1
|
Nguyen AT, Kim HK. Recent Progress in Synthesis of 99mTc-labeled Complexes with Nitroimidazoles as SPECT Probes for Targeting Tumor Hypoxia. Nucl Med Mol Imaging 2024; 58:258-278. [PMID: 39036459 PMCID: PMC11255181 DOI: 10.1007/s13139-024-00860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 07/23/2024] Open
Abstract
The majority of solid tumors have hypoxia, or low oxygen levels, which is one of the hallmarks of cancer. Hypoxia was found to relate to cancer metastases and resistance to therapies, therefore, detection of hypoxia plays an important role in the process of cancer prognosis and treatment. Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique using gamma-emitting radiopharmaceuticals to visualize biological activities within the body. SPECT is also applied for the detection of tumor hypoxia with the development of hypoxia-targeting radiopharmaceuticals. Radiopharmaceuticals containing nitroimidazole moieties have received increasing attention due to their bio-reducible characteristics which make the radiopharmaceuticals accumulate in the hypoxia regions. This review summarizes the recent development of 99mTc-labeled radiopharmaceuticals bearing nitroimidazoles for SPECT imaging of tumor hypoxia including the synthetic methods and results of animal studies.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907 Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, 54907 Republic of Korea
| |
Collapse
|
2
|
Li T, Li Y, Chen H, Li J, Liu Y, Tan W. Engineering a Dual-Receptor Targeted Multivalent Probe for Enhanced Magnetic Resonance Imaging of Metastatic Cancer. Anal Chem 2024; 96:4394-4401. [PMID: 38451935 DOI: 10.1021/acs.analchem.3c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Noninvasive monitoring of cancer metastasis is essential to improving clinical outcomes. Molecular MRI (mMRI) is a special implementation of noninvasive molecular imaging that promises to offer a powerful means for early detection and analysis of pathological states of cancer by tracking molecular markers. However, this is often hindered by the challenging issue of obtaining transformable mMRI contrast agents with high sensitivity, specificity, and broad applicability, given the high tumor heterogeneity and complex metastatic features. Herein, we present a dual-receptor targeted, multivalent recognition strategy and report a new class of mMRI probes for enhanced imaging of metastatic cancer. This probe is designed by covalently conjugating Gd-chelate with phenylboronic acid and an aptamer via an affordable polymerization chemistry to concurrently target two different cell-membrane receptors that are commonly overexpressed and highly implicated in both tumorigenesis and metastasis. Moreover, the polymerization chemistry allows the probe to contain a bunch of targeting ligands and signal reporters in a single chain, which not only leads to more than 2-fold enhancement in T1 relaxivity at 1.5 T compared to the commercial contrast agent but also enables it to actively target tumor cells in a multivalent recognition manner, contributing to a much higher imaging contrast than single-receptor targeted probes and the commercial agent in mouse models with lung metastases, yet without inducing systemic side effects. We expect this study to offer a useful molecular tool to promote transformable applications of mMRI and a better understanding of molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Ting Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yazhou Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Jané P, Xu X, Taelman V, Jané E, Gariani K, Dumont RA, Garama Y, Kim F, Del Val Gomez M, Walter MA. The Imageable Genome. Nat Commun 2023; 14:7329. [PMID: 37957176 PMCID: PMC10643363 DOI: 10.1038/s41467-023-43123-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Understanding human disease on a molecular level, and translating this understanding into targeted diagnostics and therapies are central tenets of molecular medicine1. Realizing this doctrine requires an efficient adaptation of molecular discoveries into the clinic. We present an approach to facilitate this process by describing the Imageable Genome, the part of the human genome whose expression can be assessed via molecular imaging. Using a deep learning-based hybrid human-AI pipeline, we bridge individual genes and their relevance in human diseases with specific molecular imaging methods. Cross-referencing the Imageable Genome with RNA-seq data from over 60,000 individuals reveals diagnostic, prognostic and predictive imageable genes for a wide variety of major human diseases. Having both the critical size and focus to be altered in its expression during the development and progression of any human disease, the Imageable Genome will generate new imaging tools that improve the understanding, diagnosis and management of human diseases.
Collapse
Affiliation(s)
- Pablo Jané
- University of Geneva, Geneva, Switzerland
- Nuclear Medicine and Molecular Imaging Division, Geneva University Hospitals, Geneva, Switzerland
| | | | | | - Eduardo Jané
- Departamento de Matemática Aplicada a la Ingeniería Aeroespacial - ETSIAE, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Karim Gariani
- Division of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | - María Del Val Gomez
- Servicio de Medicina Nuclear, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Martin A Walter
- University of Lucerne, Lucerne, Switzerland.
- St. Anna Hospital, University of Lucerne, Lucerne, Switzerland.
| |
Collapse
|
4
|
Kang S, Ahn H, Park C, Yun WH, Jeong JG, Lee YJ, Kim DW. In Vivo Fluorescence Molecular Imaging Using Covalent Organic Nanosheets Without Labeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300462. [PMID: 37066794 DOI: 10.1002/advs.202300462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Indexed: 06/04/2023]
Abstract
Organic nanomaterials, as nanocarrier platforms, have tremendous potential for biomedical applications. The authors successfully prepared novel two-dimensional covalent organic nanosheets (CONs) that can be used as efficient in vivo bioimaging probes by condensing 1,3,5-triformylglucinol (Tp) and 2,7-diaminopyrene (Py) to produce TpPy covalent organic frameworks (COFs). TpPy COFs are then subjected to a liquid exfoliation process to obtain TpPy CONs (< 200 nm in size and < 1.7 nm in thickness). TpPy CONs disperse well in water to provide a stable, homogeneous colloidal suspension, which shows favorable photoluminescence properties. Cell viability tests using MDA-MB-231 and RAW 264.7 cells reveal that TpPy CONs are low in cytotoxicity. Confocal microscopy reveals clear fluorescent cell images after incubation with TpPy CONs for 24 h, without reduction in cell activity or cytosolic aggregation. To investigate the biological behavior of the TpPy CONs, the authors perform an in vivo fluorescence imaging study using MDA-MB-231 tumor-bearing mice. After intravenous injection of TpPy CONs disperse in phosphate-buffered saline (PBS), persistent and strong fluorescence signals are observed in the tumor region, with low background signals from normal tissues at 1, 3, 12, and 24 h after injection. Furthermore, these in vivo imaging results concurred with ex vivo biodistribution and histological results.
Collapse
Affiliation(s)
- Seokmin Kang
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Heesu Ahn
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139706, Republic of Korea
| | - Chanho Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Won Hyeok Yun
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Ju Gyeong Jeong
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139706, Republic of Korea
| | - Dong Wook Kim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| |
Collapse
|
5
|
The Role of Molecular Imaging in Personalized Medicine. J Pers Med 2023; 13:jpm13020369. [PMID: 36836603 PMCID: PMC9959741 DOI: 10.3390/jpm13020369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of personalized medicine refers to the tailoring of medical treatment to each patient's unique characteristics. Scientific advancements have led to a better understanding of how a person's unique molecular and genetic profile makes them susceptible to certain diseases. It provides individualized medical treatments that will be safe and effective for each patient. Molecular imaging modalities play an essential role in this aspect. They are used widely in screening, detection and diagnosis, treatment, assessing disease heterogeneity and progression planning, molecular characteristics, and long-term follow-up. In contrast to conventional imaging approaches, molecular imaging techniques approach images as the knowledge that can be processed, allowing for the collection of relevant knowledge in addition to the evaluation of enormous patient groups. This review presents the fundamental role of molecular imaging modalities in personalized medicine.
Collapse
|
6
|
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP, Xiao ZY. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals (Basel) 2023; 16:249. [PMID: 37259396 PMCID: PMC9965384 DOI: 10.3390/ph16020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 04/06/2024] Open
Abstract
New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang-Ping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ze-Yu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Li X, Tang Y, Yao Z, Hu S, Zhou H, Mo X, She C, Lu X, Huang G. FDG-PET/CT Assessment of the Cerebral Protective Effects of Hydrogen in Rabbits with Cardiac Arrest. Curr Med Imaging 2022; 18:977-985. [PMID: 35319386 DOI: 10.2174/1573405618666220321122214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anatomical imaging methods and histological examinations have limited clinical value for early monitoring of brain function damage after cardiac arrest (CA) in vivo. OBJECTIVE We aimed to assess the cerebral protective effects of hydrogen in rabbits with CA by using fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT). METHODS Male rabbits were divided into the hydrogen-treated (n=6), control (n=6), and sham (n=3) groups. Maximum standardized uptake values (SUVmax) were measured by FDG-PET/CT at baseline and post-resuscitation. Blood Ubiquitin C-terminal hydrolase-L1 (UCH-L1) and neuron specific enolase (NSE) were measured before and after the operation. After surgical euthanasia, brain tissues were extracted for Nissl staining. RESULTS SUVmax values first decreased at 2 and 24 h after resuscitation before rising in the hydrogen-treated and control groups. SUVmax values in the frontal, occipital, and left temporal lobes and in the whole brain were significantly different between the hydrogen and control groups at 2 and 24 h post-resuscitation (P<0.05). The neurological deficit scores at 24 and 48 h were lower in the hydrogen-treated group (P<0.05). At 24 h, the serum UCH-L1 and NSE levels were increased in the hydrogen and control groups (P<0.05), but not in the sham group. At 48 and 72 h post-CA, the plasma UCH-L1 and NSE levels in the hydrogen and control groups gradually decreased. Neuronal damage was smaller in the hydrogen group compared with the control group at 72 h. CONCLUSION FDG-PET/CT could be used to monitor early cerebral damage, indicating a novel method for evaluating the protective effects of hydrogen on the brain after CA.
Collapse
Affiliation(s)
- Xiangmin Li
- Department of Emergency, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine (PET Center), Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Zhengbin Yao
- Department of Emergency, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Shuo Hu
- Department of Nuclear Medicine (PET Center), Xiangya Hospital Central South University, Changsha 410008, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Radiology, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Changshou She
- Department of Emergency, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Xiaoqin Lu
- Department of Emergency, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| | - Guoqing Huang
- Department of Emergency, Xiangya Hospital Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
8
|
Zhang Q, O'Brien S, Grimm J. Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics 2022; 6:184-194. [PMID: 34976593 PMCID: PMC8671952 DOI: 10.7150/ntno.65530] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022] Open
Abstract
The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to prepare nanomaterials of relatively smaller sizes has increased the likelihood of use in vivo. In this review, we summarize the different emerging applications of nanoparticles with rare earth elements as the host or doped elements for biomedical applications in the past three to four years, especially in the area of imaging and disease diagnosis. Researchers have made progress in utilizing surfactants and polymers to modify the surface of lanthanide nanoparticles to enhance biocompatibility. At the same time, specific antibodies and proteins can also be conjugated to these nanoparticles to increase targeting efficiency for specific tumor models. Finally, in the near-infrared II imaging window, lanthanide nanoparticles have been shown to exhibit extraordinary bright emission, which is an exciting development for image-guided surgery.
Collapse
Affiliation(s)
- Qize Zhang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Stephen O'Brien
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
9
|
Mu Y, Gong L, Peng T, Yao J, Lin Z. Advances in pH-responsive drug delivery systems. OPENNANO 2021. [DOI: 10.1016/j.onano.2021.100031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
11
|
Zhang Q, Pratt EC, Tamura R, Ogirala A, Hsu C, Farahmand N, O’Brien S, Grimm J. Ultrasmall Downconverting Nanoparticle for Enhanced Cerenkov Imaging. NANO LETTERS 2021; 21:4217-4224. [PMID: 33950695 PMCID: PMC8879088 DOI: 10.1021/acs.nanolett.1c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cerenkov imaging provides an opportunity to expand the application of approved radiotracers and therapeutic agents by utilizing them for optical approaches, which opens new avenues for nuclear imaging. The dominating Cerenkov radiation is in the UV/blue region, where it is readily absorbed by human tissue, reducing its utility in vivo. To solve this problem, we propose a strategy to shift Cerenkov light to the more penetrative red-light region through the use of a fluorescent down-conversion technique, based upon europium oxide nanoparticles. We synthesized square-shape ultrasmall Eu2O3 nanoparticles, functionalized with polyethylene glycol and chelate-free radiolabeled for intravenous injection into mice to visualize the lymph node and tumor. By adding trimethylamine N-oxide during the synthesis, we significantly increased the brightness of the particle and synthesized the (to-date) smallest radiolabeled europium-based nanoparticle. These features allow for the exploration of Eu2O3 nanoparticles as a preclinical cancer diagnosis platform with multimodal imaging capability.
Collapse
Affiliation(s)
- Qize Zhang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Edwin C. Pratt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ryo Tamura
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlene Hsu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nasim Farahmand
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Stephen O’Brien
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
12
|
Hori SS, Tong L, Swaminathan S, Liebersbach M, Wang J, Gambhir SS, Felsher DW. A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation. Sci Rep 2021; 11:1341. [PMID: 33446671 PMCID: PMC7809285 DOI: 10.1038/s41598-020-78947-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
The targeted inactivation of individual oncogenes can elicit regression of cancers through a phenomenon called oncogene addiction. Oncogene addiction is mediated by cell-autonomous and immune-dependent mechanisms. Therapeutic resistance to oncogene inactivation leads to recurrence but can be counteracted by immune surveillance. Predicting the timing of resistance will provide valuable insights in developing effective cancer treatments. To provide a quantitative understanding of cancer response to oncogene inactivation, we developed a new 3-compartment mathematical model of oncogene-driven tumor growth, regression and recurrence, and validated the model using a MYC-driven transgenic mouse model of T-cell acute lymphoblastic leukemia. Our mathematical model uses imaging-based measurements of tumor burden to predict the relative number of drug-sensitive and drug-resistant cancer cells in MYC-dependent states. We show natural killer (NK) cell adoptive therapy can delay cancer recurrence by reducing the net-growth rate of drug-resistant cells. Our studies provide a novel way to evaluate combination therapy for personalized cancer treatment.
Collapse
Affiliation(s)
- Sharon S Hori
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Ling Tong
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Srividya Swaminathan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, USA
| | - Mariola Liebersbach
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Wang
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Dean W Felsher
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Massoud TF, Paulmurugan R. Molecular Imaging of Protein–Protein Interactions and Protein Folding. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck B, Böğürcü-Seidel N, Seidel S, Sleiman K, Veltkamp C, Förstera B, Mai H, Rong Z, Trompak O, Ghasemigharagoz A, Reimer MA, Cuesta AM, Coronel J, Jeremias I, Saur D, Acker-Palmer A, Acker T, Garvalov BK, Menze B, Zeidler R, Ertürk A. Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body. Cell 2020; 179:1661-1676.e19. [PMID: 31835038 DOI: 10.1016/j.cell.2019.11.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/02/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Chenchen Pan
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Oliver Schoppe
- Department of Informatics, Technical University of Munich, 85748 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Arnaldo Parra-Damas
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Ruiyao Cai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Mihail Ivilinov Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), 82152 Munich, Germany
| | - Gabor Gondi
- Research Unit Gene Vectors, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Bettina von Neubeck
- Research Unit Gene Vectors, Helmholtz Zentrum München, 81377 Munich, Germany
| | | | - Sascha Seidel
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Katia Sleiman
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Christian Veltkamp
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Benjamin Förstera
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Omelyan Trompak
- Institute of Neuropathology, University of Giessen, 35390 Giessen, Germany
| | - Alireza Ghasemigharagoz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Madita Alice Reimer
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Angel M Cuesta
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Javier Coronel
- Department of Informatics, Technical University of Munich, 85748 Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany; Department of Pediatrics, Dr. von Hauner Childrens Hospital, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site Munich, 80336 Munich, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Division of Translational Cancer Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, 35390 Giessen, Germany
| | - Boyan K Garvalov
- Institute of Neuropathology, University of Giessen, 35390 Giessen, Germany; Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Bjoern Menze
- Department of Informatics, Technical University of Munich, 85748 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich School of Bioengineering, Technical University of Munich, 85748 Munich, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Zentrum München, 81377 Munich, Germany; Department for Otorhinolaryngology, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich (LMU), 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
15
|
Biswal NC, Fu X, Jagtap JM, Shea MJ, Kumar V, Lords T, Roy R, Schiff R, Joshi A. In vivo longitudinal imaging of RNA interference-induced endocrine therapy resistance in breast cancer. JOURNAL OF BIOPHOTONICS 2020; 13:e201900180. [PMID: 31595691 PMCID: PMC9229172 DOI: 10.1002/jbio.201900180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
Endocrine therapy resistance in breast cancer is a major obstacle in the treatment of patients with estrogen receptor-positive (ER+) tumors. Herein, we demonstrate the feasibility of longitudinal, noninvasive and semiquantitative in vivo molecular imaging of resistance to three endocrine therapies by using an inducible fluorescence-labeled short hairpin RNA (shRNA) system in orthotopic mice xenograft tumors. We employed a dual fluorescent doxycycline (Dox)-regulated lentiviral inducer system to transfect ER+ MCF7L breast cancer cells, with green fluorescent protein (GFP) expression as a marker of transfection and red fluorescent protein (RFP) expression as a surrogate marker of Dox-induced tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) knockdown. Xenografted MCF7L tumor-bearing nude mice were randomized to therapies comprising estrogen deprivation, tamoxifen or an ER degrader (fulvestrant) and an estrogen-treated control group. Longitudinal imaging was performed by a home-built multispectral imaging system based on a cooled image intensified charge coupled device camera. The GFP signal, which corresponds to number of viable tumor cells, exhibited excellent correlation to caliper-measured tumor size (P << .05). RFP expression was substantially higher in mice exhibiting therapy resistance and strongly and significantly (P < 1e-7) correlated with the tumor size progression for the mice with shRNA-induced PTEN knockdown. PTEN loss was strongly correlated with resistance to estrogen deprivation, tamoxifen and fulvestrant therapies.
Collapse
Affiliation(s)
- Nrusingh C. Biswal
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence Nrusingh C. Biswal, Department of Radiation Oncology, University of Maryland, Baltimore, 850. W Baltimore St, MD 21201, USA,
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jaidip M. Jagtap
- Departments of Biomedical Engineering and Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Martin J. Shea
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vijetha Kumar
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamika Lords
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronita Roy
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amit Joshi
- Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Biomedical Engineering and Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Gao F, Peng C, Zhuang R, Guo Z, Liu H, Huang L, Li H, Xu D, Wen X, Fang J, Zhang X. 18F-labeled ethisterone derivative for progesterone receptor targeted PET imaging of breast cancer. Nucl Med Biol 2019; 72-73:62-69. [PMID: 31330414 DOI: 10.1016/j.nucmedbio.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE A novel radiolabeled probe 1‑(17‑[18F]fluoro‑3,6,9,12,15‑pentaoxaheptadecyl‑1H‑1,2,3‑triazole testosterone ([18F]FPTT) was synthesized and evaluated for PET imaging of progesterone receptor (PR)-positive breast cancer. METHODS The ethinyl group of ethisterone, a PR targeting pharmacophore, was coupled with azide modified PEG-OTs by click chemistry to obtain the labeling precursor. The final [18F]FPTT was synthesized by a one-step nucleophilic substitution reaction with 18F. The in vitro stabilities of [18F]FPTT in saline or rat serum were determined after 2 h incubation. Then the in vitro cell binding, ex vivo biodistribution and in vivo imaging of [18F]FPTT were further investigated to evaluate the PR targeting ability and feasibility for the diagnosis of PR-positive breast cancer with PET imaging. RESULTS [18F]FPTT was obtained in high decay-corrected radiochemical yield (78 ± 9%) at the end of synthesis. It had high radiochemical purity (>98%) after HPLC purification and good in vitro stability. The molar activity of [18F]FPTT was calculated as 17 GBq/μmol. The microPET imaging of [18F]FPTT in tumor-bearing mice showed much higher tumor uptake in PR-positive MCF-7 tumor (3.9 ± 0.20%ID/g) than that of PR-negative MDA-MB-231 tumor (1.3 ± 0.08%ID/g). The high MCF-7 tumor uptake could be specifically inhibited by blocking with ethisterone (1.3 ± 0.11%ID/g) or [19F]FPTT (2.20 ± 0.17%ID/g), respectively. The biodistribution in estrogen-primed female SD rats of [18F]FPTT showed high uterus and ovary uptakes (8.31 ± 1.74%ID/g and 3.79 ± 0.82%ID/g at 1 h post-injection). The specific uptakes of uterus and ovary in normal rats were 3.52 ± 0.29%ID/g and 3.22 ± 0.50%ID/g respectively and could be inhibited by co-injecting of ethisterone. CONCLUSION A novel [18F]FPTT probe based on ethisterone modification could be a potential diagnostic agent for PR-positive breast cancer.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Lin X, Ruan Q, Zhang X, Duan X, Teng Y, Zhang J. 99mTc labelled complexes with secnidazole xanthate: Synthesis and evaluation as potential radiotracers to target tumor hypoxia. Appl Radiat Isot 2018; 140:289-293. [PMID: 30092554 DOI: 10.1016/j.apradiso.2018.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/14/2018] [Accepted: 07/29/2018] [Indexed: 12/23/2022]
Abstract
In this study, the commercially available secnidazole was successfully converted to secnidazole xanthate (SNXT), in which the xanthate group can act as a bifunctional chelator to coordinate with 99mTc. 99mTc-nitrido complex of SNXT(99mTcN-SNXT) and 99mTc-oxo complex of SNXT(99mTcO-SNXT) were prepared with high radiochemical purity. Both of the complexes were found to be stable in vitro and to exhibit similar hydrophilicity. In addition, comparative in vitro cell uptake studies under anoxic and normoxic conditions demonstrated that both agents were preferentially taken up by hypoxic cells. Biodistribution studies in mice bearing S180 tumor showed 99mTcO-SNXT exhibited a higher tumor uptake and tumor-to-muscle ratio than 99mTcN-SNXT. Furthermore, in SPECT imaging study, 99mTcO-SNXT exhibited a clear accumulation in tumor at 2 h post-injection, suggesting its potential to be a novel hypoxia imaging agent.
Collapse
Affiliation(s)
- Xiao Lin
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, PR China; Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Xuran Zhang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China; Department of Isotopes, China Institute of Atomic Energy, Beijing 102413, PR China
| | - Xiaojiang Duan
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
18
|
Rezaei-Tavirani M, Rezaei-Taviran S, Mansouri M, Rostami-Nejad M, Rezaei-Tavirani M. Protein-Protein Interaction Network Analysis for a Biomarker Panel Related to Human Esophageal Adenocarcinoma. Asian Pac J Cancer Prev 2017; 18:3357-3363. [PMID: 29286604 PMCID: PMC5980895 DOI: 10.22034/apjcp.2017.18.12.3357] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Esophageal adenocarcinoma (EAC) is one of the mostlethal cancers in the world with a very poor prognosis. Identification of molecular diagnostic methods is an important goal. Since protein-protein interaction (PPI) network analysis is a suitable method for molecular assessment, in the present research a PPI network related to EAC was targeted. Material and Method: Cytoscape software and its applications including STRING DB, Cluster ONE and ClueGO were applied to analyze the PPI network. Result: Among 182 EAC-related proteins which were identified, 129 were included in a main connected component. Proteins based on centrality analysis of characteristics such as degree, betweenness, closeness and stress were screened and key nodes were introduced. Two clusters were determined of which only one was significant statistically. Gene ontology revealed 50 terms in three groups associated with EAC. Conclusion: The findings indicate nine crucial proteins could form a candidate biomarker panel for EAC. Furthermore, an important cluster with 27 proteins related to the disease was identified. Gene ontology analysis of this cluster showed main related terms to closely correspond with those for colorectal cancer.
Collapse
|
19
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM, Basso DM. Molecular Ultrasound Imaging for the Detection of Neural Inflammation: A Longitudinal Dosing Pilot Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317736250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes noninvasively by targeting a variety of biomarkers in vivo. The current study was performed by exploiting an inflammatory biomarker, P-selectin, known to be present following spinal cord injury. Using a murine model (n = 6), molecular ultrasound imaging was performed using contrast microbubbles modified to target and adhere to P-selectin, prior to spinal cord injury (0D), acute stage postinjury (7D), and chronic stage (42D). Additionally, two imaging sessions were performed on each subject at specific time points, using doses of 30 μL and 100 μL. Upon analysis, targeted contrast analysis parameters were appreciably increased during the 7D scan compared with the 42D scan, without statistical significance. When examining the dose levels, the 30-μL dose demonstrated greater values than the 100-μL dose but lacked statistical significance. These findings provide additional preclinical evidence for the use of molecular ultrasound imaging for the possible detection of inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - D. Michele Basso
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Lin X, Fang S, Teng Y, Zhang J. Preparation and biological evaluation of a technetium-99m labeled 4-nitroimidazole derivative for imaging tumor hypoxia. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5277-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Bi A, Yang S, Liu M, Wang X, Liao W, Zeng W. Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra05651f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Formaldehyde (FA), as a vital industrial chemical, is widely used in building materials and numerous living products.
Collapse
Affiliation(s)
- Anyao Bi
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Shuqi Yang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Min Liu
- Department of Pharmacy
- Xiangya Hospital
- Central South University
- Changsha 410008
- China
| | - Xiaobo Wang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Weihua Liao
- Molecular Imaging Research Center
- Central South University
- Changsha
- China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| |
Collapse
|
22
|
Thakor AS, Jokerst JV, Ghanouni P, Campbell JL, Mittra E, Gambhir SS. Clinically Approved Nanoparticle Imaging Agents. J Nucl Med 2016; 57:1833-1837. [PMID: 27738007 DOI: 10.2967/jnumed.116.181362] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/03/2016] [Indexed: 12/23/2022] Open
Abstract
Nanoparticles are a new class of imaging agent used for both anatomic and molecular imaging. Nanoparticle-based imaging exploits the signal intensity, stability, and biodistribution behavior of submicron-diameter molecular imaging agents. This review focuses on nanoparticles used in human medical imaging, with an emphasis on radionuclide imaging and MRI. Newer nanoparticle platforms are also discussed in relation to theranostic and multimodal uses.
Collapse
Affiliation(s)
- Avnesh S Thakor
- Department of Radiology, Stanford University Medical Center, Stanford, California; and
| | - Jesse V Jokerst
- Department of Nano Engineering, University of California-San Diego, San Diego, California
| | - Pejman Ghanouni
- Department of Radiology, Stanford University Medical Center, Stanford, California; and
| | - Jos L Campbell
- Department of Radiology, Stanford University Medical Center, Stanford, California; and
| | - Erik Mittra
- Department of Radiology, Stanford University Medical Center, Stanford, California; and
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University Medical Center, Stanford, California; and
| |
Collapse
|
23
|
Kim EJ, Lee H, Yeom A, Hong KS. In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Roos A, Hedlund T. Using the domain analytical approach in the study of information practices in biomedicine. JOURNAL OF DOCUMENTATION 2016. [DOI: 10.1108/jd-11-2015-0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this paper is to analyze the information practices of the researchers in biomedicine using the domain analytical approach.
Design/methodology/approach
The domain analytical research approach used in the study of the scientific domain of biomedicine leads to studies into the organization of sciences. By using Whitley’s dimensions of “mutual dependence” and “task uncertainty” in scientific work as a starting point the authors were able to reanalyze previously collected data. By opening up these concepts in the biomedical research work context, the authors analyzed the distinguishing features of the biomedical domain and the way these features affected researchers’ information practices.
Findings
Several indicators representing “task uncertainty” and “mutual dependence” in the scientific domain of biomedicine were identified. This study supports the view that in biomedicine the task uncertainty is low and researchers are mutually highly dependent on each other. Hard competition seems to be one feature, which is behind the explosion of the data and publications in this domain. This fact, on its part is directly related to the ways information is searched, followed, used and produced. The need for new easy to use services or tools for searching and following information in so called “hot” topics came apparent.
Originality/value
The study highlights new information about information practices in the biomedical domain. Whitley’s theory enabled a thorough analysis of the cultural and social nature of the biomedical domain and it proved to be useful in the examination of researchers’ information practices.
Collapse
|
25
|
Kim KI, Chung HK, Park JH, Lee YJ, Kang JH. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6127-6134. [PMID: 27468205 PMCID: PMC4945974 DOI: 10.3748/wjg.v22.i27.6127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/02/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene’s expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.
Collapse
|
26
|
Rossi M, Massai L, Diamanti D, Fiengo P, De Rosa A, Magrini R, Magnoni L, Chellini S, Coniglio S, Diodato E, Pilli E, Caradonna NP, Sardone G, Monti M, Roggeri R, Lionetti V, Recchia F, Tunici P, Valensin S, Scali C, Pollio G, Porcari V. Multimodal molecular imaging system for pathway-specific reporter gene expression. Eur J Pharm Sci 2016; 86:136-42. [PMID: 26987608 DOI: 10.1016/j.ejps.2016.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Preclinical imaging modalities represent an essential tool to develop a modern and translational biomedical research. To date, Optical Imaging (OI) and Magnetic Resonance Imaging (MRI) are used principally in separate studies for molecular imaging studies. We decided to combine OI and MRI together through the development of a lentiviral vector to monitor the Wnt pathway response to Lithium Chloride (LiCl) treatment. The construct was stably infected in glioblastoma cells and, after intracranial transplantation in mice, serial MRI and OI imaging sessions were performed to detect human ferritin heavy chain protein (hFTH) and firefly luciferase enzyme (FLuc) respectively. The system allowed also ex vivo analysis using a constitutive fluorescence protein expression. In mice, LiCl administration has shown significantly increment of luminescence signal and a lower signal of T2 values (P<0.05), recorded noninvasively with OI and a 7 Tesla MRI scanner. This study indicates that OI and MRI can be performed in a single in vivo experiment, providing an in vivo proof-of-concept for drug discovery projects in preclinical phase.
Collapse
Affiliation(s)
- Marco Rossi
- Siena Biotech Medicine Research Centre, Siena, Italy.
| | - Luisa Massai
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | | | - Sara Chellini
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | - Elena Pilli
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Carla Scali
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | |
Collapse
|
27
|
Blanco F, Ortiz-Alías P, López-Mesas M, Valiente M. High precision mapping of kidney stones using μ-IR spectroscopy to determine urinary lithogenesis. JOURNAL OF BIOPHOTONICS 2015; 8:457-465. [PMID: 25091212 DOI: 10.1002/jbio.201300201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/13/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Evolution of urinary lithiasis is determined by the metabolism and life-style of the related patient. The appropriate classification of the stone is mandatory for the identification of the lithogenic process. In this study, cros-sections from a single stone of each of the most frequent urolithiasis types (calcium oxalate mono and dihydrate and carbonate apatite) have been selected and imaged using IR microspectroscopy. Moreover, the use of high definition sFTIR (synchrotron source) has revealed hidden information to the conventional FTIR. This work has demonstrated that minor components become key factors on the description of the stages of stone formation. Intensity map for COM (1630 cm(-1) peak). The high spatial definition achieved is key for the precise description of the kidney stone history.
Collapse
Affiliation(s)
- Francisco Blanco
- Centre Grup de Tècniques de Separació en Química (GTS), Unitat de Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Pilar Ortiz-Alías
- Centre Grup de Tècniques de Separació en Química (GTS), Unitat de Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Montserrat López-Mesas
- Centre Grup de Tècniques de Separació en Química (GTS), Unitat de Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Manuel Valiente
- Centre Grup de Tècniques de Separació en Química (GTS), Unitat de Química Analítica, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
28
|
van Duijnhoven SMJ, Robillard MS, Langereis S, Grüll H. Bioresponsive probes for molecular imaging: concepts and in vivo applications. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:282-308. [PMID: 25873263 DOI: 10.1002/cmmi.1636] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly two classes of bioresponsive imaging probes. The first class consists of probes that show direct activation of the imaging label (from "off" to "on" state) and have been applied in optical imaging and magnetic resonance imaging (MRI). The other class consists of probes that show specific retention of the imaging label at the site of target interaction and these probes have found application in all different imaging modalities, including photoacoustic imaging and nuclear imaging. In this review, we present a comprehensive overview of bioresponsive imaging probes in order to discuss the various molecular imaging strategies. The focus of the present article is the rationale behind the design of bioresponsive molecular imaging probes and their potential in vivo application for the detection of endogenous molecular targets in pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Sander M J van Duijnhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Marc S Robillard
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
29
|
Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model. Eur J Nucl Med Mol Imaging 2015; 42:1093-105. [DOI: 10.1007/s00259-015-3040-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/05/2015] [Indexed: 02/01/2023]
|
30
|
O'Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 2014; 169:719-35. [PMID: 23488622 DOI: 10.1111/bph.12155] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/02/2013] [Accepted: 02/10/2013] [Indexed: 12/18/2022] Open
Abstract
Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development.
Collapse
Affiliation(s)
- A C O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
31
|
Abstract
Recent developments and improvements of multimodal imaging methods for use in animal research have substantially strengthened the options of in vivo visualization of cancer-related processes over time. Moreover, technological developments in probe synthesis and labelling have resulted in imaging probes with the potential for basic research, as well as for translational and clinical applications. In addition, more sophisticated cancer models are available to address cancer-related research questions. This Review gives an overview of developments in these three fields, with a focus on imaging approaches in animal cancer models and how these can help the translation of new therapies into the clinic.
Collapse
Affiliation(s)
- Marion de Jong
- Departments of Nuclear Medicine and Radiology, Erasmus MC Rotterdam, Room Na-610, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen Essers
- Departments of Genetics (Cancer Genomics Centre), Radiation Oncology and Vascular Surgery, Erasmus MC Rotterdam, P.O Box 2040, 3000CA Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
32
|
Jang BS. MicroSPECT and MicroPET Imaging of Small Animals for Drug Development. Toxicol Res 2013; 29:1-6. [PMID: 24278622 PMCID: PMC3834443 DOI: 10.5487/tr.2013.29.1.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 11/21/2022] Open
Abstract
The process of drug discovery and development requires substantial resources and time. The drug industry has tried to reduce costs by conducting appropriate animal studies together with molecular biological and genetic analyses. Basic science research has been limited to in vitro studies of cellular processes and ex vivo tissue examination using suitable animal models of disease. However, in the past two decades new technologies have been developed that permit the imaging of live animals using radiotracer emission, Xrays, magnetic resonance signals, fluorescence, and bioluminescence. The main objective of this review is to provide an overview of small animal molecular imaging, with a focus on nuclear imaging (single photon emission computed tomography and positron emission tomography). These technologies permit visualization of toxicodynamics as well as toxicity to specific organs by directly monitoring drug accumulation and assessing physiological and/or molecular alterations. Nuclear imaging technology has great potential for improving the efficiency of the drug development process.
Collapse
Affiliation(s)
- Beom-Su Jang
- RI-Biomics Research & Development Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeonbuk, Korea
| |
Collapse
|
33
|
Orbay H, Hong H, Zhang Y, Cai W. Positron emission tomography imaging of atherosclerosis. Theranostics 2013; 3:894-902. [PMID: 24312158 PMCID: PMC3841339 DOI: 10.7150/thno.5506] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/27/2013] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients.
Collapse
|
34
|
Levi J, Kothapalli SR, Bohndiek S, Yoon JK, Dragulescu-Andrasi A, Nielsen C, Tisma A, Bodapati S, Gowrishankar G, Yan X, Chan C, Starcevic D, Gambhir SS. Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin Cancer Res 2013; 19:1494-502. [PMID: 23349314 DOI: 10.1158/1078-0432.ccr-12-3061] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the potential of targeted photoacoustic imaging as a noninvasive method for detection of follicular thyroid carcinoma. EXPERIMENTAL DESIGN We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP-activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3. Cleavage of the MMP-activatable agent was imaged after intratumoral and intravenous injections in living mice optically, observing the increase in Alexa750 fluorescence, and photoacoustically, using a dual-wavelength imaging method. RESULTS Active forms of both MMP-2 and MMP-9 enzymes were found in FTC133 tumor homogenates, with MMP-9 detected in greater amounts. The molecular imaging agent was determined to be activated by both enzymes in vitro, with MMP-9 being more efficient in this regard. Both optical and photoacoustic imaging showed significantly higher signal in tumors of mice injected with the active agent than in tumors injected with the control, nonactivatable, agent. CONCLUSIONS With the combination of high spatial resolution and signal specificity, targeted photoacoustic imaging holds great promise as a noninvasive method for early diagnosis of follicular thyroid carcinomas.
Collapse
Affiliation(s)
- Jelena Levi
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu S, Kiesewetter DO, Zhu L, Guo N, Gao H, Liu G, Hida N, Lang L, Niu G, Chen X. Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol Imaging Biol 2012; 14:762-70. [PMID: 22392643 PMCID: PMC3387344 DOI: 10.1007/s11307-012-0551-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE This study aims to apply longitudinal positron emission tomography (PET) imaging with (18)F-Annexin V to visualize and evaluate cell death induced by doxorubicin in a human head and neck squamous cell cancer UM-SCC-22B tumor xenograft model. PROCEDURES In vitro toxicity of doxorubicin to UM-SCC-22B cells was determined by a colorimetric assay. Recombinant human Annexin V protein was expressed and purified. The protein was labeled with fluorescein isothiocyanate for fluorescence staining and (18)F for PET imaging. Established UM-SCC-22B tumors in nude mice were treated with two doses of doxorubicin (10 mg/kg each dose) with 1 day interval. Longitudinal (18)F-Annexin V PET was performed at 6 h, 24 h, 3 days, and 7 days after the treatment started. Following PET imaging, direct tissue biodistribution study was performed to confirm the accuracy of PET quantification. RESULTS Two doses of doxorubicin effectively inhibited the growth of UM-SCC-22B tumors by inducing cell death including apoptosis. The cell death was clearly visualized by (18)F-Annexin V PET. The peak tumor uptake, which was observed at day 3 after treatment started, was significantly higher than that in the untreated tumors (1.56 ± 0.23 vs. 0.89 ± 0.31%ID/g, p < 0.05). Moreover, the tumor uptake could be blocked by co-injection of excess amount of unlabeled Annexin V protein. At day 7 after treatment, the tumor uptake of (18)F-Annexin had returned to baseline level. CONCLUSIONS (18)F-Annexin V PET imaging is sensitive enough to allow visualization of doxorubicin-induced cell death in UM-SCC-22B xenograft model. The longitudinal imaging with (18)F-Annexin will be helpful to monitor early response to chemotherapeutic anti-cancer drugs.
Collapse
Affiliation(s)
- Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Lei Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Haokao Gao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Gang Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, China
| | - Naoki Hida
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
36
|
Huang CW, Li Z, Conti PS. Radioactive Smart Probe for Potential Corrected Matrix Metalloproteinase Imaging. Bioconjug Chem 2012; 23:2159-67. [DOI: 10.1021/bc3001968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chiun-Wei Huang
- Molecular
Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California
90033, United States
| | - Zibo Li
- Molecular
Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California
90033, United States
| | - Peter S. Conti
- Molecular
Imaging Center, Department of Radiology, University of Southern California, Los Angeles, California
90033, United States
| |
Collapse
|
37
|
Mérian J, Gravier J, Navarro F, Texier I. Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 2012; 17:5564-91. [PMID: 22576228 PMCID: PMC6268987 DOI: 10.3390/molecules17055564] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022] Open
Abstract
With the fast development, in the last ten years, of a large choice of set-ups dedicated to routine in vivo measurements in rodents, fluorescence imaging techniques are becoming essential tools in preclinical studies. Human clinical uses for diagnostic and image-guided surgery are also emerging. In comparison to low-molecular weight organic dyes, the use of fluorescent nanoprobes can improve both the signal sensitivity (better in vivo optical properties) and the fluorescence biodistribution (passive “nano” uptake in tumours for instance). A wide range of fluorescent nanoprobes have been designed and tested in preclinical studies for the last few years. They will be reviewed and discussed considering the obstacles that need to be overcome for their potential everyday use in clinics. The conjugation of fluorescence imaging with the benefits of nanotechnology should open the way to new medical applications in the near future.
Collapse
Affiliation(s)
| | | | | | - Isabelle Texier
- Author to whom correspondence should be addressed; ; Tel.: +33-438-784-670; Fax: +33-438-785-787
| |
Collapse
|
38
|
Vande Velde G, Raman Rangarajan J, Vreys R, Guglielmetti C, Dresselaers T, Verhoye M, Van der Linden A, Debyser Z, Baekelandt V, Maes F, Himmelreich U. Quantitative evaluation of MRI-based tracking of ferritin-labeled endogenous neural stem cell progeny in rodent brain. Neuroimage 2012; 62:367-80. [PMID: 22677164 DOI: 10.1016/j.neuroimage.2012.04.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/14/2012] [Accepted: 04/20/2012] [Indexed: 01/09/2023] Open
Abstract
Endogenous neural stem cells have the potential to facilitate therapy for various neurodegenerative brain disorders. To increase our understanding of neural stem and progenitor cell biology in healthy and diseased brain, methods to label and visualize stem cells and their progeny in vivo are indispensable. Iron oxide particle based cell-labeling approaches enable cell tracking by MRI with high resolution and good soft tissue contrast in the brain. However, in addition to important concerns about unspecific labeling and low labeling efficiency, the dilution effect upon cell division is a major drawback for longitudinal follow-up of highly proliferating neural progenitor cells with MRI. Stable viral vector-mediated marking of endogenous stem cells and their progeny with a reporter gene for MRI could overcome these limitations. We stably and efficiently labeled endogenous neural stem/progenitor cells in the subventricular zone in situ by injecting a lentiviral vector expressing ferritin, a reporter for MRI. We developed an image analysis pipeline to quantify MRI signal changes at the level of the olfactory bulb as a result of migration of ferritin-labeled neuroblasts along the rostral migratory stream. We were able to detect ferritin-labeled endogenous neural stem cell progeny into the olfactory bulb of individual animals with ex vivo MRI at 30 weeks post injection, but could not demonstrate reliable in vivo detection and longitudinal tracking of neuroblast migration to the OB in individual animals. Therefore, although LV-mediated labeling of endogenous neural stem and progenitor cells resulted in efficient and stable ferritin-labeling of stem cell progeny in the OB, even with quantitative image analysis, sensitivity remains a limitation for in vivo applications.
Collapse
Affiliation(s)
- Greetje Vande Velde
- Biomedical NMR Unit, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Winkler AM, Rice PFS, Weichsel J, Watson JM, Backer MV, Backer JM, Barton JK. In vivo, dual-modality OCT/LIF imaging using a novel VEGF receptor-targeted NIR fluorescent probe in the AOM-treated mouse model. Mol Imaging Biol 2012; 13:1173-82. [PMID: 21042865 DOI: 10.1007/s11307-010-0450-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Increased vascular endothelial growth factor (VEGF) receptor expression has been found at the sites of angiogenesis, particularly in tumor growth areas, as compared with quiescent vasculature. An increase in VEGF receptor-2 is associated with colon cancer progression. The in vivo detection of VEGF receptor is of interest for the purposes of studying basic mechanisms of carcinogenesis, making clinical diagnoses, and monitoring the efficacy of chemopreventive and therapeutic agents. In this study, a novel single chain (sc)VEGF-based molecular probe is utilized in the azoxymethane (AOM)-treated mouse model of colorectal cancer to study delivery route and specificity for disease. PROCEDURES The probe was constructed by site-specific conjugation of a near-infrared fluorescent dye, Cy5.5, to scVEGF and detected in vivo with a dual-modality optical coherence tomography/laser-induced fluorescence (OCT/LIF) endoscopic system. A probe inactivated via excessive biotinylation was utilized as a control for nonreceptor-mediated binding. The LIF excitation source was a 633-nm He:Ne laser, and red/near-infrared fluorescence was detected with a spectrometer. OCT was used to obtain two-dimensional longitudinal tomograms at eight rotations in the distal colon. Fluorescence emission levels were correlated with OCT-detected disease in vivo. OCT-detected disease was verified with hematoxylin and eosin stained histology slides ex vivo. RESULTS High fluorescence emission intensity from the targeted probe was correlated with tumor presence as detected using OCT in vivo and VEGFR-2 immunostaining on histological sections ex vivo. The inactivated probe accumulated preferentially on the surface of tumor lesions and in lymphoid aggregate tissue and was less selective for VEGFR-2. CONCLUSION The scVEGF/Cy probe delivered via colonic lavage reaches tumor vasculature and selectively accumulates in VEGFR-2-positive areas, resulting in high sensitivity and specificity for tumor detection. The combination of OCT and LIF imaging modalities may allow the simultaneous study of tumor morphology and protein expression for the development of diagnostic and therapeutic methods for colorectal cancer.
Collapse
Affiliation(s)
- Amy M Winkler
- College of Optical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Palmer GM, Vishwanath K, Dewhirst MW. Application of optical imaging and spectroscopy to radiation biology. Radiat Res 2012; 177:365-75. [PMID: 22360397 DOI: 10.1667/rr2531.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optical imaging and spectroscopy is a diverse field that has been of critical importance in a wide range of areas in radiation research. It is capable of spanning a wide range of spatial and temporal scales, and has the sensitivity and specificity needed for molecular and functional imaging. This review will describe the basic principles of optical imaging and spectroscopy, highlighting a few relevant applications to radiation research.
Collapse
Affiliation(s)
- Gregory M Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | |
Collapse
|
41
|
Iftimia N, Iyer AK, Hammer DX, Lue N, Mujat M, Pitman M, Ferguson RD, Amiji M. Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. BIOMEDICAL OPTICS EXPRESS 2012; 3:178-91. [PMID: 22254178 PMCID: PMC3255336 DOI: 10.1364/boe.3.000178] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/07/2011] [Accepted: 12/18/2011] [Indexed: 05/20/2023]
Abstract
A new concept for cancer screening has been preliminarily investigated. A cancer targeting agent loaded with a near-infrared (NIR) dye was topically applied on the tissue to highlight cancer-suspect locations and guide optical coherence tomography (OCT) imaging, which was used to further investigate tissue morphology at the micron scale. A pilot study on ApcMin mice has been performed to preliminarily test this new cancer screening approach. As a cancer-targeting agent, poly(epsilon-caprolactone) microparticles (PCLMPs), labeled with a NIR dye and functionalized with an RGD (argenine-glycine-aspartic acid) peptide, were used. This agent recognizes the α(ν)β(3) integrin receptor (ABIR), which is over-expressed by epithelial cancer cells. The contrast agent was administered topically in vivo in mouse colon. After incubation, the animals were sacrificed and fluorescence-guided high resolution optical coherence tomography (OCT) imaging was used to visualize colon morphology. The preliminary results show preferential staining of the abnormal tissue, as indicated by both microscopy and laser-induced fluorescence imaging, and OCT's capability to differentiate between normal mucosal areas, early dysplasia, and adenocarcinoma. Although very preliminary, the results of this study suggest that fluorescence-guided OCT imaging might be a suitable approach for cancer screening. If successful, this approach could be used by clinicians to more reliably diagnose early stage cancers in vivo.
Collapse
Affiliation(s)
- Nicusor Iftimia
- Physical Sciences, Inc., Andover, Massachusetts 01810-1077, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Smith ETS. Clinical applications of imaging biomarkers. Part 1. The neuroradiologist's perspective. Br J Radiol 2011. [DOI: 10.1259/bjr/16586938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Wilcoxen KM, Hesterman J, Orcutt KD, Hoppin J. Intersectional innovation in biomarker development for patient-centric medicine. Per Med 2011; 8:469-481. [PMID: 29783339 DOI: 10.2217/pme.11.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pharmaceutical and healthcare industries are being revolutionized by the use of genomics, proteomics, metabolomics, bioinformatics and molecular imaging. Patient friendly diagnosis, treatment and disease management options that utilize the combination of these technologies are currently in development. New innovations in pharmaceutical advancement are taking place at the intersection of these technologies, and will be coupled with societal changes as we move to a fully networked and individual-centric consumer base. Numerous examples of the combinations of molecular characterization technologies aimed at better preclinical and clinical disease understanding, diagnosis and treatment are highlighted that are ideally situated to generate the intersectional innovation that drives healthcare advancement. The true value in patient-centric medicine will only be realized as the improved molecular characterization of disease provided by these technologies is integrated across platforms that operate directly in the patient and care provider space to provide a comprehensive view of health. Molecular profiling and imaging technologies must become fully integrated and amenable for patient and physician use in a networked environment that can provide a personal health avatar approach to medicine.
Collapse
Affiliation(s)
- Keith M Wilcoxen
- Biomarkers & Personalized Medicine, Eisai Inc., 4 Corporate Drive, Andover MA 01810, USA.
| | - Jacob Hesterman
- InviCRO LLC, 2 Oliver Street, Suite 611, Boston, MA 02109, USA
| | | | - Jack Hoppin
- InviCRO LLC, 2 Oliver Street, Suite 611, Boston, MA 02109, USA
| |
Collapse
|
44
|
Zhang F, Zhu L, Liu G, Hida N, Lu G, Eden HS, Niu G, Chen X. Multimodality imaging of tumor response to doxil. Am J Cancer Res 2011; 1:302-9. [PMID: 21772927 PMCID: PMC3139195 DOI: 10.7150/thno/v01p0302] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/01/2011] [Indexed: 01/31/2023] Open
Abstract
Purpose: Early assessment of tumor responses to chemotherapy could enhance treatment outcomes by ensuring that, from the beginning, treatments meet the individualized needs of patients. In this study, we applied multiple modality molecular imaging techniques to pre-clinical monitoring of early tumor responses to Doxil, focusing on imaging of apoptosis. Methods: Mice bearing UM-SCC-22B human head and neck squamous cancer tumors received either PBS or 1 to 2 doses of Doxil® (doxorubicin HCl liposome injection) (10 mg/kg/dose). Bioluminescence signals from an apoptosis-responsive reporter gene were captured for apoptosis evaluation. Tumor metabolism and proliferation were assessed by 18F-FDG and 3'-18F-fluoro-3'-deoxythymidine (18F-FLT) positron emission tomography. Diffusion-weighted magnetic resonance imaging (DW-MRI) was performed to calculate averaged apparent diffusion coefficients (ADCs) for the whole tumor volume. After imaging, tumor samples were collected for histological evaluation, including terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), anti-CD31, and Ki-67 immunostaining. Results: Two doses of Doxil significantly inhibited tumor growth. Bioluminescence imaging (BLI) indicated apoptosis of tumor cells after just 1 dose of Doxil treatment, before apparent tumor shrinkage. 18F-FDG and 18F-FLT PET imaging identified decreased tumor metabolism and proliferation at later time points than those at which BLI indicated apoptosis. MRI measurements of ADC altered in response to Doxil, but only after tumors were treated with 2 doses. Decreased tumor proliferation and increased apoptotic cells were confirmed by changes of Ki-67 index and apoptotic ratio. Conclusion: Our study of tumor responses to different doses of Doxil demonstrated that it is essential to combine apoptosis imaging strategies with imaging of other critical biological or pathological pathways, such as metabolism and proliferation, to improve clinical decision making in apoptosis-related diseases and interventions.
Collapse
|
45
|
Vande Velde G, Rangarajan JR, Toelen J, Dresselaers T, Ibrahimi A, Krylychkina O, Vreys R, Van der Linden A, Maes F, Debyser Z, Himmelreich U, Baekelandt V. Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Ther 2011; 18:594-605. [PMID: 21346786 DOI: 10.1038/gt.2011.2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of in vivo imaging protocols to reliably track transplanted cells or to report on gene expression is critical for treatment monitoring in (pre)clinical cell and gene therapy protocols. Therefore, we evaluated the potential of lentiviral vectors (LVs) and adeno-associated viral vectors (AAVs) to express the magnetic resonance imaging (MRI) reporter gene ferritin in the rodent brain. First, we compared the induction of background MRI contrast for both vector systems in immune-deficient and immune-competent mice. LV injection resulted in hypointense (that is, dark) changes of T(2)/T(2)(*) (spin-spin relaxation time)-weighted MRI contrast at the injection site, which can be partially explained by an inflammatory response against the vector injection. In contrast to LVs, AAV injection resulted in reduced background contrast. Moreover, AAV-mediated ferritin overexpression resulted in significantly enhanced contrast to background on T(2)(*)-weighted MRI. Although sensitivity associated with the ferritin reporter remains modest, AAVs seem to be the most promising vector system for in vivo MRI reporter gene imaging.
Collapse
Affiliation(s)
- G Vande Velde
- Laboratory for Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bradley WG, Golding SG, Herold CJ, Hricak H, Krestin GP, Lewin JS, Miller JC, Ringertz HG, Thrall JH. Globalization of P4 Medicine: Predictive, Personalized, Preemptive, and Participatory—Summary of the Proceedings of the Eighth International Symposium of the International Society for Strategic Studies in Radiology, August 27–29, 2009. Radiology 2011; 258:571-82. [DOI: 10.1148/radiol.10100568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Tei L, Barge A, Geninatti Crich S, Pagliarin R, Negri V, Ramella D, Cravotto G, Aime S. Target visualization by MRI using the avidin/biotin amplification route: synthesis and testing of a biotin-Gd-DOTA monoamide trimer. Chemistry 2010; 16:8080-7. [PMID: 20533461 DOI: 10.1002/chem.201000508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To design efficient targeting strategies in magnetic resonance (MR) molecular imaging applications, the formation of supramolecular adducts between (strept)avidin ((S)Av) and tribiotinylated Gd-DOTA-monoamide complexes (DOTA=1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) was explored. Two compounds based on the trivalent core of tris(2-aminoethyl)amine each containing three biotin molecules and one (L1) or three (L2) DOTA-monoamide (DOTAMA) ligands were synthesized. In these tribiotinylated derivatives the biotins are spaced far enough apart to allow the formation of the supramolecular adduct with the protein and to host the chelating units in between the (S)Av layers. Size exclusion HPLC analyses indicated complete formation of very high molecular weight polymers (>2 MDa) with (S)Av in solution. A (1)H NMR spectroscopy relaxometric study on the obtained polymeric adducts showed a marked increase of the relaxivity at 35-40 MHz as a consequence of the lengthening of the tumbling time due to the formation of Gd-chelates/(S)Av polymers. The most efficient Gd(3)L2/(S)Av polymeric system was used for a test in cell cultures. The target is represented by a neural cell adhesion molecule (NCAM), which is overexpressed in Kaposi's sarcoma cells and tumor endothelial cells (TEC) and that is efficiently recognized by a biotinylated tetrameric peptide (C3d-Bio). In vitro experiments showed that only cells incubated with both C3d-Bio and Gd(3)L2/SAv polymer were hyperintense with respect to the control. Relaxation rates of cell pellets incubated with Gd(3)L2/SAv alone were not significantly different from the untreated cells demonstrating the absence of a specific binding.
Collapse
Affiliation(s)
- Lorenzo Tei
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale Amedeo Avogadro, Viale T. Michel 11, 15121 Alessandria, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol 2010; 65:500-16. [PMID: 20541650 DOI: 10.1016/j.crad.2010.03.011] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/25/2010] [Indexed: 02/07/2023]
Abstract
In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use positron-emission tomography (PET) or single photon-emission computed tomography (SPECT)-based techniques. In ongoing preclinical research, novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multi-modality molecular imaging. Contrast-enhanced molecular ultrasound (US) with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and US imaging with molecularly-targeted microbubbles are attractive strategies as they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and US techniques involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with US. Current preclinical findings and advances in instrumentation, such as endoscopes and microcatheters, suggest that these molecular imaging methods have numerous potential clinical applications and will be translated into clinical use in the near future.
Collapse
Affiliation(s)
- M A Pysz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5424, USA
| | | | | |
Collapse
|
49
|
|
50
|
Levi J, Kothapalli SR, Ma TJ, Hartman K, Khuri-Yakub BT, Gambhir SS. Design, synthesis, and imaging of an activatable photoacoustic probe. J Am Chem Soc 2010; 132:11264-9. [PMID: 20698693 PMCID: PMC2922742 DOI: 10.1021/ja104000a] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic tomography is a rapidly growing imaging modality that can provide images of high spatial resolution and high contrast at depths up to 5 cm. We report here the design, synthesis, and evaluation of an activatable probe that shows great promise for enabling detection of the cleaved probe in the presence of high levels of nonactivated, uncleaved probe, a difficult task to attain in absorbance-based modality. Before the cleavage by its target, proteolytic enzyme MMP-2, the probe, an activatable cell-penetrating peptide, Ceeee[Ahx]PLGLAGrrrrrK, labeled with two chromophores, BHQ3 and Alexa750, shows photoacoustic signals of similar intensity at the two wavelengths corresponding to the absorption maxima of the chromophores, 675 and 750 nm. Subtraction of the images taken at these two wavelengths makes the probe effectively photoacoustically silent, as the signals at these two wavelengths essentially cancel out. After the cleavage, the dye associated with the cell-penetrating part of the probe, BHQ3, accumulates in the cells, while the other dye diffuses away, resulting in photoacoustic signal seen at only one of the wavelengths, 675 nm. Subtraction of the photoacoustic images at two wavelengths reveals the location of the cleaved (activated) probe. In the search for the chromophores that are best suited for photoacoustic imaging, we have investigated the photoacoustic signals of five chromophores absorbing in the near-infrared region. We have found that the photoacoustic signal did not correlate with the absorbance and fluorescence of the molecules, as the highest photoacoustic signal arose from the least absorbing quenchers, BHQ3 and QXL 680.
Collapse
|