1
|
Kim S, Park JG, Choi SH, Kim JW, Jin MS. Cryo-EM structures reveal the H +/citrate symport mechanism of Drosophila INDY. Life Sci Alliance 2025; 8:e202402992. [PMID: 39884835 PMCID: PMC11782487 DOI: 10.26508/lsa.202402992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Drosophila I'm Not Dead Yet (INDY) functions as a transporter for citrate, a key metabolite in the citric acid cycle, across the plasma membrane. Partial deficiency of INDY extends lifespan, akin to the effects of caloric restriction. In this work, we use cryo-electron microscopy to determine structures of INDY in the presence and absence of citrate and in complex with the well-known inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) at resolutions ranging from 2.7 to 3.6 Å. Together with functional data obtained in vitro, the INDY structures reveal the H+/citrate co-transport mechanism, in which aromatic residue F119 serves as a one-gate element. They also provide insight into how protein-lipid interactions at the dimerization interface affect the stability and function of the transporter, and how DIDS disrupts the transport cycle.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun Gyou Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Zhang L, Hu W, Guo H, Sun Q, Xu X, Li Z, Qiu Z, Bian J. Discovery of Highly Potent Solute Carrier 13 Member 5 (SLC13A5) Inhibitors for the Treatment of Hyperlipidemia. J Med Chem 2024; 67:6687-6704. [PMID: 38574002 DOI: 10.1021/acs.jmedchem.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In the face of escalating metabolic disease prevalence, largely driven by modern lifestyle factors, this study addresses the critical need for novel therapeutic approaches. We have identified the sodium-coupled citrate transporter (NaCT or SLC13A5) as a target for intervention. Utilizing rational drug design, we developed a new class of SLC13A5 inhibitors, anchored by the hydroxysuccinic acid scaffold, refining the structure of PF-06649298. Among these, LBA-3 emerged as a standout compound, exhibiting remarkable potency with an IC50 value of 67 nM, significantly improving upon PF-06649298. In vitro assays demonstrated LBA-3's efficacy in reducing triglyceride levels in OPA-induced HepG2 cells. Moreover, LBA-3 displayed superior pharmacokinetic properties and effectively lowered triglyceride and total cholesterol levels in diverse mouse models (PCN-stimulated and starvation-induced), without detectable toxicity. These findings not only spotlight LBA-3 as a promising candidate for hyperlipidemia treatment but also exemplify the potential of targeted molecular design in advancing metabolic disorder therapeutics.
Collapse
Affiliation(s)
- Li'ao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Wenjun Hu
- Departments of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Huimin Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, Nanjing 211100, P. R. China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Departments of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Le J, Chen Y, Yang W, Chen L, Ye J. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus. Acta Pharm Sin B 2024; 14:437-454. [PMID: 38322335 PMCID: PMC10840401 DOI: 10.1016/j.apsb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 02/08/2024] Open
Abstract
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Yang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Brown TL, Bainbridge MN, Zahn G, Nye KL, Porter BE. The growing research toolbox for SLC13A5 citrate transporter disorder: a rare disease with animal models, cell lines, an ongoing Natural History Study and an engaged patient advocacy organization. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241263972. [PMID: 39091896 PMCID: PMC11292725 DOI: 10.1177/26330040241263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024]
Abstract
TESS Research Foundation (TESS) is a patient-led nonprofit organization seeking to understand the basic biology and clinical impact of pathogenic variants in the SLC13A5 gene. TESS aims to improve the fundamental understanding of citrate's role in the brain, and ultimately identify treatments and cures for the associated disease. TESS identifies, organizes, and develops collaboration between researchers, patients, clinicians, and the pharmaceutical industry to improve the lives of those suffering from SLC13A5 citrate transport disorder. TESS and its partners have developed multiple molecular tools, cellular and animal models, and taken the first steps toward drug discovery and development for this disease. However, much remains to be done to improve our understanding of the disorder associated with SLC13A5 variants and identify effective treatments for this devastating disease. Here, we describe the available SLC13A5 resources from the community of experts, to foundational tools, to in vivo and in vitro tools, and discuss unanswered research questions needed to move closer to a cure.
Collapse
Affiliation(s)
| | | | | | - Kim L. Nye
- TESS Research Foundation, Menlo Park, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Dehghan H, Ghasempour A, Sabeti Akbar-Abad M, Khademi Z, Sedighi M, Jamialahmadi T, Sahebkar A. An update on the therapeutic role of RNAi in NAFLD/NASH. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:45-67. [PMID: 38458743 DOI: 10.1016/bs.pmbts.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Unhealthy lifestyles have given rise to a growing epidemic of metabolic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). NAFLD often occurs as a consequence of obesity, and currently, there is no FDA-approved drug for its treatment. However, therapeutic oligonucleotides, such as RNA interference (RNAi), represent a promising class of pharmacotherapy that can target previously untreatable conditions. The potential significance of RNAi in maintaining physiological homeostasis, understanding pathogenesis, and improving metabolic liver diseases, including NAFLD, is discussed in this article. We explore why NAFLD/NASH is an ideal target for therapeutic oligonucleotides and provide insights into the delivery platforms of RNAi and its therapeutic role in addressing NAFLD/NASH.
Collapse
Affiliation(s)
- Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Khademi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Gill D, Zagkos L, Gill R, Benzing T, Jordan J, Birkenfeld AL, Burgess S, Zahn G. The citrate transporter SLC13A5 as a therapeutic target for kidney disease: evidence from Mendelian randomization to inform drug development. BMC Med 2023; 21:504. [PMID: 38110950 PMCID: PMC10729503 DOI: 10.1186/s12916-023-03227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Solute carrier family 13 member 5 (SLC13A5) is a Na+-coupled citrate co-transporter that mediates entry of extracellular citrate into the cytosol. SLC13A5 inhibition has been proposed as a target for reducing progression of kidney disease. The aim of this study was to leverage the Mendelian randomization paradigm to gain insight into the effects of SLC13A5 inhibition in humans, towards prioritizing and informing clinical development efforts. METHODS The primary Mendelian randomization analyses investigated the effect of SLC13A5 inhibition on measures of kidney function, including creatinine and cystatin C-based measures of estimated glomerular filtration rate (creatinine-eGFR and cystatin C-eGFR), blood urea nitrogen (BUN), urine albumin-creatinine ratio (uACR), and risk of chronic kidney disease and microalbuminuria. Secondary analyses included a paired plasma and urine metabolome-wide association study, investigation of secondary traits related to SLC13A5 biology, a phenome-wide association study (PheWAS), and a proteome-wide association study. All analyses were compared to the effect of genetically predicted plasma citrate levels using variants selected from across the genome, and statistical sensitivity analyses robust to the inclusion of pleiotropic variants were also performed. Data were obtained from large-scale genetic consortia and biobanks, with sample sizes ranging from 5023 to 1,320,016 individuals. RESULTS We found evidence of associations between genetically proxied SLC13A5 inhibition and higher creatinine-eGFR (p = 0.002), cystatin C-eGFR (p = 0.005), and lower BUN (p = 3 × 10-4). Statistical sensitivity analyses robust to the inclusion of pleiotropic variants suggested that these effects may be a consequence of higher plasma citrate levels. There was no strong evidence of associations of genetically proxied SLC13A5 inhibition with uACR or risk of CKD or microalbuminuria. Secondary analyses identified evidence of associations with higher plasma calcium levels (p = 6 × 10-13) and lower fasting glucose (p = 0.02). PheWAS did not identify any safety concerns. CONCLUSIONS This Mendelian randomization analysis provides human-centric insight to guide clinical development of an SLC13A5 inhibitor. We identify plasma calcium and citrate as biologically plausible biomarkers of target engagement, and plasma citrate as a potential biomarker of mechanism of action. Our human genetic evidence corroborates evidence from various animal models to support effects of SLC13A5 inhibition on improving kidney function.
Collapse
Affiliation(s)
- Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Primula Group Ltd, London, UK.
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Translational Diabetology, Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit at the University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Ölmez TT, Moreno DF, Liu P, Johnson ZM, McGinnis MM, Tu BP, Hochstrasser M, Acar M. Sis2 regulates yeast replicative lifespan in a dose-dependent manner. Nat Commun 2023; 14:7719. [PMID: 38012152 PMCID: PMC10682402 DOI: 10.1038/s41467-023-43233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
Application of microfluidic platforms facilitated high-precision measurements of yeast replicative lifespan (RLS); however, comparative quantification of lifespan across strain libraries has been missing. Here we microfluidically measure the RLS of 307 yeast strains, each deleted for a single gene. Despite previous reports of extended lifespan in these strains, we found that 56% of them did not actually live longer than the wild-type; while the remaining 44% showed extended lifespans, the degree of extension was often different from what was previously reported. Deletion of SIS2 gene led to the largest RLS increase observed. Sis2 regulated yeast lifespan in a dose-dependent manner, implying a role for the coenzyme A biosynthesis pathway in lifespan regulation. Introduction of the human PPCDC gene in the sis2Δ background neutralized the lifespan extension. RNA-seq experiments revealed transcriptional increases in cell-cycle machinery components in sis2Δ background. High-precision lifespan measurement will be essential to elucidate the gene network governing lifespan.
Collapse
Affiliation(s)
- Tolga T Ölmez
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Koç University Research Center for Translational Medicine, Koç University, Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, 67400, France
| | - Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zane M Johnson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Madeline M McGinnis
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Hochstrasser
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey.
| |
Collapse
|
10
|
Hounchonou HF, Tang H, Paulat R, Kühn A, Spranger J, van Riesen C, Maurer L. Continuous deep brain stimulation of the nucleus accumbens reduces food intake but does not affect body weight in mice fed a high-fat diet. Sci Rep 2023; 13:18952. [PMID: 37919311 PMCID: PMC10622429 DOI: 10.1038/s41598-023-45511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Obesity is an enormous health problem, and many patients do not respond to any of the available therapies. Deep brain stimulation (DBS) is currently investigated as a potential treatment for morbid obesity. In this study, we tested the hypothesis that high-frequency DBS targeting the nucleus accumbens (NAc) shell region reduces food intake and weight gain in mice fed a high-fat diet. We implanted male C57BL/6J mice with bilateral electrodes and a head-mounted microstimulator enabling continuous stimulation for up to 5 weeks. In successfully operated animals (n = 9 per group, high-frequency vs. sham stimulation), we investigated immediate and long-term stimulation effects on metabolic and behavioral phenotypes. Here we show that stimulation acutely induced a transient reduction in energy expenditure and locomotor activity but did not significantly affect spontaneous food intake, social interaction, anxiety or exploratory behaviors. In contrast, continuous stimulation over 5 weeks led to a decrease in food intake and thigmotaxis (the tendency to stay near walls in an open lit arena). However, chronic stimulation did not substantially change weight gain in mice fed a high-fat diet. Our results do not support the use of continuous high-frequency NAc shell DBS as a treatment for obesity. However, DBS can alter obesity-related parameters with differing short and long-term effects. Therefore, future research should employ time and context-sensitive experimental designs to assess the potential of DBS for clinical translation in this area.
Collapse
Affiliation(s)
- Harold F Hounchonou
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hui Tang
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany
| | - Raik Paulat
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph van Riesen
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Maurer
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany.
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
11
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
12
|
Du X, Cui Z, Zhang R, Zhao K, Wang L, Yao J, Liu S, Cai C, Cao Y. The Effects of Rumen-Protected Choline and Rumen-Protected Nicotinamide on Liver Transcriptomics in Periparturient Dairy Cows. Metabolites 2023; 13:metabo13050594. [PMID: 37233635 DOI: 10.3390/metabo13050594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
To investigate the effects of rumen-protected choline (RPC) and rumen-protected nicotinamide (RPM) on liver metabolic function based on transcriptome in periparturient dairy cows, 10 healthy Holstein dairy cows with similar parity were allocated to RPC and RPM groups (n = 5). The cows were fed experimental diets between 14 days before and 21 days after parturition. The RPC diet contained 60 g RPC per day, and the RPM diet contained 18.7 g RPM per day. Liver biopsies were taken 21 days after calving for the transcriptome analysis. A model of fat deposition hepatocytes was constructed using the LO2 cell line with the addition of NEFA (1.6 mmol/L), and the expression level of genes closely related to liver metabolism was validated and divided into a CHO group (75 μmol/L) and a NAM group (2 mmol/L). The results showed that the expression of a total of 11,023 genes was detected and clustered obviously between the RPC and RPM groups. These genes were assigned to 852 Gene Ontology terms, the majority of which were associated with biological process and molecular function. A total of 1123 differentially expressed genes (DEGs), 640 up-regulated and 483 down-regulated, were identified between the RPC and RPM groups. These DEGs were mainly correlated with fat metabolism, oxidative stress and some inflammatory pathways. In addition, compared with the NAM group, the gene expression level of FGF21, CYP26A1, SLC13A5, SLCO1B3, FBP2, MARS1 and CDH11 in the CHO group increased significantly (p < 0.05). We proposed that that RPC could play a prominent role in the liver metabolism of periparturient dairy cows by regulating metabolic processes such as fatty acid synthesis and metabolism and glucose metabolism; yet, RPM was more involved in biological processes such as the TCA cycle, ATP generation and inflammatory signaling.
Collapse
Affiliation(s)
- Xue'er Du
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhijie Cui
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rui Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Keliang Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
13
|
Mapping the Metabolic Niche of Citrate Metabolism and SLC13A5. Metabolites 2023; 13:metabo13030331. [PMID: 36984771 PMCID: PMC10054676 DOI: 10.3390/metabo13030331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The small molecule citrate is a key molecule that is synthesized de novo and involved in diverse biochemical pathways influencing cell metabolism and function. Citrate is highly abundant in the circulation, and cells take up extracellular citrate via the sodium-dependent plasma membrane transporter NaCT encoded by the SLC13A5 gene. Citrate is critical to maintaining metabolic homeostasis and impaired NaCT activity is implicated in metabolic disorders. Though citrate is one of the best known and most studied metabolites in humans, little is known about the consequences of altered citrate uptake and metabolism. Here, we review recent findings on SLC13A5, NaCT, and citrate metabolism and discuss the effects on metabolic homeostasis and SLC13A5-dependent phenotypes. We discuss the “multiple-hit theory” and how stress factors induce metabolic reprogramming that may synergize with impaired NaCT activity to alter cell fate and function. Furthermore, we underline how citrate metabolism and compartmentalization can be quantified by combining mass spectrometry and tracing approaches. We also discuss species-specific differences and potential therapeutic implications of SLC13A5 and NaCT. Understanding the synergistic impact of multiple stress factors on citrate metabolism may help to decipher the disease mechanisms associated with SLC13A5 citrate transport disorders.
Collapse
|
14
|
Recio-López P, Valladolid-Acebes I, Hadwiger P, Hossbach M, Krampert M, Prata C, Berggren PO, Juntti-Berggren L. Treatment of the metabolic syndrome by siRNA targeting apolipoprotein CIII. Biofactors 2023; 49:153-172. [PMID: 36039858 DOI: 10.1002/biof.1885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022]
Abstract
Apolipoprotein CIII (apoCIII) is increased in obesity-induced insulin resistance and type-2 diabetes. Emerging evidences support the advantages of small interfering RNAs (siRNAs) to target disease-causing genes. The aim of this study was to develop siRNAs for in vivo silencing of apoCIII and investigate if this results in metabolic improvements comparable to what we have seen using antisense oligonucelotides against apoCIII. Twenty-four siRNAs were synthesized and tested in a dual luciferase reporter assay. The eight best were selected, based on knockdown at 20 nM, and of these, two were selected based on IC50 values. In vivo experiments were performed in ob/ob mice, an obese animal model for diabetes. To determine the dose-dependency, efficacy, duration of effect and therapeutic dose we used a short protocol giving the apoCIII-siRNA mix for three days. To evaluate long-term metabolic effects mice were treated for three days, every second week for eight weeks. The siRNA mix effectively and selectively reduced expression of apoCIII in liver in vivo. Treatment had to be repeated every two weeks to maintain a suppression of apoCIII. The reduction of apoCIII resulted in increased LPL activity, lower triglycerides, reduced liver fat, ceased weight gain, enhanced insulin sensitivity, and improved glucose homeostasis. No off-target or side effects were observed during the eight-week treatment period. These results suggest that in vivo silencing of apoCIII with siRNA, is a promising approach with the potential to be used in the battle against obesity-induced metabolic disorders.
Collapse
Affiliation(s)
- Patricia Recio-López
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | | | | | | | | | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| |
Collapse
|
15
|
Mackert O, Wirth EK, Sun R, Winkler J, Liu A, Renko K, Kunz S, Spranger J, Brachs S. Impact of metabolic stress induced by diets, aging and fasting on tissue oxygen consumption. Mol Metab 2022; 64:101563. [PMID: 35944898 PMCID: PMC9418990 DOI: 10.1016/j.molmet.2022.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS Comparative analyses of OCR and ECAR were performed in tissue biopsies of young mice fed 12 weeks standard-control (STD), high-fat (HFD), high-sucrose (HSD), or western diet (WD), matured mice with HFD, and 2year-old mice aged on STD with and without fasting. RESULTS While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced in adipose tissue (AT). Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown AT. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in AT could indicate its lipolytic capacity. CONCLUSION Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, AT, pancreas and heart revealing effects of metabolic stress, especially aging.
Collapse
Affiliation(s)
- Olena Mackert
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Eva Katrin Wirth
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Rongwan Sun
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Jennifer Winkler
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Aoxue Liu
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
16
|
A Novel and Cross-Species Active Mammalian INDY (NaCT) Inhibitor Ameliorates Hepatic Steatosis in Mice with Diet-Induced Obesity. Metabolites 2022; 12:metabo12080732. [PMID: 36005604 PMCID: PMC9413491 DOI: 10.3390/metabo12080732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian INDY (mINDY, NaCT, gene symbol SLC13A5) is a potential target for the treatment of metabolically associated fatty liver disease (MAFLD). This study evaluated the effects of a selective, cross-species active, non-competitive, non-substrate-like inhibitor of NaCT. First, the small molecule inhibitor ETG-5773 was evaluated for citrate and succinate uptake and fatty acid synthesis in cell lines expressing both human NaCT and mouse Nact. Once its suitability was established, the inhibitor was evaluated in a diet-induced obesity (DIO) mouse model. DIO mice treated with 15 mg/kg compound ETG-5773 twice daily for 28 days had reduced body weight, fasting blood glucose, and insulin, and improved glucose tolerance. Liver triglycerides were significantly reduced, and body composition was improved by reducing fat mass, supported by a significant reduction in the expression of genes for lipogenesis such as SREBF1 and SCD1. Most of these effects were also evident after a seven-day treatment with the same dose. Further mechanistic investigation in the seven-day study showed increased plasma β-hydroxybutyrate and activated hepatic adenosine monophosphate-activated protein kinase (AMPK), reflecting findings from Indy (−/−) knockout mice. These results suggest that the inhibitor ETG-5773 blocked citrate uptake mediated by mouse and human NaCT to reduce liver steatosis and body fat and improve glucose regulation, proving the concept of NaCT inhibition as a future liver treatment for MAFLD.
Collapse
|
17
|
Mishra D, Kannan K, Meadows K, Macro J, Li M, Frankel S, Rogina B. INDY-From Flies to Worms, Mice, Rats, Non-Human Primates, and Humans. FRONTIERS IN AGING 2022; 2:782162. [PMID: 35822025 PMCID: PMC9261455 DOI: 10.3389/fragi.2021.782162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023]
Abstract
I’m Not Dead Yet (Indy) is a fly homologue of the mammalian SLC13A5 (mSLC13A5) plasma membrane citrate transporter, a key metabolic regulator and energy sensor involved in health, longevity, and disease. Reduction of Indy gene activity in flies, and its homologs in worms, modulates metabolism and extends longevity. The metabolic changes are similar to what is obtained with caloric restriction (dietary restriction). Similar effects on metabolism have been observed in mice and rats. As a citrate transporter, INDY regulates cytoplasmic citrate levels. Indy flies heterozygous for a P-element insertion have increased spontaneous physical activity, increased fecundity, reduced insulin signaling, increased mitochondrial biogenesis, preserved intestinal stem cell homeostasis, lower lipid levels, and increased stress resistance. Mammalian Indy knockout (mIndy-KO) mice have higher sensitivity to insulin signaling, lower blood pressure and heart rate, preserved memory and are protected from the negative effects of a high-fat diet and some of the negative effects of aging. Reducing mIndy expression in human hepatocarcinoma cells has recently been shown to inhibit cell proliferation. Reduced Indy expression in the fly intestine affects intestinal stem cell proliferation, and has recently been shown to also inhibit germ cell proliferation in males with delayed sperm maturation and decreased spermatocyte numbers. These results highlight a new connection between energy metabolism and cell proliferation. The overrall picture in a variety of species points to a conserved role of INDY for metabolism and health. This is illustrated by an association of high mIndy gene expression with non-alcoholic fatty liver disease in obese humans. mIndy (mSLC13A5) coding region mutations (e.g., loss-of-function) are also associated with adverse effects in humans, such as autosomal recessive early infantile epileptic encephalopathy and Kohlschütter−Tönz syndrome. The recent findings illustrate the importance of mIndy gene for human health and disease. Furthermore, recent work on small-molecule regulators of INDY highlights the promise of INDY-based treatments for ameliorating disease and promoting healthy aging.
Collapse
Affiliation(s)
- Dushyant Mishra
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kavitha Kannan
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kali Meadows
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Jacob Macro
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Michael Li
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Stewart Frankel
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States.,Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
18
|
Milosavljevic S, Glinton KE, Li X, Medeiros C, Gillespie P, Seavitt JR, Graham BH, Elsea SH. Untargeted Metabolomics of Slc13a5 Deficiency Reveal Critical Liver-Brain Axis for Lipid Homeostasis. Metabolites 2022; 12:metabo12040351. [PMID: 35448538 PMCID: PMC9032242 DOI: 10.3390/metabo12040351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/17/2023] Open
Abstract
Though biallelic variants in SLC13A5 are known to cause severe encephalopathy, the mechanism of this disease is poorly understood. SLC13A5 protein deficiency reduces citrate transport into the cell. Downstream abnormalities in fatty acid synthesis and energy generation have been described, though biochemical signs of these perturbations are inconsistent across SLC13A5 deficiency patients. To investigate SLC13A5-related disorders, we performed untargeted metabolic analyses on the liver, brain, and serum from a Slc13a5-deficient mouse model. Metabolomic data were analyzed using the connect-the-dots (CTD) methodology and were compared to plasma and CSF metabolomics from SLC13A5-deficient patients. Mice homozygous for the Slc13a5tm1b/tm1b null allele had perturbations in fatty acids, bile acids, and energy metabolites in all tissues examined. Further analyses demonstrated that for several of these molecules, the ratio of their relative tissue concentrations differed widely in the knockout mouse, suggesting that deficiency of Slc13a5 impacts the biosynthesis and flux of metabolites between tissues. Similar findings were observed in patient biofluids, indicating altered transport and/or flux of molecules involved in energy, fatty acid, nucleotide, and bile acid metabolism. Deficiency of SLC13A5 likely causes a broader state of metabolic dysregulation than previously recognized, particularly regarding lipid synthesis, storage, and metabolism, supporting SLC13A5 deficiency as a lipid disorder.
Collapse
Affiliation(s)
- Sofia Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
- Harvard Medical School, Boston, MA 02215, USA
| | - Kevin E. Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Xiqi Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Cláudia Medeiros
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - Patrick Gillespie
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Brett H. Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
- Correspondence: ; Tel.: +1-713-798-5484
| |
Collapse
|
19
|
Citrate transporter inhibitors: possible new anticancer agents. Future Med Chem 2022; 14:665-679. [PMID: 35357238 DOI: 10.4155/fmc-2021-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The culmination of 80+ years of cancer research implicates the aberrant metabolism in tumor cells as a root cause of pathogenesis. Citrate is an essential molecule in intermediary metabolism, and its amplified availability to critical pathways in cancer cells via citrate transporters confers a high rate of cancer cell growth and proliferation. Inhibiting the plasma membrane and mitochondrial citrate transporters - whether individually, in combination, or partnered with complementary metabolic targets - in order to combat cancer may prove to be a consequential chemotherapeutic strategy. This review aims to summarize the use of different classes of citrate transporter inhibitors for anticancer activity, either individually or as part of a cocktail.
Collapse
|
20
|
Pesta D, Jordan J. INDY as a Therapeutic Target for Cardio-Metabolic Disease. Metabolites 2022; 12:metabo12030244. [PMID: 35323687 PMCID: PMC8949283 DOI: 10.3390/metabo12030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Decreased expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) promotes longevity and protects from high-fat diet- and aging-induced metabolic derangements. Preventing citrate import into hepatocytes by different strategies can reduce hepatic triglyceride accumulation and improve hepatic insulin sensitivity, even in the absence of effects on body composition. These beneficial effects likely derive from decreased hepatic de novo fatty acid biosynthesis as a result of reduced cytoplasmic citrate levels. While in vivo and in vitro studies show that inhibition of INDY prevents intracellular lipid accumulation, body weight is not affected by organ-specific INDY inhibition. Besides these beneficial metabolic effects, INDY inhibition may also improve blood pressure control through sympathetic nervous system inhibition, partly via reduced peripheral catecholamine synthesis. These effects make INDY a promising candidate with bidirectional benefits for improving both metabolic disease and blood pressure control.
Collapse
Affiliation(s)
- Dominik Pesta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, D-51147 Cologne, Germany;
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
- Correspondence:
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, D-51147 Cologne, Germany;
| |
Collapse
|
21
|
Mendelsohn AR, Larrick JW. Stem Cell Rejuvenation by Restoration of Youthful Metabolic Compartmentalization. Rejuvenation Res 2021; 24:470-474. [PMID: 34846176 DOI: 10.1089/rej.2021.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell dysfunction is a hallmark of aging. Much recent study suggests that epigenetic changes play a critical role in the loss of stem cell function with age. However, the underlying mechanisms require elucidation. A recent report describes a process by which mild mitochondrial stress associated with aging causes lysosomal-mediated decreases in CiC, the mitochondrial citrate transporter, in bone marrow-derived mesenchymal stem cells (MSCs). This, in turn, results in a deficit of acetyl-CoA in the nucleus and hypoacetylation of histones. The altered epigenome results in skewered stem cell differentiation favoring adipogenesis and disfavoring osteogenesis, which is problematic given the role the MSCs play in maintaining the integrity of bone tissue. Restoration of nuclear acetyl-CoA by either ectopic expression of CiC or acetate supplementation of MSCs in culture rejuvenates the MSC, restoring the potential to efficiently differentiate along the osteogenic lineage. Citrate, which has recently been reported to extend lifespan in Drosophila, chemically incorporates acetyl-CoA and may prove useful to restore cytoplasmic and nuclear acetyl-CoA levels. The general applicability of the CiC defect in old cells, particularly stem cells, should be established.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
22
|
Jeong J, Lee J, Kim JH, Lim C. Metabolic flux from the Krebs cycle to glutamate transmission tunes a neural brake on seizure onset. PLoS Genet 2021; 17:e1009871. [PMID: 34714823 PMCID: PMC8555787 DOI: 10.1371/journal.pgen.1009871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) manifests as neurological dysfunctions, including early-onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5 homolog, I'm not dead yet (Indy), constitutes a neurometabolic pathway that suppresses seizure. Loss of Indy function in glutamatergic neurons caused "bang-induced" seizure-like behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-limiting α-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants and ameliorated their seizure-like behaviors. This metabolic control of the seizure susceptibility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to seizure, providing important clues to KTS-associated neurodevelopmental deficits.
Collapse
Affiliation(s)
- Jiwon Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ji-hyung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Brown TL, Nye KL, Porter BE. Growth and Overall Health of Patients with SLC13A5 Citrate Transporter Disorder. Metabolites 2021; 11:metabo11110746. [PMID: 34822404 PMCID: PMC8625967 DOI: 10.3390/metabo11110746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
We were interested in elucidating the non-neurologic health of patients with autosomal recessive SLC13A5 Citrate Transporter (NaCT) Disorder. Multiple variants have been reported that cause a loss of transporter activity, resulting in significant neurologic impairment, including seizures, as well as motor and cognitive dysfunction. Additionally, most patients lack tooth enamel (amelogenesis imperfecta). However, patients have not had their overall health and growth described in detail. Here we characterized the non-neurologic health of 15 patients with medical records uploaded to Ciitizen, a cloud-based patient medical records portal. Ciitizen used a query method for data extraction. Overall, the patients’ records suggested a moderate number of gastrointestinal issues related to feeding, reflux, vomiting and weight gain and a diverse number of respiratory complaints. Other organ systems had single or no abnormal diagnoses, including liver, renal and cardiac. Growth parameters were mostly in the normal range during early life, with a trend toward slower growth in the few adolescent patients with data available. The gastrointestinal and pulmonary issues may at least partially be explained by the severity of the neurologic disorder. More data are needed to clarify if growth is impacted during adolescence and if adult patients develop or are protected from non-neurologic disorders.
Collapse
Affiliation(s)
- Tanya L. Brown
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA 94026, USA;
- Correspondence:
| | - Kimberly L. Nye
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA 94026, USA;
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94070, USA;
| |
Collapse
|
24
|
Kannan K, Rogina B. The Role of Citrate Transporter INDY in Metabolism and Stem Cell Homeostasis. Metabolites 2021; 11:705. [PMID: 34677421 PMCID: PMC8540898 DOI: 10.3390/metabo11100705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
I'm Not Dead Yet (Indy) is a fly gene that encodes a homologue of mammalian SLC13A5 plasma membrane citrate transporter. Reducing expression of Indy gene in flies, and its homologues in worms, extends longevity. Indy reduction in flies, worms, mice and rats affects metabolism by regulating the levels of cytoplasmic citrate, inducing a state similar to calorie restriction. Changes include lower lipid levels, increased insulin sensitivity, increased mitochondrial biogenesis, and prevention of weight gain, among others. The INDY protein is predominantly expressed in fly metabolic tissues: the midgut, fat body and oenocytes. Changes in fly midgut metabolism associated with reduced Indy gene activity lead to preserved mitochondrial function and reduced production of reactive oxygen species. All these changes lead to preserved intestinal stem cell homeostasis, which has a key role in maintaining intestinal epithelium function and enhancing fly healthspan and lifespan. Indy gene expression levels change in response to caloric content of the diet, inflammation and aging, suggesting that INDY regulates metabolic adaptation to nutrition or energetic requirements by controlling citrate levels.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
25
|
Molecular Mechanisms of the SLC13A5 Gene Transcription. Metabolites 2021; 11:metabo11100706. [PMID: 34677420 PMCID: PMC8537064 DOI: 10.3390/metabo11100706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Citrate is a crucial energy sensor that plays a central role in cellular metabolic homeostasis. The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter highly expressed in the mammalian liver with relatively low levels in the testis and brain, imports citrate from extracellular spaces into the cells. The perturbation of SLC13A5 expression and/or activity is associated with non-alcoholic fatty liver disease, obesity, insulin resistance, cell proliferation, and early infantile epileptic encephalopathy. SLC13A5 has been proposed as a promising therapeutic target for the treatment of these metabolic disorders. In the liver, the inductive expression of SLC13A5 has been linked to several xenobiotic receptors such as the pregnane X receptor and the aryl hydrocarbon receptor as well as certain hormonal and nutritional stimuli. Nevertheless, in comparison to the heightened interest in understanding the biological function and clinical relevance of SLC13A5, studies focusing on the regulatory mechanisms of SLC13A5 expression are relatively limited. In this review, we discuss the current advances in our understanding of the molecular mechanisms by which the expression of SLC13A5 is regulated. We expect this review will provide greater insights into the regulation of the SLC13A5 gene transcription and the signaling pathways involved therein.
Collapse
|
26
|
Jaramillo-Martinez V, Sivaprakasam S, Ganapathy V, Urbatsch IL. Drosophila INDY and Mammalian INDY: Major Differences in Transport Mechanism and Structural Features despite Mostly Similar Biological Functions. Metabolites 2021; 11:metabo11100669. [PMID: 34677384 PMCID: PMC8537002 DOI: 10.3390/metabo11100669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
INDY (I’m Not Dead Yet) is a plasma membrane transporter for citrate, first identified in Drosophila. Partial deficiency of INDY extends lifespan in this organism in a manner similar to that of caloric restriction. The mammalian counterpart (NaCT/SLC13A5) also transports citrate. In mice, it is the total, not partial, absence of the transporter that leads to a metabolic phenotype similar to that caloric restriction; however, there is evidence for subtle neurological dysfunction. Loss-of-function mutations in SLC13A5 (solute carrier gene family 13, member A5) occur in humans, causing a recessive disease, with severe clinical symptoms manifested by neonatal seizures and marked disruption in neurological development. Though both Drosophila INDY and mammalian INDY transport citrate, the translocation mechanism differs, the former being a dicarboxylate exchanger for the influx of citrate2− in exchange for other dicarboxylates, and the latter being a Na+-coupled uniporter for citrate2−. Their structures also differ as evident from only ~35% identity in amino acid sequence and from theoretically modeled 3D structures. The varied biological consequences of INDY deficiency across species, with the beneficial effects predominating in lower organisms and detrimental effects overwhelming in higher organisms, are probably reflective of species-specific differences in tissue expression and also in relative contribution of extracellular citrate to metabolic pathways in different tissues
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
- Correspondence:
| |
Collapse
|
27
|
Consequences of NaCT/SLC13A5/mINDY deficiency: good versus evil, separated only by the blood-brain barrier. Biochem J 2021; 478:463-486. [PMID: 33544126 PMCID: PMC7868109 DOI: 10.1042/bcj20200877] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
NaCT/SLC13A5 is a Na+-coupled transporter for citrate in hepatocytes, neurons, and testes. It is also called mINDY (mammalian ortholog of ‘I'm Not Dead Yet’ in Drosophila). Deletion of Slc13a5 in mice leads to an advantageous phenotype, protecting against diet-induced obesity, and diabetes. In contrast, loss-of-function mutations in SLC13A5 in humans cause a severe disease, EIEE25/DEE25 (early infantile epileptic encephalopathy-25/developmental epileptic encephalopathy-25). The difference between mice and humans in the consequences of the transporter deficiency is intriguing but probably explainable by the species-specific differences in the functional features of the transporter. Mouse Slc13a5 is a low-capacity transporter, whereas human SLC13A5 is a high-capacity transporter, thus leading to quantitative differences in citrate entry into cells via the transporter. These findings raise doubts as to the utility of mouse models to evaluate NaCT biology in humans. NaCT-mediated citrate entry in the liver impacts fatty acid and cholesterol synthesis, fatty acid oxidation, glycolysis, and gluconeogenesis; in neurons, this process is essential for the synthesis of the neurotransmitters glutamate, GABA, and acetylcholine. Thus, SLC13A5 deficiency protects against obesity and diabetes based on what the transporter does in hepatocytes, but leads to severe brain deficits based on what the transporter does in neurons. These beneficial versus detrimental effects of SLC13A5 deficiency are separable only by the blood-brain barrier. Can we harness the beneficial effects of SLC13A5 deficiency without the detrimental effects? In theory, this should be feasible with selective inhibitors of NaCT, which work only in the liver and do not get across the blood-brain barrier.
Collapse
|
28
|
Dietary-challenged mice with Alzheimer-like pathology show increased energy expenditure and reduced adipocyte hypertrophy and steatosis. Aging (Albany NY) 2021; 13:10891-10919. [PMID: 33864446 PMCID: PMC8109068 DOI: 10.18632/aging.202978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is frequently accompanied by progressing weight loss, correlating with mortality. Counter-intuitively, weight loss in old age might predict AD onset but obesity in midlife increases AD risk. Furthermore, AD is associated with diabetes-like alterations in glucose metabolism. Here, we investigated metabolic features of amyloid precursor protein overexpressing APP23 female mice modeling AD upon long-term challenge with high-sucrose (HSD) or high-fat diet (HFD). Compared to wild type littermates (WT), APP23 females were less prone to mild HSD-induced and considerable HFD-induced glucose tolerance deterioration, despite unaltered glucose tolerance during normal-control diet. Indirect calorimetry revealed increased energy expenditure and hyperactivity in APP23 females. Dietary interventions, especially HFD, had weaker effects on lean and fat mass gain, steatosis and adipocyte hypertrophy of APP23 than WT mice, as shown by 1H-magnetic-resonance-spectroscopy, histological and biochemical analyses. Proteome analysis revealed differentially regulated expression of mitochondrial proteins in APP23 livers and brains. In conclusion, hyperactivity, increased metabolic rate, and global mitochondrial dysfunction potentially add up to the development of AD-related body weight changes in APP23 females, becoming especially evident during diet-induced metabolic challenge. These findings emphasize the importance of translating this metabolic phenotyping into human research to decode the metabolic component in AD pathogenesis.
Collapse
|
29
|
Sauer DB, Song J, Wang B, Hilton JK, Karpowich NK, Mindell JA, Rice WJ, Wang DN. Structure and inhibition mechanism of the human citrate transporter NaCT. Nature 2021; 591:157-161. [PMID: 33597751 PMCID: PMC7933130 DOI: 10.1038/s41586-021-03230-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Citrate is most well-known as an intermediate in the TCA cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis 1–3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic citrate concentration 4,5. Liver cells import citrate via the sodium-dependent citrate transporter NaCT (SLC13A5), and as a consequence this protein is a potential target for anti-obesity drugs. To understand the structural basis of its inhibition mechanism, we have determined cryo-electron microscopy structures of human NaCT in complex with citrate and with a small molecule inhibitor. These structures reveal how the inhibitor, bound at the same site as citrate, arrests the protein’s transport cycle. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish NaCT’s transport activity in the brain and thereby cause SLC13A5-Epilepsy in newborns 6–8.
Collapse
Affiliation(s)
- David B Sauer
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Jacob K Hilton
- Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nathan K Karpowich
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA.,Janssen Pharmaceuticals, Spring House, PA, USA
| | - Joseph A Mindell
- Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - William J Rice
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA. .,Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA.
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA. .,Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Willmes DM, Daniels M, Kurzbach A, Lieske S, Bechmann N, Schumann T, Henke C, El-Agroudy NN, Da Costa Goncalves AC, Peitzsch M, Hofmann A, Kanczkowski W, Kräker K, Müller DN, Morawietz H, Deussen A, Wagner M, El-Armouche A, Helfand SL, Bornstein SR, de Cabo R, Bernier M, Eisenhofer G, Tank J, Jordan J, Birkenfeld AL. The longevity gene mIndy (I'm Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms. JCI Insight 2021; 6:136083. [PMID: 33491666 PMCID: PMC7934862 DOI: 10.1172/jci.insight.136083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target. Deletion of mIndy reduces blood pressure and heart rate by attenuating catecholamine biosynthesis and recapitulates beneficial cardiovascular and metabolic responses to caloric restriction.
Collapse
Affiliation(s)
- Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Daniels
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stefanie Lieske
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Kristin Kräker
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Medical Faculty Carl Gustav Carus, and
| | - Michael Wagner
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Stephan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Graeme Eisenhofer
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Jens Tank
- Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Jens Jordan
- Aerospace Medicine, University of Cologne, Cologne, Germany.,Institute for Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
31
|
The Mitochondrial Citrate Carrier SLC25A1/CIC and the Fundamental Role of Citrate in Cancer, Inflammation and Beyond. Biomolecules 2021; 11:biom11020141. [PMID: 33499062 PMCID: PMC7912299 DOI: 10.3390/biom11020141] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial citrate/isocitrate carrier, CIC, has been shown to play an important role in a growing list of human diseases. CIC belongs to a large family of nuclear-encoded mitochondrial transporters that serve the fundamental function of allowing the transit of ions and metabolites through the impermeable mitochondrial membrane. Citrate is central to mitochondrial metabolism and respiration and plays fundamental activities in the cytosol, serving as a metabolic substrate, an allosteric enzymatic regulator and, as the source of Acetyl-Coenzyme A, also as an epigenetic modifier. In this review, we highlight the complexity of the mechanisms of action of this transporter, describing its involvement in human diseases and the therapeutic opportunities for targeting its activity in several pathological conditions.
Collapse
|
32
|
Zhang H, Niu Q, Liang K, Li X, Jiang J, Bian C. Effect of LncPVT1/miR-20a-5p on Lipid Metabolism and Insulin Resistance in NAFLD. Diabetes Metab Syndr Obes 2021; 14:4599-4608. [PMID: 34848984 PMCID: PMC8627263 DOI: 10.2147/dmso.s338097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is closely related to lipid metabolism and insulin resistance. The current research mainly attempted to verify the clinical value of LncRNA plasmacytoma variant translocation 1 (PVT1), and whether microRNA regulates lipid metabolism and insulin resistance to participate in NAFLD. PATIENTS AND METHODS 81 patients with NAFLD and 78 healthy individuals were enrolled in this study. In addition, C57BL/6 mice were fed a high-fat diet to establish NAFLD model in vivo. Serum PVT1 and miR-20a-5p expression in NAFLD patients and mice were assessed by RT-qPCR. ROC curves determine the diagnostic value of PVT1 and miR-20a-5p. NAFLD mice were subjected to IPGTT to detect changes in insulin sensitivity, and the common indicators of lipid metabolism and insulin resistance were also evaluated. Dual-luciferase reporter assay verified the regulation mechanism of PVT1 and miR-20a-5p. RESULTS PVT1 was upregulated in NAFLD patients and mice, while miR-20a-5p was decreased. Their expression trends were similar in patients with HOMA-IR ≥2.5. What's more, miR-20a-5p, FBG, ALT, and HOMA-IR were independently correlated with PVT1. And PVT1 and miR-20a-5p show high clinical diagnostic value. Bodyweight, insulin sensitivity, lipid metabolism inductors were increased in NAFLD mice, but these increases were attenuated by PVT1 elimination. Finally, miR-20a-5p might function as the possible miRNA target of PVT1 via the binding sites at 3'-UTR and negatively regulated by it. CONCLUSION PVT1 and miR-20a-5p are potential clinical biomarkers of NAFLD, and PVT1 promotes the occurrence of NAFLD by regulating insulin sensitivity and lipid metabolism, which may be achieved by targeting miR-20a-5p.
Collapse
Affiliation(s)
- Han Zhang
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Qinghui Niu
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
- Correspondence: Qinghui Niu Department of Liver Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, People’s Republic of ChinaTel +86-0532-82915998 Email
| | - Kun Liang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Xuesen Li
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Jing Jiang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Cheng Bian
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
33
|
Hu T, Huang W, Li Z, Kane MA, Zhang L, Huang SM, Wang H. Comparative proteomic analysis of SLC13A5 knockdown reveals elevated ketogenesis and enhanced cellular toxic response to chemotherapeutic agents in HepG2 cells. Toxicol Appl Pharmacol 2020; 402:115117. [PMID: 32634519 DOI: 10.1016/j.taap.2020.115117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/29/2022]
Abstract
Solute carrier family 13 member 5 (SLC13A5) is an uptake transporter mainly expressed in the liver and transports citrate from blood circulation into hepatocytes. Accumulating evidence suggests that SLC13A5 is involved in hepatic lipogenesis, cell proliferation, epilepsy, and bone development in mammals. However, the molecular mechanisms behind SLC13A5-mediated physiological/pathophysiological changes are largely unknown. In this regard, we conducted a differential proteome analysis in HepG2 and SLC13A5-knockdown (KD) HepG2 cells. A total of 3826 proteins were quantified and 330 proteins showed significant alterations (fold change ≥1.5; p < .05) in the knockdown cells. Gene ontology enrichment analysis reveals that 38 biological processes were significantly changed, with ketone body biosynthetic process showing the most significant upregulation following SLC13A5-KD. Catalytic activity and binding activity were the top two molecular functions associated with differentially expressed proteins, while HMG-CoA lyase activity showed the highest fold enrichment. Further ingenuity pathway analysis predicted 40 canonical pathways and 28 upstream regulators (p < .01), of which most were associated with metabolism, cell proliferation, and stress response. In line with these findings, functional validation demonstrated increased levels of two key ketone bodies, acetoacetate and β-hydroxybutyrate, in the SLC13A5-KD cells. Additional experiments showed that SLC13A5-KD sensitizes HepG2 cells to cellular stress caused by a number of chemotherapeutic agents. Together, our findings demonstrate that knockdown of SLC13A5 promotes hepatic ketogenesis and enhances cellular stress response in HepG2 cells, suggesting a potential role of this transporter in metabolic disorders and liver cancer.
Collapse
Affiliation(s)
- Tao Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States of America
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States of America
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America.
| |
Collapse
|
34
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|
35
|
Ziegler N, Raichur S, Brunner B, Hemmann U, Stolte M, Schwahn U, Prochnow HP, Metz-Weidmann C, Tennagels N, Margerie D, Wohlfart P, Bielohuby M. Liver-Specific Knockdown of Class IIa HDACs Has Limited Efficacy on Glucose Metabolism but Entails Severe Organ Side Effects in Mice. Front Endocrinol (Lausanne) 2020; 11:598. [PMID: 32982982 PMCID: PMC7485437 DOI: 10.3389/fendo.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of epigenetic gene modification that are involved in the transcriptional control of metabolism. In particular class IIa HDACs have been shown to affect hepatic gluconeogenesis and previous approaches revealed that their inhibition reduces blood glucose in type 2 diabetic mice. In the present study, we aimed to evaluate the potential of class IIa HDAC inhibition as a therapeutic opportunity for the treatment +of metabolic diseases. For that, siRNAs selectively targeting HDAC4, 5 and 7 were selected and used to achieve a combinatorial knockdown of these three class IIa HDAC isoforms. Subsequently, the hepatocellular effects as well as the impact on glucose and lipid metabolism were analyzed in vitro and in vivo. The triple knockdown resulted in a statistically significant decrease of gluconeogenic gene expression in murine and human hepatocyte cell models. A similar HDAC-induced downregulation of hepatic gluconeogenesis genes could be achieved in mice using a liver-specific lipid nanoparticle siRNA formulation. However, the efficacy on whole body glucose metabolism assessed by pyruvate-tolerance tests were only limited and did not outweigh the safety findings observed by histopathological analysis in spleen and kidney. Mechanistically, Affymetrix gene expression studies provide evidence that class IIa HDACs directly target other key factors beyond the described forkhead box (FOXP) transcription regulators, such as hepatocyte nuclear factor 4 alpha (HNF4a). Downstream of these factors several additional pathways were regulated not merely including glucose and lipid metabolism and transport. In conclusion, the liver-directed combinatorial knockdown of HDAC4, 5 and 7 by therapeutic siRNAs affected multiple pathways in vitro, leading in vivo to the downregulation of genes involved in gluconeogenesis. However, the effects on gene expression level were not paralleled by a significant reduction of gluconeogenesis in mice. Combined knockdown of HDAC isoforms was associated with severe adverse effects in vivo, challenging this approach as a treatment option for chronic metabolic disorders like type 2 diabetes.
Collapse
|
36
|
Görgens SW, Jahn-Hofmann K, Bangari D, Cummings S, Metz-Weidmann C, Schwahn U, Wohlfart P, Schäfer M, Bielohuby M. A siRNA mediated hepatic dpp4 knockdown affects lipid, but not glucose metabolism in diabetic mice. PLoS One 2019; 14:e0225835. [PMID: 31794591 PMCID: PMC6890245 DOI: 10.1371/journal.pone.0225835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Systemic inhibition of dipeptidyl peptidase 4 (dpp4) represents an effective and established treatment option for type 2 diabetes (T2D). The current study investigated in mice if a liver selective knock-down of dpp4 by therapeutic siRNAs could be a novel, similarly effective treatment option for T2D. Furthermore, the potential effects on hepatic steatosis, inflammation and lipid metabolism were investigated after hepato-selective knock-down of dpp4. The knock-down efficiency and IC50 values of siRNAs targeting dpp4 were analyzed in PC3 cells. In two independent studies, either db/db mice or C57BL/6J mice were injected intravenously with a liposomal formulation of siRNAs targeting either dpp4 or a non-targeting control, followed by metabolically characterization. In comparator groups, additional cohorts of mice were treated with an oral dpp4 inhibitor. In both animal studies, we observed a robust knock-down (~75%) of hepatic dpp4 with a potent siRNA. Hepatic dpp4 knockdown did not significantly affect glucose metabolism or circulating incretin concentrations in both animal studies. However, in obese and diabetic db/db mice hepatic steatosis was reduced and hepatic mRNA expression of acaca, scd1, fasn and pparg was significantly lower after siRNA treatment. Systemic inhibition of the enzymatic dpp4 activity by an oral dpp4 inhibitor significantly improved glucose handling in db/db mice but did not affect hepatic endpoints. These data demonstrate that a targeted reduction of dpp4 expression in the liver may not be sufficient to improve whole-body glucose metabolism in obese and diabetic mice but may improve hepatic lipid metabolism.
Collapse
Affiliation(s)
| | - Kerstin Jahn-Hofmann
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Dinesh Bangari
- Sanofi, Global Discovery Pathology, Translational In-vivo Models Framingham, MA, United States of America
| | - Sheila Cummings
- Sanofi, Global Discovery Pathology, Translational In-vivo Models Framingham, MA, United States of America
| | | | - Uwe Schwahn
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Paulus Wohlfart
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, Germany
- * E-mail: (PW); (MB)
| | - Matthias Schäfer
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Maximilian Bielohuby
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, Germany
- * E-mail: (PW); (MB)
| |
Collapse
|
37
|
Metabolic Biomarkers in Aging and Anti-Aging Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:247-264. [PMID: 31493231 DOI: 10.1007/978-3-030-25650-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although human life expectancy has increased significantly over the last two centuries, this has not been paralleled by a similar rise in healthy life expectancy. Thus, an important goal of anti-aging research has been to reduce the impact of age-associated diseases as a way of extending the human healthspan. This review will explore some of the potential avenues which have emerged from this research as the most promising strategies and drug targets for therapeutic interventions to promote healthy aging.
Collapse
|
38
|
Brachs S, Polack J, Brachs M, Jahn-Hofmann K, Elvert R, Pfenninger A, Bärenz F, Margerie D, Mai K, Spranger J, Kannt A. Genetic Nicotinamide N-Methyltransferase ( Nnmt) Deficiency in Male Mice Improves Insulin Sensitivity in Diet-Induced Obesity but Does Not Affect Glucose Tolerance. Diabetes 2019; 68:527-542. [PMID: 30552109 DOI: 10.2337/db18-0780] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022]
Abstract
Antisense oligonucleotide knockdown (ASO-KD) of nicotinamide N-methyltransferase (NNMT) in high-fat diet (HFD)-fed mice has been reported to reduce weight gain and plasma insulin levels and to improve glucose tolerance. Using NNMT-ASO-KD or NNMT knockout mice (NNMT-/-), we tested the hypothesis that Nnmt deletion protects against diet-induced obesity and its metabolic consequences in males and females on obesity-inducing diets. We also examined samples from a human weight reduction (WR) study for adipose NNMT (aNNMT) expression and plasma 1-methylnicotinamide (MNAM) levels. In Western diet (WD)-fed female mice, NNMT-ASO-KD reduced body weight, fat mass, and insulin level and improved glucose tolerance. Although NNMT-/- mice fed a standard diet had no obvious phenotype, NNMT-/- males fed an HFD showed strongly improved insulin sensitivity (IS). Furthermore, NNMT-/- females fed a WD showed reduced weight gain, less fat, and lower insulin levels. However, no improved glucose tolerance was observed in NNMT-/- mice. Although NNMT expression in human fat biopsy samples increased during WR, corresponding plasma MNAM levels significantly declined, suggesting that other mechanisms besides aNNMT expression modulate circulating MNAM levels during WR. In summary, upon NNMT deletion or knockdown in males and females fed different obesity-inducing diets, we observed sex- and diet-specific differences in body composition, weight, and glucose tolerance and estimates of IS.
Collapse
Affiliation(s)
- Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - James Polack
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ralf Elvert
- Sanofi Research and Development, Frankfurt am Main, Germany
| | | | - Felix Bärenz
- Sanofi Research and Development, Frankfurt am Main, Germany
| | | | - Knut Mai
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Clinical Research Unit, Berlin Institute of Health (BIH), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Clinical Research Unit, Berlin Institute of Health (BIH), Berlin, Germany
| | - Aimo Kannt
- Sanofi Research and Development, Frankfurt am Main, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
39
|
Phokrai P, Poolsri W, Suwankulanan S, Phakdeeto N, Kaewkong W, Pekthong D, Richert L, Srisawang P. Suppressed de novo lipogenesis by plasma membrane citrate transporter inhibitor promotes apoptosis in HepG2 cells. FEBS Open Bio 2018; 8:986-1000. [PMID: 29928578 PMCID: PMC5986055 DOI: 10.1002/2211-5463.12435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Suppression of the expression or activities of enzymes that are involved in the synthesis of de novo lipogenesis (DNL) in cancer cells triggers cell death via apoptosis. The plasma membrane citrate transporter (PMCT) is the initial step that translocates citrate from blood circulation into the cytoplasm for de novo long-chain fatty acids synthesis. This study investigated the antitumor effect of the PMCT inhibitor (PMCTi) in inducing apoptosis by inhibiting the DNL pathway in HepG2 cells. The present findings showed that PMCTi reduced cell viability and enhanced apoptosis through decreased intracellular citrate levels, which consequently caused inhibition of fatty acid and triacylglycerol productions. Thus, as a result of the reduction in fatty acid synthesis, the activity of carnitine palmitoyl transferase-1 (CPT-1) was suppressed. Decreased CPT-1 activity also facilitated the disruption of mitochondrial membrane potential (ΔΨm) leading to stimulation of apoptosis. Surprisingly, primary human hepatocytes were not affected by PMCTi. Increased caspase-8 activity as a consequence of reduction in fatty acid synthesis was also found to cause disruption of ΔΨm. In addition, apoptosis induction by PMCTi was associated with an enhanced reactive oxygen species generation. Taken together, we suggest that inhibition of the DNL pathway following reduction in citrate levels is an important regulator of apoptosis in HepG2 cells via suppression of CPT-1 activity. Thus, targeting the DNL pathway mediating CPT-1 activity by PMCTi may be a selective potential anticancer therapy.
Collapse
Affiliation(s)
- Phornpun Phokrai
- Department of Medical TechnologyFaculty of Science and TechnologyBansomdejchaopraya Rajabhat UniversityBangkokThailand
| | - Wan‐angkan Poolsri
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Somrudee Suwankulanan
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Narinthorn Phakdeeto
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Worasak Kaewkong
- Department of BiochemistryFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Dumrongsak Pekthong
- Department of Pharmacy PracticeFaculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
| | | | - Piyarat Srisawang
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
40
|
Willmes DM, Kurzbach A, Henke C, Schumann T, Zahn G, Heifetz A, Jordan J, Helfand SL, Birkenfeld AL. The longevity gene INDY ( I 'm N ot D ead Y et) in metabolic control: Potential as pharmacological target. Pharmacol Ther 2018; 185:1-11. [DOI: 10.1016/j.pharmthera.2017.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3683026. [PMID: 29546056 PMCID: PMC5818947 DOI: 10.1155/2018/3683026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 12/27/2022]
Abstract
Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy. The present study demonstrates that treatments with CTP inhibitor (CTPi), PMCT inhibitor (PMCTi), and the combination of CTPi and PMCTi resulted in decreased cell viability in two hepatocellular carcinoma cell lines (HepG2 and HuH-7). Treatment with citrate transporter inhibitors caused a greater cytotoxic effect in HepG2 cells than in HuH-7 cells. A lower concentration of combined CTPi and PMCTi promotes cytotoxic effect compared with either of a single compound. An increased cell apoptosis and an induced cell cycle arrest in both cell lines were reported after administration of the combined inhibitors. A combination treatment exhibits an enhanced apoptosis through decreased intracellular citrate levels, which consequently cause inhibition of fatty acid production in HepG2 cells. Apoptosis induction through the mitochondrial-dependent pathway was found as a consequence of suppressed carnitine palmitoyl transferase-1 (CPT-1) activity and enhanced ROS generation by combined CTPi and PMCTi treatment. We showed that accumulation of malonyl-CoA did not correlate with decreasing CPT-1 activity. The present study showed that elevated ROS levels served as an inhibition on Bcl-2 activity that is at least in part responsible for apoptosis. Moreover, inhibition of the citrate transporter is selectively cytotoxic to HepG2 cells but not in primary human hepatocytes, supporting citrate-mediating fatty acid synthesis as a promising cancer therapy.
Collapse
|
42
|
von Loeffelholz C, Lieske S, Neuschäfer-Rube F, Willmes DM, Raschzok N, Sauer IM, König J, Fromm M, Horn P, Chatzigeorgiou A, Pathe-Neuschäfer-Rube A, Jordan J, Pfeiffer AFH, Mingrone G, Bornstein SR, Stroehle P, Harms C, Wunderlich FT, Helfand SL, Bernier M, de Cabo R, Shulman GI, Chavakis T, Püschel GP, Birkenfeld AL. The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism. Hepatology 2017; 66:616-630. [PMID: 28133767 PMCID: PMC5519435 DOI: 10.1002/hep.29089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. CONCLUSION Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450. (Hepatology 2017;66:616-630).
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Friedrich Schiller University, and Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, 01774, Germany
| | - Stefanie Lieske
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany,Lehrstuhl für Biochemie der Ernährung, Universität Potsdam, Potsdam, 14558, Germany
| | | | - Diana M. Willmes
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany
| | - Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Charité – University School of Medicine, Berlin, 10117, Germany
| | - Igor M. Sauer
- General, Visceral, and Transplantation Surgery, Charité – University School of Medicine, Berlin, 10117, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91054, Germany
| | - Martin Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91054, Germany
| | - Paul Horn
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Friedrich Schiller University, and Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, 01774, Germany
| | - Antonis Chatzigeorgiou
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Dresden, TUD, Germany
| | | | - Jens Jordan
- Institute for Clinical Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité – University School of Medicine, Berlin, 10117, Germany,German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 8WA, UK,Catholic University of Rome, Department of Internal Medicine, Rome, Italy
| | - Stefan R. Bornstein
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany,Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 8WA, UK,German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Stroehle
- Max Planck Institute for Metabolism Research, Excellence cluster on cellular stress responses in aging associated diseases (CECAD), Cologne, 5093, Germany
| | - Christoph Harms
- Charité-Universitätsmedizin Berlin, Center for Stroke Research, Department of Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany
| | - F. Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Excellence cluster on cellular stress responses in aging associated diseases (CECAD), Cologne, 5093, Germany
| | - Stephen. L. Helfand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Dresden, TUD, Germany
| | - Gerhard. P. Püschel
- Lehrstuhl für Biochemie der Ernährung, Universität Potsdam, Potsdam, 14558, Germany
| | - Andreas. L. Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany,Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 8WA, UK,German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany,Competence Center for Metabolic Vascular Medicine, GWT-TU Dresden, Germany,Contact Information: Andreas L. Birkenfeld, M.D., Section of Metabolic Vascular Medicine, Dresden University School of Medicine Germany, TU Dresden, Tel: +49 15119188884.
| |
Collapse
|
43
|
Rogina B. INDY-A New Link to Metabolic Regulation in Animals and Humans. Front Genet 2017; 8:66. [PMID: 28596784 PMCID: PMC5442177 DOI: 10.3389/fgene.2017.00066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/09/2017] [Indexed: 12/02/2022] Open
Abstract
The Indy (I’m Not Dead Yet) gene encodes the fly homolog of the mammalian SLC13A5 citrate transporter. Reduced expression of the Indy gene in flies and worms extends their longevity. INDY is expressed in the plasma membrane of metabolically active tissues. Decreased expression of Indy in worms, flies, mice, and rats alters metabolism in a manner similar to calorie restriction. Reducing INDY activity prevents weight gain in flies, worms, and mice, and counteracts the negative effects of age or a high fat diet on metabolism and insulin sensitivity. The metabolic effects of reducing INDY activity are the result of reduced cytoplasmic citrate. Citrate is a key metabolite and has a central role in energy status of the cell by effecting lipid and carbohydrate metabolism and energy production. Thereby newly described drugs that reduce INDY transporting activity increase insulin sensitivity and reduce hepatic lipid levels via its effect on hepatic citrate uptake. A recent report presented the first direct link between increased hepatic levels of human INDY, insulin resistance, and non-alcoholic fatty liver disease in obese humans. Similarly increased hepatic mIndy levels were observed in non-human primates fed on a high fat diet for 2 years. This effect is mediated via the stimulatory effect of the interleukin-6/Stat3 pathway on mINDY hepatic expression. These findings make INDY a potential and very promising target for the treatment of metabolic disorders in humans.
Collapse
Affiliation(s)
- Blanka Rogina
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, FarmingtonCT, United States
| |
Collapse
|