1
|
Guo D, Yao B, Shao WW, Zuo JC, Chang ZH, Shi JX, Hu N, Bao SQ, Chen MM, Fan X, Li XH. The Critical Role of YAP/BMP/ID1 Axis on Simulated Microgravity-Induced Neural Tube Defects in Human Brain Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410188. [PMID: 39656892 DOI: 10.1002/advs.202410188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Integrated biochemical and biophysical signals regulate embryonic development. Correct neural tube formation is critical for the development of central nervous system. However, the role of microgravity in neurodevelopment and its underlying molecular mechanisms remain unclear. In this study, the effects of stimulated microgravity (SMG) on the development of human brain organoids are investigated. SMG impairs N-cadherin-based adherens junction formation, leading to neural tube defects associated with dysregulated self-renewal capacity and neuroepithelial disorganization in human brain organoids. Bulk gene expression analyses reveal that SMG alters Hippo and BMP signaling in brain organoids. The neuropathological deficits in SMG-treated organoids can be rescued by regulating YAP/BMP/ID1 axis. Furthermore, sing-cell RNA sequencing data show that SMG results in perturbations in the number and function of neural stem and progenitor cell subpopulations. One of these subpopulations senses SMG cues and transmits BMP signals to the subpopulation responsible for tube morphogenesis, ultimately affecting the proliferating cell population. Finally, SMG intervention leads to persistent neurologic damage even after returning to normal gravity conditions. Collectively, this study reveals molecular and cellular abnormalities associated with SMG during human brain development, providing opportunities for countermeasures to maintain normal neurodevelopment in space.
Collapse
Affiliation(s)
- Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300072, China
| |
Collapse
|
2
|
Zeng X, Fan X, Yu H, Cai S, Zhou L, Wu H, Zhang Z, Quan S, Li S, Wang X, Xue B, Liu L, Qiao S, Zeng X. Nervonic acid triggered ovarian inflammation by inducing mitochondrial oxidative stress to activate NLRP3/ IL-1β pathway. J Adv Res 2024:S2090-1232(24)00371-0. [PMID: 39181200 DOI: 10.1016/j.jare.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
INTRODUCTION Metabolic syndrome is a serious public health concern across the globe. However, the typical metabolites and mechanisms underlying the decreased fertility related to metabolic syndrome is still elusive. OBJECTIVES The aim of the present study was to explore the typical metabolites and mechanisms underlying the decreased fertility related with metabolic syndrome. METHODS Utilizing metabolomics, a comparative analysis was conducted on fatty acid compositions in various tissues of sows with high and low reproductive performance. Additionally, serum fatty acid compositions in a metabolic syndrome model (obese mice) induced by a high-fat diet (HFD) were investigated to elucidate the lipid metabolites associated with metabolic syndrome. Furthermore, the impact of nervonic acid (NA) on ovarian function was examined using rodent animal models (rats and mice). Through biological techniques such as transcriptomics, CUT&Tag, and analysis of post-translational protein modifications, the molecular mechanisms underlying NA mediated ovarian inflammation were further elucidated based on models utilizing ovarian granulosa cells from pigs, humans, and mice. Finally, validation was performed on ovaries from patients diagnosed with polycystic ovary syndrome. RESULTS In vitro, targeted serum lipidomic analysis revealed that sows with low embryo survival rates exhibited abnormal lipid metabolism characterized by abnormal accumulation of NA in the liver, ovary, and adipose tissue. Additionally, elevated NA levels trigger ovarian inflammation to cause ovarian dysfunction in both sows and rats. Mechanistically, NA induce mitochondrial oxidative stress through inhibiting respiratory chain proteins CYTB and NDFUB8 to activate NLRP3 inflammasome, which triggers procaspase-1 into active caspase-1, and convert the cytokine precursors pro-IL-1β into biologically active IL-1β in ovarian granulosa cells. Notably, we evidenced that NA promotes IL-1β activities by increasing H3K9ac modification level of IL-1β promoter regions and regulating the expression of the transcription factor AP-1. Finally, we found that the decreased expression of CerS2 in ovaries and the increased level of chemokine CXCL14 may be the cause of abnormal NA accumulation. Surprisingly, individuals with polycystic ovary syndrome, obesity, non-alcoholic fatty liver or gestational diabetes mellitus exhibit a high level of serum NA. CONCLUSION Collectively, our current study suggests that NA is a typical metabolite of metabolic syndrome, which strongly influences the ovarian function and embryo survival and also provides that interfering with mitochondrial ROS production is a potential strong strategy for target solving abnormal NA accumulation.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Xinyin Fan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Liangrui Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, PR China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, PR China
| | - Zhiwen Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, PR China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR China; Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR China.
| |
Collapse
|
3
|
Grismaldo R A, Luévano-Martínez LA, Reyes M, García-Márquez G, García-Rivas G, Sobrevia L. Placental mitochondrial impairment and its association with maternal metabolic dysfunction. J Physiol 2024. [PMID: 39116002 DOI: 10.1113/jp285935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The placenta plays an essential role in pregnancy, leading to proper fetal development and growth. As an organ with multiple physiological functions for both mother and fetus, it is a highly energetic and metabolically demanding tissue. Mitochondrial physiology plays a crucial role in the metabolism of this organ and thus any alteration leading to mitochondrial dysfunction has a severe outcome in the development of the fetus. Pregnancy-related pathological states with a mitochondrial dysfunction outcome include preeclampsia and gestational diabetes mellitus. In this review, we address the role of mitochondrial morphology, metabolism and physiology of the placenta during pregnancy, highlighting the roles of the cytotrophoblast and syncytiotrophoblast. We also describe the relationship between preeclampsia, gestational diabetes, gestational diabesity and pre-pregnancy maternal obesity with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Adriana Grismaldo R
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Luévano-Martínez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Monserrat Reyes
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Grecia García-Márquez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Luis Sobrevia
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
4
|
Qi J, Xia C, Zhang Y, Ding R, Zhang Y, Cao W, Duan C, Yao Z, Qin H, Ye Y, Qu P, Li Y, Liu E. Impact of high-fat diet on ovarian epigenetics: Insights from altered intestinal butyric acid levels. Heliyon 2024; 10:e33170. [PMID: 39021996 PMCID: PMC11252756 DOI: 10.1016/j.heliyon.2024.e33170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objective To investigate the effects of a high-fat diet (HFD) on the gut bacterium Roseburia intestinalis and butyric acid levels, and to assess their impact on ovarian function and epigenetic markers in mice. Methods A total of 20 female ICR mice aged 4 weeks were randomly assigned to two groups and fed either a control diet (CD) or an HFD for 36 weeks. Post-intervention, ileal contents were analyzed for the quantification of butyric acid using ELISA, while feces were obtained for Roseburia intestinalis expression assessment via qPCR. Histological evaluations of intestinal and ovarian tissues included H&E and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining, alongside immunohistochemical analysis for F4/80, and immunofluorescent detection of Occludin, ZO-1, 5 mC, and H3K36me3. Ovarian health was assessed through follicle counts and morphological evaluations. Statistical analyses were performed using GraphPad Prism 8.0, with P < 0.05 considered significant. Results After 36 weeks, the HFD group showed significantly higher body weight compared to the CD group (P < 0.01). The HFD led to a decrease in Roseburia intestinalis and butyric acid levels, a reduction in intestinal goblet cells, and an increase in intestinal inflammation. Histological analyses revealed impaired ovarian follicular development and enhanced inflammation in the HFD mice, with immunofluorescent staining showing downregulation of the ovarian epigenetic markers 5 mC and H3K36me3. Conclusion Our study demonstrates that long-term HFD negatively impacts ovarian function and epigenetic regulation. We found decreased levels of the gut bacterium Roseburia intestinalis and its metabolite, butyric acid, which contribute to these adverse effects. Additionally, the associated intestinal inflammation and compromised mucosal barrier may contribute to these adverse outcomes on female reproductive health.
Collapse
Affiliation(s)
- Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Congcong Xia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yulin Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Chenjing Duan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Zijing Yao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Hongyu Qin
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yun Ye
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| |
Collapse
|
5
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. Cell Rep 2024; 43:114326. [PMID: 38848212 DOI: 10.1016/j.celrep.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide insights into fetal brain microglial programs and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Louwen F, Kreis NN, Ritter A, Yuan J. Maternal obesity and placental function: impaired maternal-fetal axis. Arch Gynecol Obstet 2024; 309:2279-2288. [PMID: 38494514 PMCID: PMC11147848 DOI: 10.1007/s00404-024-07462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The prevalence of maternal obesity rapidly increases, which represents a major public health concern worldwide. Maternal obesity is characteristic by metabolic dysfunction and chronic inflammation. It is associated with health problems in both mother and offspring. Increasing evidence indicates that the placenta is an axis connecting maternal obesity with poor outcomes in the offspring. In this brief review, we have summarized the current data regarding deregulated placental function in maternal obesity. The data show that maternal obesity induces numerous placental defects, including lipid and glucose metabolism, stress response, inflammation, immune regulation and epigenetics. These placental defects affect each other and result in a stressful intrauterine environment, which transduces and mediates the adverse effects of maternal obesity to the fetus. Further investigations are required to explore the exact molecular alterations in the placenta in maternal obesity, which may pave the way to develop specific interventions for preventing epigenetic and metabolic programming in the fetus.
Collapse
Affiliation(s)
- Frank Louwen
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
7
|
Lis-Kuberka J, Berghausen-Mazur M, Orczyk-Pawiłowicz M. Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines. Int J Mol Sci 2024; 25:3853. [PMID: 38612666 PMCID: PMC11011253 DOI: 10.3390/ijms25073853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic disorder that has short- and long-term effects on maternal and offspring health. This study aimed to assess the impact of maternal hyperglycemia severity, classified as GDM-G1 (diet treatment) and GDM-G2 (insulin treatment) on colostral appetite-regulating molecules. Colostrum samples were collected from hyperglycemic (N = 30) and normoglycemic (N = 21) mothers, and the concentrations of milk hormones were determined by immunoenzymatic assay. A difference was found for milk ghrelin, but not for molecules such as adiponectin, leptin, resistin, or IGF-I levels, in relation to maternal hyperglycemia. The colostral ghrelin in the GDM-G1 cohort (0.21 ng/mL) was significantly lower than for GDM-G2 (0.38 ng/mL) and non-GDM groups (0.36 ng/mL). However, colostral resistin was higher, but not significantly, for GDM-G1 (13.33 ng/mL) and GDM-G2 (12.81 ng/mL) cohorts than for normoglycemic mothers (7.89 ng/mL). The lack of difference in relation to hyperglycemia for milk leptin, adiponectin, leptin-adiponectin ratio, resistin, and IGF-I levels might be the outcome of effective treatment of GDM during pregnancy. The shift between ghrelin and other appetite-regulating hormones might translate into altered ability to regulate energy balance, affecting offspring's metabolic homeostasis.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Marta Berghausen-Mazur
- Department of Neonatology, J. Gromkowski Provincial Specialist Hospital, Koszarowa 5, 51-149 Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| | - Magdalena Orczyk-Pawiłowicz
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| |
Collapse
|
8
|
Sordillo JE, White F, Majid S, Aguet F, Ardlie KG, Karumanchi SA, Florez JC, Powe CE, Edlow AG, Bouchard L, Jacques PE, Hivert MF. Higher Maternal Body Mass Index Is Associated With Lower Placental Expression of EPYC: A Genome-Wide Transcriptomic Study. J Clin Endocrinol Metab 2024; 109:e1159-e1166. [PMID: 37864851 PMCID: PMC10876411 DOI: 10.1210/clinem/dgad619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/19/2023] [Indexed: 10/23/2023]
Abstract
CONTEXT Elevated body mass index (BMI) in pregnancy is associated with adverse maternal and fetal outcomes. The placental transcriptome may elucidate molecular mechanisms underlying these associations. OBJECTIVE We examined the association of first-trimester maternal BMI with the placental transcriptome in the Gen3G prospective cohort. METHODS We enrolled participants at 5 to 16 weeks of gestation and measured height and weight. We collected placenta samples at delivery. We performed whole-genome RNA sequencing using Illumina HiSeq 4000 and aligned RNA sequences based on the GTEx v8 pipeline. We conducted differential gene expression analysis of over 15 000 genes from 450 placental samples and reported the change in normalized gene expression per 1-unit increase in log2 BMI (kg/m2) as a continuous variable using Limma Voom. We adjusted models for maternal age, fetal sex, gestational age at delivery, gravidity, and surrogate variables accounting for technical variability. We compared participants with BMI of 18.5 to 24.9 mg/kg2 (N = 257) vs those with obesity (BMI ≥30 kg/m2, N = 82) in secondary analyses. RESULTS Participants' mean ± SD age was 28.2 ± 4.4 years and BMI was 25.4 ± 5.5 kg/m2 in early pregnancy. Higher maternal BMI was associated with lower placental expression of EPYC (slope = -1.94, false discovery rate [FDR]-adjusted P = 7.3 × 10-6 for continuous BMI; log2 fold change = -1.35, FDR-adjusted P = 3.4 × 10-3 for BMI ≥30 vs BMI 18.5-24.9 kg/m2) and with higher placental expression of IGFBP6, CHRDL1, and CXCL13 after adjustment for covariates and accounting for multiple testing (FDR < 0.05). CONCLUSION Our genome-wide transcriptomic study revealed novel genes potentially implicated in placental biologic response to higher maternal BMI in early pregnancy.
Collapse
Affiliation(s)
- Joanne E Sordillo
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Frédérique White
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sana Majid
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - François Aguet
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Kristin G Ardlie
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Diabetes Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Camille E Powe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Medical Biology, CIUSSS of Saguenay-Lac-Saint-Jean, Saguenay, QC G7H 7K9, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC J1H 5N3, Canada
| | - Pierre-Etienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC J1H 5N3, Canada
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Diabetes Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC J1H 5N3, Canada
| |
Collapse
|
9
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571680. [PMID: 38187648 PMCID: PMC10769274 DOI: 10.1101/2023.12.16.571680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide novel insights into fetal brain microglial programs, and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders in the setting of maternal exposures.
Collapse
Affiliation(s)
| | - Alexis M. Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L. Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin A. Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H. Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna K. Slonim
- Department of Computer Science, Tufts University, Medford, MA
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, MA
| | - Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Yang X, Liu P, Yu W, Zhang Z. The mediating role of pregnancy-induced hypertension on pre-pregnancy body mass index and adverse neonatal outcomes in women with assisted reproductive technology. J Matern Fetal Neonatal Med 2023; 36:2289348. [PMID: 38057122 DOI: 10.1080/14767058.2023.2289348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To explore whether pregnancy-induced hypertension (PIH) mediates the association between pre-pregnancy body mass index (BMI) and adverse neonatal outcomes in women undergoing assisted reproductive technology (ART) for singleton pregnancies. METHODS This cohort study collected 79437 maternal data from the National Vital Statistics System (NVSS) between 2020 and 2021. Univariable and multivariable logistic regression models were applied to estimate the association between pre-pregnancy BMI and PIH in women receiving ART as well as the associations between pre-pregnancy BMI and PIH and adverse neonatal outcomes. The mediation effect of PIH on the association between pre-pregnancy BMI and adverse neonatal outcomes was estimated according to the total effect, natural direct effect, natural indirect effect, and percentage of mediation. RESULTS There were 25769 participants had adverse neonatal outcomes at the end of the follow-up. After adjusting for confounding factors, an increased risk of PIH in women receiving ART was identified in those with pre-pregnancy BMI ≥25 kg/m2 [odds ratio (OR)=1.92, 95% confidence interval (CI):1.84-2.01]. Pre-pregnancy BMI ≥25 kg/m2 was associated with an increased risk of adverse neonatal outcomes (OR = 1.26, 95%CI:1.22-1.30). Women with PIH had an increased risk of adverse neonatal outcomes (OR = 1.79, 95%CI:1.71-1.87). The percentage mediated by PIH in the association between pre-pregnancy BMI and adverse neonatal outcomes was 21.30%. CONCLUSION PIH partially mediated the association between pre-pregnancy BMI and adverse neonatal outcomes in women receiving ART, which recommends that women control weight before receiving ART.
Collapse
Affiliation(s)
- Xue Yang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengyu Liu
- Medical unit, Troops 65739 PLA, Dandong, China
| | - Wenqian Yu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhitao Zhang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zhang J, Wen J, Wan X, Luo P. The causal relationship between air pollution, obesity, and COVID-19 risk: a large-scale genetic correlation study. Front Endocrinol (Lausanne) 2023; 14:1221442. [PMID: 37867515 PMCID: PMC10585274 DOI: 10.3389/fendo.2023.1221442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Observational evidence reported that air pollution is a significant risk element for numerous health problems, such as obesity and coronavirus disease 2019 (COVID-19), but their causal relationship is currently unknown. Our objective was to probe the causal relationship between air pollution, obesity, and COVID-19 and to explore whether obesity mediates this association. Methods We obtained instrumental variables strongly correlated to air pollutants [PM2.5, nitrogen dioxide (NO2) and nitrogen oxides (NOx)], 9 obesity-related traits (abdominal subcutaneous adipose tissue volume, waist-to-hip ratio, body mass index, hip circumference, waist circumference, obesity class 1-3, visceral adipose tissue volume), and COVID-19 phenotypes (susceptibility, hospitalization, severity) from public genome-wide association studies. We used clinical and genetic data from different public biological databases and performed analysis by two-sample and two-step Mendelian randomization. Results PM2.5 genetically correlated with 5 obesity-related traits, which obesity class 1 was most affected (beta = 0.38, 95% CI = 0.11 - 0.65, p = 6.31E-3). NO2 genetically correlated with 3 obesity-related traits, which obesity class 1 was also most affected (beta = 0.33, 95% CI = 0.055 - 0.61, p = 1.90E-2). NOx genetically correlated with 7 obesity-related traits, which obesity class 3 was most affected (beta = 1.16, 95% CI = 0.42-1.90, p = 2.10E-3). Almost all the obesity-related traits genetically increased the risks for COVID-19 phenotypes. Among them, body mass index, waist circumference, hip circumference, waist-to-hip ratio, and obesity class 1 and 2 mediated the effects of air pollutants on COVID-19 risks (p < 0.05). However, no direct causal relationship was observed between air pollution and COVID-19. Conclusion Our study suggested that exposure to heavy air pollutants causally increased risks for obesity. Besides, obesity causally increased the risks for COVID-19 phenotypes. Attention needs to be paid to weight status for the population who suffer from heavy air pollution, as they are more likely to be susceptible and vulnerable to COVID-19.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Lis-Kuberka J, Pupek M, Orczyk-Pawiłowicz M. The Mother-Child Dyad Adipokine Pattern: A Review of Current Knowledge. Nutrients 2023; 15:4059. [PMID: 37764842 PMCID: PMC10535905 DOI: 10.3390/nu15184059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
An important role in the network of interconnections between the mother and child is played by adipokines, which are adipose tissue hormones engaged in the regulation of metabolism. Alternations of maternal adipokines translate to the worsening of maternal insulin resistance as well as metabolic stress, altered placenta functions, and fetal development, which finally contribute to long-term metabolic unfavorable conditions. This paper is the first to summarize the current state of knowledge concerning the concentrations of individual adipokines in different biological fluids of maternal and cord plasma, newborn/infant plasma, milk, and the placenta, where it highlights the impact of adverse perinatal risk factors, including gestational diabetes mellitus, preeclampsia, intrauterine growth restriction, preterm delivery, and maternal obesity on the adipokine patterns in maternal-infant dyads. The importance of adipokine measurement and relationships in biological fluids during pregnancy and lactation is crucial for public health in the area of prevention of most diet-related metabolic diseases. The review highlights the huge knowledge gap in the field of hormones participating in the energy homeostasis and metabolic pathways during perinatal and postnatal periods in the mother-child dyad. An in-depth characterization is needed to confirm if the adverse outcomes of early developmental programming might be modulated via maternal lifestyle intervention.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| | | | - Magdalena Orczyk-Pawiłowicz
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
13
|
Shook LL, James KE, Roberts DJ, Powe CE, Perlis RH, Thornburg KL, O'Tierney-Ginn PF, Edlow AG. Sex-specific impact of maternal obesity on fetal placental macrophages and cord blood triglycerides. Placenta 2023; 140:100-108. [PMID: 37566941 PMCID: PMC10529163 DOI: 10.1016/j.placenta.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Maternal obesity is associated with increased risk of offspring obesity and cardiometabolic disease. Altered fetoplacental immune programming is a potential candidate mechanism. Differences in fetal placental macrophages, or Hofbauer cells (HBCs), have been observed in maternal obesity, and lipid metabolism is a key function of resident macrophages that may be deranged in inflammation/immune activation. We sought to test the following hypotheses: 1) maternal obesity is associated with altered HBC density and phenotype in the term placenta and 2) obesity-associated HBC changes are associated with altered placental lipid transport to the fetus. The impact of fetal sex was evaluated in all experiments. METHODS We quantified the density and morphology of CD163-and CD68-positive HBCs in placental villi in 34 full-term pregnancies undergoing cesarean delivery (N = 15, maternal BMI ≥30 kg/m2; N = 19, BMI <30 kg/m2). Antibody-positive cells in terminal villi were detected and cell size and circularity analyzed using a semi-automated method for thresholding of bright-field microscopy images (ImageJ). Placental expression of lipid transporter genes was quantified using RTqPCR, and cord plasma triglycerides (TGs) were profiled using modified Wahlefeld method. The impact of maternal obesity and fetal sex on HBC features, lipid transporters, and cord TGs were evaluated by two-way ANOVA. Spearman correlations of cord TGs, HBC metrics and gene expression levels were calculated. RESULTS Maternal obesity was associated with significantly increased density of HBCs, with male placentas most affected (fetal sex by maternal obesity interaction p = 0.04). CD163+ HBCs were larger and rounder in obesity-exposed male placentas. Sexually dimorphic expression of placental FATP4, FATP6, FABPPM, AMPKB1 and AMPKG and cord TGs was noted in maternal obesity, such that levels were higher in males and lower in females relative to sex-matched controls. Cord TGs were positively correlated with HBC density and FATP1 expression. DISCUSSION Maternal obesity is associated with sex-specific alterations in HBC density and placental lipid transporter expression, which may impact umbilical cord blood TG levels and offspring cardiometabolic programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kaitlyn E James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Camille E Powe
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Department of Medicine, Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA; Center for Quantitative Health, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Perrie F O'Tierney-Ginn
- Tufts Medical Center, Mother Infant Research Institute, Box# 394, 800 Washington Street, Boston, MA, 02111, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Tao Y, Chen W, Xu H, Xu J, Yang H, Luo X, Chen M, He J, Bai Y, Qi H. Adipocyte-Derived Exosomal NOX4-Mediated Oxidative Damage Induces Premature Placental Senescence in Obese Pregnancy. Int J Nanomedicine 2023; 18:4705-4726. [PMID: 37608820 PMCID: PMC10441661 DOI: 10.2147/ijn.s419081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Background A recent study has reported that maternal obesity is linked to placental oxidative damage and premature senescence. NADPH oxidase 4 (NOX4) is massively expressed in adipose tissue, and its induced reactive oxygen species have been found to contribute to cellular senescence. While, whether, in obese pregnancy, adipose tissue-derived NOX4 is the considerable cause of placental senescence remained elusive. Methods This study collected term placentas from obese and normal pregnancies and obese pregnant mouse model was constructed by a high fat diet to explore placental senescence. Furthermore, adipocyte-derived exosomes were isolated from primary adipocyte medium of obese and normal pregnancies to examine their effect on placenta functions in vivo and vitro. Results The placenta from the obese group showed a significant increase in placental oxidative damage and senescence. Exosomes from obese adipocytes contained copies of NOX4, and when cocultured with HTR8/SVneo cells, they induced severe oxidative damage, cellular senescence, and suppressed proliferation and invasion functions when compared with the control group. In vivo, adipocyte-derived NOX4-containing exosomes could induce placental oxidative damage and senescence, ultimately leading to adverse pregnancy outcomes. Conclusion In obesity, adipose tissue can secrete exosomes containing NOX4 which can be delivered to trophoblast resulting in severe DNA oxidative damage and premature placental senescence, ultimately leading to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Wei Chen
- Department of Emergency & Intensive Care Units, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongbing Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Huan Yang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing, 404100, People’s Republic of China
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Miaomiao Chen
- Maternal and Child Health Hospital of Hubei Province, Wuhan City, Hubei Province, 430070, People’s Republic of China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Women and Children’s Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
15
|
Santos ED, Hernández MH, Sérazin V, Vialard F, Dieudonné MN. Human Placental Adaptive Changes in Response to Maternal Obesity: Sex Specificities. Int J Mol Sci 2023; 24:ijms24119770. [PMID: 37298720 DOI: 10.3390/ijms24119770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Maternal obesity is increasingly prevalent and is associated with elevated morbidity and mortality rates in both mothers and children. At the interface between the mother and the fetus, the placenta mediates the impact of the maternal environment on fetal development. Most of the literature presents data on the effects of maternal obesity on placental functions and does not exclude potentially confounding factors such as metabolic diseases (e.g., gestational diabetes). In this context, the focus of this review mainly lies on the impact of maternal obesity (in the absence of gestational diabetes) on (i) endocrine function, (ii) morphological characteristics, (iii) nutrient exchanges and metabolism, (iv) inflammatory/immune status, (v) oxidative stress, and (vi) transcriptome. Moreover, some of those placental changes in response to maternal obesity could be supported by fetal sex. A better understanding of sex-specific placental responses to maternal obesity seems to be crucial for improving pregnancy outcomes and the health of mothers and children.
Collapse
Affiliation(s)
- Esther Dos Santos
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - Marta Hita Hernández
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
| | - Valérie Sérazin
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - François Vialard
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300 Poissy, France
| | - Marie-Noëlle Dieudonné
- UFR des Sciences de la Santé Simone Veil, Université de Versailles-Saint Quentin en Yvelines-Université Paris Saclay (UVSQ), INRAE, BREED, F-78350 Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort (EnvA), BREED, F-94700 Maisons-Alfort, France
| |
Collapse
|
16
|
Purohit A, Oyeka CP, Khan SS, Toscano M, Nayak S, Lawson SM, Blumenthal RS, Sharma G. Preventing Adverse Cardiovascular Outcomes in Pregnancy Complicated by Obesity. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2023; 12:129-137. [PMID: 37840644 PMCID: PMC10575259 DOI: 10.1007/s13669-023-00356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 10/17/2023]
Abstract
Purpose of review Obesity is a chronic disease that is becoming increasingly prevalent, and more individuals of reproductive age have obesity prior to becoming pregnant. Obesity in pregnancy is associated with short- and long-term adverse consequences for both the birthing person and their offspring which have been associated with increased long-term cardiovascular morbidity and mortality. The goal of this review is to discuss what is currently understood about the relationship between maternal obesity and adverse pregnancy outcomes (APOs), the association between APOs and future cardiovascular disease (CVD) risk, and what evidence-based interventions can be implemented to prevent adverse outcomes in this population. Recent findings Maternal obesity has been associated with an increased risk of APOs such as gestational diabetes, hypertensive disorders of pregnancy, and preterm birth as well as an increased risk of future CVD, such as metabolic syndrome, chronic hypertension, coronary heart disease, and stroke. The impact of maternal obesity also extends beyond the pregnant individual to the offspring, increasing the risk of fetal, neonatal, and infant mortality, as well as of congenital malformations, prematurity, and long-term health problems such as insulin resistance and childhood obesity. Prevention guidelines are incorporating the increased risk of adverse outcomes from maternal obesity into formalized risk assessments to guide both prenatal and postpartum care. It is becoming evident that a multidisciplinary cardio-obstetrics team is an important part of providing comprehensive care for pregnant individuals with obesity and other cardiovascular risk factors, including preexisting CVD and a history of prior APOs. There remains a need for further studies to better understand the mechanisms underlying the relationship between maternal obesity and APOs, as well as the racial and ethnic disparities that have been noted in the prevalence of APOs and associated CVD risk and mortality. Summary There is increasing awareness that obesity in pregnancy is associated with various short- and long-term adverse maternal and offspring outcomes. There are multiple screening and prevention strategies that may be implemented before, during, and after pregnancy to prevent these adverse outcomes.
Collapse
Affiliation(s)
- Aarti Purohit
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sadiya S. Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marika Toscano
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shriddha Nayak
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shari M. Lawson
- Johns Hopkins University School of Medicine Department of Gynecology and Obstetrics, Baltimore, MD, USA
| | | | - Garima Sharma
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Shen WB, Wang B, Yao R, Goetzinger KR, Wu S, Gao H, Yang P. Obesity impacts placental function through activation of p-IRE1a-XBP1s signaling. Front Cell Dev Biol 2023; 11:1023327. [PMID: 36819099 PMCID: PMC9929362 DOI: 10.3389/fcell.2023.1023327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity is associated with a variety of obstetrical outcomes including stillbirth, preeclampsia, and gestational diabetes, and increases the risk of fetuses for congenital heart defects. Obesity during pregnancy represents a major contribution to metabolic dysregulation, which not only plays a key role in the pathogenesis of adverse outcome but also can potently induce endoplasmic reticulum (ER) stress. However, the mechanism associating such an obesogenic metabolic environment and adverse pregnancy outcomes has remained poorly understood. In this study, we aimed to determine whether the ER stress pathways (also named unfolded protein response (UPR)) were activated in the placenta by obesity. We collected placenta from the obese pregnancy (n = 12) and non-obese pregnancy (n = 12) following delivery by Caesarean-section at term. The specimens were assessed with immunocytochemistry staining and RT-QPCR. Our results revealed that in the obese placenta, p-IRE1α and XBP1s were significantly increased, CHOP and nine UPR chaperone genes were upregulated, including GRP95, PDIA6, Calnexin, p58IPK, SIL-1, EDEM, Herp, GRP58 and Calreticulin. However, Perk and BiP are not activated in the obese placenta. Our data suggest that upregulated p-IRE1α and XBP1s signaling, and UPR chaperone genes may play an important role in maternal obesity-induced placental pathology. In conclusion, this is the first report on ER stress and UPR activation in the placenta of maternal obesity. Our findings represent the first step in the understanding of one of the key ER signaling pathways, also referred to IRE1α-XBP1, in placental pathophysiology affected by obesity, which may be an important mechanism accounting for the observed higher maternal and perinatal risks.
Collapse
Affiliation(s)
- Wei-Bin Shen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bingbing Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ruofan Yao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Katherine R. Goetzinger
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sheng Wu
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University School of Medicine, Philadelphia, PA, United States
| | - Haijun Gao
- Departmentof Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Peixin Yang,
| |
Collapse
|
18
|
Rajagopalan V, Schmithorst V, El-Ali A, Reynolds W, Lee V, Wallace J, Weinberg J, Johnson J, Votava-Smith J, Adibi J, Panigrahy A. Associations between Maternal Risk Factors and Intrinsic Placental and Fetal Brain Functional Properties in Congenital Heart Disease. Int J Mol Sci 2022; 23:15178. [PMID: 36499505 PMCID: PMC9738149 DOI: 10.3390/ijms232315178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
The relationship between maternal risk factors (MRFs) (particularly pre-gravid obesity, diabetes, and hypertension) and congenital heart disease (CHD) to placental and fetal brain outcomes is poorly understood. Here, we tested the hypothesis that MRF and CHD would be associated with reduced intrinsic placental and fetal brain function using a novel non-invasive technique. Pregnant participants with and without MRF and fetal CHD were prospectively recruited and underwent feto-placental MRI. Using intrinsic properties of blood oxygen level dependent imaging (BOLD) we quantified spatiotemporal variance of placenta and fetal brain. MRFs and CHD were correlated with functional characteristics of the placenta and fetal brain. Co-morbid MRF (hypertension, diabetes, and obesity) reduced spatiotemporal functional variance of placenta and fetal brain (p < 0.05). CHD predicted reduced fetal brain temporal variance compared to non-CHD (p < 0.05). The presence of both MRF and CHD was associated with reduced intrinsic pBOLD temporal variance (p = 0.047). There were no significant interactions of MRFs and CHD status on either temporal or spatial variance of intrinsic brain BOLD. MRF and CHD reduced functional characteristic of placenta and brain in fetuses. MRF modification and management during pregnancy may have the potential to not only provide additional risk stratification but may also improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Department of Radiology, Children’s Hospital Los Angeles, 4650 Sunset Blvd., MS #32, Los Angeles, CA 90027, USA
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Vanessa Schmithorst
- Pediatric Imaging Research Center, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Alexander El-Ali
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - William Reynolds
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd., Pittsburgh, PA 15206, USA
| | - Vincent Lee
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Jacqueline Weinberg
- Department of Cardiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 3, Pittsburgh, PA 15224, USA
| | - Jennifer Johnson
- Department of Cardiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 3, Pittsburgh, PA 15224, USA
| | - Jodie Votava-Smith
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
- Department of Pediatrics, Childrens Hospital Los Angeles, 4650 Sunset Blvd., MS #71, Los Angeles, CA 90027, USA
| | - Jennifer Adibi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Pediatric Imaging Research Center, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| |
Collapse
|
19
|
Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients 2022; 14:nu14214515. [PMID: 36364776 PMCID: PMC9654759 DOI: 10.3390/nu14214515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity in pregnancy induces metabolic syndrome, low-grade inflammation, altered endocrine factors, placental function, and the maternal gut microbiome. All these factors impact fetal growth and development, including brain development. The lipid metabolic transporters of the maternal-fetal-placental unit are dysregulated in obesity. Consequently, the transport of essential long-chain PUFAs for fetal brain development is disturbed. The mother’s gut microbiota is vital in maintaining postnatal energy homeostasis and maternal-fetal immune competence. Obesity during pregnancy changes the gut microbiota, affecting fetal brain development. Obesity in pregnancy can induce placental and intrauterine inflammation and thus influence the neurodevelopmental outcomes of the offspring. Several epidemiological studies observed an association between maternal obesity and adverse neurodevelopment. This review discusses the effects of maternal obesity and gut microbiota on fetal neurodevelopment outcomes. In addition, the possible mechanisms of the impacts of obesity and gut microbiota on fetal brain development are discussed.
Collapse
|
20
|
Rajamoorthi A, LeDuc CA, Thaker VV. The metabolic conditioning of obesity: A review of the pathogenesis of obesity and the epigenetic pathways that "program" obesity from conception. Front Endocrinol (Lausanne) 2022; 13:1032491. [PMID: 36329895 PMCID: PMC9622759 DOI: 10.3389/fendo.2022.1032491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the developmental origins of health and disease is integral to overcome the global tide of obesity and its metabolic consequences, including atherosclerotic cardiovascular disease, type 2 diabetes, hyperlipidemia, and nonalcoholic fatty liver disease. The rising prevalence of obesity has been attributed, in part, to environmental factors including the globalization of the western diet and unhealthy lifestyle choices. In this review we argue that how and when such exposures come into play from conception significantly impact overall risk of obesity and later health outcomes. While the laws of thermodynamics dictate that obesity is caused by an imbalance between caloric intake and energy expenditure, the drivers of each of these may be laid down before the manifestation of the phenotype. We present evidence over the last half-century that suggests that the temporospatial evolution of obesity from intrauterine life and beyond is, in part, due to the conditioning of physiological processes at critical developmental periods that results in maladaptive responses to obesogenic exposures later in life. We begin the review by introducing studies that describe an association between perinatal factors and later risk of obesity. After a brief discussion of the pathogenesis of obesity, including the systemic regulation of appetite, adiposity, and basal metabolic rate, we delve into the mechanics of how intrauterine, postnatal and early childhood metabolic environments may contribute to adult obesity risk through the process of metabolic conditioning. Finally, we detail the specific epigenetic pathways identified both in preclinical and clinical studies that synergistically "program" obesity.
Collapse
Affiliation(s)
- Ananthi Rajamoorthi
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Charles A. LeDuc
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
- The Naomi Berrie Diabetes Center, Columbia University IRVING Medical Center, New York, NY, United States
| | - Vidhu V. Thaker
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
- The Naomi Berrie Diabetes Center, Columbia University IRVING Medical Center, New York, NY, United States
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|