1
|
Carroll DT, Elsakr JM, Miller A, Fuhr J, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Maternal Western-style diet in nonhuman primates leads to offspring islet adaptations including altered gene expression and insulin hypersecretion. Am J Physiol Endocrinol Metab 2023; 324:E577-E588. [PMID: 37134140 PMCID: PMC10259856 DOI: 10.1152/ajpendo.00087.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate β-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future β-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter β-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.
Collapse
Affiliation(s)
- Darian T Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Joseph M Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer Fuhr
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sarah Rene Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Melissa Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
3
|
Understanding the Long-Lasting Effects of Fetal Nutrient Restriction versus Exposure to an Obesogenic Diet on Islet-Cell Mass and Function. Metabolites 2021; 11:metabo11080514. [PMID: 34436455 PMCID: PMC8401811 DOI: 10.3390/metabo11080514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Early life represents a window of phenotypic plasticity. Thus, exposure of the developing fetus to a compromised nutritional environment can have long term consequences for their health. Indeed, undernutrition or maternal intake of an obesogenic diet during pregnancy leads to a heightened risk of type 2 diabetes (T2D) and obesity in her offspring in adult life. Given that abnormalities in beta-cell function are crucial in delineating the risk of T2D, studies have investigated the impact of these exposures on islet morphology and beta-cell function in the offspring in a bid to understand why they are more at risk of T2D. Interestingly, despite the contrasting maternal metabolic phenotype and, therefore, intrauterine environment associated with undernutrition versus high-fat feeding, there are a number of similarities in the genes/biological pathways that are disrupted in offspring islets leading to changes in function. Looking to the future, it will be important to define the exact mechanisms involved in mediating changes in the gene expression landscape in islet cells to determine whether the road to T2D development is the same or different in those exposed to different ends of the nutritional spectrum.
Collapse
|
4
|
Ramirez JSB, Graham AM, Thompson JR, Zhu JY, Sturgeon D, Bagley JL, Thomas E, Papadakis S, Bah M, Perrone A, Earl E, Miranda-Dominguez O, Feczko E, Fombonne EJ, Amaral DG, Nigg JT, Sullivan EL, Fair DA. Maternal Interleukin-6 Is Associated With Macaque Offspring Amygdala Development and Behavior. Cereb Cortex 2021; 30:1573-1585. [PMID: 31665252 DOI: 10.1093/cercor/bhz188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Human and animal cross-sectional studies have shown that maternal levels of the inflammatory cytokine interleukin-6 (IL-6) may compromise brain phenotypes assessed at single time points. However, how maternal IL-6 associates with the trajectory of brain development remains unclear. We investigated whether maternal IL-6 levels during pregnancy relate to offspring amygdala volume development and anxiety-like behavior in Japanese macaques. Magnetic resonance imaging (MRI) was administered to 39 Japanese macaque offspring (Female: 18), providing at least one or more time points at 4, 11, 21, and 36 months of age with a behavioral assessment at 11 months of age. Increased maternal third trimester plasma IL-6 levels were associated with offspring's smaller left amygdala volume at 4 months, but with more rapid amygdala growth from 4 to 36 months. Maternal IL-6 predicted offspring anxiety-like behavior at 11 months, which was mediated by reduced amygdala volumes in the model's intercept (i.e., 4 months). The results increase our understanding of the role of maternal inflammation in the development of neurobehavioral disorders by detailing the associations of a commonly examined inflammatory indicator, IL-6, on amygdala volume growth over time, and anxiety-like behavior.
Collapse
Affiliation(s)
- Julian S B Ramirez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jacqueline R Thompson
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Jennifer Y Zhu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jennifer L Bagley
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Elina Thomas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Samantha Papadakis
- Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA
| | - Muhammed Bah
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Anders Perrone
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | | | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland OR, USA
| | - Eric J Fombonne
- Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Pediatrics, Oregon Health & Science University, Portland OR, USA.,Institute for Development & Disability, Oregon Health & Science University, Portland OR, USA
| | - David G Amaral
- MIND Institute, University of California Davis, Davis CA, USA.,Department of Psychiatry and Behavioral Sciences, and Center for Neuroscience, University of California Davis, Davis CA, USA.,California National Primate Research Center, University of California Davis, Davis CA, USA
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA
| | - Elinor L Sullivan
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Human Physiology, University of Oregon, Eugene OR, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Advance Imaging Research Center, Oregon Health & Science University, Portland OR, USA
| |
Collapse
|
5
|
Bradbery AN, Coverdale JA, Hartz CJ, Millican AA, Goehring MS, Fikes KK, Picking E, Hammer CJ, Dunlap KA, Cardoso RC, Wickersham TA, Leatherwood JL, Satterfield MC. Effect of maternal overnutrition on predisposition to insulin resistance in the foal: Maternal parameters and foal pancreas histoarchitecture. Anim Reprod Sci 2021; 227:106720. [PMID: 33636430 DOI: 10.1016/j.anireprosci.2021.106720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/01/2023]
Abstract
Results from previous studies indicate that maternal overnutrition during late gestation predisposes foals to metabolic disease, however, specific mechanisms resulting in disease remain unknown. Quarter Horse mares (n = 16), were randomly assigned to dietary treatments, beginning on gestational day 235, and consisted of a control group (CON- diet meeting nutrient requirement; n = 8) or an overfed diet (HIGH; n = 8) where mares received an additional 40 % above CON. On gestational days 285 and 315, an intravenous glucose tolerance test (FSIGTT) was conducted. Following parturition, foals were separated from the mare, prohibited from nursing, and an FSIGTT was conducted at 2 h postpartum. Foals were immediately euthanized and tissues preserved for analyses. There was no effect of treatment on foal BW (P = 0.50), pancreas weight (P = 0.60), or FSIGTT area under the curve for glucose (P = 0.80) and insulin (P = 0.70). Colocalization of α-amylase to isolate pancreatic islets of Langerhans indicated increased islet number and size in foals from HIGH mares (P < 0.01). Immunofluoresent analysis of insulin, glucagon, and somatostatin indicate no difference in intensity of staining (P> 0.10). Foals exposed to overnutrition during peak fetal growth had altered pancreatic islet development that may lead to adult-onset metabolic disease.
Collapse
Affiliation(s)
- A N Bradbery
- Texas A&M University, College Station, TX, 77843, United States
| | - J A Coverdale
- Texas A&M University, College Station, TX, 77843, United States
| | - C J Hartz
- Texas A&M University, College Station, TX, 77843, United States
| | - A A Millican
- Texas A&M University, College Station, TX, 77843, United States
| | - M S Goehring
- Texas A&M University, College Station, TX, 77843, United States
| | - K K Fikes
- Sam Houston State University, Huntsville, TX, 77341, United States
| | - E Picking
- Texas A&M University, College Station, TX, 77843, United States
| | - C J Hammer
- North Dakota State University, Fargo, ND, 58102, United States
| | - K A Dunlap
- Texas A&M University, College Station, TX, 77843, United States
| | - R C Cardoso
- Texas A&M University, College Station, TX, 77843, United States
| | - T A Wickersham
- Texas A&M University, College Station, TX, 77843, United States
| | - J L Leatherwood
- Texas A&M University, College Station, TX, 77843, United States.
| | - M C Satterfield
- Texas A&M University, College Station, TX, 77843, United States.
| |
Collapse
|
6
|
Chaves WF, Pinheiro IL, da Silva LO, Lima-Oliveira DP, Muniz GDS, Barreto ÁDN, da Silva BJ, Manhães-de-Castro R, da Silva Aragão R. Neonatal administration of kaempferol does not alter satiety but increases somatic growth and reduces adiposity in offspring of high-fat diet dams. Life Sci 2020; 259:118224. [PMID: 32768574 DOI: 10.1016/j.lfs.2020.118224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to evaluate the effects of maternal exposure to a high-fat diet associated with neonatal administration of kaempferol on somatic growth, biochemical profile and feeding behavior in offspring. MATERIALS AND METHODS Wistar rats were distributed according to diet during pregnancy and lactation into Control (C; 3.4 kcal/g; 12% kcal/lipids) or High-fat (HFD; 4.6 kcal/g; 51% kcal/lipids) groups. In the offspring, vehicle (V) or kaempferol (K, 1 mg/kg) were administered from the 8th until the 21st postnatal day (PND). Maternal body weight (BW), caloric intake and adiposity were measured. In the offspring, somatic growth parameters were evaluated on the 7th, 14th, 21st, 25th and 30th PND, except for BW, which was measured from the 8th to the 21st and from the 25th to the 30th PND. Feeding behavior was assessed by food intake and behavioral satiety sequence (BSS) on the 30th PND. The biochemical profile and relative weight of adipose tissue of offspring were also measured. KEY FINDINGS Dams exposed to HFD showed no difference in body weight and caloric intake but exhibited increased adiposity. Neonatal administration of kaempferol increased body weight after weaning and somatic growth in the offspring of HFD dams. Neonatal kaempferol also reduced adiposity and serum creatinine levels in offspring. Neither maternal diet nor kaempferol altered offspring feeding behavior. SIGNIFICANCE Neonatal administration of kaempferol promotes increased somatic growth post-weaning, reduces adiposity, and does not alter feeding behavior in offspring from high-fat dams.
Collapse
Affiliation(s)
| | - Isabeli Lins Pinheiro
- Physical Education and Sport Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Luana Olegário da Silva
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Débora Priscila Lima-Oliveira
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Gisélia de Santana Muniz
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Departament of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Breno José da Silva
- Departament of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Raul Manhães-de-Castro
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Physical Education and Sport Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
7
|
Kislal S, Shook LL, Edlow AG. Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Prenat Diagn 2020; 40:1109-1125. [PMID: 32643194 DOI: 10.1002/pd.5784] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Evidence from epidemiological, clinical, and animal model studies clearly demonstrates that prenatal and lactational maternal obesity and high-fat diet consumption are associated with cardiometabolic morbidity in offspring. Fetal and offspring sex may be an important effect modifier. Adverse offspring cardiometabolic outcomes observed in the setting of maternal obesity include an increased risk for obesity, features of metabolic syndrome (hypertension, hyperglycemia and insulin resistance, hyperlipidemia, increased adiposity), and non-alcoholic fatty liver disease. This review article synthesizes human and animal data linking maternal obesity and high-fat diet consumption in pregnancy and lactation to adverse cardiometabolic outcomes in offspring. We review key mechanisms underlying skeletal muscle, adipose tissue, pancreatic, liver, and central brain reward programming in obesity-exposed offspring, and how such malprogramming contributes to offspring cardiometabolic morbidity.
Collapse
Affiliation(s)
- Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Campodonico-Burnett W, Hetrick B, Wesolowski SR, Schenk S, Takahashi DL, Dean TA, Sullivan EL, Kievit P, Gannon M, Aagaard K, Friedman JE, McCurdy CE. Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates. Diabetes 2020; 69:1389-1400. [PMID: 32354857 PMCID: PMC7306120 DOI: 10.2337/db19-1218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a Western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n = 5-8/group) and juvenile (n = 8/group) offspring. In vivo signaling was evaluated after an insulin bolus just prior to weaning (n = 4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and postweaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action, suggesting earlier interventions may be warranted.
Collapse
Affiliation(s)
- William Campodonico-Burnett
- Department of Human Physiology, University of Oregon, Eugene, OR
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR
| | | | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Elinor L Sullivan
- Department of Human Physiology, University of Oregon, Eugene, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
- Department of Psychiatry, Oregon Health Science University, Portland, OR
- Department of Behavioral Sciences, Oregon Health Science University, Portland, OR
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kjersti Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR
| |
Collapse
|
9
|
Huber HF, Jenkins SL, Li C, Nathanielsz PW. Strength of nonhuman primate studies of developmental programming: review of sample sizes, challenges, and steps for future work. J Dev Orig Health Dis 2020; 11:297-306. [PMID: 31566171 PMCID: PMC7103515 DOI: 10.1017/s2040174419000539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonhuman primate (NHP) studies are crucial to biomedical research. NHPs are the species most similar to humans in lifespan, body size, and hormonal profiles. Planning research requires statistical power evaluation, which is difficult to perform when lacking directly relevant preliminary data. This is especially true for NHP developmental programming studies, which are scarce. We review the sample sizes reported, challenges, areas needing further work, and goals of NHP maternal nutritional programming studies. The literature search included 27 keywords, for example, maternal obesity, intrauterine growth restriction, maternal high-fat diet, and maternal nutrient reduction. Only fetal and postnatal offspring studies involving tissue collection or imaging were included. Twenty-eight studies investigated maternal over-nutrition and 33 under-nutrition; 23 involved macaques and 38 baboons. Analysis by sex was performed in 19; minimum group size ranged from 1 to 8 (mean 4.7 ± 0.52, median 4, mode 3) and maximum group size from 3 to 16 (8.3 ± 0.93, 8, 8). Sexes were pooled in 42 studies; minimum group size ranged from 2 to 16 (mean 5.3 ± 0.35, median 6, mode 6) and maximum group size from 4 to 26 (10.2 ± 0.92, 8, 8). A typical study with sex-based analyses had group size minimum 4 and maximum 8 per sex. Among studies with sexes pooled, minimum group size averaged 6 and maximum 8. All studies reported some significant differences between groups. Therefore, studies with group sizes 3-8 can detect significance between groups. To address deficiencies in the literature, goals include increasing age range, more frequently considering sex as a biological variable, expanding topics, replicating studies, exploring intergenerational effects, and examining interventions.
Collapse
Affiliation(s)
- Hillary F. Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Susan L. Jenkins
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W. Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
10
|
Kirigiti MA, Frazee T, Bennett B, Arik A, Blundell P, Bader L, Bagley J, Frias AE, Sullivan EL, Roberts CT, Kievit P. Effects of pre- and postnatal protein restriction on maternal and offspring metabolism in the nonhuman primate. Am J Physiol Regul Integr Comp Physiol 2020; 318:R929-R939. [PMID: 32130027 DOI: 10.1152/ajpregu.00150.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Women in low- and middle-income countries frequently consume a protein-deficient diet during pregnancy and breastfeeding. The effects of gestational malnutrition on fetal and early postnatal development can have lasting adverse effects on offspring metabolism. Expanding on previous studies in rodent models, we utilized a nonhuman primate model of gestational and early-life protein restriction (PR) to evaluate effects on the organ development and glucose metabolism of juvenile offspring. Offspring were born to dams that had consumed a control diet containing 26% protein or a PR diet containing 13% protein. Offspring were maintained on the PR diet and studied [body and serum measurements, intravenous glucose tolerance tests (ivGTTs), and dual-energy X-ray absorptiometry scans] up to 7 mo of age, at which time tissues were collected for analysis. PR offspring had age-appropriate body weight and were euglycemic but exhibited elevated fasting insulin and reduced initial, but increased total, insulin secretion during an ivGTT at 6 mo of age. No changes were detected in pancreatic islets of PR juveniles; however, PR did induce changes, including reduced kidney size, and changes in liver, adipose tissue, and muscle gene expression in other peripheral organs. Serum osteocalcin was elevated and bone mineral content and density were reduced in PR juveniles, indicating a significant impact of PR on early postnatal bone development.
Collapse
Affiliation(s)
- Melissa A Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Tim Frazee
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Baylin Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Anam Arik
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Peter Blundell
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Lindsay Bader
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jennifer Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Antonio E Frias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Elinor L Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon.,Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon
| |
Collapse
|
11
|
Abstract
Polycystic ovary syndrome (PCOS), characterized by hormonal imbalance and ovarian dysfunction, often starts during adolescence. Inconsistent diagnostic criteria, variable provider knowledge, and lack of consensus pose specific challenges for the care of women with PCOS. These factors encourage inaccurate diagnosis with both under and overdiagnosis. This unfavorable diagnostic experience exasperates affected women and limits timely opportunities for intervention to minimize associated comorbidities, especially during the transition from pediatric to adult care. Recognition of these issues in the care of adolescents and women with PCOS inspired the development of the International Evidence-Based PCOS Guidelines, which emphasize the prevention, screening, and treatment of PCOS across the reproductive lifespan. The Guidelines and accompanying meta-analyses focus on three major categories of associated comorbidities: (1) reproductive; (2) metabolic; and (3) psychological. With the exception of infertility, this article considers common manifestations and comorbidities associated with PCOS throughout the lifecycle. Healthy lifestyle interventions with prevention of excess weight gain comprise the primary intervention for all comorbidities. Hence, early identification of girls "at risk" for PCOS and those with PCOS is a priority. Extensive guidelines for provider and patient education aim to decrease the medical, psychosocial, and economic burdens attributable to PCOS and its associated comorbidities.
Collapse
|
12
|
Elsakr JM, Dunn JC, Tennant K, Zhao SK, Kroeten K, Pasek RC, Takahashi DL, Dean TA, Velez Edwards DR, McCurdy CE, Aagaard KM, Powers AC, Friedman JE, Kievit P, Gannon M. Maternal Western-style diet affects offspring islet composition and function in a non-human primate model of maternal over-nutrition. Mol Metab 2019; 25:73-82. [PMID: 31036449 PMCID: PMC6599455 DOI: 10.1016/j.molmet.2019.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE In humans, offspring of women who are overweight or obese are more likely to develop metabolic disease later in life. Studies in lower animal species reveal that a calorically-dense maternal diet is associated with alterations in islet cell mass and function. The long-term effects of maternal diet on the structure and function of offspring islets with characteristics similar to humans are unknown. We used a well-established non-human primate (NHP) model to determine the consequences of exposure to Western-Style Diet (WSD) in utero and during lactation on islet cell mass and function in the offspring. METHODS Female Japanese Macaques (Macaca fuscata) were fed either control (CTR) or WSD before and throughout pregnancy and lactation. Offspring were weaned onto CTR or WSD to generate four different groups based on maternal/offspring diets: CTR/CTR, WSD/CTR, CTR/WSD, and WSD/WSD. Offspring were analyzed at three years of age. Pancreatic tissue sections were immunolabelled to measure α- and β-cell mass and proliferation as well as islet vascularization. Live islets were also isolated to test the effects of WSD-exposure on islet function ex vivo. Offspring glucose tolerance was correlated with various maternal characteristics. RESULTS α-cell mass was reduced as a result of maternal WSD exposure. α-cell proliferation was reduced in response to offspring WSD. Islet vasculature did not differ among the diet groups. Islets from WSD/CTR offspring secreted a greater amount of insulin in response to glucose ex vivo. We also found that maternal glucose tolerance and parity correlated with offspring glucose tolerance. CONCLUSIONS Maternal WSD exposure results in persistently decreased α-cell mass in the three-year old offspring. WSD/CTR islets secreted greater amounts of insulin ex vivo, suggesting that these islets are primed to hyper-secrete insulin under certain metabolic stressors. Although WSD did not induce overt impaired glucose tolerance in dams or offspring, offspring born to mothers with higher glucose excursions during a glucose tolerance test were more likely to also show higher glucose excursions.
Collapse
Affiliation(s)
- Joseph M Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jennifer C Dunn
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine Tennant
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Sifang Kathy Zhao
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karly Kroeten
- Vanderbilt Summer Diabetes Research Program, Vanderbilt University, Nashville, TN, USA
| | - Raymond C Pasek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Digna R Velez Edwards
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs Tennessee Valley, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacob E Friedman
- Department of Pediatrics, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs Tennessee Valley, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, USA.
| |
Collapse
|
13
|
Maternal Roux-en-Y gastric bypass impairs insulin action and endocrine pancreatic function in male F1 offspring. Eur J Nutr 2019; 59:1067-1079. [DOI: 10.1007/s00394-019-01968-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
|
14
|
Friedman JE. Developmental Programming of Obesity and Diabetes in Mouse, Monkey, and Man in 2018: Where Are We Headed? Diabetes 2018; 67:2137-2151. [PMID: 30348820 PMCID: PMC6198344 DOI: 10.2337/dbi17-0011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Childhood obesity and its comorbidities continue to accelerate across the globe. Two-thirds of pregnant women are obese/overweight, as are 20% of preschoolers. Gestational diabetes mellitus (GDM) is escalating, affecting up to 1 in 5 pregnant women. The field of developmental origins of health and disease has begun to move beyond associations to potential causal mechanisms for developmental programming. Evidence across species compellingly demonstrates that maternal obesity, diabetes, and Western-style diets create a long-lasting signature on multiple systems, including infant stem cells, the early immune system, and gut microbiota. Such exposures accelerate adipogenesis, disrupt mitochondrial metabolism, and impair energy sensing, affecting neurodevelopment, liver, pancreas, and skeletal muscle. Attempts to prevent developmental programming have met with very limited success. A challenging level of complexity is involved in how the host genome, metabolome, and microbiome throughout pregnancy and lactation increase the offspring's risk of metabolic diseases across the life span. Considerable gaps in knowledge include the timing of exposure(s) and permanence or plasticity of the response, encompassing effects from both maternal and paternal dysmetabolism. Basic, translational, and human intervention studies targeting pathways that connect diet, microbiota, and metabolism in mothers with obesity/GDM and their infants are a critical unmet need and present new challenges for disease prevention in the next generation.
Collapse
Affiliation(s)
- Jacob E Friedman
- Section of Neonatology, Department of Pediatrics; Department of Biochemistry & Molecular Genetics; Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; and Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
15
|
True C, Arik A, Lindsley S, Kirigiti M, Sullivan E, Kievit P. Early High-Fat Diet Exposure Causes Dysregulation of the Orexin and Dopamine Neuronal Populations in Nonhuman Primates. Front Endocrinol (Lausanne) 2018; 9:508. [PMID: 30258403 PMCID: PMC6143816 DOI: 10.3389/fendo.2018.00508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023] Open
Abstract
Maternal obesity and consumption of a high-fat diet (HFD) during pregnancy has a negative impact on offspring, including an increased risk for the development of obesity in adolescence. The mechanism for this transferred metabolic risk is unclear, but many studies have focused on the brain due to its important role in appetite and body-weight regulation. Two main pathways regulate appetite in the brain; homeostatic regulation that occurs predominantly in hypothalamic circuits and hedonic regulation of feeding that occurs via dopaminergic pathways. The current proposal examined the impact of early HFD exposure on the dopaminergic control of hedonic feeding pathways in a translational nonhuman primate model. Japanese macaque offspring from mothers consuming a control (CTR) or HFD were weaned onto control or HFD at an average 8 months of age yielding four groups: maternal and post-weaning control diet (mCTRpCTR), maternal control diet and post-weaning HFD (mCTRpHFD), maternal HFD and post-weaning control diet (mHFDpCTR) and maternal and post-weaning HFD (mHFDpHFD). Brains from 13-month-old offspring were evaluated for expression of neuropeptides that regulate dopaminergic pathways including orexin, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), and tyrosine hydroxylase expression in the ventral tegmental area (VTA). Orexin cell numbers in the LH were significantly increased in animals exposed to a post-weaning HFD, while no difference was observed for orexin mRNA content or MCH cell numbers. Orexin fiber projections to the rostral VTA were significantly reduced in mCTRpHFD, mHFDpCTR, and mHFDpHFD groups, but these differences were not significant in the caudal VTA. There was no difference in the percentage of dopamine neurons receiving close appositions from orexin fibers in either the rostral or caudal VTA, nor was there any difference between groups in the number of orexin contacts per TH cell. In conclusion, the current study finds that prolonged early exposure to HFD during the in utero and postnatal period causes alterations at several levels in the dopaminergic circuits regulating reward.
Collapse
Affiliation(s)
- Cadence True
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Anam Arik
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Sarah Lindsley
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Melissa Kirigiti
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Elinor Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Paul Kievit
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton, OR, United States
| |
Collapse
|
16
|
True C, Dean T, Takahashi D, Sullivan E, Kievit P. Maternal High-Fat Diet Effects on Adaptations to Metabolic Challenges in Male and Female Juvenile Nonhuman Primates. Obesity (Silver Spring) 2018; 26:1430-1438. [PMID: 30226008 PMCID: PMC6146409 DOI: 10.1002/oby.22249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/22/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to determine whether maternal high-fat diet (HFD) consumption in nonhuman primates alters the ability of offspring to adapt metabolically to nutrient and caloric challenges. METHODS Offspring from Japanese macaque dams fed either a control (CTR) diet or HFD were weaned onto a CTR diet creating two groups: maternal HFD (mHFD, n = 18) and maternal CTR (mCTR) diet (n = 12). Male and female offspring were exposed to a 5-day 30% calorie restriction and to a 35-day HFD challenge (HFDC), at 16 and 24 months of age, respectively. Caloric intake, body weight, and energy expenditure were measured. RESULTS Offspring from both groups showed similar body weight, food intake, and metabolic adaptations to a 5-day calorie restriction. mHFD offspring demonstrated increased food intake and early weight gain in response to a 35-day HFDC; however, group differences in weight dissipated during the challenge. Unlike mCTR animals, the mHFD group had a significant increase in fasting insulin after acute HFD exposure. CONCLUSIONS The current findings indicate that offspring exposed to an mHFD show metabolic adaptations to calorie restriction that are largely similar to those of offspring exposed to a mCTR diet but show delayed adaptation upon exposure to an acute HFDC.
Collapse
Affiliation(s)
- Cadence True
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton OR
| | - Tyler Dean
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton OR
| | - Diana Takahashi
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton OR
| | - Elinor Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton OR and Department of Human Physiology, University of Oregon, Eugene OR
| | - Paul Kievit
- Cardiometabolic Health Division, Oregon National Primate Research Center, Beaverton OR
| |
Collapse
|
17
|
Adhikari B, Khanal P, Nielsen MO. Impacts of pre- and postnatal nutrition on glucagon regulation and hepatic signalling in sheep. J Endocrinol 2018; 238:1-12. [PMID: 29674343 DOI: 10.1530/joe-17-0705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/19/2018] [Indexed: 11/08/2022]
Abstract
To evaluate the long-term impacts of early-life nutritional manipulations on glucagon secretion and hepatic signalling, thirty-six twin-pregnant ewes during their last trimester were exposed to NORM (fulfilling 100% of daily energy/protein requirements), HIGH (fulfilling 150/110% of daily energy/protein requirements) or LOW (50% of NORM) diets. Twin lambs were assigned after birth to a moderate (CONV) or high-carbohydrate high-fat (HCHF) diet until 6 months. Then, responses in plasma glucagon concentrations and glucagon ratios relative to previously reported values for insulin, glucose and lactate were determined after intravenous bolus injections of glucose or propionate (fed and 2-day fasting state). Hepatic mRNA expressions of glucagon receptor (GCGR), glucose-6-phosphatase (G6PC), phosphoenolpyruvate carboxykinase (PEPCK) and fructose 1,6-biphosphatase (FBP) were also determined in a sub group of autopsied lambs. Expression of GCGR and all three enzymes were supressed by prenatal LOW compared to NORM (except PEPCK) and HIGH (except FBP) nutrition. The postnatal HCHF diet reduced plasma glucagon responses to propionate and hepatic mRNA expression of all genes. In response to propionate, insulin/glucagon ratio was decreased (fasted state), but lactate/glucagon and glucose/glucagon increased in HCHF compared to CONV lambs. In conclusion, prenatal undernutrition and postnatal overnutrition had similar long-term implications and reduced hepatic glucagon signalling. Glucagon secretory responses to propionate were, however, not related to the prenatal nutrition history, but negatively affected by the postnatal obesogenic diet. The pancreatic α-cell compared to β-cells may thus be less sensitive towards late gestation malnutrition, whereas hepatic glucagon signalling appears to be a target of prenatal programming.
Collapse
Affiliation(s)
- Bishnu Adhikari
- Department of Veterinary and Animal SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Poultry ScienceUniversity of Arkansas, Fayetteville, Arkansas, USA
| | - Prabhat Khanal
- Department of Veterinary and Animal SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Basic Medical SciencesFaculty of Medicine, The Norwegian Transgenic Centre (NTS), University of Oslo, Oslo, Norway
- Faculty of Biosciences and Aquaculture (FBA)Nord University, Steinkjer, Norway
| | - Mette Olaf Nielsen
- Department of Veterinary and Animal SciencesFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Andersen B, Straarup EM, Heppner KM, Takahashi DL, Raffaele V, Dissen GA, Lewandowski K, Bödvarsdottir TB, Raun K, Grove KL, Kievit P. FGF21 decreases body weight without reducing food intake or bone mineral density in high-fat fed obese rhesus macaque monkeys. Int J Obes (Lond) 2018; 42:1151-1160. [PMID: 29892039 DOI: 10.1038/s41366-018-0080-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Administration of FGF21 and FGF21 analogues reduce body weight; improve insulin sensitivity and dyslipidemia in animal models of obesity and in short term clinical trials. However potential adverse effects identified in mice have raised concerns for the development of FGF21 therapeutics. Therefore, this study was designed to address the actions of FGF21 on body weight, glucose and lipid metabolism and importantly its effects on bone mineral density (BMD), bone markers, and plasma cortisol in high-fat fed obese rhesus macaque monkeys. METHODS Obese non-diabetic rhesus macaque monkeys (five males and five ovariectomized (OVX) females) were maintained on a high-fat diet and treated for 12 weeks with escalating doses of FGF21. Food intake was assessed daily and body weight weekly. Bone mineral content (BMC) and BMD were measured by DEXA scanning prior to the study and on several occasions throughout the treatment period as well as during washout. Plasma glucose, glucose tolerance, insulin, lipids, cortisol, and bone markers were likewise measured throughout the study. RESULTS On average, FGF21 decreased body weight by 17.6 ± 1.6% after 12 weeks of treatment. No significant effect on food intake was observed. No change in BMC or BMD was observed, while a 2-fold increase in CTX-1, a marker of bone resorption, was seen. Overall glucose tolerance was improved with a small but significant decrease in HbA1C. Furthermore, FGF21 reduced concentrations of plasma triglycerides and very low density lipoprotein cholesterol. No adverse changes in clinical chemistry markers were demonstrated, and no alterations in plasma cortisol were observed during the study. CONCLUSION In conclusion, FGF21 reduced body weight in obese rhesus macaque monkeys without reducing food intake. Furthermore, FGF21 had beneficial effects on body composition, insulin sensitivity, and plasma triglycerides. No adverse effects on bone density or plasma cortisol were observed after 12 weeks of treatment.
Collapse
Affiliation(s)
| | | | | | - Diana L Takahashi
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Virginia Raffaele
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Gregory A Dissen
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Katherine Lewandowski
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | | | - Kirsten Raun
- Diabetes Research, Novo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Kevin L Grove
- Obesity Research, Novo Nordisk A/S, Seattle, WA, 98109, USA
| | - Paul Kievit
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
19
|
Roberts VHJ, Lo JO, Lewandowski KS, Blundell P, Grove KL, Kroenke CD, Sullivan EL, Roberts CT, Frias AE. Adverse Placental Perfusion and Pregnancy Outcomes in a New Nonhuman Primate Model of Gestational Protein Restriction. Reprod Sci 2018; 25:110-119. [PMID: 28443480 PMCID: PMC5993074 DOI: 10.1177/1933719117704907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Maternal malnutrition during pregnancy impacts fetal growth, with developmental consequences that extend to later life outcomes. In underdeveloped countries, this malnutrition typically takes the form of poor dietary protein content and quality, even if adequate calories are consumed. Here, we report the establishment of a nonhuman primate model of gestational protein restriction (PR) in order to understand how placental function and pregnancy outcomes are affected by protein deficiency. Rhesus macaques were assigned to either a control diet containing 26% protein or switched to a 13% PR diet prior to conception and maintained on this PR diet throughout pregnancy. Standard fetal biometry, Doppler ultrasound of uteroplacental blood flow, ultrasound-guided amniocentesis, and contrast-enhanced ultrasound (CE-US) to assess placental perfusion were performed mid-gestation (gestational day 85 [G85] where term is G168) and in the early third trimester (G135). Our data demonstrate that a 50% reduction in dietary protein throughout gestation results in reduced placental perfusion, fetal growth restriction, and a 50% rate of pregnancy loss. In addition, we demonstrate reduced total protein content and evidence of fetal hypoxia in the amniotic fluid. This report highlights the use of CE-US for in vivo assessment of placental vascular function. The ability to detect placental dysfunction, and thus a compromised pregnancy, early in gestation, may facilitate the development of interventional strategies to optimize clinical care and improve long-term offspring outcomes, which are future areas of study in this new model.
Collapse
Affiliation(s)
- Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jamie O. Lo
- Department of Obstetrics and Gynecology, Oregon Health & Science
University, Portland, OR, USA
| | - Katherine S. Lewandowski
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Peter Blundell
- Division of Cardiometabolic Health, Oregon National Primate Research Center,
Oregon Health & Science University, Beaverton, OR, USA
| | - Kevin L. Grove
- Division of Cardiometabolic Health, Oregon National Primate Research Center,
Oregon Health & Science University, Beaverton, OR, USA
| | - Christopher D. Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon
Health & Science University, Beaverton, OR, USA
- Advanced Imaging Research Center, Oregon Health & Science University,
Portland, OR, USA
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Oregon
Health & Science University, Beaverton, OR, USA
- Department of Biology, University of Portland, Portland, OR, USA
| | - Charles T. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Division of Cardiometabolic Health, Oregon National Primate Research Center,
Oregon Health & Science University, Beaverton, OR, USA
| | - Antonio E. Frias
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
20
|
Sullivan EL, Rivera HM, True CA, Franco JG, Baquero K, Dean TA, Valleau JC, Takahashi DL, Frazee T, Hanna G, Kirigiti MA, Bauman LA, Grove KL, Kievit P. Maternal and postnatal high-fat diet consumption programs energy balance and hypothalamic melanocortin signaling in nonhuman primate offspring. Am J Physiol Regul Integr Comp Physiol 2017; 313:R169-R179. [PMID: 28404581 PMCID: PMC5582949 DOI: 10.1152/ajpregu.00309.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 01/02/2023]
Abstract
Maternal high-fat-diet (HFD) consumption during pregnancy decreased fetal body weight and impacted development of hypothalamic melanocortin neural circuitry in nonhuman primate offspring. We investigated whether these impairments during gestation persisted in juvenile offspring and examined the interaction between maternal and early postnatal HFD consumption. Adult dams consumed either a control diet (CTR; 15% calories from fat) or a high-saturated-fat diet (HFD; 37% calories from fat) during pregnancy. Offspring were weaned onto a CTR or HFD at ~8 mo of age. Offspring from HFD-fed dams displayed early catch-up growth and elevated body weight at 6 and 13 mo of age. Maternal and postnatal HFD exposure reduced the amount of agouti-related peptide fibers in the paraventricular nucleus of the hypothalamus. Postnatal HFD consumption also decreased the amount of agouti-related peptide fibers in the arcuate nucleus of the hypothalamus. Postnatal HFD was associated with decreased food intake and increased activity. These results support and extend our previous findings of maternal diet effects on fetal development and reveal, for the first time in a nonhuman primate model, that maternal HFD-induced disturbances in offspring body weight regulation extended past gestation into the juvenile period. Maternal HFD consumption increases the risk for offspring developing obesity, with the developmental timing of HFD exposure differentially impacting the melanocortin system and energy balance regulation. The present findings provide translational insight into human clinical populations, suggesting that profound health consequences may await individuals later in life following intrauterine and postnatal HFD exposure.
Collapse
Affiliation(s)
- Elinor L Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Biology, University of Portland, Portland, Oregon; and
| | - Heidi M Rivera
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Cadence A True
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Juliana G Franco
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Karalee Baquero
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Tyler A Dean
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jeanette C Valleau
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Diana L Takahashi
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Tim Frazee
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Genevieve Hanna
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Melissa A Kirigiti
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Leigh A Bauman
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| | - Paul Kievit
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon
| |
Collapse
|
21
|
Elsakr JM, Gannon M. Developmental programming of the pancreatic islet by in utero overnutrition. TRENDS IN DEVELOPMENTAL BIOLOGY 2017; 10:79-95. [PMID: 29657386 PMCID: PMC5894880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) Hypothesis postulates that the in utero environment influences postnatal health and plays a role in disease etiology. Studies in both humans and animal models have shown that exposure to either under- or overnutrition in utero results in an increased risk of metabolic disease later in life. In addition, offspring born to overweight or obese mothers are more likely to be obese as children and into early adulthood and to have impaired glucose tolerance as adults. The Centers for Disease Control and Prevention estimates that over 70% of adults over the age of 20 are either overweight or obese and that nearly half of women are either overweight or obese at the time they become pregnant. Thus, the consequences of maternal overnutrition on the developing fetus are likely to be realized in greater numbers in the coming decades. This review will focus specifically on the effects of in utero overnutrition on pancreatic islet development and function and how the resulting morphological and functional changes influence the offspring's risk of developing metabolic disease. We will discuss the advantages and challenges of different animal models, the effects of exposure to overnutrition during distinct periods of development, the similarities and differences between and within model systems, and potential mechanisms and future directions in understanding how developmental alterations due to maternal diet exposure influence islet health and function later in life.
Collapse
Affiliation(s)
- Joseph M. Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
22
|
Thompson JR, Valleau JC, Barling AN, Franco JG, DeCapo M, Bagley JL, Sullivan EL. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates. Front Endocrinol (Lausanne) 2017; 8:164. [PMID: 28785241 PMCID: PMC5519527 DOI: 10.3389/fendo.2017.00164] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.
Collapse
Affiliation(s)
- Jacqueline R. Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jeanette C. Valleau
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Ashley N. Barling
- Department of Biology, University of Portland, Portland, OR, United States
| | - Juliana G. Franco
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Madison DeCapo
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jennifer L. Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Biology, University of Portland, Portland, OR, United States
- *Correspondence: Elinor L. Sullivan,
| |
Collapse
|
23
|
McCurdy CE, Schenk S, Hetrick B, Houck J, Drew BG, Kaye S, Lashbrook M, Bergman BC, Takahashi DL, Dean TA, Nemkov T, Gertsman I, Hansen KC, Philp A, Hevener AL, Chicco AJ, Aagaard KM, Grove KL, Friedman JE. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques. JCI Insight 2016; 1:e86612. [PMID: 27734025 DOI: 10.1172/jci.insight.86612] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health.
Collapse
Affiliation(s)
- Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California, USA
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Julie Houck
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brian G Drew
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, University of California, Los Angeles, Los Angeles, California, USA.,Diabetes and Dyslipidaemia Laboratory, Baker IDI Heart and Diabetes Institute, Prahran, Victoria, Australia
| | - Spencer Kaye
- Departments of Health and Exercise Science and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Melanie Lashbrook
- Departments of Health and Exercise Science and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diana L Takahashi
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Tyler A Dean
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilya Gertsman
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew Philp
- School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, University of California, Los Angeles, Los Angeles, California, USA
| | - Adam J Chicco
- Departments of Health and Exercise Science and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kevin L Grove
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Novo Nordisk Research Center, Seattle, Washington, USA
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Ramírez-López MT, Vázquez M, Bindila L, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Ouro D, Orio L, Suarez J, Lutz B, Rodríguez de Fonseca F, Gómez de Heras R. Exposure to a Highly Caloric Palatable Diet During Pregestational and Gestational Periods Affects Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Adiposity and Anxiety-Like Behaviors in Male Rat Offspring. Front Behav Neurosci 2016; 9:339. [PMID: 26778987 PMCID: PMC4701936 DOI: 10.3389/fnbeh.2015.00339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022] Open
Abstract
Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol) at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory, and emotions.
Collapse
Affiliation(s)
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Rosario Noemí Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - María Antón
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Daniel Ouro
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Unidad de Gestión Clínica de Salud Mental, Instituto IBIMA, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
25
|
Rivera HM, Kievit P, Kirigiti MA, Bauman LA, Baquero K, Blundell P, Dean TA, Valleau JC, Takahashi DL, Frazee T, Douville L, Majer J, Smith MS, Grove KL, Sullivan EL. Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring. Obesity (Silver Spring) 2015; 23:2157-64. [PMID: 26530932 PMCID: PMC4636015 DOI: 10.1002/oby.21306] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To utilize a nonhuman primate model to examine the impact of maternal high-fat diet (HFD) consumption and pre-pregnancy obesity on offspring intake of palatable food and to examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding. METHODS The impact of exposure to maternal HFD and obesity on offspring consumption of diets of varying composition was assessed after weaning. The influence of maternal HFD consumption on the development of the prefrontal cortex-dopaminergic system at 13 months of age was also examined. RESULTS During a preference test, offspring exposed to maternal HFD consumption and obesity displayed increased intake of food high in fat and sugar content relative to offspring from lean control mothers. Maternal HFD consumption suppressed offspring dopamine signaling (as assessed by immunohistochemistry) relative to control offspring. Specifically, there was decreased abundance of dopamine fibers and of dopamine receptor 1 and 2 proteins. CONCLUSIONS This study reveals that offspring exposed to both maternal HFD consumption and maternal obesity during early development are at increased risk for obesity due to overconsumption of palatable energy-dense food, a behavior that may be related to reduced central dopamine signaling.
Collapse
Affiliation(s)
- Heidi M. Rivera
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Paul Kievit
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Melissa A. Kirigiti
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Leigh Ann Bauman
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Karalee Baquero
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Peter Blundell
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Tyler A. Dean
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Jeanette C. Valleau
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Diana L. Takahashi
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Tim Frazee
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Luke Douville
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
- Department of Biology, University of Portland, Portland, OR, 97203, United States
| | - Jordan Majer
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - M. Susan Smith
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Kevin L. Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
| | - Elinor L. Sullivan
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center Beaverton, OR 97006, United States
- Department of Biology, University of Portland, Portland, OR, 97203, United States
| |
Collapse
|
26
|
Oh KY, Roberts VHJ, Schabel MC, Grove KL, Woods M, Frias AE. Gadolinium Chelate Contrast Material in Pregnancy: Fetal Biodistribution in the Nonhuman Primate. Radiology 2015; 276:110-8. [PMID: 25763829 PMCID: PMC4485748 DOI: 10.1148/radiol.15141488] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To determine the extent to which gadolinium chelate is found in nonhuman primate fetal tissues and amniotic fluid at 19-45 hours after intravenous injection of a weight-appropriate maternal dose of the contrast agent gadoteridol. MATERIALS AND METHODS Gravid Japanese macaques (n = 14) were maintained as approved by the institutional animal care and utilization committee. In the 3rd trimester of pregnancy, the macaques were injected with gadoteridol (0.1 mmol per kilogram of maternal weight). Fetuses were delivered by means of cesarean section within 24 hours of maternal injection (range, 19-21 hours; n = 11) or 45 hours after injection (n = 3). Gadolinium chelate levels in the placenta, fetal tissues, and amniotic fluid were obtained by using inductively coupled plasma mass spectrometry. The Wilcoxon rank sum test was used for quantitative comparisons. RESULTS Gadoteridol was present in the fetoplacental circulation at much lower quantities than in the mother. At both time points, the distribution of gadolinium chelate in the fetus was comparable to that expected in an adult. The highest concentration of the injected dose (ID) was found in the fetal kidney (0.0161% ID per gram in the 19-21-hour group). The majority of the in utero gadolinium chelate was found in the amniotic fluid and the placenta (mean, 0.1361% ID per organ ± 0.076 [standard deviation] and 0.0939% ID per organ ± 0.0494, respectively). Data acquired 45 hours after injection showed a significant decrease in the gadolinium chelate concentration in amniotic fluid compared with that in the 19-21-hour group (from 0.0017% to 0.0007% ID per gram; P = .01). CONCLUSION Amounts of gadolinium chelate in the fetal tissues and amniotic fluid were minimal compared with the maternal ID. This may impact future clinical studies on the safety of gadolinium contrast agent use in pregnancy.
Collapse
Affiliation(s)
- Karen Y. Oh
- From the Department of Radiology (K.Y.O.), Advanced Imaging Research Center (M.C.S., M.W.), and Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine (A.E.F.), Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, MC L340, Portland, OR 97239; Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore (V.H.J.R., K.L.G., A.E.F.); and Department of Chemistry, Portland State University, Portland, Ore (M.W.)
| | - Victoria H. J. Roberts
- From the Department of Radiology (K.Y.O.), Advanced Imaging Research Center (M.C.S., M.W.), and Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine (A.E.F.), Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, MC L340, Portland, OR 97239; Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore (V.H.J.R., K.L.G., A.E.F.); and Department of Chemistry, Portland State University, Portland, Ore (M.W.)
| | - Matthias C. Schabel
- From the Department of Radiology (K.Y.O.), Advanced Imaging Research Center (M.C.S., M.W.), and Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine (A.E.F.), Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, MC L340, Portland, OR 97239; Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore (V.H.J.R., K.L.G., A.E.F.); and Department of Chemistry, Portland State University, Portland, Ore (M.W.)
| | - Kevin L. Grove
- From the Department of Radiology (K.Y.O.), Advanced Imaging Research Center (M.C.S., M.W.), and Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine (A.E.F.), Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, MC L340, Portland, OR 97239; Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore (V.H.J.R., K.L.G., A.E.F.); and Department of Chemistry, Portland State University, Portland, Ore (M.W.)
| | - Mark Woods
- From the Department of Radiology (K.Y.O.), Advanced Imaging Research Center (M.C.S., M.W.), and Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine (A.E.F.), Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, MC L340, Portland, OR 97239; Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore (V.H.J.R., K.L.G., A.E.F.); and Department of Chemistry, Portland State University, Portland, Ore (M.W.)
| | - Antonio E. Frias
- From the Department of Radiology (K.Y.O.), Advanced Imaging Research Center (M.C.S., M.W.), and Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine (A.E.F.), Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, MC L340, Portland, OR 97239; Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore (V.H.J.R., K.L.G., A.E.F.); and Department of Chemistry, Portland State University, Portland, Ore (M.W.)
| |
Collapse
|
27
|
Cerf ME. High fat programming of beta cell compensation, exhaustion, death and dysfunction. Pediatr Diabetes 2015; 16:71-8. [PMID: 25682938 DOI: 10.1111/pedi.12137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 12/29/2022] Open
Abstract
Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease.
Collapse
Affiliation(s)
- Marlon E Cerf
- Diabetes Discovery Platform, Medical Research Council, Tygerberg, Cape Town, South Africa
| |
Collapse
|
28
|
Thorn SR, Baquero KC, Newsom SA, El Kasmi KC, Bergman BC, Shulman GI, Grove KL, Friedman JE. Early life exposure to maternal insulin resistance has persistent effects on hepatic NAFLD in juvenile nonhuman primates. Diabetes 2014; 63:2702-13. [PMID: 24705404 PMCID: PMC4113070 DOI: 10.2337/db14-0276] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The origins of nonalcoholic fatty liver disease (NAFLD) may lie in early intrauterine exposures. Here we examined the maternal response to chronic maternal high-fat (HF) diet and the impact of postweaning healthy diet on mechanisms for NAFLD development in juvenile nonhuman primate (NHP) offspring at 1 year of age. Pregnant females on HF diet were segregated as insulin resistant (IR; HF+IR) or insulin sensitive (IS; HF+IS) compared with control (CON)-fed mothers. HF+IR mothers have increased body mass, higher triglycerides, and increased placental cytokines. At weaning, offspring were placed on a CON or HF diet. Only offspring from HF+IR mothers had increased liver triglycerides and upregulated pathways for hepatic de novo lipid synthesis and inflammation that was irreversible upon switching to a healthy diet. These juvenile livers also showed a combination of classical and alternatively activated hepatic macrophages and natural killer T cells, in the absence of obesity or insulin resistance. Our findings suggest that maternal insulin resistance, including elevated triglycerides, insulin, and weight gain, initiates dysregulation of the juvenile hepatic immune system and development of de novo lipogenic pathways that persist in vitro and may be an irreversible "first hit" in the pathogenesis of NAFLD in NHP.
Collapse
Affiliation(s)
- Stephanie R Thorn
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Karalee C Baquero
- Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR
| | - Sean A Newsom
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Karim C El Kasmi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Kevin L Grove
- Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
29
|
Pound LD, Comstock SM, Grove KL. Consumption of a Western-style diet during pregnancy impairs offspring islet vascularization in a Japanese macaque model. Am J Physiol Endocrinol Metab 2014; 307:E115-23. [PMID: 24844258 PMCID: PMC4080145 DOI: 10.1152/ajpendo.00131.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Children exposed to a maternal Western-style diet in utero have an increased risk of developing type 2 diabetes. Understanding the mechanisms and an investigation of possible interventions are critical to reversing this phenomenon. We examined the impact of maternal Western-style diet consumption on the development of islet vascularization and innervation, both of which are critical to normal islet function, in fetal and juvenile offspring. Furthermore, we assessed whether improved dietary intake or resveratrol supplementation could ameliorate the harmful consequences of Western-style diet consumption during pregnancy. Adult female Japanese macaques were maintained on a control or Western-style diet for 4-7 yr. One cohort of dams was switched back onto a control diet, whereas another cohort received resveratrol supplementation throughout gestation. Pregnancies were terminated in the early third trimester by C-section, or offspring were born naturally and sent to necropsy at 1 yr of age. Western-style diet consumption resulted in impaired fetal islet capillary density and sympathetic islet innervation. Furthermore, this reduction in vascularization persisted in the juvenile offspring. This effect is independent of changes in the expression of key angiogenic markers. Diet reversal normalized islet vascularization to control offspring levels, whereas resveratrol supplementation caused a significant increase in capillary density above controls. These data provide a novel mechanism by which maternal Western-style diet consumption leads to increased susceptibility to type 2 diabetes in the offspring. Importantly, an improved maternal diet may mitigate these harmful effects. However, until the long-term consequences of increased vascularization can be determined, resveratrol use during pregnancy is not advised.
Collapse
Affiliation(s)
- Lynley D Pound
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and
| | - Sarah M Comstock
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, Oregon
| |
Collapse
|
30
|
Roberts VHJ, Pound LD, Thorn SR, Gillingham MB, Thornburg KL, Friedman JE, Frias AE, Grove KL. Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates. FASEB J 2014; 28:2466-77. [PMID: 24563374 DOI: 10.1096/fj.13-245472] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol has been proposed as a potential therapeutic to improve metabolic health during pregnancy, yet little is known about the fetal effects of this maternal dietary supplement. We hypothesized that when administered to pregnant nonhuman primates (NHPs), resveratrol would increase uterine blood flow and mitigate the harmful consequences of maternal Western-style diet (WSD) consumption. NHPs were fed a WSD (36% fat) supplemented with 0.37% resveratrol throughout pregnancy. Outcomes were compared with cohorts fed WSD alone and control chow (14% fat) to distinguish between WSD and resveratrol-specific effects in these animals. In the early third trimester, uterine blood flow was measured by Doppler ultrasound before fetal delivery and tissue collection. Resveratrol resulted in 30% maternal weight loss and improved glucose tolerance, increased uterine artery volume blood flow, and decreased placental inflammation and liver triglyceride deposition. In addition, fetal pancreatic mass was enlarged by 42%, with a 12-fold increase in proliferation by Ki67 immunohistochemistry. These results demonstrate that resveratrol use during pregnancy yields improvements in maternal and placental phenotype with beneficial effects in the fetal liver but an unexplained and concerning alteration in fetal pancreatic development, which strongly cautions against the use of resveratrol by pregnant women.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob E Friedman
- Department of Pediatrics and Department of Reproductive Sciences, University of Colorado-Denver, Aurora, Colorado, USA
| | - Antonio E Frias
- Division of Diabetes, Obesity, and Metabolism and Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism and Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, Oregon USA;
| |
Collapse
|
31
|
Leibiger IB, Ilegems E, Berggren PO. You are what you eat-Do not blame your mother. Mol Metab 2013; 2:1-2. [PMID: 24024130 PMCID: PMC3757663 DOI: 10.1016/j.molmet.2013.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | - Per-Olof Berggren
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|