytic process efficiency. The results show the high possibility of reuse ZnO nanospheres for several photocatalytic processes. Also, the nanocatalysts were applied for a real environmental sample with providing high photocatalytic performance.
Collapse
Affiliation(s)
- Sayed M Saleh
- Chemistry Department, Science College, Qassim University, Buraidah, Saudi Arabia; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, 43721 Suez, Egypt.
| |
Collapse
|
29
|
Gan D, Liu M, Huang H, Chen J, Dou J, Wen Y, Huang Q, Yang Z, Zhang X, Wei Y. Facile preparation of functionalized carbon nanotubes with tannins through mussel-inspired chemistry and their application in removal of methylene blue. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.079] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Mahmoodi NM, Taghizadeh M, Taghizadeh A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: Preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.108] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Polyvinyl alcohol/Fe3O4@carbon nanotubes nanocomposite: Electrochemical-assisted synthesis, physicochemical characterization, optical properties, cytotoxicity effects and ultrasound-assisted treatment of aqueous based organic compound. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Heidarinejad Z, Rahmanian O, Fazlzadeh M, Heidari M. Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.100] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Mosleh S, Rahimi MR, Ghaedi M, Asfaram A, Javadian H, Sadeghfar F, Jannesar R. Visible-light-driven photocatalytic degradation of fenpyroximate in rotating packed bed reactor using Fe3
O4
@PbS@Ni2
P magnetic nanocomposite photocatalyst: Response surface modelling and optimization. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soleiman Mosleh
- Department of Gas and Petroleum; Yasouj University; Gachsaran Iran
| | - Mahmood Reza Rahimi
- Process Intensification Laboratory, Chemical Engineering Department; Yasouj University; Yasouj Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center; Yasuj University of Medical Sciences; Yasuj Iran
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB; Universitat Politècnica de Catalunya; Barcelona Spain
| | - Fardin Sadeghfar
- Chemistry Department; Yasouj University; Yasouj Iran
- Department of Biotechnology and Microbial Nanotechnology; Dena Pathobiology Laboratory; Yasuj Iran
| | - Ramin Jannesar
- Department of Biotechnology and Microbial Nanotechnology; Dena Pathobiology Laboratory; Yasuj Iran
| |
Collapse
|
34
|
Safari M, Khataee A, Darvishi Cheshmeh Soltani R, Rezaee R. Ultrasonically facilitated adsorption of an azo dye onto nanostructures obtained from cellulosic wastes of broom and cooler straw. J Colloid Interface Sci 2018; 522:228-241. [DOI: 10.1016/j.jcis.2018.03.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022]
|
35
|
Facile fabrication of gelatin/bentonite composite beads for tunable removal of anionic and cationic dyes. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Masoudian N, Rajabi M, Ghaedi M, Asghari A. Highly efficient adsorption of Naphthol Green B and Phenol Red dye by Combination of Ultrasound wave and Copper-Doped Zinc Sulfide Nanoparticles Loaded on Pistachio-Nut Shell. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Navid Masoudian
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Mehrorang Ghaedi
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Alireza Asghari
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| |
Collapse
|
37
|
Wong S, Lee Y, Ngadi N, Inuwa IM, Mohamed NB. Synthesis of activated carbon from spent tea leaves for aspirin removal. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Zhang JJ, Qi P, Li J, Zheng XC, Liu P, Guan XX, Zheng GP. Three-dimensional Fe2O3–TiO2–graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Taghipour T, Karimipour G, Ghaedi M, Asfaram A. Mild synthesis of a Zn(II) metal organic polymer and its hybrid with activated carbon: Application as antibacterial agent and in water treatment by using sonochemistry: Optimization, kinetic and isotherm study. ULTRASONICS SONOCHEMISTRY 2018; 41:389-396. [PMID: 29137766 DOI: 10.1016/j.ultsonch.2017.09.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
In this work, a room temperature and short method (30min) for synthesis of nanosized rod-like metal organic polymer (MOP) has been described. Reaction of 1,4-phenylenedioxy diacetic acid with zinc salt leads to the formation of [Zn(C10H8O6)(H2O)4]n and subsequently was loaded on activated carbon following sonication and structurally characterized by FTIR, SEM, EDX and XRD analysis. The combination of this new composite with sonication was applied for rapid and efficient adsorption of Bromocresol Purple (BCP). Effects of initial BCP concentration, mass of adsorbent and sonication time on response were investigated and optimized by central composite design (CCD). Analysis of variation (ANOVA) was adapted to experimental data to find best optimum conditions which was set at 15.22mgL-1, 2.41min, 0.02g and 0.009mg for initial BCP concentration, sonication time and adsorbent mass, respectively. Conduction of similar experiments at specified condition permit achievement of 98.69% removal percentage. 1,4-phenylenedioxy diacetic acid and Zn(NO3)2.4H2O which have applied for preparation of MOP are interesting antibacterial properties and accordingly MOP was screened in vitro for their antibacterial actively against Proteus vulgaris bacteria and experimental results reveal this MOP was able to inhibit growth of the tested bacteria. The experimental data were best fitted by pseudo-second order and Langmuir for kinetic model and the adsorption equilibrium isotherm, respectively.
Collapse
Affiliation(s)
- Tahere Taghipour
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | | | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
40
|
Jesionek M, Nowak M, Mistewicz K, Kępińska M, Stróż D, Bednarczyk I, Paszkiewicz R. Sonochemical growth of nanomaterials in carbon nanotube. ULTRASONICS 2018; 83:179-187. [PMID: 28347509 DOI: 10.1016/j.ultras.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Recent achievements in investigations of carbon nanotubes (CNTs) filled with ternary chalcohalides (antimony sulfoiodide (SbSI) and antimony selenoiodide (SbSeI)) are presented. Parameters of sonochemical encapsulation of nanocrystalline semiconducting ferroelectric SbSI-type materials in CNTs are reported. This low temperature technology is convenient, fast, efficient and environmentally friendly route for producing novel type of hybrid materials useful for nanodevices. Structure as well as optical and electrical properties of SbSI@CNTs and SbSeI@CNTs are described. Advantages of ultrasonic joining of such filled CNTs with metal microelectrodes are emphasized. The possible applications of these nanomaterials as gas sensors are shown.
Collapse
Affiliation(s)
- M Jesionek
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krasińskiego 8,40-019 Katowice, Poland.
| | - M Nowak
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krasińskiego 8,40-019 Katowice, Poland
| | - K Mistewicz
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krasińskiego 8,40-019 Katowice, Poland
| | - M Kępińska
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krasińskiego 8,40-019 Katowice, Poland
| | - D Stróż
- Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - I Bednarczyk
- Faculty of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - R Paszkiewicz
- Division of Microelectronics and Nanotechnology, Wrocław University of Technology, Długa 65, 53-633 Wrocław, Poland
| |
Collapse
|
41
|
Kumar V, Jain A, Wadhawan S, Mehta SK. Synthesis of biosurfactant‐coated magnesium oxide nanoparticles for methylene blue removal and selective Pb 2+ sensing. IET Nanobiotechnol 2018; 12:241-253. [PMCID: PMC8676576 DOI: 10.1049/iet-nbt.2017.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 11/09/2017] [Indexed: 03/21/2024] Open
Abstract
Dyes and lead (Pb2+) are toxic compounds that can contaminant water. In this study, magnesium oxide (MgO) nanoparticles (NPs) prepared using clove, i.e. Syzygium aromaticum extract [clove extract (CE)] were used for methylene blue (MB) removal and Pb2+ ion sensing in aqueous solution. Maximum 90% MB removal was achieved using MgO NPs. The MB adsorption on MgO NPs surface followed second‐order kinetics and Langmuir isotherm. MB dye was adsorbed as a monolayer on the surface of MgO NPs with maximum adsorption capacity, 5555 mg g−1. MgO NPs were also able to selectively detect lead (Pb2+) in 1 nM–200 µM range with 24 µM (3σ) limit of detection. So, CE prepared MgO NPs are useful for MB dye adsorption and metal ion sensing applications.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of ChemistryPanjab UniversityChandigarhU.T.160014India
- Department of BiotechnologyDAV UniversitySarmastpur, NH‐44Jalandhar144012PunjabIndia
- Present address:
Department of BiotechnologyFaculty of Technology and SciencesLovely Professional University (LPU)Jalandhar – Delhi G.T. RoadPhagwaraPunjab144411India
| | - Ayushi Jain
- Department of ChemistryPanjab UniversityChandigarhU.T.160014India
- Department of ChemistryPU Research CentreGGDSD CollegeChandigarhU.T160030India
| | - Shweta Wadhawan
- Department of ChemistryPU Research CentreGGDSD CollegeChandigarhU.T160030India
| | | |
Collapse
|
42
|
Pooralhossini J, Zanjanchi MA, Ghaedi M, Asfaram A, Azqhandi MHA. Statistical optimization and modeling approach for azo dye decolorization: Combined effects of ultrasound waves and nanomaterial‐based adsorbent. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jaleh Pooralhossini
- Department of ChemistryUniversity of Guilan University Campus 2, Mellat Street Rasht Iran
| | - Mohammad Ali Zanjanchi
- Department of ChemistryUniversity of Guilan University Campus 2, Mellat Street Rasht Iran
- Department of Chemistry, Faculty of ScienceUniversity of Guilan Rasht 41335‐1914 Iran
| | | | - Arash Asfaram
- Medicinal Plants Research CenterYasuj University of Medical Sciences Yasuj Iran
| | | |
Collapse
|
43
|
A newly developed tridimensional neural network for prediction of the phase equilibria of six aqueous two-phase systems. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Fixed-bed column performances of azure-II and auramine-O adsorption by Pinus eldarica stalks activated carbon and its composite with zno nanoparticles: Optimization by response surface methodology based on central composite design. J Colloid Interface Sci 2017; 507:172-189. [DOI: 10.1016/j.jcis.2017.07.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/20/2022]
|
45
|
Khafri HZ, Ghaedi M, Asfaram A, Safarpoor M. Synthesis and characterization of ZnS:Ni-NPs loaded on AC derived from apple tree wood and their applicability for the ultrasound assisted comparative adsorption of cationic dyes based on the experimental design. ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633837 DOI: 10.1016/j.ultsonch.2017.03.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The applicability of ZnS:Ni nanoparticles loaded on activated carbon derived from apple tree wood (ZnS:Ni-NPs-ACATW) for the adsorption of Methylene Blue (MB) and Janus Green B (JGB) dyes in single system from water solution has been described. The synthesized adsorbent characterized and identified by UV-Vis, FE-SEM, EDX, TEM, FTIR and XRD. The influences of operation parameters including initial MB or JGB concentration (9.0-33.0mgL-1), pH (4.0-10.0), extent of adsorbent (0.08-0.12g) and sonication time (4.0-8.0min) investigated and subsequently best operational condition optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF) using STATISTICA 10.0 software. At optimum conditions, maximum MB and JSB adsorption onto ZnS:Ni-NPs-ACATW, i.e. 99.57%±1.34 and 98.70%±2.01, respectively was achieved pH of 7.0, 0.11g adsorbent, 14 and 28mgL-1 of MB and JSB concentration respectively and 8min sonication time. Experimental data were modelled by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm and monolayer adsorption capacity of MB and JSB was found to be 21.79 and 28.01mgg-1 respectively. The regression results strongly support more contribution of pseudo-second-order model for more accurate and repeatable representation of kinetic data. These results reveal that ZnS:Ni-NPs-ACATW could be useful as agents to efficiently remove dyes (JGB and MB) from contaminated water and can be very well recommended for wastewater remediation and control of environmental pollution.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran
| | | |
Collapse
|
46
|
ICA and ANN Modeling for Photocatalytic Removal of Pollution in Wastewater. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2017. [DOI: 10.3390/mca22030038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper discusses the elimination of Colour Index Acid Yellow 23 (C.I. AY23) using the ultraviolet (UV)/Ag-TiO2 process. To anticipate the photocatalytic elimination of AY23 with the existence of Ag-TiO2 nanoparticles processed under desired circumstances, two computational techniques, namely artificial neural network (ANN) and imperialist competitive algorithm (ICA) modeling are developed. A sum of 100 datasets are used to establish the models, wherein the introductory concentration of dye, UV light intensity, initial dosage of nano Ag-TiO2, and irradiation time are the four parameters expressed in the form of input variables. Additionally, the elimination of AY23 is considered in the form of the output variable. Out of the 100 datasets, 80 are utilized in order to train the models. The remaining 20 that were not included in the training are used in order to test the models. The comparison of the predicted outcomes extracted from the suggested models and the data obtained from the experimental analysis validates that the performance of the ANN scheme is comparatively sophisticated when compared with the ICA scheme.
Collapse
|
47
|
Bazrafshan AA, Ghaedi M, Hajati S, Naghiha R, Asfaram A. Synthesis of ZnO-nanorod-based materials for antibacterial, antifungal activities, DNA cleavage and efficient ultrasound-assisted dyes adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:330-337. [PMID: 28437724 DOI: 10.1016/j.ecoenv.2017.04.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 05/09/2023]
Abstract
Undoped and Au-doped ZnO-nanorods were synthesized in the presence of ultrasound and loaded on activated carbon following characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmittance electron microscopy (TEM), UV-vis spectrophotometry and Fourier transform infrared spectroscopy (FTIR). The Au-doped ZnO-nanorod-loaded activated carbon (Au-ZnO-NRs-AC) was used for the simultaneous removal of methylene blue (MB) and auramine O (AO) from aqueous solutions. Central composite design (CCD) under response surface methodology (RSM) was applied to model and optimize the dyes removal versus adsorbent mass, pH, and initial dyes concentration and sonication time as well as to investigate the possible interaction between these variables. The optimum values of the initial MB and AO dyes concentration, adsorbent mass, pH and sonication time were found to be 12 and 10mgL-1, 0.0124g, 6.4, and 4min respectively. The rapid adsorption process at neutral pH using very small amount of the adsorbent makes it promising for the wastewater treatment applications. More than 99.5% of both dyes was removed with maximum adsorption capacities in binary-component system (107.5 and 95.7mgg-1 for MB and AO, respectively). The kinetics and isotherm studies showed that the second-order and Langmuir models apply for the kinetics and isotherm of the adsorption of MB and AO on the adsorbent used here. Moreover, the wastewater treatment by using an antibacterial/antifungal adsorbent makes the process much more valuable. Therefore, additional studies were performed which showed efficient antibacterial/antifungal activities and DNA cleavage of undoped and Au-doped ZnO nanorods as constituent of the adsorbent applied here.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Shaaker Hajati
- Department of Physics, Yasouj University, Yasouj 75918-74831, Iran; Department of Semiconductors, Materials and Energy Research Center, Karaj 3177983634, Iran.
| | - Reza Naghiha
- Department of Animal science, Yasouj University, Yasouj 75918-74831, Iran
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
48
|
Hosseinzadeh H, Abdi K. Efficient Removal of Methylene Blue Using a Hybrid Organic–Inorganic Hydrogel Nanocomposite Adsorbent Based on Sodium Alginate–Silicone Dioxide. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0625-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Ravanipour M, Kafaei R, Keshtkar M, Tajalli S, Mirzaei N, Ramavandi B. Fluoride ion adsorption onto palm stone: Optimization through response surface methodology, isotherm, and adsorbent characteristics data. Data Brief 2017; 12:471-479. [PMID: 28508026 PMCID: PMC5423305 DOI: 10.1016/j.dib.2017.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 11/20/2022] Open
Abstract
In some part of the world, groundwater source can become unsafe for drinking due to the high concentration of fluoride ions [1]. The low cost and facile-produced adsorbent like palm stone could effectively removed fluoride ions through adsorption process. In this dataset, the influence of fluoride ion concentration, solution pH, adsorbent dosage, and contact time on fluoride ion adsorption by palm stones was tested by central composite design (CCD) under response surface methodology (RSM). The data stone carbonized adsorbent was prepared by a simple and facile method at relatively low temperature of 250 °C during 3 h. The adsorbent had the main functional groups of O–H, –OH, Si–H, C=O, N=O, C–C, C–OR, C–H, and C–Br on its surface. At the optimized conditions obtained by RSM, about 84.78% of fluoride ion was removed using the adsorbent. The Langmuir isotherm was suitable for correlation of equilibrium data (maximum adsorption capacity= 3.95 mg/g). Overall, the data offer a facile adsorbent to water and wastewater works which face to high level of fluoride water/ wastewater content.
Collapse
Affiliation(s)
- Masoumeh Ravanipour
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Raheleh Kafaei
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mozhgan Keshtkar
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Soghra Tajalli
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narjes Mirzaei
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|