1
|
Gress C, Fuchs M, Carstensen-Aurèche S, Müller M, Hohlfeld JM. Prostaglandin D2 receptor 2 downstream signaling and modulation of type 2 innate lymphoid cells from patients with asthma. PLoS One 2024; 19:e0307750. [PMID: 39052598 PMCID: PMC11271944 DOI: 10.1371/journal.pone.0307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients. Cellular mechanisms of ILC2 activity in response to PGD2 and its metabolites are still unclear. We hypothesized that ILC2 respond non-uniformly to PGD2 metabolites. ILC2s were isolated from peripheral blood of patients with atopic asthma. ILC2s were stimulated with PGD2 and four PGD2 metabolites (Δ12-PGJ2, Δ12-PGD2, 15-deoxyΔ12,14-PGD2, 9α,11β-PGF2) with or without the selective DP2 antagonist fevipiprant. Total RNA was sequenced, and differentially expressed genes (DEG) were identified by DeSeq2. Differential gene expression analysis revealed an upregulation of pro-inflammatory DEGs in ILC2s stimulated with PGD2 (14 DEGs), Δ12-PGD2 (27 DEGs), 15-deoxyΔ12,14-PGD2 (56 DEGs) and Δ12-PGJ2 (136 DEGs), but not with 9α,11β-PGF2. Common upregulated DEGs were i.e. ARG2, SLC43A2, LAYN, IGFLR1, or EPHX2. Inhibition of DP2 via fevipiprant mainly resulted in downregulation of pro-inflammatory genes such as DUSP4, SPRED2, DUSP6, ETV1, ASB2, CD38, ADGRG1, DDIT4, TRPM2, or CD69. DEGs were related to migration and various immune response-relevant pathways such as "chemokine (C-C motif) ligand 4 production", "cell migration", "interleukin-13 production", "regulation of receptor signaling pathway via JAK-STAT", or "lymphocyte apoptotic process", underlining the pro-inflammatory effects of PGD2 metabolite-induced immune responses in ILC2s as well as the anti-inflammatory effects of DP2 inhibition via fevipiprant. Furthermore, PGD2 and metabolites showed distinct profiles in ILC2 activation. Overall, these results expand our understanding of DP2 initiated ILC2 activity.
Collapse
Affiliation(s)
- Christina Gress
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Saskia Carstensen-Aurèche
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Jens M. Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Li N, Oh JH, Suh JH, Jin SP, Lee DH, Lee Y, Chung JH. Impact of fucosyltransferase 1-mediated epidermal blood group antigen H on anti-inflammatory response in atopic dermatitis. Front Immunol 2024; 15:1365430. [PMID: 38840912 PMCID: PMC11151169 DOI: 10.3389/fimmu.2024.1365430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The presence of the blood group H2 antigen on the membrane of red blood cells determines blood type O in individuals and this H2 antigen serves as a precursor to the A and B antigens expressed in blood types A and B, respectively. However, the specific involvement of ABH antigens in skin diseases is unknown. Therefore, we aim to investigate the expression of ABH antigens in skin tissue of patients with atopic dermatitis (AD) and MC903-induced AD-like mice. We demonstrated that the expression of ABH antigen is primarily located in the granular and horny layers of the skin in healthy control individuals. However, in patients with AD, the expression of the ABH antigen was absent or diminished in these layers, while the H2 antigen expression increased in the spinous layers of the affected skin lesions. Then, we investigated the biological function of blood group H antigen mediated by fucosyltransferase 1 (Fut1) in the skin, utilizing an AD mouse model induced by MC903 in wild-type (WT) and Fut1-knockout mice. After the application of MC903, Fut1-deficient mice, with no H2 antigen expression on their skin, exhibited more severe clinical signs, increased ear swelling, and elevated serum IgE levels compared with those of WT mice. Additionally, the MC903-induced thickening of both the epidermis and dermis was more pronounced in Fut1-deficient mice than that in WT mice. Furthermore, Fut1-deficient mice showed a significantly higher production of interleukin-4 (IL-4) and IL-6 in skin lesions compared with that of their WT counterparts. The expression of chemokines, particularly Ccl2 and Ccl8, was notably higher in Fut1-deficient mice compared with those of WT mice. The infiltration of CD4+ T cells, eosinophils, and mast cells into the lesional skin was significantly elevated in Fut1-deficient mice compared with that in WT mice. These findings demonstrate the protective role of H2 antigen expression against AD-like inflammation and highlight its potential therapeutic impact on AD through the regulation of blood group antigens.
Collapse
Affiliation(s)
- Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Hanzawa S, Sugiura M, Nakae S, Masuo M, Morita H, Matsumoto K, Takeda K, Okumura K, Nakamura M, Ohno T, Miyazaki Y. The Prostaglandin D2 Receptor CRTH2 Contributes to Airway Hyperresponsiveness during Airway Inflammation Induced by Sensitization without an Adjuvant in Mice. Int Arch Allergy Immunol 2024; 185:752-760. [PMID: 38599205 DOI: 10.1159/000537840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.
Collapse
Affiliation(s)
- Satoshi Hanzawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Shuuwa General Hospital, Saitama, Japan
| | - Makiko Sugiura
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Masahiro Masuo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Bao H, Gong Z, Zhao J, Ren P, Yu Z, Su N, Gong L, Mao W, Liu B, Zhang S, Yang Y, Cao J. Prostaglandin D 2 is involved in the regulation of inflammatory response in Staphylococcus aureus-infected mice macrophages. Int Immunopharmacol 2024; 129:111526. [PMID: 38295545 DOI: 10.1016/j.intimp.2024.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most infamous and widespread bacterial pathogens, causing a hard-to-estimate number of uncomplicated skin infections and probably hundreds of thousands to millions of more severe, invasive infections globally per year. S. aureus may also be acquired from animals, especially in the livestock industry. The interaction mechanism of host and S. aureus has significance for finding ways to against S. aureus infection and control inflammatory response of host, while the molecular biological activities after S. aureus infection, particular in inflammatory and immune cells are not fully clear. The present study aimed to explore whether pattern recognition receptors (PRRs) mediate prostaglandin D2 (PGD2) synthesis and PGD2 participates in the regulation of inflammatory response in macrophages during S. aureus infection or synthetic bacterial lipopeptide (Pam2CSK4) stimulation. PGD2 secretion level was enhanced by mice peritoneal macrophages infected with the S. aureus. The results indicated that PGD2 secretion was impaired in S. aureus infected-macrophages from toll-like receptors 2 (TLR2)-deficient and NLR pyrin domain-containing 3 (NLRP3)-deficient mice. PGD2 synthetase (hematopoietic PGD synthase, HPGDS) inhibitors could reduce the activation of macrophage mitogen-activated protein kinase (MAPK)/nuclear factor-κ-gene binding (NF-κB) signaling pathways. HPGDS inhibition impaired cytokines (TNF-α, IL-1β, IL-10 and RANTES) secretion and macrophage phagocytosis during S. aureus infection. In addition, inhibition of endogenous PGD2 synthesis was unable to affect the TLR2 and NLRP3 expression in S. aureus-infected macrophages. Taken together, macrophage PGD2 secretion after S. aureus infection depended on receptors TLR2 and NLRP3, and the induced PGD2 participated in the regulation of inflammatory response in S. aureus-infected macrophages. Interestingly, it was found that exogenous PGD2 down-regulated the cytokines secretion and had no effect on phagocytosis in the S. aureus-infected macrophages.
Collapse
Affiliation(s)
- Haixia Bao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Key Lab of Germplasm Innovation and Utilization of Triticeae Crop, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Zhiguo Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Jiamin Zhao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Peipei Ren
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Zhuoya Yu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Niri Su
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Linlin Gong
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China
| | - Yinfeng Yang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China.
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China; Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 29, Erdosdong Road, Saihan District, 010011 Hohhot, China.
| |
Collapse
|
5
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
6
|
Guo T, Liu B, Zeng R, Lin R, Guo J, Yu G, Xu Y, Tan X, Xie K, Zhou Y. The vasoconstrictor activities of prostaglandin D 2 via the thromboxane prostanoid receptor and E prostanoid receptor-3 outweigh its concurrent vasodepressor effect mainly through D prostanoid receptor-1 ex vivo and in vivo. Eur J Pharmacol 2023; 956:175963. [PMID: 37543159 DOI: 10.1016/j.ejphar.2023.175963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Prostaglandin (PG) D2, a commonly considered vasodilator through D prostanoid receptor-1 (DP1), might also evoke vasoconstriction via acting on the thromboxane (Tx)-prostanoid receptor (the original receptor of TxA2; TP) and/or E prostanoid receptor-3 (one of the vasoconstrictor receptors of PGE2; EP3). This study aimed to test the above hypothesis in the mouse renal vascular bed (main renal arteries and perfused kidneys) and/or mesenteric resistance arteries and determine how the vasoconstrictor mechanism influences the overall PGD2 effect on systemic blood pressure under in vivo conditions. Experiments were performed on control wild-type (WT) mice and mice with deficiencies in TP (TP-/-) and/or EP3 (EP3-/-). Here we show that PGD2 indeed evoked vasoconstrictor responses in the above-mentioned tissues of WT mice, which were however not only reduced by TP-/- or EP3-/-, but also reversed by TP-/-/EP3-/- in some of the above tissues (mesenteric resistance arteries or perfused kidneys) to dilator reactions that were reduced by non-selective DP antagonism. A slight or mild pressor response was also observed with PGD2 under in vivo conditions, and this was again reversed to a depressor response in TP-/- or TP-/-/EP3-/- mice. Non-selective DP antagonism reduced the PGD2-evoked depressor response in TP-/-/EP3-/- mice as well. These results thus demonstrate that like other PGs, PGD2 activates TP and/or EP3 to evoke vasoconstrictor activities, which can outweigh its concurrent vasodepressor activity mediated mainly through DP1, and hence result in a pressor response, although the response might only be of a slight or mild extent.
Collapse
Affiliation(s)
- Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| | - Ruhui Zeng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Rui Lin
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhai Tan
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Kaiqi Xie
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Pybus HJ, O'Dea RD, Brook BS. A dynamical model of TGF-β activation in asthmatic airways. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:238-265. [PMID: 37285178 DOI: 10.1093/imammb/dqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Excessive activation of the regulatory cytokine transforming growth factor $\beta $ (TGF-$\beta $) via contraction of airway smooth muscle (ASM) is associated with the development of asthma. In this study, we develop an ordinary differential equation model that describes the change in density of the key airway wall constituents, ASM and extracellular matrix (ECM), and their interplay with subcellular signalling pathways leading to the activation of TGF-$\beta $. We identify bistable parameter regimes where there are two positive steady states, corresponding to either reduced or elevated TGF-$\beta $ concentration, with the latter leading additionally to increased ASM and ECM density. We associate the former with a healthy homeostatic state and the latter with a diseased (asthmatic) state. We demonstrate that external stimuli, inducing TGF-$\beta $ activation via ASM contraction (mimicking an asthmatic exacerbation), can perturb the system irreversibly from the healthy state to the diseased one. We show that the properties of the stimuli, such as their frequency or strength, and the clearance of surplus active TGF-$\beta $, are important in determining the long-term dynamics and the development of disease. Finally, we demonstrate the utility of this model in investigating temporal responses to bronchial thermoplasty, a therapeutic intervention in which ASM is ablated by applying thermal energy to the airway wall. The model predicts the parameter-dependent threshold damage required to obtain irreversible reduction in ASM content, suggesting that certain asthma phenotypes are more likely to benefit from this intervention.
Collapse
Affiliation(s)
- Hannah J Pybus
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Reuben D O'Dea
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
8
|
Soga H, Inoue T, Urade Y, Ueta T, Kawashima H, Kaburaki T, Aihara M. Attenuation of Laser-Induced Choroidal Neovascularization by Blockade of Prostaglandin D2 Receptor 2. Transl Vis Sci Technol 2023; 12:5. [PMID: 37133840 PMCID: PMC10166117 DOI: 10.1167/tvst.12.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Purpose The purpose of this study was to investigate the impact of prostaglandin D2 (PGD2) receptor 2 (DP2) on choroidal neovascularization (CNV) formation in mice. Methods Using a laser-induced CNV model, the CNV size of wild-type (WT) mice treated with DP2 antagonist (CAY10471 or OC000459) was compared with that of untreated mice. Vascular endothelial growth factor (VEGF) and MCP-1 levels were also compared between the two groups. Similar experiments were performed comparing DP2 knockout (DP2KO) mice with WT mice (8 and 56 weeks old). The number of infiltrating macrophages to laser spots was also compared between the WT and DP2KO mice. We administered a DP2 antagonist to 15-methyl PGD2 (a DP2 agonist)-stimulated ARPE-19 cells and measured VEGF secretion by enzyme-linked immunosorbent assay. Tube formation assay was performed on human umbilical vein endothelial cells with or without a DP2 antagonist. Results CNV sizes were significantly smaller in mice treated with CAY10471 or OC000459 than in those treated with vehicle. Similarly, the CNV size of DP2KO mice was significantly smaller than that of WT mice. The number of macrophages at laser spots in DP2KO mice was significantly lower than that in WT mice. The VEGF concentration of lasered DP2KO mice's eyes was significantly lower than that of lasered WT mice' eyes. DP2 antagonist treatment suppressed VEGF secretion in ARPE-19 cells under 15-methyl PGD2 stimulation. The tube formation assay suggested that lumen formation was inhibited by a DP2 antagonist. Conclusions DP2 blockade attenuated choroidal neovascularization. Translational Relevance Drugs targeting DP2 are potentially a novel treatment for age-related macular degeneration.
Collapse
Affiliation(s)
- Hirotsugu Soga
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Inoue
- Department of Ophthalmology and Micro-Technology, Yokohama City University School of Medicine, Minami-ku, Yokohama, Kanagawa, Japan
| | - Yoshihiro Urade
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Hirono Satellite Laboratories, Isotope Science Center, the University of Tokyo, Hirono-mati, Futaba-gun, Fukushima, Japan
| | - Takashi Ueta
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Kawashima
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Omiya-ku, Saitama, Japan
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Jing S, Liu W, Yang K, Lin Y, Yao X, Sun G. The randomized, single- and multiple- ascending dose studies of the safety, tolerability, pharmacokinetics of CSPCHA115 in healthy Chinese subjects. Clin Transl Sci 2023; 16:447-458. [PMID: 36495036 PMCID: PMC10014699 DOI: 10.1111/cts.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2022] Open
Abstract
CSPCHA115 is a highly selective and potent antagonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2). This study aimed to evaluate the pharmacokinetics (PKs), safety, and tolerability of single and multiple ascending doses of CSPCHA115 in Chinese healthy subjects. Two phase I studies both adopted a randomized, double-blind, placebo-controlled, single-center, and ascending-dose design. In the single ascending dose (SAD) study, subjects were randomly allocated to receive a single dose of CSPCHA115 (25-1000 mg) or a placebo. In the multiple ascending dose (MAD) study, 100, 200, 400, or 600 mg of CSPCHA115 or placebo were given to subjects once daily for 7 days. PK parameters were estimated by noncompartmental analysis. Safety was assessed by monitoring treatment-emergent adverse events (TEAEs), clinical laboratory tests, electrocardiograms, vital signs, and physical examinations throughout the study period. Forty-eight healthy subjects were enrolled in the SAD study, and 40 healthy subjects were in the MAD study. Following single and multiple administrations, CSPCHA115 was rapidly absorbed with a median time to maximum concentration of ~0.5-3.5 h; and the systemic exposure of CSPCHA115 generally increased dose-proportionally within the dose range studied. Steady-state was approximately achieved by day 5, and <1.5-fold accumulation was observed following multiple doses. Mean terminal half-life was ~8.16-16.43 h after a single dose. CSPCHA115 was well-tolerated in both studies, with a low overall incidence of TEAEs. The most common TEAE related to CSPCHA115 was hypertriglyceridemia. No significant safety concerns were identified in healthy subjects.
Collapse
Affiliation(s)
- Shan Jing
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenfang Liu
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kexu Yang
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Lin
- Clinical Pharmacology Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xuekun Yao
- Clinical Science Division, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| | - Guilan Sun
- Clinical Science Division, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China
| |
Collapse
|
10
|
Modulations of urinary lipid mediators in acute bladder cystitis. Prostaglandins Other Lipid Mediat 2023; 164:106690. [PMID: 36332874 DOI: 10.1016/j.prostaglandins.2022.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Bioactive lipids, such as lysophospholipids, ceramides, and eicosanoids and related mediators, have been demonstrated to be involved in inflammation. We aimed to investigate the possible orchestral modulations of these bioactive lipids in human inflammation. We simultaneously measured the urinary levels of lysophospholipids, ceramides, and eicosanoids and related mediators by a liquid chromatography-mass spectrometry method in patients with cystitis and control subjects. The urinary levels of lysophosphatidylcholine, lysophosphatidylethanolamine, sphingosine 1-phosphate, ceramides, prostaglandin (PG)E2 and its metabolites represented by tetranor-PGEM, several oxylipins, DHA, and lysoPAF were higher in patients with cystitis. Urinary levels of some species of glycerolysophospholipids were highly positively correlated with those of other species of the same glycerolysophospholipids. Cluster analyses revealed that lysophosphatidylcholine was close to a PGE2 metabolite, lysophosphatidylethanolamine was close to DHA, and sphingosine 1-phosphate and ceramides were close to lysoPAF. The orchestral dynamism of the lipid mediators was observed in the urine of cystitis, suggesting the necessity for simultaneous investigation of lipid mediators for translational research.
Collapse
|
11
|
Anti-inflammatory effects of the prostaglandin D2/prostaglandin DP1 receptor and lipocalin-type prostaglandin D2 synthase/prostaglandin D2 pathways in bacteria-induced bovine endometrial tissue. Vet Res 2022; 53:98. [DOI: 10.1186/s13567-022-01100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractDairy cows often develop different degrees of endometritis after calving and this is attributed to pathogenic bacterial infections such as by Escherichia coli and Staphylococcus aureus. Infection of the bovine endometrium causes tissue damage and increases the expression of prostaglandin D2 (PGD2), which exerts anti-inflammatory effects on lung inflammation. However, the roles of PGD2 and its DP1 receptor in endometritis in cows remain unclear. Here, we examined the anti-inflammatory roles of the lipocalin-type prostaglandin D2 synthase (L-PGDS)/PGD2 and DP1 receptor regulatory pathways in bovine endometritis. We evaluated the regulatory effects of PGD2 on inflammation and tissue damage in E. coli- and S. aureus-infected bovine endometrial cells cultured in vitro. We found that the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumour necrosis factor (TNF)-α as well as expression of matrix metalloproteinase (MMP)-2, platelet-activating factor receptor (PAFR), and high mobility group box (HMGB)-1 were suppressed after DP1 receptor agonist treatment. In contrast, IL-6, IL-1β, and TNF-α release and MMP-2, PAFR, and HMGB-1 expression levels were increased after treatment of bovine endometrial tissue with DP1 receptor antagonists. DP1-induced anti-inflammatory effects were dependent on cellular signal transduction. The L-PGDS/PGD2 pathway and DP1 receptor induced anti-inflammatory effects in bovine endometrium infected with S. aureus and E. coli by inhibiting the mitogen-activated protein kinase and nuclear factor-κB signalling pathways, thereby reducing tissue damage. Overall, our findings provide important insights into the pathophysiological roles of PGD2 in bovine endometritis and establish a theoretical basis for applying prostaglandins or non-steroidal anti-inflammatory drugs for treating endometrial inflammatory infertility in bovines.
Collapse
|
12
|
Huang Z, Chu M, Chen X, Wang Z, Jiang L, Ma Y, Wang Y. Th2A cells: The pathogenic players in allergic diseases. Front Immunol 2022; 13:916778. [PMID: 36003397 PMCID: PMC9393262 DOI: 10.3389/fimmu.2022.916778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells confined to atopic individuals, and they include all the allergen-specific Th2 cells. Recently, many studies have shown that Th2A cells characterized by CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review, we summarize the discovery, biomarkers, and biological properties of Th2A cells to gain new insights into the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Clinical Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lin Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yinchao Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
13
|
Kong D, Yu Y. Prostaglandin D2 signaling and cardiovascular homeostasis. J Mol Cell Cardiol 2022; 167:97-105. [DOI: 10.1016/j.yjmcc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
14
|
Ruck RT, Pan J, Vaswani RG, Kosjek B, Strotman NA, Cai C, Humphrey GR. Harnessing the Power of Catalysis for the Synthesis of CRTH2 Antagonist MK-1029. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca T. Ruck
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Jun Pan
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Rishi G. Vaswani
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Birgit Kosjek
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Neil A. Strotman
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Chaoxian Cai
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| | - Guy R. Humphrey
- Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065 United States
| |
Collapse
|
15
|
Hu X, Zhang YA, Chen B, Jin Z, Lin ML, Li M, Mei HX, Lu JC, Gong YQ, Jin SW, Zheng SX. Protectin DX promotes the inflammatory resolution via activating COX-2/L-PGDS-PGD 2 and DP 1 receptor in acute respiratory distress syndrome. Int Immunopharmacol 2022; 102:108348. [PMID: 34920958 PMCID: PMC8578004 DOI: 10.1016/j.intimp.2021.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is characterized by uncontrollable inflammation. Cyclooxygenase-2(COX-2) and its metabolite prostaglandins are known to promote the inflammatory resolution of ARDS. Recently, a newly discovered endogenous lipid mediator, Protectin DX (PDX), was also shown to mediate the resolution of inflammation. However, the regulatory of PDX on the pro-resolving COX-2 in ARDS remains unknown. MATERIAL AND METHODS PDX (5 μg/kg) was injected into rats intravenously 12 h after the lipopolysaccharide (LPS, 3 mg/kg) challenge. Primary rat lung fibroblasts were incubated with LPS (1 μg/ml) and/or PDX (100 nM). Lung pathological changes examined using H&E staining. Protein levels of COX-2, PGDS and PGES were evaluated using western blot. Inflammatory cytokines were tested by qPCR, and the concentration of prostaglandins measured by using ELISA. RESULTS Our study revealed that, COX-2 and L-PGDS has biphasic activation characteristics that LPS could induce induced by LPS both in vivo and in vitro.. The secondary peak of COX-2, L-PGDS-PGD2 promoted the inflammatory resolution in ARDS model with the DP1 receptor being activated and PDX up-regulated the inflammatory resolutionvia enhancing the secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. CONCLUSION PDX promoted the resolution of inflammation of ARDS model via enhancing the expression of secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. PDX shows promising therapeutic potential in the clinical management of ARDS.
Collapse
Affiliation(s)
- Xin Hu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ye-An Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ben Chen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Zi Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Mei-Lin Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hong-Xia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jia-Chao Lu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yu-Qiang Gong
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| |
Collapse
|
16
|
Seen SB, Gong Y, Ashton M. The application of the Fischer indole synthesis in medicinal chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
18
|
Carstensen S, Gress C, Erpenbeck VJ, Kazani SD, Hohlfeld JM, Sandham DA, Müller M. Prostaglandin D 2 metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via the DP 2 receptor. Respir Res 2021; 22:262. [PMID: 34620168 PMCID: PMC8499518 DOI: 10.1186/s12931-021-01852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prostaglandin D2 (PGD2) signaling via prostaglandin D2 receptor 2 (DP2) contributes to atopic and non-atopic asthma. Inhibiting DP2 has shown therapeutic benefit in certain subsets of asthma patients, improving eosinophilic airway inflammation. PGD2 metabolites prolong the inflammatory response in asthmatic patients via DP2 signaling. The role of PGD2 metabolites on eosinophil and ILC2 activity is not fully understood. METHODS Eosinophils and ILC2s were isolated from peripheral blood of atopic asthmatic patients. Eosinophil shape change, ILC2 migration and IL-5/IL-13 cytokine secretion were measured after stimulation with seven PGD2 metabolites in presence or absence of the selective DP2 antagonist fevipiprant. RESULTS Selected metabolites induced eosinophil shape change with similar nanomolar potencies except for 9α,11β-PGF2. Maximal values in forward scatter of eosinophils were comparable between metabolites. ILC2s migrated dose-dependently in the presence of selected metabolites except for 9α,11β-PGF2 with EC50 values ranging from 17.4 to 91.7 nM. Compared to PGD2, the absolute cell migration was enhanced in the presence of Δ12-PGD2, 15-deoxy-Δ12,14-PGD2, PGJ2, Δ12-PGJ2 and 15-deoxy-Δ12,14-PGJ2. ILC2 cytokine production was dose dependent as well but with an average sixfold reduced potency compared to cell migration (IL-5 range 108.1 to 526.9 nM, IL-13 range: 125.2 to 788.3 nM). Compared to PGD2, the absolute cytokine secretion was reduced in the presence of most metabolites. Fevipiprant dose-dependently inhibited eosinophil shape change, ILC2 migration and ILC2 cytokine secretion with (sub)-nanomolar potencies. CONCLUSION Prostaglandin D2 metabolites initiate ILC2 migration and IL-5 and IL-13 cytokine secretion in a DP2 dependent manner. Our data indicate that metabolites may be important for in vivo eosinophil activation and ILC2 migration and to a lesser extent for ILC2 cytokine secretion.
Collapse
Affiliation(s)
- Saskia Carstensen
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Christina Gress
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | - Jens M Hohlfeld
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - David A Sandham
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Meike Müller
- Department of Biomarker Analysis and Development, Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
19
|
Nagata N, Hamasaki Y, Inagaki S, Nakamura T, Horikami D, Yamamoto-Hanada K, Inuzuka Y, Shimosawa T, Kobayashi K, Narita M, Ohya Y, Murata T. Urinary lipid profile of atopic dermatitis in murine model and human patients. FASEB J 2021; 35:e21949. [PMID: 34591339 DOI: 10.1096/fj.202100828r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease in children. The serum level of thymus and activation-regulated chemokine (TARC) is a useful AD index to reflect disease severity; however, it requires blood collection from young children. In comparison, urine samples are easier to collect in a pediatric clinical setting. Here, we analyzed the lipids excreted in urine to identify a diagnostic biomarker for AD. We generated a murine dermatitis model by repeated topical application of 2,4-dinitrofluorobenzene (DNFB) or tape-stripping the dorsal skin. Lipid metabolites excreted in the urine were comprehensively analyzed using liquid chromatography-tandem mass spectrometry. To corroborate our findings, we also analyzed urine samples from patients with AD. DNFB application induced AD-like skin lesions, including epidermal thickening, infiltration of eosinophils and T cells, and an increase in Th2 cytokine levels. Assessment of lipids excreted in urine showed a dominance of prostaglandins (PGs), namely, a PGF2α metabolite (13,14-dihydro-15-keto-tetranor-PGF1α ), a PGE2 metabolite (13,14-dihydro-15-keto-tetranor-PGE2 ), and a PGD2 metabolite (13,14-dihydro-15-keto PGJ2 ). mRNA and protein expression of PGF2α , PGE2 , and PGD2 synthase was upregulated in DNFB-treated skin. The tape-stripping model also caused dermatitis but without Th2 inflammation; urine PGF2α and PGD2 metabolite levels remained unaffected. Finally, we confirmed that the urinary levels of the aforementioned PG metabolites, as well as PGI2 metabolite, 6,15-diketo-13,14-dihydro-PGF1α and arachidonic acid metabolite, 17-hydroxyeicosatetraenoic acid (17-HETE) increased in patients with AD. Our data highlights the unique urinary lipid profile in patients with AD, which may provide insight into novel urinary biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Nanae Nagata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Hamasaki
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Inagaki
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Horikami
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yusuke Inuzuka
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Koji Kobayashi
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masami Narita
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Yang D, Guo X, Liu T, Li Y, Du Z, Liu C. Efficacy and Safety of Prostaglandin D2 Receptor 2 Antagonism with Fevipiprant for Patients with Asthma: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Allergy Asthma Rep 2021; 21:39. [PMID: 34387775 DOI: 10.1007/s11882-021-01017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Accumulating evidence has shown that prostaglandin D2 (PGD2)-chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) pathway plays an important role in promoting eosinophilic airway inflammation in asthma. We aimed to assess the efficacy and safety of CRTH2 antagonist fevipiprant in patients with persistent asthma compared with placebo. RECENT FINDINGS We identified eligible studies by searching PubMed, EMBASE, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov. The study was registered as CRD 42020221714 ( http://www.crd.york.ac.uk/PROSPERO ). Ten randomized controlled trials with 7902 patients met our inclusion criteria. A statistically significant benefit of fevipiprant compared with placebo was shown in improving forced expiratory volume in 1 s (MD 0.05 L, 95% CI: 0.02 to 0.07; p < 0.0001), Asthma Control Questionnaire score (MD -0.10, 95% CI: -0.16 to -0.04; p = 0.001), and Asthma Quality of Life Questionnaire score (MD 0.08, 95% CI: 0.03 to 0.13; p = 0.003). Fevipiprant decreased number of patients with at least one asthma exacerbation requiring administration of systemic corticosteroids for 3 days or more (RR 0.86, 95% CI: 0.77 to 0.97; p = 0.01). Some benefits were a little more pronounced in the high eosinophil population (with an elevated blood eosinophil count or sputum eosinophil percentage) and in the 450 mg dose group. Fevipiprant was well tolerated with no safety issues compared with placebo. Fevipiprant could safely improve asthma outcomes compared to placebo. However, most of the differences didn't reach the minimal clinically important difference (MCID), thus the clinical benefits remained to be confirmed.
Collapse
Affiliation(s)
- Dan Yang
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Xinning Guo
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Ting Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Yina Li
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Zhuman Du
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, School of Medicine and West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, West China, China.
| |
Collapse
|
21
|
Molecular basis for lipid recognition by the prostaglandin D 2 receptor CRTH2. Proc Natl Acad Sci U S A 2021; 118:2102813118. [PMID: 34341104 DOI: 10.1073/pnas.2102813118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandin D2 (PGD2) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD2 derivative, 15R-methyl-PGD2 (15mPGD2), by serial femtosecond crystallography. The structure revealed a "polar group in"-binding mode of 15mPGD2 contrasting the "polar group out"-binding mode of PGE2 in its receptor EP3. Structural comparison analysis suggested that these two lipid-binding modes, associated with distinct charge distributions of ligand-binding pockets, may apply to other lipid GPCRs. Molecular dynamics simulations together with mutagenesis studies also identified charged residues at the ligand entry port that function to capture lipid ligands of CRTH2 from the lipid bilayer. Together, our studies suggest critical roles of charge environment in lipid recognition by GPCRs.
Collapse
|
22
|
Kida M, Nakamura T, Fujiwara Y, Nakamura M, Murata T. PGD 2 /CRTH2 signaling promotes acquired immunity against bee venom by enhancing IgE production. FASEB J 2021; 35:e21616. [PMID: 33978990 DOI: 10.1096/fj.202002748rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/11/2022]
Abstract
IgE-dependent/independent activation of mast cell (MC) has been assumed to play a host defensive role against venom injection in skin. However, its detailed mechanisms remain unknown. We aimed to investigate the contribution of MC-derived prostaglandin D2 (PGD2 )-mediated signaling in host defense against bee venom (BV). To achieve this, we utilized gene-deficient mice of a PGD2 receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). We first confirmed that subcutaneous injection of BV produced PGD2 equally in wild-type (WT) and CRTH2-deficient (Crth2-/- ) mice skins. The BV injection dropped body temperature and impaired kidney equally in both lines of mice. In WT mice, pre-injection of BV (3 weeks) significantly inhibited the hypothermia and kidney impairment caused by second BV injection. In contrast, this pre-injection was not effective for the second BV injection in Crth2-/- mice. We also found that BV injections increased serum BV-specific IgE levels in WT mice, and its serum transfused mice improved the BV-induced hypothermia in naïve WT mice. In contrast, serum BV-specific IgE level was significantly lower in Crth2-/- mice. FACS analysis showed the BV injection stimulate migration of dendritic cells (DCs) into regional lymph nodes in WT mice. In Crth2-/- mice, its number was significantly smaller than that of WT mice. In conclusion, PGD2 /CRTH2 signaling plays defensive role against second BV injection. This signaling promotes BV-specific IgE production at least partially by promoting DCs migration into regional lymph node.
Collapse
Affiliation(s)
- Misato Kida
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuro Nakamura
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Fujiwara
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahisa Murata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
The pharmacology of the prostaglandin D 2 receptor 2 (DP 2) receptor antagonist, fevipiprant. Pulm Pharmacol Ther 2021; 68:102030. [PMID: 33826946 DOI: 10.1016/j.pupt.2021.102030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022]
Abstract
Fevipiprant is an oral, non-steroidal, highly selective, reversible antagonist of the prostaglandin D2 (DP2) receptor. The DP2 receptor is a mediator of inflammation expressed on the membrane of key inflammatory cells, including eosinophils, Th2 cells, type 2 innate lymphoid cells, CD8+ cytotoxic T cells, basophils and monocytes, as well as airway smooth muscle and epithelial cells. The DP2 receptor pathway regulates the allergic and non-allergic asthma inflammatory cascade and is activated by the binding of prostaglandin D2. Fevipiprant is metabolised by several uridine 5'-diphospho glucuronosyltransferase enzymes to an inactive acyl-glucuronide (AG) metabolite, the only major human metabolite. Both fevipiprant and its AG metabolite are eliminated by urinary excretion; fevipiprant is also possibly cleared by biliary excretion. These parallel elimination pathways suggested a low risk of major drug-drug interactions (DDI), pharmacogenetic or ethnic variability for fevipiprant, which was supported by DDI and clinical studies of fevipiprant. Phase II clinical trials of fevipiprant showed reduction in sputum eosinophilia, as well as improvement in lung function, symptoms and quality of life in patients with asthma. While fevipiprant reached the most advanced state of development to date of an oral DP2 receptor antagonist in a worldwide Phase III clinical trial programme, the demonstrated efficacy did not support further clinical development in asthma.
Collapse
|
24
|
Ebihara T, Tatematsu M, Fuchimukai A, Yamada T, Yamagata K, Takasuga S, Yamada T. Trained innate lymphoid cells in allergic diseases. Allergol Int 2021; 70:174-180. [PMID: 33328130 DOI: 10.1016/j.alit.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in peripheral tissues such as the lungs, skin, nasal cavity, and gut and provoke innate type 2 immunity against allergen exposure, parasitic worm infection, and respiratory virus infection by producing TH2 cytokines. Recent advances in understanding ILC2 biology revealed that ILC2s can be trained by IL-33 or allergic inflammation, are long-lived, and mount memory-like type 2 immune responses to any other allergens afterwards. In contrast, IL-33, together with retinoic acid, induces IL-10-producing immunosuppressive ILC2s. In this review, we discuss how the allergic cytokine milieu and other immune cells direct the generation of trained ILC2s with immunostimulatory or immunosuppressive recall capability in allergic diseases and infections associated with type 2 immunity. The molecular mechanisms of trained immunity by ILCs and the physiological relevance of trained ILC2s are also discussed.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan.
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenki Yamagata
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head & Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
25
|
Razali N, Hohjoh H, Inazumi T, Maharjan BD, Nakagawa K, Konishi M, Sugimoto Y, Hasegawa H. Induced Prostanoid Synthesis Regulates the Balance between Th1- and Th2-Producing Inflammatory Cytokines in the Thymus of Diet-Restricted Mice. Biol Pharm Bull 2020; 43:649-662. [PMID: 32238706 DOI: 10.1248/bpb.b19-00838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple external and internal factors have been reported to induce thymic involution. Involution involves dramatic reduction in size and function of the thymus, leading to various immunodeficiency-related disorders. Therefore, clarifying and manipulating molecular mechanisms governing thymic involution are clinically important, although only a few studies have dealt with this issue. In the present study, we investigated the molecular mechanisms underlying thymic involution using a murine acute diet-restriction model. Gene expression analyses indicated that the expression of T helper 1 (Th1)-producing cytokines, namely interferon-γ and interleukin (IL)-2, was down-regulated, while that of Th2-producing IL-5, IL-6, IL-10 and IL-13 was up-regulated, suggesting that acute diet-restriction regulates the polarization of naïve T cells to a Th2-like phenotype during thymic involution. mRNAs for prostanoid biosynthetic enzymes were up-regulated by acute diet-restriction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses detected the increased production of prostanoids, particularly prostaglandin D2 and thromboxane B2, a metabolite of thromboxane A2, in the diet-restricted thymus. Administration of non-steroidal anti-inflammatory drugs, namely aspirin and etodolac, to inhibit prostanoid synthesis suppressed the biased expression of Th1- and Th2-cytokines as well as molecular markers of Th1 and Th2 cells in the diet-restricted thymus, without affecting the reduction of thymus size. In vitro stimulation of thymocytes with phorbol myristate acetate (PMA)/ionomycin confirmed the polarization of thymocytes from diet-restricted mice toward Th2 cells. These results indicated that the induced production of prostanoids during diet-restriction-induced thymic involution is involved in the polarization of naïve T cells in the thymus.
Collapse
Affiliation(s)
| | - Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| | | | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | |
Collapse
|
26
|
Jia D, Bai P, Wan N, Liu J, Zhu Q, He Y, Chen G, Wang J, Chen H, Wang C, Lyu A, Lazarus M, Su Y, Urade Y, Yu Y, Zhang J, Shen Y. Niacin Attenuates Pulmonary Hypertension Through H-PGDS in Macrophages. Circ Res 2020; 127:1323-1336. [PMID: 32912104 DOI: 10.1161/circresaha.120.316784] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary vascular remodeling, accompanied by varying degrees of perivascular inflammation. Niacin, a commonly used lipid-lowering drug, possesses vasodilating and proresolution effects by promoting the release of prostaglandin D2 (PGD2). However, whether or not niacin confers protection against PAH pathogenesis is still unknown. OBJECTIVE This study aimed to determine whether or not niacin attenuates the development of PAH and, if so, to elucidate the molecular mechanisms underlying its effects. METHODS AND RESULTS Vascular endothelial growth factor receptor inhibitor SU5416 and hypoxic exposure were used to induce pulmonary hypertension (PH) in rodents. We found that niacin attenuated the development of this hypoxia/SU5416-induced PH in mice and suppressed progression of monocrotaline-induced and hypoxia/SU5416-induced PH in rats through the reduction of pulmonary artery remodeling. Niacin boosted PGD2 generation in lung tissue, mainly through H-PGDS (hematopoietic PGD2 synthases). Deletion of H-PGDS, but not lipocalin-type PGDS, exacerbated the hypoxia/SU5416-induced PH in mice and abolished the protective effects of niacin against PAH. Moreover, H-PGDS was expressed dominantly in infiltrated macrophages in lungs of PH mice and patients with idiopathic PAH. Macrophage-specific deletion of H-PGDS markedly decreased PGD2 generation in lungs, aggravated hypoxia/SU5416-induced PH in mice, and attenuated the therapeutic effect of niacin on PAH. CONCLUSIONS Niacin treatment ameliorates the progression of PAH through the suppression of vascular remodeling by stimulating H-PGDS-derived PGD2 release from macrophages.
Collapse
Affiliation(s)
- Daile Jia
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen).,Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., P.B.).,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.)
| | - Peiyuan Bai
- Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China (D.J., P.B.).,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.)
| | - Naifu Wan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.).,Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (N.W., Q.Z., A.L.)
| | - Jiao Liu
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen).,Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., Y.Y.)
| | - Qian Zhu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.).,Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (N.W., Q.Z., A.L.)
| | - Yuhu He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.)
| | - Guilin Chen
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen)
| | - Jing Wang
- Cardiology, Cardiovascular Institute and Fuwai Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China (J.W.)
| | - Han Chen
- Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China (H.C., C.W.)
| | - Chen Wang
- Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China (H.C., C.W.)
| | - Ankang Lyu
- Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China (N.W., Q.Z., A.L.)
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Japan (M.L.)
| | - Yunchao Su
- Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Georgia, United States of America (Y. Su)
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan (Y.U.)
| | - Ying Yu
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen).,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (D.J., P.B., N.W., Q.Z., Y.H., Y.Y.).,Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (J.L., Y.Y.)
| | - Jian Zhang
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen)
| | - Yujun Shen
- Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.J., J.L., G.C., Y.Y., J.Z., Y. Shen)
| |
Collapse
|
27
|
Tanaka N, Kawai J, Hirasawa N, Mano N, Yamaguchi H. ATP-Binding Cassette Transporter C4 is a Prostaglandin D2 Exporter in HMC-1 cells. Prostaglandins Leukot Essent Fatty Acids 2020; 159:102139. [PMID: 32544819 DOI: 10.1016/j.plefa.2020.102139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
ATP-binding cassette transporter C4 (ABCC4) is associated with multidrug resistance and the regulation of cell signalling. Some prostaglandins (PGs), including: PGE2, PGF2α, PGE3, and PGF3α are known substrates of ABCC4, and are released from some types of cells to exert their biological effects. In the present study, we demonstrate that PGD2 is a novel substrate of ABCC4 using a transport assay based on inside-out membrane vesicles prepared from ABCC4-overexpressing cells. Then, we used two types of cell lines with confirmed ABCC4 mRNA and PGD2 release capacity (human mast cell lines HMC-1 cells and human rhabdomyosarcoma cell lines TE671 cells) to evaluate the contribution of ABCC4. The extracellular levels of PGD2 were unchanged following addition of a selective ABCC4 inhibitor in TE671 cells. Pharmacological inhibition and knockdown of ABCC4 significantly reduced the extracellular levels of PGD2 by at least 53% in HMC-1 cells. Moreover, the extracellular levels of PGD2 decreased by at least 20% using the selective ABCC4 inhibitor in the other mast cell line RBL-2H3 cells. Therefore, our results suggest that ABCC4 functions as a PGD2 exporter in HMC-1 cells.
Collapse
Affiliation(s)
- Nobuaki Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, 800-8, Shimokomazawa, Nagano, 381-0008, Japan; Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan; Department of Pharmacy, Yamagata University Hospital, Yamagata, 990-9585, Japan.
| |
Collapse
|
28
|
Töröcsik D, Weise C, Gericke J, Szegedi A, Lucas R, Mihaly J, Worm M, Rühl R. Transcriptomic and lipidomic profiling of eicosanoid/docosanoid signalling in affected and non-affected skin of human atopic dermatitis patients. Exp Dermatol 2020; 28:177-189. [PMID: 30575130 DOI: 10.1111/exd.13867] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Lipoxygenases (LOX) and cyclooxygenase (COX) are the main enzymes for PUFA metabolism to highly bio-active prostaglandins, leukotrienes, thromboxanes, lipoxins, resolvins and protectins. LOX and COX pathways are important for the regulation of pro-inflammatory or pro-resolving metabolite synthesis and metabolism for various inflammatory diseases such as atopic dermatitis (AD). In this study, we determined PUFAs and PUFA metabolites in serum as well as affected and non-affected skin samples from AD patients and the dermal expression of various enzymes, binding proteins and receptors involved in these LOX and COX pathways. Decreased EPA and DHA levels in serum and reduced EPA level in affected and non-affected skin were found; in addition, n3/n6-PUFA ratios were lower in affected and non-affected skin and serum. Mono-hydroxylated PUFA metabolites of AA, EPA, DHA and the sum of AA, EPA and DHA metabolites were increased in affected and non-affected skin. COX1 and ALOX12B expression, COX and 12/15-LOX metabolites as well as various lipids, which are known to induce itch (12-HETE, LTB4, TXB2, PGE2 and PGF2) and the ratio of pro-inflammatory vs pro-resolving lipid mediators in non-affected and affected skin as well as in the serum of AD patients were increased, while n3/n6-PUFAs and metabolite ratios were lower in non-affected and affected AD skin. Expression of COX1 and COX-metabolites was even higher in non-affected AD skin. To conclude, 12/15-LOX and COX pathways were mainly upregulated, while n3/n6-PUFA and metabolite ratios were lower in AD patients skin. All these parameters are a hallmark of a pro-inflammatory and non-resolving environment in affected and partly in non-affected skin of AD patients.
Collapse
Affiliation(s)
- Daniel Töröcsik
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Christin Weise
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Janine Gericke
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Renata Lucas
- Faculty of Medicine, Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Johanna Mihaly
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Margitta Worm
- Department of Dermatology and Allergology, Allergy-Center-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
29
|
Mesenchymal PGD 2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs. Leukemia 2020; 34:3028-3041. [PMID: 32366935 PMCID: PMC7606225 DOI: 10.1038/s41375-020-0843-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Cyclooxygenase (COX)-dependent production of prostaglandins (PGs) is known to play important roles in tumorigenesis. PGD2 has recently emerged as a key regulator of tumor- and inflammation-associated functions. Here we show that mesenchymal stromal cells (MSCs) from patients with acute myeloid leukemia (AML) or normal MSCs overexpressing COX2 promote proliferation of co-cultured hematopoietic stem and progenitor cells (HSPCs), which can be prevented by treatment with COX2 knockdown or TM30089, a specific antagonist of the PGD2 receptor CRTH2. Mechanistically, we demonstrate that PGD2-CRTH2 signaling acts directly on type 2 innate lymphoid cells (ILC2s), potentiating their expansion and driving them to produce Interleukin-5 (IL-5) and IL-13. Furthermore, IL-5 but not IL-13 expands CD4+CD25+IL5Rα+ T regulatory cells (Tregs) and promotes HSPC proliferation. Disruption of the PGD2-activated ILC2-Treg axis by specifically blocking the PGD2 receptor CRTH2 or IL-5 impedes proliferation of normal and malignant HSPCs. Conversely, co-transfer of CD4+CD25+IL5Rα+ Tregs promotes malignant HSPC proliferation and accelerates leukemia development in xenotransplanted mice. Collectively, these results indicate that the mesenchymal source of PGD2 promotes proliferation of normal and malignant HSPCs through activation of the ILC2-Treg axis. These findings also suggest that this novel PGD2-activated ILC2-Treg axis may be a valuable therapeutic target for cancer and inflammation-associated diseases.
Collapse
|
30
|
Brightling CE, Brusselle G, Altman P. The impact of the prostaglandin D 2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 2020; 75:761-768. [PMID: 31355946 DOI: 10.1111/all.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
Abstract
Current research suggests that the prostaglandin D2 (PGD2 ) receptor 2 (DP2 ) is a principal regulator in the pathophysiology of asthma, because it stimulates and amplifies the inflammatory response in this condition. The DP2 receptor can be activated by both allergic and nonallergic stimuli, leading to several pro-inflammatory events, including eosinophil activation and migration, release of the type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 from T helper 2 (Th2) cells and innate lymphoid cells type 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchymal progenitors to the airway smooth muscle bundle. Activation of the DP2 receptor pathway has potential downstream effects on asthma pathophysiology, including on airway epithelial cells, mucus hypersecretion, and airway remodelling, and consequently might impact asthma symptoms and exacerbations. Given the broad distribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.
Collapse
Affiliation(s)
| | - Guy Brusselle
- Department of Respiratory Diseases Ghent University Hospital Ghent Belgium
| | - Pablo Altman
- Novartis Pharmaceuticals Corporation East Hanover NJ USA
| |
Collapse
|
31
|
Oyesola OO, Duque C, Huang LC, Larson EM, Früh SP, Webb LM, Peng SA, Tait Wojno ED. The Prostaglandin D 2 Receptor CRTH2 Promotes IL-33-Induced ILC2 Accumulation in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1001-1011. [PMID: 31900341 PMCID: PMC6994842 DOI: 10.4049/jimmunol.1900745] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are rare innate immune cells that accumulate in tissues during allergy and helminth infection, performing critical effector functions that drive type 2 inflammation. ILC2s express ST2, the receptor for the cytokine IL-33, and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a receptor for the bioactive lipid prostaglandin D2 (PGD2). The IL-33-ST2 and the PGD2-CRTH2 pathways have both been implicated in promoting ILC2 accumulation during type 2 inflammation. However, whether these two pathways coordinate to regulate ILC2 population size in the tissue in vivo remains undefined. In this study, we show that ILC2 accumulation in the murine lung in response to systemic IL-33 treatment was partially dependent on CRTH2. This effect was not a result of reduced ILC2 proliferation, increased apoptosis or cell death, or differences in expression of the ST2 receptor in the absence of CRTH2. Rather, data from adoptive transfer studies suggested that defective accumulation of CRTH2-deficient ILC2s in response to IL-33 was due to altered ILC2 migration patterns. Whereas donor wild-type ILC2s preferentially accumulated in the lungs compared with CRTH2-deficient ILC2s following transfer into IL-33-treated recipients, wild-type and CRTH2-deficient ILC2s accumulated equally in the recipient mediastinal lymph node. These data suggest that CRTH2-dependent effects lie downstream of IL-33, directly affecting the migration of ILC2s into inflamed lung tissues. A better understanding of the complex interactions between the IL-33 and PGD2-CRTH2 pathways that regulate ILC2 population size will be useful in understanding how these pathways could be targeted to treat diseases associated with type 2 inflammation.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cell Movement/immunology
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Hypersensitivity/immunology
- Hypersensitivity/pathology
- Immunity, Innate
- Interleukin-33/administration & dosage
- Interleukin-33/immunology
- Lung/cytology
- Lung/immunology
- Lung/pathology
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice
- Mice, Knockout
- Nippostrongylus/immunology
- Primary Cell Culture
- Prostaglandin D2/immunology
- Prostaglandin D2/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Receptors, Prostaglandin/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Strongylida Infections/immunology
- Strongylida Infections/parasitology
- Strongylida Infections/pathology
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Carolina Duque
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Linda C Huang
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Elisabeth M Larson
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Simon P Früh
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Lauren M Webb
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Seth A Peng
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Elia D Tait Wojno
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850;
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
32
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
33
|
Forese MG, Pellegatta M, Canevazzi P, Gullotta GS, Podini P, Rivellini C, Previtali SC, Bacigaluppi M, Quattrini A, Taveggia C. Prostaglandin D2 synthase modulates macrophage activity and accumulation in injured peripheral nerves. Glia 2019; 68:95-110. [DOI: 10.1002/glia.23705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Maria Grazia Forese
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Marta Pellegatta
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Paolo Canevazzi
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Giorgia S. Gullotta
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Paola Podini
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Cristina Rivellini
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Stefano C. Previtali
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Marco Bacigaluppi
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Angelo Quattrini
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| | - Carla Taveggia
- Division of Neuroscience, INSPEIRCCS San Raffaele Scientific Institute Milan Italy
| |
Collapse
|
34
|
Severe Eosinophilic Asthma. J Clin Med 2019; 8:jcm8091375. [PMID: 31480806 PMCID: PMC6780074 DOI: 10.3390/jcm8091375] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a heterogeneous disease with varying severity. Severe asthma is a subject of constant research because it greatly affects patients’ quality of life, and patients with severe asthma experience symptoms, exacerbations, and medication side effects. Eosinophils, although at first considered insignificant, were later specifically associated with features of the ongoing inflammatory process in asthma, particularly in the severe case. In this review, we discuss new insights into the pathogenesis of severe asthma related to eosinophilic inflammation and the pivotal role of cytokines in a spectrum that is usually referred to as “T2-high inflammation” that accounts for almost half of patients with severe asthma. Recent literature is summarized as to the role of eosinophils in asthmatic inflammation, airway remodeling, and airway hypersensitivity. Major advances in the management of severe asthma occurred the past few years due to the new targeted biological therapies. Novel biologics that are already widely used in severe eosinophilic asthma are discussed, focusing on the choice of the right treatment for the right patient. These monoclonal antibodies primarily led to a significant reduction of asthma exacerbations, as well as improvement of lung function and patient quality of life.
Collapse
|
35
|
Woodward DF, Wang JW, Stamer WD, Lütjen-Drecoll E, Krauss AHP, Toris CB. Antiglaucoma EP 2 Agonists: A Long Road That Led Somewhere. J Ocul Pharmacol Ther 2019; 35:469-474. [PMID: 31329508 DOI: 10.1089/jop.2019.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For >2 decades, EP2 agonists have been the subject of antiglaucoma research and development by scientists in industry and academia around the world. The road has led to the recent approval of the first drug of this class. This article reviews the development of EP2 agonists from conception to clinical approval, discussing pharmacology, structure, biodistribution, therapeutics, and drug delivery. An extensive list of source references is provided for the reader's benefit.
Collapse
Affiliation(s)
- David F Woodward
- Department of Bioengineering, Imperial College London, London, United Kingdom.,JeniVision, Inc., Irvine, California
| | | | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | | | | | - Carol B Toris
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
36
|
Therapeutic Potential of Hematopoietic Prostaglandin D 2 Synthase in Allergic Inflammation. Cells 2019; 8:cells8060619. [PMID: 31226822 PMCID: PMC6628301 DOI: 10.3390/cells8060619] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Worldwide, there is a rise in the prevalence of allergic diseases, and novel efficient therapeutic approaches are still needed to alleviate disease burden. Prostaglandin D2 (PGD2) has emerged as a central inflammatory lipid mediator associated with increased migration, activation and survival of leukocytes in various allergy-associated disorders. In the periphery, the hematopoietic PGD synthase (hPGDS) acts downstream of the arachidonic acid/COX pathway catalysing the isomerisation of PGH2 to PGD2, which makes it an interesting target to treat allergic inflammation. Although much effort has been put into developing efficient hPGDS inhibitors, no compound has made it to the market yet, which indicates that more light needs to be shed on potential PGD2 sources and targets to determine which particular condition and patient will benefit most and thereby improve therapeutic efficacy. In this review, we want to revisit current knowledge about hPGDS function, expression in allergy-associated cell types and their contribution to PGD2 levels as well as beneficial effects of hPGDS inhibition in allergic asthma, rhinitis, atopic dermatitis, food allergy, gastrointestinal allergic disorders and anaphylaxis.
Collapse
|
37
|
Woodward DF, Wang JW, Coleman RA, Woodrooffe AJ, Clark KL, Stamer WD, Tao G, Fan S, Toris CB. A Highly Effective and Ultra-Long-Acting Anti-Glaucoma Drug, with a Novel Periorbital Delivery Method. J Ocul Pharmacol Ther 2019; 35:265-277. [DOI: 10.1089/jop.2018.0126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- David F. Woodward
- Department of Bioengineering, Imperial College London, South Kensington, London, England
- JeniVision, Inc., Irvine, California
| | | | | | | | | | - W. Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, North Carolina
| | - Guoxian Tao
- Wincon Theracells Biotechnologies Co. Ltd., Nanning, China
| | - Shan Fan
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
38
|
Saika A, Nagatake T, Kunisawa J. Host- and Microbe-Dependent Dietary Lipid Metabolism in the Control of Allergy, Inflammation, and Immunity. Front Nutr 2019; 6:36. [PMID: 31024921 PMCID: PMC6468274 DOI: 10.3389/fnut.2019.00036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
The intestine is the largest immune organ in the body, provides the first line of defense against pathogens, and prevents excessive immune reactions to harmless or beneficial non-self-materials, such as food and intestinal bacteria. Allergic and inflammatory diseases in the intestine occur as a result of dysregulation of immunological homeostasis mediated by intestinal immunity. Several lines of evidence suggest that gut environmental factors, including nutrition and intestinal bacteria, play important roles in controlling host immune responses and maintaining homeostasis. Among nutritional factors, ω3 and ω6 essential polyunsaturated fatty acids (PUFAs) profoundly influence the host immune system. Recent advances in lipidomics technology have led to the identification of lipid mediators derived from ω3- and ω6-PUFAs. In particular, lipid metabolites from ω3-PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid) have recently been shown to exert anti-allergic and anti-inflammatory responses; these metabolites include resolvins, protectins, and maresins. Furthermore, a new class of anti-allergic and anti-inflammatory lipid metabolites of 17,18-epoxyeicosatetraenoic acid has recently been identified in the control of allergic and inflammatory diseases in the gut and skin. Although these lipid metabolites were found to be endogenously generated in the host, accumulating evidence indicates that intestinal bacteria also participate in lipid metabolism and thus generate bioactive unique lipid mediators. In this review, we discuss the production machinery of lipid metabolites in the host and intestinal bacteria and the roles of these metabolites in the regulation of host immunity.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Osaka, Japan.,Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
39
|
Oliver ET, Chichester K, Devine K, Sterba PM, Wegner C, Vonakis BM, Saini SS. Effects of an Oral CRTh2 Antagonist (AZD1981) on Eosinophil Activity and Symptoms in Chronic Spontaneous Urticaria. Int Arch Allergy Immunol 2019; 179:21-30. [PMID: 30879003 PMCID: PMC6500753 DOI: 10.1159/000496162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Approximately 50% of patients with chronic spontaneous urticaria (CSU) experience symptoms that are not fully controlled by antihistamines, indicating an unmet clinical need. OBJECTIVE To evaluate the effects of the selective CRTh2 antagonist AZD1981 on symptoms and targeted leukocytes in adults with persistent CSU despite treatment with H1-antihistamines. METHODS We performed a single-center, randomized, placebo-controlled study involving adult CSU subjects with symptoms despite daily antihistamines. The subjects underwent a 2-week placebo run-in and 4 weeks of double-blinded therapy with either AZD1981 40 mg TID or placebo, followed by a 2-week placebo washout. The primary objective was to assess the effect of AZD1981 on CSU signs and symptoms. Secondary objectives included the effects of AZD1981 on prostaglandin D2 (PGD2)-induced eosinophil shape change, circulating leukocyte subsets, CRTh2 expression on blood leukocytes, and total blood leukocyte histamine content. RESULTS Twenty-eight subjects were randomized to AZD1981 or placebo, with 26 subjects completing the study. The urticaria activity scores declined during the treatment phase in both groups, and they were significantly reduced in the AZD1981 group at the end of washout. AZD1981 treatment increased circulating eosinophils and significantly impaired PGD2-mediated eosinophil shape change. CRTh2 surface expression rose significantly on blood basophils during active treatment. No serious adverse events were observed. CONCLUSIONS This is the first study to examine the efficacy of a CRTh2 antagonist in antihistamine-refractory CSU. AZD1981 treatment was well tolerated, effectively inhibited PGD2-mediated eosinophil shape change, shifted numbers of circulating eosinophils, and reduced weekly itch scores more than hives during treatment and into washout. Further studies are needed to determine whether inhibition of the PGD2/CRTh2 pathway will be an -effective treatment for CSU.
Collapse
Affiliation(s)
- Eric Tyrell Oliver
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| | - Kris Chichester
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Devine
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia Meghan Sterba
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig Wegner
- Scientific Partnering and Alliances, IMED Biotech Unit, AstraZeneca, Boston, Massachusetts, USA
| | - Becky Marie Vonakis
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarbjit Singh Saini
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Géhin M, Lott D, Farine H, Issac M, Strasser D, Sidharta P, Dingemanse J. Pharmacokinetics, pharmacodynamics, tolerability and prediction of clinically effective dose of ACT‐774312: A novel CRTH2 antagonist. Basic Clin Pharmacol Toxicol 2019; 124:711-721. [DOI: 10.1111/bcpt.13197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Martine Géhin
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Dominik Lott
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Hervé Farine
- Department of Translational Science Biology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Milena Issac
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Daniel Strasser
- Department of Translational Science Biology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Patricia Sidharta
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
| |
Collapse
|
41
|
Magalhães KG, Luna-Gomes T, Mesquita-Santos F, Corrêa R, Assunção LS, Atella GC, Weller PF, Bandeira-Melo C, Bozza PT. Schistosomal Lipids Activate Human Eosinophils via Toll-Like Receptor 2 and PGD 2 Receptors: 15-LO Role in Cytokine Secretion. Front Immunol 2019; 9:3161. [PMID: 30740113 PMCID: PMC6355688 DOI: 10.3389/fimmu.2018.03161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Parasite-derived lipids may play important roles in host-pathogen interactions and immune evasion mechanisms. Remarkable accumulation of eosinophils is a characteristic feature of inflammation associated with parasitic disease, especially caused by helminthes. Infiltrating eosinophils are implicated in the pathogenesis of helminth infection by virtue of their capacity to release an array of tissue-damaging and immunoregulatory mediators. However, the mechanisms involved in the activation of human eosinophils by parasite-derived molecules are not clear. Here we investigated the effects and mechanisms of schistosomal lipids-induced activation of human eosinophils. Our results showed that stimulation of human eosinophils in vitro with total lipid extracts from adult worms of S. mansoni induced direct activation of human eosinophils, eliciting lipid droplet biogenesis, synthesis of leukotriene (LT) C4 and eoxin (EX) C4 (14,15 LTC4) and secretion of eosinophil pre-formed TGFβ. We demonstrated that main eosinophil activating components within S. mansoni lipid extract are schistosomal-derived lysophosphatidylcholine (LPC) and prostaglandin (PG)D2. Moreover, TLR2 is up-regulated in human eosinophils upon stimulation with schistosomal lipids and pre-treatment with anti-TLR2 inhibited both schistosomal lipids- and LPC-, but not PGD2-, induced lipid droplet biogenesis and EXC4 synthesis within eosinophils, indicating that TLR2 mediates LPC-driven human eosinophil activation. By employing PGD2 receptor antagonists, we demonstrated that DP1 receptors are also involved in various parameters of human eosinophil activation induced by schistosomal lipids, but not by schistosomal LPC. In addition, schistosomal lipids and their active components PGD2 and LPC, triggered 15-LO dependent production of EXC4 and secretion of TGFβ. Taken together, our results showed that schistosomal lipids contain at least two components—LPC and PGD2—that are capable of direct activation of human eosinophils acting on distinct eosinophil-expressed receptors, noticeably TLR2 as well as DP1, trigger human eosinophil activation characterized by production/secretion of pro-inflammatory and immunoregulatory mediators.
Collapse
Affiliation(s)
- Kelly G Magalhães
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Laboratório Imunologia e Inflamação, Universidade de Brasília (UnB), Brasília, Brazil
| | - Tatiana Luna-Gomes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Mesquita-Santos
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Pesquisas em Análise Clínicas, Unidade de Farmácia, Centro Universitário da Zona Oeste, Rio de Janeiro, Brazil
| | - Rafael Corrêa
- Laboratório Imunologia e Inflamação, Universidade de Brasília (UnB), Brasília, Brazil
| | | | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter F Weller
- Allergy and Inflammation, Harvard Medical School, Boston, MA, United States
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Kao CC, Parulekar AD. Spotlight on fevipiprant and its potential in the treatment of asthma: evidence to date. J Asthma Allergy 2019; 12:1-5. [PMID: 30662272 PMCID: PMC6324611 DOI: 10.2147/jaa.s167973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous disease, which may be classified into phenotypes and endotypes based on clinical characteristics and molecular mechanisms. The best described endotype of severe asthma is type 2 (T2)-high asthma, characterized by release of inflammatory cytokines by T helper 2 (TH2) cells and type 2 innate lymphoid cells cells. Prostaglandin D2 contributes to T2 inflammation through binding of the G-protein-coupled receptor chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2). Fevipiprant is an oral competitive antagonist of CRTH2. Early-phase trials have demonstrated safety and potential efficacy in patients with asthma, specifically, improvement in FEV1 and eosinophilic airway inflammation. However, no clear biomarker identified patients who responded favorably to fevipiprant, although patients with moderate-to-severe asthma and evidence of T2 inflammation may be more likely to respond to treatment. Additional studies are needed to determine the efficacy and target population for use of this drug in patients with asthma.
Collapse
Affiliation(s)
- Christina C Kao
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, TX, USA,
| | - Amit D Parulekar
- Section of Pulmonary, Critical Care, and Sleep, Department of Medicine, Baylor College of Medicine, Houston, TX, USA,
| |
Collapse
|
43
|
Bioactive Lipids in Inflammation After Central Nervous System Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:181-194. [PMID: 31140179 DOI: 10.1007/978-3-030-11488-6_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the progress made over the last decades to understand the mechanisms underlying tissue damage and neurological deficits after neurotrauma, there are currently no effective treatments in the clinic. It is well accepted that the inflammatory response in the CNS after injury exacerbates tissue loss and functional impairments. Unfortunately, the use of potent anti-inflammatory drugs, such as methylprednisolone, fails to promote therapeutic recovery and also gives rise to several undesirable side effects related to immunosuppression. The injury-induced inflammatory response is complex, and understanding the mechanisms that regulate this inflammation is therefore crucial in the quest to develop effective treatments. Bioactive lipids have emerged as potent molecules in controlling the initiation, coordination, and resolution of inflammation and in promoting tissue repair and recovery of homeostasis. These bioactive lipids are produced by cells involved in the inflammatory response, and their defective synthesis leads to persistent chronic inflammation, tissue damage, and fibrosis. The present chapter discusses recent evidence for the role of some of these bioactive lipids, in particular, eicosanoid and pro-resolving lipid mediators, in the regulation of inflammation after neurotrauma and highlights the therapeutic potential of some of these lipids in enhancing neurological outcomes after CNS injuries.
Collapse
|
44
|
Rahman MS, Syeda PK, Nartey MNN, Chowdhury MMI, Shimizu H, Nishimura K, Jisaka M, Shono F, Yokota K. Comparison of pro-adipogenic effects between prostaglandin (PG) D 2 and its stable, isosteric analogue, 11-deoxy-11-methylene-PGD 2, during the maturation phase of cultured adipocytes. Prostaglandins Other Lipid Mediat 2018; 139:71-79. [PMID: 30393164 DOI: 10.1016/j.prostaglandins.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG) D2 is relatively unstable and dehydrated non-enzymatically into PGJ2 derivatives, which are known to serve as pro-adipogenic factors by activating peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipogenesis. 11-Deoxy-11-methylene-PGD2 (11d-11m-PGD2) is a novel, chemically stable, isosteric analogue of PGD2 in which the 11-keto group is replaced by an exocyclic methylene. Here we attempted to investigate pro-adipogenic effects of PGD2 and 11d-11m-PGD2 and to compare the difference in their ways during the maturation phase of cultured adipocytes. The dose-dependent study showed that 11d-11m-PGD2 was significantly more potent than natural PGD2 to stimulate the storage of fats suppressed in the presence of indomethacin, a cyclooxygenase inhibitor. These pro-adipogenic effects were caused by the up-regulation of adipogenesis as evident with higher gene expression levels of adipogenesis markers. Analysis of transcript levels revealed the enhanced gene expression of two subtypes of cell-surface membrane receptors for PGD2, namely the prostanoid DP1 and DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)) receptors together with lipocalin-type PGD synthase during the maturation phase. Specific agonists for DP1, CRTH2, and PPARγ were appreciably effective to rescue adipogenesis attenuated by indomethacin. The action of PGD2 was attenuated by specific antagonists for DP1 and PPARγ. By contrast, the effect of 11d-11m-PGD2 was more potently interfered by a selective antagonist for CRTH2 than that for DP1 while PPARγ antagonist GW9662 had almost no inhibitory effects. These results suggest that PGD2 exerts its pro-adipogenic effect principally through the mediation of DP1 and PPARγ, whereas the stimulatory effect of 11d-11m-PGD2 on adipogenesis occurs preferentially by the interaction with CRTH2.
Collapse
Affiliation(s)
- Mohammad Shahidur Rahman
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Pinky Karim Syeda
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Michael N N Nartey
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Md Mazharul Islam Chowdhury
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Hidehisa Shimizu
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Kohji Nishimura
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
| | - Fumiaki Shono
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima-shi, Tokushima 770-8514, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
45
|
Hill MR, Philp CJ, Billington CK, Tatler AL, Johnson SR, O'Dea RD, Brook BS. A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodelling. Biomech Model Mechanobiol 2018; 17:1451-1470. [PMID: 29968161 PMCID: PMC6154265 DOI: 10.1007/s10237-018-1037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/22/2018] [Indexed: 12/28/2022]
Abstract
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and pro-contractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms.
Collapse
Affiliation(s)
- Michael R Hill
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C25, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK.
| | - Christopher J Philp
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Amanda L Tatler
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Simon R Johnson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C28, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| | - Bindi S Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C26, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
46
|
Targeting the PGD 2/CRTH2/DP1 Signaling Pathway in Asthma and Allergic Disease: Current Status and Future Perspectives. Drugs 2018; 77:1281-1294. [PMID: 28612233 PMCID: PMC5529497 DOI: 10.1007/s40265-017-0777-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostaglandin D2 (PGD2) released by degranulating mast cells is believed to play a key role in orchestrating mechanisms of inflammation in allergies and asthma. The biological effects of PGD2 are mediated by D-prostanoid (DP1), CRTH2 (DP2), and thromboxane prostanoid (TP) receptors. The CRTH2 receptor is involved in induction of migration and activation of T helper type 2 (Th2) lymphocytes, eosinophils, and basophils; up-regulation of adhesion molecules; and promotion of pro-inflammatory Th2-type cytokines (interleukin [IL]-4, 5, 13), whereas the DP receptor is associated with relaxation of smooth muscles, vasodilation, inhibition of cell migration, and apoptosis of eosinophils. A number of CRTH2/PGD2 receptor antagonists have been investigated in asthma and allergic diseases. The CRTH2 antagonist (OC000459) or dual CRTH2 and TP receptor antagonist (ramatroban) were effective in reducing eosinophilia, nasal mucosal swelling, and clinical symptoms of allergic rhinitis, with the latter drug registered for clinical use in this indication. OC000459 and setipiprant reduced the late but not early phase of response in an allergen challenge in atopic asthmatics. In persistent asthma, some molecules induced limited improvement in lung function, quality of life, and asthma symptoms (OC000459, BI671800), but in other trials with AMG 853 and AZ1981 these findings were not confirmed. The clear discrepancy between animal studies and clinical efficacy of CRTH2 antagonism in allergic rhinitis, and lack of efficacy in a general cohort of asthmatics, highlight the issue of patient phenotyping. There is no doubt that the PGD2/CATH2/DP1 pathway plays a key role in allergic inflammation and further studies with selective or combined antagonisms in well defined cohorts of patients are needed.
Collapse
|
47
|
Hayen SM, Otten HG, Overbeek SA, Knulst AC, Garssen J, Willemsen LEM. Exposure of Intestinal Epithelial Cells to Short- and Long-Chain Fructo-Oligosaccharides and CpG Oligodeoxynucleotides Enhances Peanut-Specific T Helper 1 Polarization. Front Immunol 2018; 9:923. [PMID: 29867934 PMCID: PMC5958185 DOI: 10.3389/fimmu.2018.00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background Non-digestible oligosaccharides promote colonization of beneficial gut bacteria and have direct immunomodulatory effects. Apical exposure of intestinal epithelial cells (IECs) to short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS) in a transwell co-culture model enhanced the CpG-induced (TLR-9 ligand) T helper 1 (Th1) phenotype and regulatory IL-10 response of underlying peripheral mononuclear cells (PBMCs) of healthy donors. scGOS is derived from lactose and may pose risks in severe cow's milk allergic patients, and scFOS/lcFOS may be an alternative. The goal of this study was to determine the immunomodulatory effects of scGOS/lcFOS and scFOS/lcFOS in an allergen-specific transwell co-culture model using PBMCs from peanut-allergic patients. Methods IECs cultured on transwell filters were apically exposed to CpG, either or not in combination with oligosaccharides. These IECs were co-cultured with basolateral PBMCs of peanut-allergic patients that were either activated with aCD3/28 or peanut extract. Basolateral cytokine production and T-cell polarization were measured and the contribution of galectin-9 and the dectin-1 receptor in immune modulation were assessed. Results IECs exposed to CpG increased IFN-γ, IL-10, and galectin-9 production by aCD3/28-stimulated PBMCs, whereas IL-13 decreased. Both scGOS/lcFOS and scFOS/lcFOS further enhanced IFN-γ and IL-10, while suppressing IL-13 and TNF-α. In the peanut-specific model, only scFOS/lcFOS further increased IFN-γ and IL-10 production, coinciding with enhanced Th1-frequency. Expression of CRTH2 reduced after CpG exposure, and was further reduced by scFOS/lcFOS. Galectin-9 inhibitor TIM-3-Fc abrogated the additional effect of scFOS/lcFOS on peanut-specific IFN-γ production, while neutralization of the dectin-1 receptor was not effective. Conclusion Epithelial exposure to scFOS/lcFOS enhanced the CpG-induced Th1 and regulatory IL-10 response in a peanut-specific co-culture model. These effects suggest scFOS/lcFOS as candidate for dietary adjunct in allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Simone M Hayen
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia A Overbeek
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Immunology Platform, Nutricia Research, Utrecht, Netherlands
| | - André C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Immunology Platform, Nutricia Research, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
48
|
JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease. Ann Allergy Asthma Immunol 2018; 120:367-375. [PMID: 29454096 DOI: 10.1016/j.anai.2018.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To provide an overview of janus kinase (JAK), chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), and phosphodiesterase 4 (PDE4) inhibitors in allergic disorders. DATA SOURCES PubMed literature review. STUDY SELECTIONS Articles included in this review discuss the emerging mechanism of action of small molecule inhibitors and their use in the treatment of atopic dermatitis (AD), asthma, and allergic rhinitis (AR). RESULTS Allergic diseases represent a spectrum of diseases, including AD, asthma, and AR. For decades, these diseases have been primarily characterized by increased TH2 signaling and downstream inflammation. In recent years, additional research has identified disease phenotypes and subsets of patients with non-Th2 mediated inflammation. The increasing heterogeneity of disease has prompted investigators to move away from wide-ranging treatment approaches with immunosuppressive agents, such as corticosteroids, to consider more targeted immunomodulatory approaches focused on specific pathways. In the past decade, inhibitors that target JAK signaling, PDE4, and CRTH2 have been explored for their potential activity in models of allergic disease and therapeutic benefit in clinical trials. Interestingly, although JAK inhibitors provide an opportunity to interfere with cytokine signaling and could be beneficial in a broad range of allergic diseases, current clinical trials are focused on the treatment of AD. Conversely, both PDE4 and CRTH2 inhibitors have been evaluated in a spectrum of allergic diseases. This review summarizes the varying degrees of success that these small molecules have demonstrated across allergic diseases. CONCLUSION Emerging therapies currently in development may provide more consistent benefit to patients with allergic diseases by specifically targeting inflammatory pathways important for disease pathogenesis.
Collapse
|
49
|
Pepper AN, Renz H, Casale TB, Garn H. Biologic Therapy and Novel Molecular Targets of Severe Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 5:909-916. [PMID: 28689841 DOI: 10.1016/j.jaip.2017.04.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/02/2023]
Abstract
Treatment options for severe or uncontrolled asthma are increasing, especially pertaining to novel biologic therapies. The 2 primary asthma endotypes, T2 high and T2 low, are defined by the level of type 2 T helper and innate lymphoid cell activity and mediators. Most therapies for severe asthma target T2 high asthma, including the 3 biologics approved for use in the United States and Europe: omalizumb, mepolizumb, and reslizumab. Other biologics, with various molecular targets, are under investigation. Unfortunately, treatment options for T2 low asthma are limited. Although these therapies may improve asthma symptoms, exacerbation rates, and lung function parameters, they have not been shown to modify the disease process or provide lasting benefits after discontinuation. Biomarkers identified thus far to help guide individualized therapy in severe asthma are helpful, but imperfect discriminators for picking the best option for individual patients. This review will discuss the mechanisms of action, indications, and therapeutic effects of currently available and emerging biologics for the treatment of severe or uncontrolled asthma.
Collapse
Affiliation(s)
- Amber N Pepper
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine and James A. Haley Veterans' Affairs Hospital, Tampa, Fla
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Medical Faculty, Philipps University of Marburg, Marburg, Germany
| | - Thomas B Casale
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine and James A. Haley Veterans' Affairs Hospital, Tampa, Fla.
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry, Medical Faculty, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
50
|
Prostaglandin D 2 metabolite in urine is an index of food allergy. Sci Rep 2017; 7:17687. [PMID: 29247205 PMCID: PMC5732293 DOI: 10.1038/s41598-017-17798-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Food allergy is immediate hypersensitive reactions to ingested foods. Since early diagnosis is effective for disease control, development of an objective diagnostic index is required. Using mediator-lipidomics, we found that levels of the urinary prostaglandin D2 (PGD2) metabolite, tetranor-PGDM, reflected the severity of the allergic symptoms and intestinal mast cell hyperplasia in mice. Repeated oral challenges with ovalbumin promoted allergic symptoms in sensitized mice. Particularly, the allergic mice presented with increased numbers of intestinal mast cells, which strongly expressed hematopoietic PGD synthase (H-PGDS). The levels of urinary tetranor-PGDM increased as the disease progressed. Treatment with a mast cell inactivator or an anti-inflammatory steroid attenuated these symptoms and decreased the tetranor-PGDM urinary levels. The levels of urinary tetranor-PGDM did not correlate with the disease severity in murine models of colitis, asthma, or allergic dermatitis. Furthermore, we have shown that urinary levels of tetranor-PGDM were significantly higher in patients with food allergy than those in healthy volunteers and patients with other types of allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. These findings suggest that urinary tetranor-PGDM is a useful diagnostic index of food allergy in both mice and humans.
Collapse
|