1
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024; 68:349-361. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
2
|
Cao Y, Araki M, Nakagawa Y, Deisen L, Lundsgaard A, Kanta JM, Holm S, Johann K, Brings Jacobsen JC, Jähnert M, Schürmann A, Kiens B, Clemmensen C, Shimano H, Fritzen AM, Kleinert M. Dietary medium-chain fatty acids reduce hepatic fat accumulation via activation of a CREBH-FGF21 axis. Mol Metab 2024; 87:101991. [PMID: 39019116 PMCID: PMC11327439 DOI: 10.1016/j.molmet.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE Dietary medium-chain fatty acids (MCFAs), characterized by chain lengths of 8-12 carbon atoms, have been proposed to have beneficial effects on glucose and lipid metabolism, yet the underlying mechanisms remain elusive. We hypothesized that MCFA intake benefits metabolic health by inducing the release of hormone-like factors. METHODS The effects of chow diet, high-fat diet rich in long-chain fatty acids (LCFA HFD) fed ad libitum or pair-fed to a high-fat diet rich in MCFA (MCFA HFD) on glycemia, hepatic gene expression, circulating fibroblast growth factor 21 (FGF21), and liver fat content in both wildtype and Fgf21 knockout mice were investigated. The impact of a single oral dose of an MCFA-rich oil on circulating FGF21 and hepatic Fgf21 mRNA expression was assessed. In flag-tagged Crebh knockin mice and liver-specific Crebh knockout mice, fed LCFA HFD or MCFA HFD, active hepatic CREBH and hepatic Fgf21 mRNA abundance were determined, respectively. RESULTS MCFA HFD improves glucose tolerance, enhances glucose clearance into brown adipose tissue, and prevents high-fat diet-induced hepatic steatosis in wildtype mice. These benefits are associated with increased liver expression of CREBH target genes (Apoa4 and Apoc2), including Fgf21. Both acute and chronic intake of dietary MCFAs elevate circulating FGF21. Augmented hepatic Fgf21 mRNA following MCFA HFD intake is accompanied by higher levels of active hepatic CREBH; and MCFA-induced hepatic Fgf21 expression is blocked in mice lacking Crebh. Notably, while feeding male and female Fgf21 wildtype mice MCFA HFD results in reduced liver triacylglycerol (TG) levels, this liver TG-lowering effect is blunted in Fgf21 knockout mice fed MCFA HFD. The reduction in liver TG levels observed with MCFA HFD was independent of weight loss. CONCLUSIONS Dietary MCFAs reduce liver fat accumulation via activation of a CREBH-FGF21 signaling axis.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Luisa Deisen
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Annemarie Lundsgaard
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Josephine M Kanta
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kornelia Johann
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus Jähnert
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), 14558 Potsdam, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), 14558 Potsdam, Germany; Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and The University of Potsdam, 14469 Potsdam, Germany
| | - Bente Kiens
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Andreas M Fritzen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Maximilian Kleinert
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
3
|
Liu L, Ning N, Xu S, Chen D, Zhou L, Guo Z, Liang X, Ye X. Double promoter and tandem gene strategy for efficiently expressing recombinant FGF21. Microb Cell Fact 2024; 23:171. [PMID: 38867280 PMCID: PMC11167883 DOI: 10.1186/s12934-024-02447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a promising candidate for treating metabolic disorder diseases and has been used in phase II clinical trials. Currently, metabolic diseases are prevalent worldwide, underscoring the significant market potential of FGF21. Therefore, the production of FGF21 must be effectively improved to meet market demand. RESULTS Herein, to investigate the impact of vectors and host cells on FGF21 expression, we successfully engineered strains that exhibit a high yield of FGF21. Surprisingly, the data revealed that vectors with various copy numbers significantly impact the expression of FGF21, and the results showed a 4.35-fold increase in expression levels. Furthermore, the performance of the double promoter and tandem gene expression construction design surpassed that of the conventional construction method, with a maximum difference of 2.67 times. CONCLUSION By exploring engineered vectors and host cells, we successfully achieved high-yield production of the FGF21 strain. This breakthrough lays a solid foundation for the future industrialization of FGF21. Additionally, FGF21 can be easily, quickly and efficiently expressed, providing a better tool and platform for the research and application of more recombinant proteins.
Collapse
Affiliation(s)
- Longying Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Nuoyi Ning
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Simeng Xu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dongqing Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Luping Zhou
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhimou Guo
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
- Dalian Institute of Chemical Physics, Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
- Dalian Institute of Chemical Physics, Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
4
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
5
|
Bashir KMI, Kim JW, Park HR, Lee JK, Choi BR, Choi JS, Ku SK. Validating the Health Benefits of Coffee Berry Pulp Extracts in Mice with High-Fat Diet-Induced Obesity and Diabetes. Antioxidants (Basel) 2023; 13:10. [PMID: 38275632 PMCID: PMC10812732 DOI: 10.3390/antiox13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The effects of coffee (Coffea arabica L.) berry pulp extracts (CBP extracts) on the improvement of diabetes, obesity, and non-alcoholic fatty liver disease (NAFLD) were evaluated using various in vitro antioxidant activity assays and through a high-fat diet-induced mild diabetic obese mouse model. After an 84-day oral administration of CBP extracts (400-100 mg/kg), bioactivities were evaluated. The in vitro analysis showed the highest DPPH● scavenging activity of 73.10 ± 4.27%, ABTS● scavenging activity of 41.18 ± 1.14%, and SOD activity of 56.24 ± 2.81%, at a CBP extract concentration of 1000 µg/mL. The in vivo analysis of the CBP extracts showed favorable and dose-dependent anti-obesity, anti-diabetic, NAFLD, nephropathy, and hyperlipidemia refinement effects through hepatic glucose enzyme activity, 5'-AMP-activated protein kinase (AMPK) up-regulation, antioxidant activity, lipid metabolism-related gene expression, and pancreatic lipid digestion enzyme modulatory activities. This study shows that an appropriate oral dosage of CBP extracts could function as a potent herbal formulation for a refinement agent or medicinal food ingredient to control type 2 diabetes and related complications.
Collapse
Affiliation(s)
- Khawaja Muhammad Imran Bashir
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, Busan 46742, Republic of Korea
| | - Joo Wan Kim
- Department of Companion Animal Health, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Hye-Rim Park
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jae-Kyoung Lee
- CNS Pharm Korea Co., Ltd., Seoul 04043, Republic of Korea
- Department of Food Regulatory Science, College of Science and Technology, Korea University Sejong Campus, Sejong 30019, Republic of Korea
| | | | - Jae-Suk Choi
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
6
|
Carbonetti MP, Almeida-Oliveira F, Majerowicz D. Use of FGF21 analogs for the treatment of metabolic disorders: a systematic review and meta-analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 68:e220493. [PMID: 37948566 PMCID: PMC10916804 DOI: 10.20945/2359-4292-2022-0493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/23/2023] [Indexed: 11/12/2023]
Abstract
FGF21 is a hormone produced primarily by the liver with several metabolic functions, such as induction of heat production, control of glucose homeostasis, and regulation of blood lipid levels. Due to these actions, several laboratories have developed FGF21 analogs to treat patients with metabolic disorders such as obesity and diabetes. Here, we performed a systematic review and meta-analysis of randomized controlled trials that used FGF21 analogs and analyzed metabolic outcomes. Our search yielded 236 articles, and we included eight randomized clinical trials in the meta-analysis. The use of FGF21 analogs exhibited no effect on fasting blood glucose, glycated hemoglobin, HOMA index, blood free fatty acids or systolic blood pressure. However, the treatment significantly reduced fasting insulinemia, body weight and total cholesterolemia. None of the included studies were at high risk of bias. The quality of the evidence ranged from moderate to very low, especially due to imprecision and indirection issues. These results indicate that FGF21 analogs can potentially treat metabolic syndrome. However, more clinical trials are needed to increase the quality of evidence and confirm the effects seen thus far.
Collapse
Affiliation(s)
- Maria Paula Carbonetti
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fernanda Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - David Majerowicz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil,
| |
Collapse
|
7
|
Parvathareddy VP, Wu J, Thomas SS. Insulin Resistance and Insulin Handling in Chronic Kidney Disease. Compr Physiol 2023; 13:5069-5076. [PMID: 37770191 PMCID: PMC11079812 DOI: 10.1002/cphy.c220019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Insulin regulates energy metabolism involving multiple organ systems. Insulin resistance (IR) occurs when organs exhibit reduced insulin sensitivity, leading to difficulties in maintaining glucose homeostasis. IR ensures decades prior to development of overt diabetes and can cause silent metabolic derangements. IR is typically seen very early in the course of chronic kidney disease (CKD) and is evident even when the estimated glomerular filtration rate (eGFR) is within the normal range and IR persists at various stages of kidney disease. In this article, we will discuss insulin handling by the kidneys, mechanisms responsible for IR in CKD, measurements and management of IR in patients with CKD, and recent type 2 diabetic trials with implications for improved cardiovascular outcomes in CKD. © 2023 American Physiological Society. Compr Physiol 13:5069-5076, 2023.
Collapse
Affiliation(s)
- Vishnu P. Parvathareddy
- Nephrology Division, Department of Medicine, Baylor
College of Medicine, Houston, Texas, USA
| | - Jiao Wu
- Nephrology Division, Department of Medicine, Baylor
College of Medicine, Houston, Texas, USA
| | - Sandhya S. Thomas
- Nephrology Division, Department of Medicine, Michael E.
Debakey VA Medical Center, Houston, Texas, USA
- Nephrology Division, Department of Medicine, Baylor
College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
9
|
Huang X, Xia Z, Huang Y, Sun Y, Zhang L, Xiong W, Zhang Z. Combined therapy with pioglitazone and FGF21 mRNA synergistically ameliorates metabolic disorders in NAFLD rats. Heliyon 2023; 9:e15146. [PMID: 37123911 PMCID: PMC10133668 DOI: 10.1016/j.heliyon.2023.e15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Background Current study aims to investigate the ameliorative effect of pioglitazone (PIO) combined with mRNA encoding FGF21 (termed mFGF21) on the metabolic disorders in rats with nonalcoholic fatty liver disease (NAFLD) and its potential mechanism. Methods In vitro functional activity of FGF21 protein expressed by mFGF21 was evaluated in human adipose-derived stem cells (hASCs). The pharmacokinetic profiles of FGF21 protein expressed by mFGF21 were investigated in normal SD rats and NAFLD rats, respectively. Results As the results, it showed that the PIO could enhanced in vitro functional activity of FGF21 protein expressed from mFGF21 in hASCs. Not only that, mFGF21 turns the body into a processing plant for endogenous protein expression, which enhanced the pharmacokinetic profiles of FGF21 proteins. Combined treatment with PIO and mFGF21 significantly reduced body weight, fasting blood glucose levels, insulin levels and lipid metabolism in NAFLD rats compared with control or both two monotherapy groups. The results of H&E staining and Western blot revealed that combined treatment with PIO and mFGF21 significantly decreased hepatic fat accumulation in NAFLD rats by activating the SHP1/AMPK signaling pathway. Conclusions Our finding collectively demonstrated that PIO and mFGF21 combination therapy could synergistically ameliorate metabolic disorders in NAFLD rats.
Collapse
|
10
|
Bashir KMI, Kim JW, Kim JK, Chun YS, Choi JS, Ku SK. Efficacy Confirmation Test of Black Cumin (Nigella sativa L.) Seeds Extract Using a High-Fat Diet Mouse Model. Metabolites 2023; 13:metabo13040501. [PMID: 37110159 PMCID: PMC10142846 DOI: 10.3390/metabo13040501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
To deal with the adverse effects associated with the use of currently available treatments for metabolic disorders, such as type 2 diabetes, there is a need to find an alternative drug compound. In the present study, we investigated the therapeutic potential of black cumin (Nigella sativa L.) seeds extract (BCS extract) for type 2 diabetes using a 45% Kcal-fed obese mouse model. The BCS extract at different doses (400–100 mg/kg) showed a dose-dependent improvement tendency in high-fat diet (HFD)-induced obesity, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, and diabetic nephropathy compared to the metformin (250 mg/kg). In particular, BCS extract at a dose of 200 mg/kg significantly inhibited the HFD-induced metabolic conditions. The oral administration of BCS extract (200 mg/kg) significantly inhibited the oxidative stress through lipid peroxidation, normalized the activity of sugar metabolism-related enzymes and the expression of genes involved in fat metabolism, and inhibited insulin resistance through glucose and fat metabolism by regulating the 5’-AMP-activated protein kinase (AMPK) expression. Furthermore, BCS extract (200 mg/kg) showed renal damage improvement effects compared to the metformin (250 mg/kg). The results clearly show that BCS aqueous extract at an appropriate concentration could help in the treatment of metabolic disorders, and BCS aqueous extract can be used as a functional food for various diabetic complications, such as obesity, diabetes, and NAFLD.
Collapse
|
11
|
Meng M, Li X, Huo R, Chang G, Shen X. Effects of dietary disodium fumarate supplementation on muscle quality, chemical composition, oxidative stress and lipid metabolism of Hu sheep induced by high concentrate diet. Meat Sci 2023; 201:109176. [PMID: 37023594 DOI: 10.1016/j.meatsci.2023.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Long-term feeding of high-concentrate (HC) diet causes the decrease of rumen pH, and induces subacute rumen acidosis (SARA), which results in metabolic disorders in sheep. This not only reduces animal performance, but also increases the risk of oxidative stress and inflammatory reaction. Disodium fumarate can improve the rumen buffering capacity and increase rumen pH. This experiment was conducted to investigate the effects of high concentrate diet on muscle quality, chemical composition, oxidative damage and lipid metabolism of Hu sheep, and the regulating effect of disodium fumarate. The results showed that HC diet induced SARA by reducing rumen pH value, thus causing oxidative stress and lipid metabolism disorder in longissimus lumborum (LL) muscle of Hu sheep, which also reduced meat quality by increasing shear force, drip loss, cooking loss, chewiness and hardness, and reducing the contents of crude fat and crude protein in LL muscle. However, disodium fumarate can improve meat quality of SARA Hu sheep by regulating rumen pH, inhibiting muscle oxidative stress and promoting lipid metabolism.
Collapse
|
12
|
Lee HS, Heo CU, Song YH, Lee K, Choi CI. Naringin promotes fat browning mediated by UCP1 activation via the AMPK signaling pathway in 3T3-L1 adipocytes. Arch Pharm Res 2023; 46:192-205. [PMID: 36840853 DOI: 10.1007/s12272-023-01432-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Induction of the brown adipocyte-like phenotype in white adipocytes (fat browning) is considered a promising therapeutic strategy to treat obesity. Naringin, a citrus flavonoid, has antioxidant, anti-inflammatory, and anticancer activities. We examined the application of naringin as an anti-obesity compound based on an investigation of its induction of fat browning in 3T3-L1 adipocytes. Naringin did not induce lipid accumulation in differentiated 3T3-L1 adipocytes. Additionally, naringin reduced the expression levels of proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) involved in adipogenesis during lipid metabolism and increased the levels of PPARα and adiponectin involved in fatty acid oxidation. The expression levels of fat browning markers uncoupling protein 1 (UCP1; involved in thermogenesis) and PR domain containing 16 (PRDM16) increased. In addition, naringin treatment resulted in the activation of PPARγ coactivator 1-alpha (PGC-1α), a factor related to UCP1 transcription and mitochondrial biogenesis. Moreover, the expression of beige adipocyte-specific genes such as Cd137, Cited1, Tbx1, and Tmem26 was also induced. The small multi-lipid droplets characteristic of beige adipocytes indicated that naringin treatment increased the levels of all lipolysis markers (hormone-sensitive lipase [HSL], adipose triglyceride lipase [ATGL], perilipin [PLIN], and protein kinase A [PKA]). Adenosine monophosphate-activated protein kinase (AMPK) and UCP1 levels increased by treatment with naringin alone; this was possibly mediated by the stimulation of the AMPK signaling pathway. According to mechanistic studies, naringin activated the thermogenic protein UCP1 via the AMPK signaling pathway. In conclusion, naringin induces fat browning and is a promising therapeutic agent for metabolic disorders based on the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Ho Seon Lee
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Chan Uk Heo
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Young-Ho Song
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, 10326, Goyang, Republic of Korea.
| |
Collapse
|
13
|
Cui X, Feng J, Wei T, Zhang L, Lang S, Yang K, Yang J, Liu J, Sterr M, Lickert H, Wei R, Hong T. Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes. Diabetologia 2023; 66:535-550. [PMID: 36331598 PMCID: PMC9892158 DOI: 10.1007/s00125-022-05822-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
AIMS/HYPOTHESIS Glucagon receptor (GCGR) antagonism ameliorates hyperglycaemia and promotes beta cell regeneration in mouse models of type 2 diabetes. However, the underlying mechanisms remain unclear. The present study aimed to investigate the mechanism of beta cell regeneration induced by GCGR antagonism in mice. METHODS The db/db mice and high-fat diet (HFD)+streptozotocin (STZ)-induced mice with type 2 diabetes were treated with antagonistic GCGR monoclonal antibody (mAb), and the metabolic variables and islet cell quantification were evaluated. Plasma cytokine array and liver RNA sequencing data were used to screen possible mediators, including fibroblast growth factor 21 (FGF21). ELISA, quantitative RT-PCR and western blot were applied to verify FGF21 change. Blockage of FGF21 signalling by FGF21-neutralising antibody (nAb) was used to clarify whether FGF21 was involved in the effects of GCGR mAb on the expression of beta cell identity-related genes under plasma-conditional culture and hepatocyte co-culture conditions. FGF21 nAb-treated db/db mice, systemic Fgf21-knockout (Fgf21-/-) diabetic mice and hepatocyte-specific Fgf21-knockout (Fgf21Hep-/-) diabetic mice were used to reveal the involvement of FGF21 in beta cell regeneration. A BrdU tracing study was used to analyse beta cell proliferation in diabetic mice treated with GCGR mAb. RESULTS GCGR mAb treatment improved blood glucose control, and increased islet number (db/db 1.6±0.1 vs 0.8±0.1 per mm2, p<0.001; HFD+STZ 1.2±0.1 vs 0.5±0.1 per mm2, p<0.01) and area (db/db 2.5±0.2 vs 1.2±0.2%, p<0.001; HFD+STZ 1.0±0.1 vs 0.3±0.1%, p<0.01) in diabetic mice. The plasma cytokine array and liver RNA sequencing data showed that FGF21 levels in plasma and liver were upregulated by GCGR antagonism. The GCGR mAb induced upregulation of plasma FGF21 levels (db/db 661.5±40.0 vs 466.2±55.7 pg/ml, p<0.05; HFD+STZ 877.0±106.8 vs 445.5±54.0 pg/ml, p<0.05) and the liver levels of Fgf21 mRNA (db/db 3.2±0.5 vs 1.8±0.1, p<0.05; HFD+STZ 2.0±0.3 vs 1.0±0.2, p<0.05) and protein (db/db 2.0±0.2 vs 1.4±0.1, p<0.05; HFD+STZ 1.6±0.1 vs 1.0±0.1, p<0.01). Exposure to plasma or hepatocytes from the GCGR mAb-treated mice upregulated the mRNA levels of characteristic genes associated with beta cell identity in cultured mouse islets and a beta cell line, and blockage of FGF21 activity by an FGF21 nAb diminished this upregulation. Notably, the effects of increased beta cell number induced by GCGR mAb were attenuated in FGF21 nAb-treated db/db mice, Fgf21-/- diabetic mice and Fgf21Hep-/- diabetic mice. Moreover, GCGR mAb treatment enhanced beta cell proliferation in the two groups of diabetic mice, and this effect was weakened in Fgf21-/- and Fgf21Hep-/- mice. CONCLUSIONS/INTERPRETATION Our findings demonstrate that liver-derived FGF21 is involved in the GCGR antagonism-induced beta cell regeneration in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Linxi Zhang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
14
|
Iskender H, Dokumacioglu E, Hayirli A, Kapakin KAT, Bolat I, Kirman EM. Effects of oleanolic acid administration on renal NF-kB, IL-18, IL-6, YKL-40, and KIM-1 in experimental diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1188-1193. [PMID: 37736511 PMCID: PMC10510490 DOI: 10.22038/ijbms.2023.71321.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/31/2023] [Indexed: 09/23/2023]
Abstract
Objectives Neuropathy, retinopathy, and nephropathy, known as the triopathy of diabetes, are the consequences of microvascular complications of diabetes. The present study aimed to investigate the potential protective effects of oleanolic acid (OA) administration against diabetic nephropathy considering biochemical and histopathological parameters. Materials and Methods The rats with fasting blood glucose levels of 200 mg/dl and above were considered diabetic after induction of diabetes via injecting STZ. The other half of the rats were not injected with STZ (healthy rats). Both healthy and diabetic rats were then divided randomly into two subgroups to be administered with either OA (5 mg/kg) with 1 ml tap water by oral gavage or 1 ml tap water in the same route for 21 days. Serum urea-N, Ca, P, and Mg as well as renal tissue MDA, SOD, NF-κB, IL-6, IL-18, AMPK, YKL-40, and KIM-1 levels were measured. Results OA administration partially decreased levels of serum urea-N and P, as well as levels of renal tissue MDA and inflammation markers (NF-κB, IL-6, IL-18, YKL-40, and KIM-1) in the diabetic rats. It also partially increased serum Ca and renal tissue AMPK levels in diabetic rats. These positive effects were also seen in renal tissue histopathology. Conclusion OA treatment partially alleviated renal damage inflammatory and oxidative profiles in diabetic rats.
Collapse
Affiliation(s)
- Hatice Iskender
- Artvin Coruh University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Artvin 08000, Turkey
| | - Eda Dokumacioglu
- Artvin Coruh University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Artvin 08000, Turkey
| | - Armagan Hayirli
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey
| | | | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Esra Manavoglu Kirman
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
15
|
Du Y, Zhu YJ, Zhou YX, Ding J, Liu JY. Metformin in therapeutic applications in human diseases: its mechanism of action and clinical study. MOLECULAR BIOMEDICINE 2022; 3:41. [PMID: 36484892 PMCID: PMC9733765 DOI: 10.1186/s43556-022-00108-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a biguanide drug, is the most commonly used first-line medication for type 2 diabetes mellites due to its outstanding glucose-lowering ability. After oral administration of 1 g, metformin peaked plasma concentration of approximately 20-30 μM in 3 h, and then it mainly accumulated in the gastrointestinal tract, liver and kidney. Substantial studies have indicated that metformin exerts its beneficial or deleterious effect by multiple mechanisms, apart from AMPK-dependent mechanism, also including several AMPK-independent mechanisms, such as restoring of redox balance, affecting mitochondrial function, modulating gut microbiome and regulating several other signals, such as FBP1, PP2A, FGF21, SIRT1 and mTOR. On the basis of these multiple mechanisms, researchers tried to repurpose this old drug and further explored the possible indications and adverse effects of metformin. Through investigating with clinical studies, researchers concluded that in addition to decreasing cardiovascular events and anti-obesity, metformin is also beneficial for neurodegenerative disease, polycystic ovary syndrome, aging, cancer and COVID-19, however, it also induces some adverse effects, such as gastrointestinal complaints, lactic acidosis, vitamin B12 deficiency, neurodegenerative disease and offspring impairment. Of note, the dose of metformin used in most studies is much higher than its clinically relevant dose, which may cast doubt on the actual effects of metformin on these disease in the clinic. This review summarizes these research developments on the mechanism of action and clinical evidence of metformin and discusses its therapeutic potential and clinical safety.
Collapse
Affiliation(s)
- Yang Du
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yi-Xin Zhou
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Ding
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Ji-Yan Liu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Song M, Tan D, Li B, Wang Y, Shi L. Gypenoside ameliorates insulin resistance and hyperglycemia via the AMPK-mediated signaling pathways in the liver of type 2 diabetes mellitus mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zheng S, Wu J, Xiang S, Zang Y, Kong D, Wei X, Sun W, Li W. An fgf21-like gene from swamp eel (Monopterus albus): Recombinant expression and its potential roles in glucose and lipid homeostasis. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111170. [PMID: 35189343 DOI: 10.1016/j.cbpa.2022.111170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Fibroblast growth factor 21 (FGF21) plays important roles in the regulation of glucose and lipid metabolism and energy balance in mammals. In this study, the full-length cDNA of swamp eel fgf21 was cloned. Sequence analysis showed that swamp eel FGF21 displayed high similarity with FGF21 of other vertebrates. Subsequently, a prokaryotic expression vector for swamp eel fgf21 was constructed, and recombinant FGF21 (rFGF21) was successfully induced and purified. To investigate the potential roles of swamp eel FGF21 in glucose and lipid metabolism, we examined the effects of rFGF21 on regulation of glucose and lipid homeostasis in type 1 diabetes mellitus (T1DM) mice as well as swamp eels under glucose stress. In T1DM mice, the levels of blood glucose, serum triglyceride (TG), liver TG, serum total cholesterol (TC), and liver TC were significantly downregulated after repeated daily injection of rFGF21 for 15 days. In addition, liver pathological section analysis indicated that rFGF21 alleviated the degree of damage to liver cells in T1DM mice. Furthermore, rFGF21 significantly upregulated the mRNA expression levels of peroxisome proliferators-activated receptor alpha (Pparα), β-Klotho, fibroblast growth factor receptor 1 (Fgfr1), phosphoenolpyruvate carboxykinase (Pepck), glucose transporter 1 (Glut1), and glucose transporter 4 (Glut4) in T1DM mouse livers. Moreover, in swamp eels, rFGF21 significantly decreased blood glucose and liver TC levels under glucose stress and upregulated the mRNA expression levels of fgf21, pparα, β-klotho, and fgfr1 in liver tissue. These results suggested that FGF21 plays important roles in the regulation of glucose and lipid homeostasis in swamp eel.
Collapse
Affiliation(s)
- Shuting Zheng
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Jianfen Wu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Shenghan Xiang
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Yuwei Zang
- College of Life Sciences, Hainan University, Haikou 570228, China
| | - Dan Kong
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Xiping Wei
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Wenxiu Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, China; Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
18
|
Strength training alters the tissue fatty acids profile and slightly improves the thermogenic pathway in the adipose tissue of obese mice. Sci Rep 2022; 12:6913. [PMID: 35484170 PMCID: PMC9050661 DOI: 10.1038/s41598-022-10688-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Obesity is a disease characterized by the exacerbated increase of adipose tissue. A possible way to decrease the harmful effects of excessive adipose tissue is to increase the thermogenesis process, to the greater energy expenditure generated by the increase in heat in the body. In adipose tissue, the thermogenesis process is the result of an increase in mitochondrial work, having as substrate H+ ions, and which is related to the increased activity of UCP1. Evidence shows that stress is responsible for increasing the greater induction of UCP1 expression via β-adrenergic receptors. It is known that physical exercise is an important implement for sympathetic stimulation promoting communication between norepinephrine/epinephrine with membrane receptors. Thus, the present study investigates the influence of short-term strength training (STST) on fatty acid composition, lipolysis, lipogenesis, and browning processes in the subcutaneous adipose tissue (sWAT) of obese mice. For this, Swiss mice were divided into three groups: lean control, obesity sedentary, and obese strength training (OBexT). Obese animals were fed a high-fat diet for 14 weeks. Trained obese animals were submitted to 7 days of strength exercise. It was demonstrated that STST sessions were able to reduce fasting glycemia. In the sWAT, the STST was able to decrease the levels of the long-chain fatty acids profile, saturated fatty acid, and palmitic fatty acid (C16:0). Moreover, it was showed that STST did not increase protein levels responsible for lipolysis, the ATGL, ABHD5, pPLIN1, and pHSL. On the other hand, the exercise protocol decreased the expression of the lipogenic enzyme SCD1. Finally, our study demonstrated that the STST increased browning process-related genes such as PGC-1α, PRDM16, and UCP1 in the sWAT. Interestingly, all these biomolecular mechanisms have been observed independently of changes in body weight. Therefore, it is concluded that short-term strength exercise can be an effective strategy to initiate morphological changes in sWAT.
Collapse
|
19
|
Kang HG, Bashir KMI, Kim KY, Shin S, Choi MW, Hong EJ, Choi SH, Kim JW, Choi JS, Ku SK. Evaluation of Dose-Dependent Obesity and Diabetes-Related Complications of Water Chestnut (Fruit of Trapa japonica) Extracts in Type II Obese Diabetic Mice Induced by 45% Kcal High-Fat Diet. Medicina (B Aires) 2022; 58:medicina58020189. [PMID: 35208513 PMCID: PMC8880371 DOI: 10.3390/medicina58020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The currently used pharmacological agents for metabolic disorders such as type II diabetes have several limitations and adverse effects; thus, there is a need for alternative therapeutic drugs and health functional foods. Materials and Methods: This study investigated the pharmacological effects of water chestnut (fruit of Trapa japonica) extracts (WC: 50–200 mg/kg) for type II diabetes using a 45% Kcal high-fat diet (HFD)-fed type II obese diabetic mice model for a period of 84 days, and the effects were compared to those of metformin (250 mg/kg). Results: Increases in body weight, serum biochemical indices such as triglycerides, low-density lipoprotein, and blood urea nitrogen, increases in antioxidant defense system enzymes such as catalase, superoxide dismutase, and glutathione, and mRNA expressions (such as AMPKα1 and AMPKα2) in the liver tissue and mRNA expressions (such as AMPKα2 mRNA, leptin, and C/EBPα) in the adipose tissue were observed in the HFD control group. The WC (50 mg/kg)-administered group showed no significant improvements in diabetic complications. However, HFD-induced obesity and diabetes-related complications such as hyperlipidemia, diabetic nephropathy, nonalcoholic fatty liver disease (NAFLD), oxidative stress, activity of antioxidant defense systems, and gene expressions were significantly and dose-dependently inhibited and/or normalized by oral administration of WC (100 mg/kg and 200 mg/kg), particularly at a dose of 100 mg/kg. Conclusions: The results of this study suggest that WC at an appropriate dose could be used to develop an effective therapeutic drug or functional food for type II diabetes and various associated complications, including NAFLD.
Collapse
Affiliation(s)
- Hyun-Gu Kang
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (H.-G.K.); (S.-H.C.)
| | - Khawaja Muhammad Imran Bashir
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, 31, Gwahaksandan 1-ro, 60 bean-gil, Gangseo-gu, Busan 46742, Korea;
| | - Ki-Young Kim
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Su Shin
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Min-Woo Choi
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Eun-Jin Hong
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (H.-G.K.); (S.-H.C.)
| | - Joo-Wan Kim
- Gyeongnam Veterinary Service Laboratory, 104, Chojeonbuk-ro, Jinju 52733, Korea;
| | - Jae-Suk Choi
- Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700 beon-gil, Sasang-gu, Busan 46958, Korea
- Correspondence: (J.-S.C.); (S.-K.K.); Tel.: +82-51-999-5647 (J.-S.C.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (H.-G.K.); (S.-H.C.)
- Correspondence: (J.-S.C.); (S.-K.K.); Tel.: +82-51-999-5647 (J.-S.C.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
20
|
Zhao H, Wu M, Tang X, Li Q, Yi X, Wang S, Jia C, Wei Z, Sun X. Function of Chick Subcutaneous Adipose Tissue During the Embryonic and Posthatch Period. Front Physiol 2021; 12:684426. [PMID: 34239450 PMCID: PMC8258255 DOI: 10.3389/fphys.2021.684426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Since excess abdominal fat is one of the main problems in the broiler industry for the development of modern broiler and layer industry, the importance of subcutaneous adipose tissue has been neglected. However, chick subcutaneous adipose tissue appeared earlier than abdominal adipose tissue and more than abdominal adipose tissue. Despite a wealth of data, detailed information is lacking about the development and function of chick subcutaneous adipose tissue during the embryonic and posthatch period. Therefore, the objective of the current study was to determine the developmental changes of adipocyte differentiation, lipid synthesis, lipolysis, fatty acid β-oxidation, and lipid contents from E12 to D9.5. The results showed that subcutaneous adipose tissue was another important energy supply tissue during the posthatch period. In this stage, the mitochondrial copy number and fatty acid β-oxidation level significantly increased. It revealed that chick subcutaneous adipose tissue not only has the function of energy supply by lipidolysis but also performs the same function as brown adipose tissue to some extent, despite that the brown adipose tissue does not exist in birds. In addition, this finding improved the theory of energy supply in the embryonic and posthatch period and might provide theoretical basis on physiological characteristics of lipid metabolism in chicks.
Collapse
Affiliation(s)
- Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
21
|
van der Vaart JI, Boon MR, Houtkooper RH. The Role of AMPK Signaling in Brown Adipose Tissue Activation. Cells 2021; 10:cells10051122. [PMID: 34066631 PMCID: PMC8148517 DOI: 10.3390/cells10051122] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is becoming a pandemic, and its prevalence is still increasing. Considering that obesity increases the risk of developing cardiometabolic diseases, research efforts are focusing on new ways to combat obesity. Brown adipose tissue (BAT) has emerged as a possible target to achieve this for its functional role in energy expenditure by means of increasing thermogenesis. An important metabolic sensor and regulator of whole-body energy balance is AMP-activated protein kinase (AMPK), and its role in energy metabolism is evident. This review highlights the mechanisms of BAT activation and investigates how AMPK can be used as a target for BAT activation. We review compounds and other factors that are able to activate AMPK and further discuss the therapeutic use of AMPK in BAT activation. Extensive research shows that AMPK can be activated by a number of different kinases, such as LKB1, CaMKK, but also small molecules, hormones, and metabolic stresses. AMPK is able to activate BAT by inducing adipogenesis, maintaining mitochondrial homeostasis and inducing browning in white adipose tissue. We conclude that, despite encouraging results, many uncertainties should be clarified before AMPK can be posed as a target for anti-obesity treatment via BAT activation.
Collapse
Affiliation(s)
- Jamie I. van der Vaart
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Mariëtte R. Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Leiden University Medical Center, Einthoven Laboratory for Experimental Vascular Medicine, 2333 ZA Leiden, The Netherlands
- Correspondence: (M.R.B.); (R.H.H.)
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: (M.R.B.); (R.H.H.)
| |
Collapse
|
22
|
Talukdar S, Kharitonenkov A. FGF19 and FGF21: In NASH we trust. Mol Metab 2020; 46:101152. [PMID: 33383173 PMCID: PMC8085573 DOI: 10.1016/j.molmet.2020.101152] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Objective FGF19 and FGF21 have shown therapeutic promise since their discovery, attested by the fact there are at least 5 assets that activate the FGFR/KLB pathway and one FGF19 analog in clinical development. Methods We performed a detailed analyses of published preclinical and clinical data to offer insights into the mechanism of action, as well as PK/PD and efficacy data of the clinical assets. Results Scouring the literature, we offer mechanistic insights from preclinical data using rodents and non-human primates and pharmacodynamic data from clinical studies. Conclusion The basic and applied science around endocrine FGFs has evolved exponentially over the years with FGF19 and FGF21 analogs are now entering Phase 3 clinical research. Fibroblast Growth Factors 19 and 21 (FGF19 and FGF21) are novel endocrine messengers that regulate multiple aspects of energy homeostasis. The magnitude and pleiotropic character of their beneficial pharmacology led to coordinated efforts to design novel FGF19/21-based therapeutics. The robust effects of FGF19 and FGF21 on lipid metabolism transformed clinical emphasis for these factors toward their use for NASH. In this review, we communicate an overview of FGF19 and FGF21 biology and the recent clinical developments with FGF21/19-based analogs.
Collapse
Affiliation(s)
- Saswata Talukdar
- Merck & Co., Inc., 213 East Grand Avenue, South San Francisco, CA, 94080, United States.
| | - Alexei Kharitonenkov
- AK Biotechnologies, LLC 3812 Verdure Lane, Zionsville, IN, 46077, United States.
| |
Collapse
|
23
|
Kopietz F, Rupar K, Berggreen C, Säll J, Vertommen D, Degerman E, Rider MH, Göransson O. Inhibition of AMPK activity in response to insulin in adipocytes: involvement of AMPK pS485, PDEs, and cellular energy levels. Am J Physiol Endocrinol Metab 2020; 319:E459-E471. [PMID: 32663099 DOI: 10.1152/ajpendo.00065.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin resistance in obesity and type 2 diabetes has been shown to be associated with decreased de novo fatty acid (FA) synthesis in adipose tissue. It is known that insulin can acutely stimulate FA synthesis in adipocytes; however, the mechanisms underlying this effect are unclear. The rate-limiting step in FA synthesis is catalyzed by acetyl-CoA carboxylase (ACC), known to be regulated through inhibitory phosphorylation at S79 by the AMP-activated protein kinase (AMPK). Previous results from our laboratory showed an inhibition of AMPK activity by insulin, which was accompanied by PKB-dependent phosphorylation of AMPK at S485. However, whether the S485 phosphorylation is required for insulin-induced inhibition of AMPK or other mechanisms underlie the reduced kinase activity is not known. To investigate this, primary rat adipocytes were transduced with a recombinant adenovirus encoding AMPK-WT or a nonphosphorylatable AMPK S485A mutant. AMPK activity measurements by Western blot analysis and in vitro kinase assay revealed that WT and S485A AMPK were inhibited to a similar degree by insulin, indicating that AMPK S485 phosphorylation is not required for insulin-induced AMPK inhibition. Further analysis suggested an involvement of decreased AMP-to-ATP ratios in the insulin-induced inhibition of AMPK activity, whereas a possible contribution of phosphodiesterases was excluded. Furthermore, we show that insulin-induced AMPK S485 phosphorylation also occurs in human adipocytes, suggesting it to be of an importance yet to be revealed. Altogether, this study increases our understanding of how insulin regulates AMPK activity, and with that, FA synthesis, in adipose tissue.
Collapse
Affiliation(s)
| | - Kaja Rupar
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Johanna Säll
- Department of Experimental Medical Science, Lund University, Sweden
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Eva Degerman
- Department of Experimental Medical Science, Lund University, Sweden
| | - Mark H Rider
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
24
|
Guo C, Zhao L, Li Y, Deng X, Yuan G. Relationship between FGF21 and drug or nondrug therapy of type 2 diabetes mellitus. J Cell Physiol 2020; 236:55-67. [PMID: 32583417 DOI: 10.1002/jcp.29879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
Sedentary and high-calorie diets are associated with increased risk of obesity and type 2 diabetes mellitus, while exercise and diet control are also important nondrug treatments for diabetes. Fibroblast growth factor 21 (FGF21) is an important cytokine, which is mainly expressed in liver, fat and muscle tissue responding to nutrition and exercise, and plays an important role in the improvement of glucose and lipid metabolism. Due to the increasing serum FGF21 level in obesity and diabetes, FGF21 can be used as a predictor or biomarker of diabetes. A variety of clinical antidiabetic drugs can reduce the content of FGF21, possibly for the improvement of FGF21 sensitivity. In this paper, we reviewed the interactions between FGF21 and nondrug therapy (diet and exercise) for diabetes and explored the potential value of the combined application of clinical antidiabetic drugs and FGF21.
Collapse
Affiliation(s)
- Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
25
|
The Impact of Moderate-Intensity Continuous or High-Intensity Interval Training on Adipogenesis and Browning of Subcutaneous Adipose Tissue in Obese Male Rats. Nutrients 2020; 12:nu12040925. [PMID: 32230849 PMCID: PMC7231004 DOI: 10.3390/nu12040925] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023] Open
Abstract
This study compares the effect of two types of exercise training, i.e., moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) on the browning of subcutaneous white adipose tissue (scWAT) in obese male rats. Effects on fat composition, metabolites, and molecular markers of differentiation and energy expenditure were examined. Forty male Wistar rats were assigned to lean (n = 8) or obese (n = 32) groups and fed either a standard chow or high-fat obesogenic diet for 10 weeks. Eight lean and obese rats were then blood and tissue sampled, and the remaining obese animals were randomly allocated into sedentary, MICT, or HIIT (running on a treadmill 5 days/week) groups that were maintained for 12 weeks. Obesity increased plasma glucose and insulin and decreased irisin and FGF-21. In scWAT, this was accompanied with raised protein abundance of markers of adipocyte differentiation, i.e., C/EBP-α, C/EBP-β, and PPAR-γ, whereas brown fat-related genes, i.e., PRDM-16, AMPK/SIRT1/PGC-1α, were reduced as was UCP1 and markers of fatty acid transport, i.e., CD36 and CPT1. Exercise training increased protein expression of brown fat-related markers, i.e., PRDM-16, AMPK/SIRT1/PGC-1α, and UCP1, together with gene expression of fatty acid transport, i.e., CD36 and CPT1, but decreased markers of adipocyte differentiation, i.e., C/EBP-α, C/EBP-β, and plasma glucose. The majority of these adaptations were greater with HIIT compared to MICT. Our findings indicate that prolonged exercise training promotes the browning of white adipocytes, possibly through suppression of adipogenesis together with white to beige trans-differentiation and is dependent on the intensity of exercise.
Collapse
|
26
|
Hua X, Sun D, Zhang W, Fu J, Tong J, Sun S, Zeng F, Ouyang S, Zhang G, Wang S, Li D, Miao C, Wang P. P7C3‐A20 alleviates fatty liver by shaping gut microbiota and inducing FGF21/FGF1, via the AMP‐activated protein kinase/CREB regulated transcription coactivator 2 pathway. Br J Pharmacol 2020; 178:2111-2130. [PMID: 32037512 DOI: 10.1111/bph.15008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xia Hua
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Di‐Yang Sun
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Wen‐Jie Zhang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Jiang‐Tao Fu
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Jie Tong
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Si‐Jia Sun
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Fei‐Yan Zeng
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Shen‐Xi Ouyang
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Guo‐Yan Zhang
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Shu‐Na Wang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Dong‐Jie Li
- Department of Pharmacy Shanghai Tenth People's Hospital affiliated to School of Medicine, Tongji University Shanghai China
| | - Chao‐Yu Miao
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy Second Military Medical University/Naval Medical University Shanghai China
| |
Collapse
|
27
|
Dietary Silk Peptide Prevents High-Fat Diet-Induced Obesity and Promotes Adipose Browning by Activating AMP-Activated Protein Kinase in Mice. Nutrients 2020; 12:nu12010201. [PMID: 31941008 PMCID: PMC7019986 DOI: 10.3390/nu12010201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
Obesity is associated with metabolic syndrome and other chronic diseases, and is caused when the energy intake is greater than the energy expenditure. We aimed to determine the mechanism whereby acid-hydrolyzed silk peptide (SP) prevents high-fat diet-induced obesity, and whether it induces browning and fatty acid oxidation (FAO) in white adipose tissue (WAT), using in vivo and ex vivo approaches. We determined the effects of dietary SP in high-fat diet-fed obese mice. The expression of adipose tissue-specific genes was quantified by western blotting, qRT-PCR, and immunofluorescence analysis. We also investigated whether SP directly induces browning in primarily subcutaneous WAT-derived adipocytes. Our findings demonstrate that SP has a browning effect in WAT by upregulating AMP-activated Protein Kinase (AMPK) phosphorylation and uncoupling protein 1 (UCP1) expression. SP also suppresses adipogenesis and promotes FAO, implying that it may have potential as an anti-obesity drug.
Collapse
|
28
|
Tillman EJ, Rolph T. FGF21: An Emerging Therapeutic Target for Non-Alcoholic Steatohepatitis and Related Metabolic Diseases. Front Endocrinol (Lausanne) 2020; 11:601290. [PMID: 33381084 PMCID: PMC7767990 DOI: 10.3389/fendo.2020.601290] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
The rising global prevalence of obesity, metabolic syndrome, and type 2 diabetes has driven a sharp increase in non-alcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in the liver. Approximately one-sixth of the NAFLD population progresses to non-alcoholic steatohepatitis (NASH) with liver inflammation, hepatocyte injury and cell death, liver fibrosis and cirrhosis. NASH is one of the leading causes of liver transplant, and an increasingly common cause of hepatocellular carcinoma (HCC), underscoring the need for intervention. The complex pathophysiology of NASH, and a predicted prevalence of 3-5% of the adult population worldwide, has prompted drug development programs aimed at multiple targets across all stages of the disease. Currently, there are no approved therapeutics. Liver-related morbidity and mortality are highest in more advanced fibrotic NASH, which has led to an early focus on anti-fibrotic approaches to prevent progression to cirrhosis and HCC. Due to limited clinical efficacy, anti-fibrotic approaches have been superseded by mechanisms that target the underlying driver of NASH pathogenesis, namely steatosis, which drives hepatocyte injury and downstream inflammation and fibrosis. Among this wave of therapeutic mechanisms targeting the underlying pathogenesis of NASH, the hormone fibroblast growth factor 21 (FGF21) holds considerable promise; it decreases liver fat and hepatocyte injury while suppressing inflammation and fibrosis across multiple preclinical studies. In this review, we summarize preclinical and clinical data from studies with FGF21 and FGF21 analogs, in the context of the pathophysiology of NASH and underlying metabolic diseases.
Collapse
|
29
|
Tucker B, Li H, Long X, Rye KA, Ong KL. Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism 2019; 101:153994. [PMID: 31672443 DOI: 10.1016/j.metabol.2019.153994] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies ranging from uncomplicated hepatic fat accumulation to a state of lobular inflammation and hepatocyte ballooning, known as non-alcoholic steatohepatitis (NASH). Currently, there are no reliable biomarkers or effective therapeutic options established for NAFLD. Nevertheless, there are several molecular targets in the pipeline, of which fibroblast growth factor 21 (FGF21) is one. FGF21 is secreted primarily from liver and has a plethora of metabolic functions. Pre-clinical and epidemiological studies indicate a relationship between circulating FGF21 levels and hepatic fat content in both mice and humans. Moreover, animal studies have clearly shown that aberrant FGF21 signalling is a key pathological step in the development and progression of NAFLD. A recent Phase II clinical trial demonstrated that administration of an FGF21 analogue significantly reduced hepatic fat in subjects with NASH. As such, FGF21 provides a novel target for future biomarker and therapeutic studies. This review appraises preclinical data to outline the current understanding of FGF21 function in both normal hepatic function and NAFLD. Epidemiological evidence is explored to delineate the relationship between circulating FGF21 levels and NAFLD in humans. Finally, we review the therapeutic effects of FGF21 in the treatment of NAFLD.
Collapse
Affiliation(s)
- Bradley Tucker
- Lipid Research Group, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai, China.
| | - Xiaoxue Long
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai, China
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Liu M, Zheng M, Cai D, Xie J, Jin Z, Liu H, Liu J. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation. Food Funct 2019; 10:2221-2233. [PMID: 30950462 DOI: 10.1039/c8fo02527d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zeaxanthin (ZEA), a type of oxygenated carotenoid with strong antioxidant activity, has previously been found to exhibit an anti-lipogenesis effect. In the present study, we investigated the effect of ZEA on brown-like adipocyte formation and mitochondrial biogenesis in 3T3-L1 adipocytes. Brown adipocyte-specific markers, mitochondrial biogenesis and oxidative stress, and the involvement of AMP-activated protein kinase (AMPK) α1 were assessed. ZEA treated adipocytes demonstrated a brown-like pattern, with upregulated expression of uncoupling protein 1 (UCP1) and other brown adipocyte markers. In addition, ZEA intervention induced a dramatic increase in mitochondrial DNA (mtDNA) content and in the mRNA levels of genes associated with mitochondrial biogenesis. Furthermore, ZEA attenuated mitochondrial oxidative damage caused by lipid peroxidation in adipocytes, significantly improved the mitochondrial membrane potential (MMP), and scavenged intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Finally, we concluded that AMPKα1 mediated the ZEA-caused inhibition of lipid accumulation and promotion of brown and beige adipocyte-biomarker expression, as the positive effects of ZEA were diminished by Prkaa1 (AMPKα1) knockdown. These findings demonstrated that ZEA promoted the expression of brown and beige adipogenesis markers and mitochondrial biogenesis, which involved AMPKα1 activation, thus contributing to the anti-obesity effects of ZEA.
Collapse
Affiliation(s)
- Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Berezin AE, Berezin AA. Impaired function of fibroblast growth factor 23 / Klotho protein axis in prediabetes and diabetes mellitus: Promising predictor of cardiovascular risk. Diabetes Metab Syndr 2019; 13:2549-2556. [PMID: 31405675 DOI: 10.1016/j.dsx.2019.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The discovery of clear molecular mechanisms of early cardiac and vascular complications in patients with prediabetes and known diabetes mellitus are core element of stratification at risk with predictive model creation further. Previous clinical studies have shown a pivotal role of impaired signaling axis of fibroblast growth factor 23 (FGF23), FGF23 receptor isoforms and its co-factor Klotho protein in cardiovascular (CV) complications in prediabetes and diabetes. Although there were data received in clinical studies, which confirmed a causative role of altered function of FGF-23/Klotho protein axis in manifestation of CV disease in prediabetes and type 2 diabetes mellitus (T2DM), the target therapy of these diseases directing on improvement of metabolic profiles, systemic and adipokine-relating inflammation by beneficial restoring of dysregulation in FGF-23/Klotho protein axis remain to be not fully clear. The aim of the review was to summarize findings regarding the role of impaired FGF-23/Klotho protein axis in developing CV complications in patients with prediabetes and type 2 diabetes mellitus. It has been elucidated that elevated levels of FGF-23 and deficiency of Klotho protein in peripheral blood are predictors of CV disease and CV outcomes in patients with (pre) diabetes, while predictive values of dynamic changes of the concentrations of these biomarkers require to be elucidated in detail in the future.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, 69035, Ukraine.
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, 69096, Ukraine
| |
Collapse
|
32
|
Sharma A, Kim JW, Ku SK, Choi JS, Lee HJ. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse. Nutr Res Pract 2019; 13:367-376. [PMID: 31583055 PMCID: PMC6760985 DOI: 10.4162/nrp.2019.13.5.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/02/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND/OBJECTIVE The blue honeysuckle berry (Lonicera caerulea var. edulis L.) is a small deciduous shrub belonging to the Caprifoliaceae family that is native to Russia, China, Japan, and Korea. The berry of this shrub is edible, sweet and juicy and is commonly known as the blue honeyberry (BHB). This study examined the anti-diabetic potential of BHB on high-fat-diet-induced mild diabetic mice. The hypoglycemic, and nephroprotective effects of the 12-week oral administration of blue honeyberry extract were analyzed. MATERIALS/METHODS The hypoglycemic effects were based on the observed changes in insulin, blood glucose, and glycated hemoglobin (HbA1c). Furthermore, the changes in the weight of the pancreas, including its histopathology and immunohistochemical investigation were also performed. Moreover, the nephroprotective effects were analyzed by observing the changes in kidney weight, its histopathology, blood urea nitrogen (BUN), and serum creatinine levels. RESULTS The results showed that the high-fat diet (HFD)-induced control mice showed a noticeable increase in blood glucose, insulin, HbA1c, BUN, and creatinine levels. Furthermore, growth was observed in lipid droplet deposition related to the degenerative lesions in the vacuolated renal tubules with the evident enlargement and hyperplasia of the pancreatic islets. In addition, in the endocrine pancreas, there was an increase in the insulin-and glucagon-producing cells, as well as in the insulin/glucagon cell ratios. On the other hand, compared to the HFD-treated mice group, all these diabetic and related complications were ameliorated significantly in a dose-dependent manner after 84 days of the continuous oral administration of BHBe at 400, 200 and 100 mg/kg, and a dramatic resettlement in the hepatic glucose-regulating enzyme activities was observed. CONCLUSIONS By assessing the key parameters for T2DM, the present study showed that the BHBe could act as a potential herbal agent to cure diabetes (type II) and associated ailments in HFD-induced mice.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Joo Wan Kim
- Aribio Co. Ltd., #2-301, Pangyo Seven Venture Valley, Gyeonggi 13487, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongbuk 38610, Republic of Korea
| | - Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
33
|
Townsend LK, Wright DC. Looking on the "brite" side exercise-induced browning of white adipose tissue. Pflugers Arch 2019; 471:455-465. [PMID: 29982948 DOI: 10.1007/s00424-018-2177-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
Abstract
The need for effective and convenient ways of combatting obesity has created great interest in brown adipose tissue (BAT). However, because adult humans have relatively little amounts of BAT, the possibility of browning white adipose tissue (WAT), i.e., switching the metabolism of WAT from an energy storing to energy burning organ, has gained considerable attention. Exercise has countless health benefits, and has consistently been shown to cause browning in rodent white adipose tissue. The purpose of this review is to provide an overview of recent studies examining the effects of exercise and other interventions on the browning of white adipose tissue. The role of various endocrine factors, including catecholamines, interleukin-6, irisin, and meteorin-like in addition to local re-esterification-mediated mechanisms in inducing the browning of WAT will be discussed. The physiological importance of browning will be discussed, as will discrepancies in the literature between human and rodent studies.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
34
|
Wang LH, Huang W, Wei D, Ding DG, Liu YR, Wang JJ, Zhou ZY. Mechanisms of Acupuncture Therapy for Simple Obesity: An Evidence-Based Review of Clinical and Animal Studies on Simple Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5796381. [PMID: 30854010 PMCID: PMC6378065 DOI: 10.1155/2019/5796381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
Simple obesity is a worldwide epidemic associated with rapidly growing morbidity and mortality which imposes an enormous burden on individual and public health. As a part of Traditional Chinese Medicine (TCM), acupuncture has shown the positive efficacy in the management of simple obesity. In this article, we comprehensively review the clinical and animal studies that demonstrated the potential mechanisms of acupuncture treatment for simple obesity. Clinical studies suggested that acupuncture regulates endocrine system, promotes digestion, attenuates oxidative stress, and modulates relevant molecules of metabolism in patients of simple obesity. Evidence from laboratory indicated that acupuncture regulates lipid metabolism, modulates inflammatory responses, and promotes white adipose tissue browning. Acupuncture also suppresses appetite through regulating appetite regulatory hormones and the downstream signaling pathway. The evidence from clinical and animal studies indicates that acupuncture induces multifaceted regulation through complex mechanisms and moreover a single factor may not be enough to explain the beneficial effects against simple obesity.
Collapse
Affiliation(s)
- Li-Hua Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Wei Huang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Dan Wei
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - De-Guang Ding
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yi-Ran Liu
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jia-Jie Wang
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhong-Yu Zhou
- Department of Acupuncture, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
35
|
Xie J, Wang Y, Jiang WW, Luo XF, Dai TY, Peng L, Song S, Li LF, Tao L, Shi CY, Hao RS, Xiao R, Tian Y, Sheng J. Moringa oleifera Leaf Petroleum Ether Extract Inhibits Lipogenesis by Activating the AMPK Signaling Pathway. Front Pharmacol 2018; 9:1447. [PMID: 30618744 PMCID: PMC6305553 DOI: 10.3389/fphar.2018.01447] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/23/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, obesity has become a key factor affecting human health. Moringa oleifera Lam. is a perennial tropical deciduous tree, which is widely used in human medicine due to its nutritional and unique medicinal value. It has a cholesterol-lowering effect, but its mechanism of action is unclear. In this study, we elucidated the inhibitory effect of M. oleifera leaf petroleum ether extract (MOPEE) on lipid accumulation by in vitro and in vivo experiments, and we described its mechanism of action. MOPEE suppressed adipogenesis in 3T3-L1 adipocytes in a dose-dependent manner and had no effect on cell viability at doses up to 400 μg/ml. Furthermore, MOPEE (400 μg/ml) significantly downregulated the expression of adipogenesis-associated proteins [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding proteins α and β (C/EBPα and C/EBPβ), and fatty acid synthase (FAS)] and upregulated the expression of a lipolysis-associated protein [hormone-sensitive lipase (HSL)] in 3T3-L1 adipocytes. Additionally, MOPEE (400 μg/ml) significantly increased the degree of phosphorylation of AMP-activated protein kinase α (AMPKα) and acetyl-CoA carboxylase (ACC). An AMPK inhibitor reversed the MOPEE-induced activation of AMPKα and ACC in 3T3-L1 adipocytes. Animal experiments showed that, in high-fat diet (HFD) mice, MOPEE [0.5 g/kg body weight (BW)] effectively decreased BW; relative epididymal, perirenal, and mesenteric fat weight and fat tissue size; and hepatic fat accumulation. Furthermore, MOPEE markedly reduced the serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (AST). Moreover, MOPEE significantly downregulated the expression of adipogenesis-associated proteins (PPARγ and FAS) and upregulated the expression of a lipolysis-associated protein [adipose triglyceride lipase (ATGL)] in HFD mice hepatic and epididymal fat tissue. Additionally, MOPEE markedly increased the degree of phosphorylation of AMPKα and ACC in HFD mice hepatic and epididymal fat tissue. Following ultrahigh-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) analysis, three phytocompounds (isoquercitrin, chrysin-7-glucoside, and quercitrin) were identified as compounds with relatively high levels in MOPEE. Among them, quercitrin showed excellent fat accumulation inhibitory activity, and the three compounds had synergistic effects in inhibiting adipogenesis. Taken together, MOPEE inhibits fat accumulation by inhibiting the adipogenesis and promoting the lipolysis, and this process is related to AMPK activation.
Collapse
Affiliation(s)
- Jing Xie
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Biological Big Data, Yunnan Agricultural University, Kunming, China
| | - Yan Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wei-Wei Jiang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuan-Fei Luo
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Tian-Yi Dai
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Biological Big Data, Yunnan Agricultural University, Kunming, China
| | - Lei Peng
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China
| | - Shuang Song
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ling-Fei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chong-Ying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ruo-Shi Hao
- Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China
| | - Rong Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Research Institute of Plateau Characteristic Agricultural Industry, Kunming, China.,Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
36
|
Worsch S, Heikenwalder M, Hauner H, Bader BL. Dietary n-3 long-chain polyunsaturated fatty acids upregulate energy dissipating metabolic pathways conveying anti-obesogenic effects in mice. Nutr Metab (Lond) 2018; 15:65. [PMID: 30275870 PMCID: PMC6158869 DOI: 10.1186/s12986-018-0291-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Background We previously reported on the anti-obesogenic and anti-inflammatory effects associated with n-3 long-chain polyunsaturated fatty acids (LCPUFA) in our diet-induced obesity (DIO) mouse model. Two isocaloric high-fat diets (HFDs; 48 kJ% fat), HFD (HF) and n-3 LCPUFA-enriched HFD (HF/n-3), and a control diet (C; 13 kJ% fat) were used. The underlying mechanisms however have largely remained unclear. Here, we assessed whether the reduced fat mass reflected n-3 LCPUFA-induced expression changes in lipid metabolism of the intestine, liver, and interscapular brown adipose tissue (iBAT), as well as increased iBAT thermogenic capacity. Methods For HF/n-3, saturated and monounsaturated fatty acids were partially substituted by n-3 LCPUFA eicosapentaenoic acid and docosahexaenoic acid to achieve a balanced n-6/n-3 PUFA ratio (0.84) compared to the unbalanced ratios of HF (13.5) and C (9.85). Intestine, liver and iBAT from male C57BL/6 J mice, fed defined soybean/palm oil-based diets for 12 weeks, were further analysed. Gene and protein expression analyses, immunohistochemistry and correlation analyses for metabolic interactions were performed. Results Compared to HF and C, our analyses suggest significantly diminished de novo lipogenesis (DNL) and/or increased hepatic and intestinal fatty acid oxidation (ω-oxidation and peroxisomal β-oxidation) in HF/n-3 mice. For iBAT, the thermogenic potential was enhanced upon HF/n-3 consistent with upregulated expression for uncoupling protein-1 and genes involved in mitochondrial biogenesis. In addition, a higher capacity for the supply and oxidation of fatty acids was observed and expression and correlation analyses indicated a coordinated regulation of energy metabolism and futile cycling of triacylglycerol (TAG). Moreover, HF/n-3 significantly increased the number of anti-inflammatory macrophages and eosinophils and significantly enhanced the levels of activated AMP-activated protein kinase α (AMPKα), peroxisome proliferator-activated receptor α (PPARα) and fibroblast growth factor 21 (FGF21). Conclusions Our data suggest that by targeting transcriptional regulatory pathways, AMPKα, and FGF21 as potential mediators, HF/n-3 activated less efficient pathways for energy production, such as peroxisomal β-oxidation, increased ATP consumption upon the induction of futile cycling of TAG, and additionally increased the thermogenic and oxidative potential of iBAT. Therefore, we consider n-3 LCPUFA as the potent inducer for upregulating energy dissipating metabolic pathways conveying anti-obesogenic effects in mice. Electronic supplementary material The online version of this article (10.1186/s12986-018-0291-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie Worsch
- 1Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technical University of Munich, Freising, Germany.,2ZIEL - Institute for Food and Health, Nutritional Medicine Unit, Technical University of Munich, Freising, Germany
| | - Mathias Heikenwalder
- 4Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans Hauner
- 1Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technical University of Munich, Freising, Germany.,2ZIEL - Institute for Food and Health, Nutritional Medicine Unit, Technical University of Munich, Freising, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital Klinikum rechts der Isar, Uptown München-Campus D, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 Munich, Germany
| | - Bernhard L Bader
- 1Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technical University of Munich, Freising, Germany.,2ZIEL - Institute for Food and Health, Nutritional Medicine Unit, Technical University of Munich, Freising, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital Klinikum rechts der Isar, Uptown München-Campus D, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 Munich, Germany
| |
Collapse
|
37
|
Kim JW, Lee YS, Seol DJ, Cho IJ, Ku SK, Choi JS, Lee HJ. Anti-obesity and fatty liver-preventing activities of Lonicera caerulea in high-fat diet-fed mice. Int J Mol Med 2018; 42:3047-3064. [PMID: 30221679 PMCID: PMC6202101 DOI: 10.3892/ijmm.2018.3879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Blue honeysuckle (BH, Lonicera caerulea) is used as a traditional medicine in Russia, Japan and China, but is not commonly considered as an edible berry in Europe, USA or Korea. BH has been revealed to decrease serum cholesterol and triacylglycerol (triglyceride or TG) levels through the activation of AMP-activated protein kinase (AMPK), thus it is expected to be a health functional food and pharmaceutical agent for the prevention of non-alcoholic liver damage, in addition to effects as a suppressor of hyperlipidemia and as an anti-obesity agent. In the present study, the pharmacological activity of BH extract (BHe) was observed in high-fat diet (HFD)-fed mice. Significant increases in fat pad weight, body weight, fat accumulation (body and abdominal fat density, and thickness of the periovarian and abdominal wall) and serum biochemical levels (aspartate transaminase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase, γ-glutamyltransferase, total cholesterol, low-density lipoprotein and TG, with the exception of high-density lipoprotein) were observed in HFD-fed mice. In addition, increases in adipocyte hypertrophy, the area of steatohepatitis and hepatocyte hypertrophy were observed, whereas decreased zymogen content was identified upon histopathological observation. Increased deterioration of the endogenous antioxidant defense system (liver catalase, glutathione and superoxide dismutase) and hepatic lipid peroxidation was observed. In addition, there were decreases in hepatic glucokinase activity, AMPKα1 and AMPKα2 mRNA expression, adipose tissue uncoupling protein 2 expression, and adiponectin mRNA expression, increases in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activity, hepatic acetyl-CoA carboxylase 1 mRNA expression, and the expression of leptin, CCAAT/enhancer-binding protein (C/EBP) α, C/EBPβ and sterol-regulatory-element-binding protein 1c mRNA in the periovarian tissue. Furthermore, non-alcoholic fatty liver disease (NAFLD) and obesity were significantly inhibited by the continuous administration of BHe for 84 days. These results revealed that BHe may be a promising novel drug or functional food candidate for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Joo Wan Kim
- Aribio Co. Ltd., Seongnam, Gyeonggi 13487, Republic of Korea
| | - You-Suk Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Du Jin Seol
- Aribio Co. Ltd., Seongnam, Gyeonggi 13487, Republic of Korea
| | - Il Je Cho
- The Medical Research Center for Globalization of Herbal Formulation and Department of Herbal Formulation, College of Oriental Medicine, Gyeongsan, Gyeongsangbuk 38610, Republic of Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk 38610, Republic of Korea
| | - Jae-Suk Choi
- Division of Bioindustry, College of Medical and Life Sciences, Silla University, Sasang, Busan 46958, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
38
|
Wu Y, Zhang MH, Xue Y, Zhang T, Wu N, Guo W, Du X, Xu YL. Effect of microRNA-26a on vascular endothelial cell injury caused by lower extremity ischemia-reperfusion injury through the AMPK pathway by targeting PFKFB3. J Cell Physiol 2018; 234:2916-2928. [PMID: 30132885 DOI: 10.1002/jcp.27108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022]
Abstract
Vascular endothelial cell (VEC) dysfunction plays an important role in the ischemia-reperfusion injury (IRI)-related diseases, and microRNAs (miRNAs) are key factors during this process. We conducted this study to investigate whether miRNA-26a (miR-26a) has effect on the IRI-induced VEC injury via the AMPK pathway by targeting 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3). IRI rat models were successfully constructed by an abdominal incision. Additionally, the cultured VECs were further treated with miR-26a mimic or inhibitor, and si-PFKFB3. Both the reverse-transcription quantitative polymerase chain reaction and the western blot assay method were carried out to examine the expressions of PFKFB3, endothelial nitric oxide synthase (eNOS), and 5'-adenosine monophosphate-activated protein kinase (AMPK) α1, as well as the extent of the AMPK α1 phosphorylation levels in vascular tissues. Circulating endothelial cell (CEC), von Willebrand factor (VWF), thrombomodulin (TM), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), and endothelin (ET) were all measured. In the rat model of an IRI, a poorly expressed miR-26a and contrarily highly expressed PFKFB3 were identified in vascular tissues. In response to an overexpression of miR-26a or to the PFKFB3 gene silencing, decreased CEC number, TM, VWF, MDA, and ET contents, increased AMPK α1, and eNOS levels, as well as the extent of AMPK α1 phosphorylation coordinate with both increased SOD and NO contents based on the restoration of the AMPK pathway. Overexpression of the miR-26a or si-PFKFB3 provides an elevation in cell proliferation. Our study suggests that the miR-26a RNA alleviates lower extremity IRI-induced VEC injury in rats through the activation of the AMPK pathway by inhibiting PFKFB3.
Collapse
Affiliation(s)
- Ye Wu
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Min-Hong Zhang
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yan Xue
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China.,Department of Cardiovascular Surgery, General Hospital of Armed Police Forces, Beijing, China
| | - Tao Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory, Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Department of Cardiovascular Surgery, Chinese PLA Rocket Force General Hospital, Beijing, China
| | - Xin Du
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yong-Le Xu
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Desjardins EM, Steinberg GR. Emerging Role of AMPK in Brown and Beige Adipose Tissue (BAT): Implications for Obesity, Insulin Resistance, and Type 2 Diabetes. Curr Diab Rep 2018; 18:80. [PMID: 30120579 DOI: 10.1007/s11892-018-1049-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of type 2 diabetes (T2D) is escalating at alarming rates, demanding the development of additional classes of therapeutics to further reduce the burden of disease. Recent studies have indicated that increasing the metabolic activity of brown and beige adipose tissue may represent a novel means to reduce circulating glucose and lipids in people with T2D. The AMP-activated protein kinase (AMPK) is a cellular energy sensor that has recently been demonstrated to be important in potentially regulating the metabolic activity of brown and beige adipose tissue. The goal of this review is to summarize recent work describing the role of AMPK in brown and beige adipose tissue, focusing on its role in adipogenesis and non-shivering thermogenesis. RECENT FINDINGS Ablation of AMPK in mouse adipocytes results in cold intolerance, a reduction in non-shivering thermogenesis in brown adipose tissue (BAT), and the development of non-alcoholic fatty liver disease (NAFLD) and insulin resistance; effects associated with a defect in mitochondrial specific autophagy (mitophagy) within BAT. The effects of a β3-adrenergic agonist on the induction of BAT thermogenesis and the browning of white adipose tissue (WAT) are also blunted in mice lacking adipose tissue AMPK. A specific AMPK activator, A-769662, also results in the activation of BAT and the browning of WAT, effects which may involve demethylation of the PR domain containing 16 (Prdm16) promoter region, which is important for BAT development. AMPK plays an important role in the development and maintenance of brown and beige adipose tissue. Adipose tissue AMPK is reduced in people with insulin resistance, consistent with findings that mice lacking adipocyte AMPK develop greater NAFLD and insulin resistance. These data suggest that pharmacologically targeting adipose tissue AMPK may represent a promising strategy to enhance energy expenditure and reduce circulating glucose and lipids, which may be effective for the treatment of NAFLD and T2D.
Collapse
Affiliation(s)
- Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
40
|
Liu L, Yasen M, Tang D, Ye J, Aisa HA, Xin X. Polyphenol-enriched extract of Rosa rugosa Thunb regulates lipid metabolism in diabetic rats by activation of AMPK pathway. Biomed Pharmacother 2018; 100:29-35. [PMID: 29421579 DOI: 10.1016/j.biopha.2018.01.143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/20/2017] [Accepted: 01/28/2018] [Indexed: 01/04/2023] Open
Abstract
This study was designed to investigate the mechanism of polyphenol-enriched extract of Rosa rugosa Thunb (RPE) in the control of dyslipidemia in diabetic rats. RPE was tested at three dosages (37.5 mg/kg, 75 mg/kg and 150 mg/kg) in the rat dyslipidemia model established with high fat diet feeding in combination with STZ injection (30 mg/kg). The RPE effect was evaluated after 4 weeks of treatment. In the RPE-treated rats, hepatic total cholesterol (TC) and triglyceride (TG) were significantly reduced, lipoprotein lipase (LPL) and liver lipase (HL) were significantly increased. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) were decreased in the serum. Those effects of RPE were observed primarily at the mediate and high dosages. Expression of FGF21 was increased in the liver tissue and hepatic cell line 1c1c7 by RPE. The signals of p-AMPK, p-ACC, ACC, p-SIRT, and PGC-1α were significantly induced in the liver by RPE. The results suggest that RPE may improve hepatic steatosis and liver function by induction of AMPK signaling activity in the control of dyslipidemia.
Collapse
Affiliation(s)
- Liu Liu
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mireguli Yasen
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dan Tang
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisisana State University System, Baton Rouge 70808, USA
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
41
|
Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB, Liu JH. Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun 2018; 496:287-293. [PMID: 29317208 DOI: 10.1016/j.bbrc.2018.01.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
|
42
|
Peppler WT, Townsend LK, Knuth CM, Foster MT, Wright DC. Subcutaneous inguinal white adipose tissue is responsive to, but dispensable for, the metabolic health benefits of exercise. Am J Physiol Endocrinol Metab 2018; 314:E66-E77. [PMID: 28978546 PMCID: PMC5866388 DOI: 10.1152/ajpendo.00226.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Exercise training has robust effects on subcutaneous inguinal white adipose tissue (iWAT), characterized by a shift to a brown adipose tissue (BAT)-like phenotype. Consistent with this, transplantation of exercise-trained iWAT into sedentary rodents activates thermogenesis and improves glucose homeostasis, suggesting that iWAT metabolism may contribute to the beneficial effects of exercise. However, it is yet to be determined if adaptations in iWAT are necessary for the beneficial systemic effects of exercise. To test this, male C57BL/6 mice were provided access to voluntary wheel running (VWR) or remained as a cage control (SED) for 11 nights after iWAT removal via lipectomy (LIPX) or SHAM surgery. We found that SHAM and LIPX mice with access to VWR ran similar distances and had comparable reductions in body mass, increased food intake, and increased respiratory exchange ratio (RER). Further, VWR improved indexes of glucose homeostasis and insulin tolerance in both SHAM and LIPX mice. The lack of effect of LIPX in the response to VWR was not explained by compensatory increases in markers of mitochondrial biogenesis and thermogenesis in skeletal muscle, epididymal white adipose tissue, or interscapular brown adipose tissue. Together, these data demonstrate that mice with and without iWAT have comparable adaptations to VWR, suggesting that iWAT may be dispensable for the metabolic health benefits of exercise.
Collapse
Affiliation(s)
- Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Carly M Knuth
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University , Fort Collins, Colorado
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
43
|
Staiger H, Keuper M, Berti L, Hrabe de Angelis M, Häring HU. Fibroblast Growth Factor 21-Metabolic Role in Mice and Men. Endocr Rev 2017; 38:468-488. [PMID: 28938407 DOI: 10.1210/er.2017-00016] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022]
Abstract
Since its identification in 2000, the interest of scientists in the hepatokine fibroblast growth factor (FGF) 21 has tremendously grown, and still remains high, due to a wealth of very robust data documenting this factor's favorable effects on glucose and lipid metabolism in mice. For more than ten years now, intense in vivo and ex vivo experimentation addressed the physiological functions of FGF21 in humans as well as its pathophysiological role and pharmacological effects in human metabolic disease. This work produced a comprehensive collection of data revealing overlaps in FGF21 expression and function but also significant differences between mice and humans that have to be considered before translation from bench to bedside can be successful. This review summarizes what is known about FGF21 in mice and humans with a special focus on this factor's role in glucose and lipid metabolism and in metabolic diseases, such as obesity and type 2 diabetes mellitus. We highlight the discrepancies between mice and humans and try to decipher their underlying reasons.
Collapse
Affiliation(s)
- Harald Staiger
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Interfaculty Center for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michaela Keuper
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Lucia Berti
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany.,Chair for Experimental Genetics, Technical University Munich, 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Interfaculty Center for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research, 85764 Neuherberg, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
44
|
Xie T, Leung PS. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am J Physiol Endocrinol Metab 2017; 313:E292-E302. [PMID: 28559437 PMCID: PMC5625087 DOI: 10.1152/ajpendo.00101.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a potent endocrine regulator with physiological effects on glucose and lipid metabolism and thus garners much attention for its translational potential for the management of obesity and related metabolic syndromes. FGF21 is mainly expressed in several metabolically active tissue organs, such as the liver, adipose tissue, skeletal muscle, and pancreas, with profound effects and therapeutic relevance. Emerging experimental and clinical data point to the demonstrated metabolic benefits of FGF21, which include, but are not limited to, weight loss, glucose and lipid metabolism, and insulin sensitivity. In addition, FGF21 also acts directly through its coreceptor β-klotho in the brain to alter light-dark cycle activity. In this review, we critically appraise current advances in understanding the physiological actions of FGF21 and its role as a biomarker of various metabolic diseases, especially type 2 diabetes mellitus. We also discuss the potentially exciting role of FGF21 in improving our health and prolonging our life span. This information will provide a fuller understanding for further research into FGF21, as well as providing a scientific basis for potentially establishing health care guidelines for this promising molecule.
Collapse
Affiliation(s)
- Ting Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|