1
|
Kaczmarek DK, Klejdysz T, Pacholak A, Kaczorek E, Pernak J. Environmental impact assessment of dicationic ionic liquids with ammonium-phosphonium cations and amino acid anions. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134793. [PMID: 38850954 DOI: 10.1016/j.jhazmat.2024.134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Progress in the development of biodegradable or biobased ionic liquids (ILs) has led to the design of green compounds for several applications. Herein, four biocompatible dicationic ionic liquids (DILs) with ammonium-phosphonium cations and amino acid anions were synthesized and investigated their environmental impact. The structures of the DILs were confirmed by spectral analyses (1H, 13C and 31P NMR). Furthermore, physicochemical properties such as density, viscosity and refractive index were determined. Water content, bromide content and solubility were thereafter determined as the parameters needed for further studies. Subsequently, their antifeedant activity towards economically important pests of grain in storage warehouses: the granary weevil, the confused flour beetle, and the khapra beetle was examined, showing the dependence on structure. Moreover, selected DILs were investigated for toxicity towards white mustard, Daphnia magna, and Artemia franciscana to specify the environmental impact. These studies were complemented by understand the biodegradation of DILs by bacterial communities derived from soil at the agricultural land. The result was DILs with limited environmental footprints that have great potential for further application studies.
Collapse
Affiliation(s)
- Damian Krystian Kaczmarek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| | - Tomasz Klejdysz
- Institute of Plant Protection - National Research Institute, Węgorka 20, Poznan 60-318, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Juliusz Pernak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| |
Collapse
|
2
|
Cardoso Gomes G, Ferdeghini C, Guglielmero L, D'Andrea F, Guazzelli L, Mezzetta A, Pomelli CS. A Combined Experimental/Computational Study of Dicationic Ionic Liquids with Bromide and Tungstate Anions. Molecules 2024; 29:2131. [PMID: 38731623 PMCID: PMC11326805 DOI: 10.3390/molecules29092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
A panel of dicationic ionic liquids (DILs) with different rigid xylyl (ortho, meta, para) spacers and different anions (bromide and tungstate) has been synthetised and characterised through different experimental and computational techniques. Differences and analogies between the systems are analysed using information derived from their DFT structures, semiempirical dynamics, thermal behaviour, and catalytic properties versus the well-known reaction of CO2 added to epichlorohydrin. A comparison between the proposed systems and some analogues that present non-rigid spacers shows the key effect displayed by structure rigidity on their characteristics. The results show an interesting correlation between structure, flexibility, properties, and catalytic activity.
Collapse
Affiliation(s)
| | - Claudio Ferdeghini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Luca Guglielmero
- Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Felicia D'Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | |
Collapse
|
3
|
Barra G, Guadagno L, Raimondo M, Santonicola MG, Toto E, Vecchio Ciprioti S. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications. Polymers (Basel) 2023; 15:3786. [PMID: 37765641 PMCID: PMC10535285 DOI: 10.3390/polym15183786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
This review article provides an exhaustive survey on experimental investigations regarding the thermal stability assessment of polymers and polymer-based composites intended for applications in the aeronautical and space fields. This review aims to: (1) come up with a systematic and critical overview of the state-of-the-art knowledge and research on the thermal stability of various polymers and composites, such as polyimides, epoxy composites, and carbon-filled composites; (2) identify the key factors, mechanisms, methods, and challenges that affect the thermal stability of polymers and composites, such as the temperature, radiation, oxygen, and degradation; (3) highlight the current and potential applications, benefits, limitations, and opportunities of polymers and composites with high thermal stability, such as thermal control, structural reinforcement, protection, and energy conversion; (4) give a glimpse of future research directions by providing indications for improving the thermal stability of polymers and composites, such as novel materials, hybrid composites, smart materials, and advanced processing methods. In this context, thermal analysis plays a crucial role in the development of polyimide-based materials for the radiation shielding of space solar cells or spacecraft components. The main strategies that have been explored to improve the processability, optical transparency, and radiation resistance of polyimide-based materials without compromising their thermal stability are highlighted. The combination of different types of polyimides, such as linear and hyperbranched, as well as the incorporation of bulky pendant groups, are reported as routes for improving the mechanical behavior and optical transparency while retaining the thermal stability and radiation shielding properties. Furthermore, the thermal stability of polymer/carbon nanocomposites is discussed with particular reference to the role of the filler in radiation monitoring systems and electromagnetic interference shielding in the space environment. Finally, the thermal stability of epoxy-based composites and how it is influenced by the type and content of epoxy resin, curing agent, degree of cross-linking, and the addition of fillers or modifiers are critically reviewed. Some studies have reported that incorporating mesoporous silica micro-filler or microencapsulated phase change materials (MPCM) into epoxy resin can enhance its thermal stability and mechanical properties. The mesoporous silica composite exhibited the highest glass transition temperature and activation energy for thermal degradation among all the epoxy-silica nano/micro-composites. Indeed, an average activation energy value of 148.86 kJ/mol was recorded for the thermal degradation of unfilled epoxy resin. The maximum activation energy range was instead recorded for composites loaded with mesoporous microsilica. The EMC-5p50 sample showed the highest mean value of 217.6 kJ/mol. This remarkable enhancement was ascribed to the polymer invading the silica pores and forging formidable interfacial bonds.
Collapse
Affiliation(s)
- Giuseppina Barra
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (G.B.); (L.G.)
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| |
Collapse
|
4
|
Abeysooriya S, Lee M, Hwan Kim S, O'Dell LA, Pringle JM. Development of New Plastic-Crystal Based Electrolytes using Pyrrolidinium- Bis(fluorosulfonyl)imide Dicationic Salts. CHEMSUSCHEM 2023; 16:e202202249. [PMID: 36932047 DOI: 10.1002/cssc.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Dicationic organic salts are an interesting class of solid-state electrolyte materials due to their unique structure. Here we present, for the first time, the synthesis and characterization of three dicationic-FSI salts, 1,2-bis(N-methylpyrrolidinium)ethane bi(bis(fluorosulfonyl)imide) ([C2 -Pyrr1][FSI]2 ), 1,2-bis(N-ethylpyrrolidinium)ethane bi(bis(fluorosulfonyl)imide) ([C2 -Pyrr2][FSI]2 ) and 1,2-bis(N-n-propylpyrrolidinium)ethane bi(bis(fluorosulfonyl)imide) ([C2 -Pyrr3][FSI]2 ). The structure and dynamics of the organic salts were probed using variable temperature solid-state NMR and were compared with the thermal and transport properties. The investigation revealed that [C2 -Pyrr1][FSI]2 , with shorter alkyl-side chains on the dication, displayed increased transport properties compared to [C2 -Pyrr2][FSI]2 and [C2 -Pyrr3][FSI]2 . To determine the proficiency of these dicationic-FSI salts as electrolyte materials for battery applications, 10 mol% and 50 mol% lithium bis(fluorosulfonyl)imide (LiFSI) was mixed with [C2 -Pyrr1][FSI]2 and [C2 -Pyrr2][FSI]2 . Increased transport properties were observed for [C2 -Pyrr1][FSI]2 /10 mol % LiFSI in comparison to [C2 -Pyrr2][FSI]2 /10 % LiFSI, while pulse field gradient NMR analysis revealed the highest Li+ self-diffusion ratio for [C2 -Pyrr1][FSI]2 /50 % LiFSI out of the four Li-salt-containing mixtures.
Collapse
Affiliation(s)
- Shanika Abeysooriya
- Institute for Frontier Materials (IFM), Deakin University, Burwood Hwy, VIC 3125, Australia
| | - Minjae Lee
- Department of Chemistry, Kunsan National University, Gunsan, 54150, South Korea
| | - Seung Hwan Kim
- Department of Chemistry, Kunsan National University, Gunsan, 54150, South Korea
| | - Luke A O'Dell
- Institute for Frontier Materials (IFM), Deakin University, Geelong, VIC 3220, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials (IFM), Deakin University, Burwood Hwy, VIC 3125, Australia
| |
Collapse
|
5
|
Ma J, Zhou S, Lai Y, Wang Z, Ni N, Dai F, Xu Y, Yang X. Ionic Liquids Facilitate the Dispersion of Branched Polyethylenimine Grafted ZIF-8 for Reinforced Epoxy Composites. Polymers (Basel) 2023; 15:polym15081837. [PMID: 37111984 PMCID: PMC10146677 DOI: 10.3390/polym15081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.
Collapse
Affiliation(s)
- Junchi Ma
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Shihao Zhou
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yuanchang Lai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Zhaodi Wang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Nannan Ni
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Feng Dai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yahong Xu
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xin Yang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
6
|
Marimuthu T, Sidat Z, Kumar P, Choonara YE. An Imidazolium-Based Ionic Liquid as a Model to Study Plasticization Effects on Cationic Polymethacrylate Films. Polymers (Basel) 2023; 15:polym15051239. [PMID: 36904480 PMCID: PMC10006978 DOI: 10.3390/polym15051239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Ionic liquids (ILs) have been touted as effective and environmentally friendly agents, which has driven their application in the biomedical field. The study compares the effectiveness of an IL agent, 1-hexyl-3-methyl imidazolium chloride ([HMIM]Cl), to current industry standards for plasticizing a methacrylate polymer. Industrial standards glycerol, dioctyl phthalate (DOP) and the combination of [HMIM]Cl with a standard plasticizer was also evaluated. Plasticized samples were evaluated for stress-strain, long-term degradation, thermophysical characterizations, and molecular vibrational changes within the structure, and molecular mechanics simulations were performed. Physico-mechanical studies showed that [HMIM]Cl was a comparatively good plasticizer than current standards reaching effectiveness at 20-30% w/w, whereas plasticizing of standards such as glycerol was still inferior to [HMIM]Cl even at concentrations up to 50% w/w. Degradation studies show HMIM-polymer combinations remained plasticized for longer than other test samples, >14 days, compared to glycerol <5 days, while remaining more pliable. The combination of [HMIM]Cl-DOP was effective at concentrations >30% w/w, demonstrating remarkable plasticizing capability and long-term stability. ILs used as singular agents or in tandem with other standards provided equivalent or better plasticizing activity than the comparative free standards.
Collapse
|
7
|
Langroudi JM, Mazloumi M, Nahzomi HT, Shirini F, Tajik H. Tropine-based dicationic molten salt: An active catalyst in the acceleration of one-pot synthesis of spiro-2-amino-4H-pyran-oxindoles and bis-2-amino-4H-pyrans. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Grassiri B, Mezzetta A, Maisetta G, Migone C, Fabiano A, Esin S, Guazzelli L, Zambito Y, Batoni G, Piras AM. Betaine- and L-Carnitine-Based Ionic Liquids as Solubilising and Stabilising Agents for the Formulation of Antimicrobial Eye Drops Containing Diacerein. Int J Mol Sci 2023; 24:ijms24032714. [PMID: 36769037 PMCID: PMC9916883 DOI: 10.3390/ijms24032714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The therapeutic efficacy of topically administered drugs, however powerful, is largely affected by their bioavailability and, thus, ultimately, on their aqueous solubility and stability. The aim of this study was to evaluate the use of ionic liquids (ILs) as functional excipients to solubilise, stabilise, and prolong the ocular residence time of diacerein (DIA) in eye drop formulations. DIA is a poorly soluble and unstable anthraquinone prodrug, rapidly hydrolysed to rhein (Rhe), for the treatment of osteoarthritis. DIA has recently been evaluated as an antimicrobial agent for bacterial keratitis. Two ILs based on natural zwitterionic compounds were investigated: L-carnitine C6 alkyl ester bromide (Carn6), and betaine C6 alkyl ester bromide (Bet6). The stabilising, solubilising, and mucoadhesive properties of ILs were investigated, as well as their cytotoxicity to the murine fibroblast BALB/3T3 clone A31 cell line. Two IL-DIA-based eye drop formulations were prepared, and their efficacy against both Staphylococcus aureus and Pseudomonas aeruginosa was determined. Finally, the eye drops were administered in vivo on New Zealand albino rabbits, testing their tolerability as well as their elimination and degradation kinetics. Both Bet6 and Carn6 have good potential as functional excipients, showing solubilising, stabilising, mucoadhesive, and antimicrobial properties; their in vitro cytotoxicity and in vivo ocular tolerability pave the way for their future use in ophthalmic applications.
Collapse
Affiliation(s)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Giuseppantionio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | | | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods “NUTRAFOOD”, University of Pisa, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
9
|
Zielinski D, Szpecht A, Hinc P, Smiglak M. Synthesis and Behavior of Hexamethylenetetramine-Based Ionic Liquids as an Active Ingredient in Latent Curing Formulations with Ethylene Glycol for DGEBA. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020892. [PMID: 36677950 PMCID: PMC9863291 DOI: 10.3390/molecules28020892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The paper presents the preparation of new ionic liquids based on hexamethylenetetramine with bis(trifluoromethanesulfonyl)imide and dicyanamide anion, which were characterized in detail in terms of their purity (Ion Chromatography) and thermal properties (Differential Scanning Calorimetry), as well as stability. The obtained substances were used to develop curing systems with ethylene glycol, which were successfully tested for their application with bisphenol A diglycidyl ether molecule. In addition, the curing process and its relationship to the structure of the ionic liquid are characterized in detail. The research showed that hexamethylenetetramine-based new ionic liquids can be successfully designed using well-known and simple synthetic methods-the Delepine reaction. Moreover, attention was paid to their stability, related limitations, and the application of hexamethylenetetramine-based ionic liquids in epoxy-curing systems.
Collapse
Affiliation(s)
- Dawid Zielinski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
- Correspondence:
| | - Andrea Szpecht
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| | - Paulina Hinc
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| |
Collapse
|
10
|
Pelosi C, Gonzalez-Rivera J, Bernazzani L, Rosaria Tiné M, Duce C. Optimized preparation, thermal characterization and microwave absorption properties of Deep Eutectic Solvents made by choline chloride and hydrated salts of alkali earth metals. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Ferdeghini C, Mezzetta A, D’Andrea F, Pomelli CS, Guazzelli L, Guglielmero L. The Structure-Property Relationship of Pyrrolidinium and Piperidinium-Based Bromide Organic Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8483. [PMID: 36499976 PMCID: PMC9737136 DOI: 10.3390/ma15238483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Two couples of dicationic ionic liquids, featuring pyrrolidinium and piperidinium cations and different linker chains, were prepared and characterized. 1,1'-(propane-1,3-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(octane-1,8-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(propane-1,3-diyl)bis(1-methylpiperidinium) bromide, and 1,1'-(octane-1,8-diyl)bis(1-methylpiperidinium) bromide were synthesized in quantitative yields and high purity and thermally characterized through TGA and DSC analysis. In this study, we propose a preliminary comparative evaluation of the effect of the linker chain length and of the size of the aliphatic ammonium ring on the thermal and solubility properties of bromide dicationic ionic liquids.
Collapse
Affiliation(s)
- Claudio Ferdeghini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
12
|
Dicationic ionic liquids based on bis(4-oligoethyleneoxyphenyl) viologen bistriflimide salts exhibiting high ionic conductivities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Chen Y, Han X, Liu Z, Li Y, Sun H, Wang H, Wang J. Thermal decomposition and volatility of ionic liquids: Factors, evaluation and strategies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Ramírez O, Leal M, Briones X, Urzúa M, Bonardd S, Saldías C, Leiva A. New Hybrid Nanocomposites with Catalytic Properties Obtained by In Situ Preparation of Gold Nanoparticles on Poly (Ionic Liquid)/Poly (4-Vinylpyridine) Nanofibers. Polymers (Basel) 2022; 14:polym14183782. [PMID: 36145926 PMCID: PMC9504522 DOI: 10.3390/polym14183782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the obtaining of new hybrid nanocomposites with catalytic activity formed by nanofibers of polymer blends and gold nanoparticles. The nanofibers were obtained by electrospinning blends of a poly (ionic liquid) (PIL) and its precursor polymer, poly (4-vinyl pyridine) (P4VPy). The characteristics of the nanofibers obtained proved to be dependent on the proportion of polymer in the blends. The nanofibers obtained were used to synthesize, in situ, gold nanoparticles on their surface by two-step procedure. Firstly, the adsorption of precursor ions on the nanofibers and then their reduction with sodium borohydride to generate gold nanoparticles. The results indicated a significant improvement in the performance of PIL-containing nanofibers over pure P4VPy NFs during ion adsorption, reaching a 20% increase in the amount of adsorbed ions and a 6-fold increase in the respective adsorption constant. The catalytic performance of the obtained hybrid systems in the reduction reaction of 4-nitrophenol to 4-aminophenol was studied. Higher catalytic conversions were obtained using the hybrid nanofibers containing PIL and gold nanoparticles achieving a maximum conversion rate of 98%. Remarkably, the highest value of kinetic constant was obtained for the nanofibers with the highest PIL content.
Collapse
Affiliation(s)
- Oscar Ramírez
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Matías Leal
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Ximena Briones
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206 Tenerife, Spain
- Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - Cesar Saldías
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Angel Leiva
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
15
|
Wang L, Lu J, Wang Y, Wang H, Wang J, Ren T. Preparation and Characterization of Novel Cyclohexene-to-Adipic Acid Catalyst with Ionic Liquid Phosphotungstate Immobilized on MIL-101 Nanocages Based on Cr-N Coordination. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Chen R, Yu X, Ye X, Li J, Hu B. Extractive–oxidative desulfurization of model fuels using imidazole-based dicationic ionic liquids as extractants. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00372k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Desulfurization efficiency of bis-imidazole-based ionic liquids with different alkyl chain lengths.
Collapse
Affiliation(s)
- Ruwei Chen
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xinyi Yu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xuran Ye
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jingwen Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bing Hu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
17
|
Understanding the physicochemical and transport properties of pyrazolium based ionic liquids bearing iodide and triiodide anions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Ikeda T. Facile Synthesis of Tetra-Branched Tetraimidazolium and Tetrapyrrolidinium Ionic Liquids. ACS OMEGA 2021; 6:19623-19628. [PMID: 34368549 PMCID: PMC8340402 DOI: 10.1021/acsomega.1c02187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 05/04/2023]
Abstract
A facile synthetic route for tetra-branched tetraimidazolium and tetrapyrrolidinium ionic liquids was developed. In contrast to the previous synthetic scheme, the new synthetic route requires only three reaction steps instead of seven. The total yield of tetracation was also improved from 17-21 to 39-41%. Using the new synthetic scheme, four kinds of tetracations were synthesized from the combination of two cationic units (imidazolium and pyrrolidinium) and two counteranions [bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI)]. Basic physical properties including glass transition temperature, thermal decomposition temperature, density, viscosity, and ionic conductivity were determined. The counterion exchange from TFSI to FSI resulted in lower glass transition temperature and higher ionic conductivity. Tetrapyrrolidinium exhibited higher viscosity and lower ionic conductivity than tetraimidazolium. The counterion exchange from TFSI to FSI resulted in lower viscosity in the case of tetraimidazolium, while the opposite result was obtained in the case of tetrapyrrolidinium. Tetracations composed of ethyl imidazolium units, diethylene glycol spacers, and FSI counterions exhibited the highest ionic conductivity of 3.5 × 10-4 S cm-1 at 25 °C under anhydrous conditions. This is the best ionic conductivity in the tetracations ever reported.
Collapse
|
19
|
Mezzetta A, Guglielmero L, Mero A, Tofani G, D’Andrea F, Pomelli CS, Guazzelli L. Expanding the Chemical Space of Benzimidazole Dicationic Ionic Liquids. Molecules 2021; 26:4211. [PMID: 34299487 PMCID: PMC8303995 DOI: 10.3390/molecules26144211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Benzimidazole dicationic ionic liquids (BDILs) have not yet been widely explored in spite of their potential. Therefore, two structurally related families of BDILs, paired with either bromide or bistriflimide anions and bearing alkyl spacers ranging from C3 to C6, have been prepared. Their thermal properties have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while their electrical properties have been assessed by cyclic voltammetry (CV). TG analysis confirmed the higher stability of the bistriflimide BDILs over the bromide BDILs, with minor variation within the two families. Conversely, DSC and CV allowed for ascertaining the role played by the spacer length. In particular, the thermal behavior changed dramatically among the members of the bistriflimide family, and all three possible thermal behavior types of ILs were observed. Furthermore, cyclic voltammetry showed different electrochemical window (C3(C1BenzIm)2/2Tf2N < C4(C1BenzIm)2/2Tf2N, C5(C1BenzIm)2/2Tf2N < C6(C1BenzIm)2/2Tf2N) as well as a reduction peak potential, shape, and intensity as a function of the spacer length. The results obtained highlight the benefit of accessing a more structurally diverse pool of compounds offered by dicationic ILs when compared to the parent monocationic ILs. In particular, gains are to be found in the ease of fine-tuning their properties, which translates in facilitating further investigations toward BDILs as designer solvents and catalysts.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- DESTEC, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Giorgio Tofani
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| |
Collapse
|