1
|
Dodangeh S, Hasani-Ranjbar S. Old and new anti-obesity drugs. J Diabetes Metab Disord 2025; 24:16. [PMID: 39712336 PMCID: PMC11659566 DOI: 10.1007/s40200-024-01512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024]
Abstract
Obesity is a pandemic problem that correlates with a cluster of metabolic factors leading to poor cardiovascular outcomes, morbidity, and an increased risk of overall mortality. It is necessary to approach obesity with a comprehensive treatment plan, which may involve lifestyle modifications (diet, exercise, and behavioral therapy) and pharmacological interventions. This article provides an overview of the mechanisms of action, efficacy, and safety of available long-term anti-obesity drugs and introduces other potential agents under investigation.
Collapse
Affiliation(s)
- Salimeh Dodangeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Shankar A, Sharma A, Vinas A, Chilton RJ. GLP-1 receptor agonists and delayed gastric emptying: implications for invasive cardiac interventions and surgery. Cardiovasc Endocrinol Metab 2025; 14:e00321. [PMID: 39649679 PMCID: PMC11620716 DOI: 10.1097/xce.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone involved in glucose homeostasis and satiety regulation. The review highlights the importance of understanding the interplay between GLP-1 and gastric motility. This paper explores the intricate connection between GLP-1 and delayed gastric emptying, specifically gastroparesis, and its implications in the context of pulmonary aspiration during anesthesia along with the potential effects of GLP-1 medications on absorption of other medications. The findings noted in this paper serve as a catalyst for continued exploration into the intricate dynamics of GLP-1 and its implications in the context of perioperative care, aiming to enhance patient safety and optimize anesthesia practices. The inquiry suggests that an in-depth examination of this relationship is crucial for refining perioperative management strategies. It underscores the need for further research to elucidate the mechanisms involved and to establish guidelines that address the potential risks associated with GLP-1 modulation, particularly in patients undergoing anesthesia for various cardiac surgeries and procedures. Specifically in the context of cardiac interventions understanding the potential for delayed absorption of critical cardiac medications due to the influence of GLP-1 on gastric emptying is particularly important as drug absorption can play a crucial role for ensuring successful outcomes.
Collapse
Affiliation(s)
- Aditi Shankar
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio
| | - Aditi Sharma
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio
| | - Ariel Vinas
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio
- U.S. Department of Veteran Affairs, Audie L Murphy Veteran’s Association Hospital, San Antonio, Texas, USA
| | - Robert J. Chilton
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio
- U.S. Department of Veteran Affairs, Audie L Murphy Veteran’s Association Hospital, San Antonio, Texas, USA
| |
Collapse
|
3
|
Paggers L, Mesotten D, Stragier H. Glucagon-like peptide-1 receptor agonists in peri-operative care: Dispelling myths and unveiling insights with essential considerations for anaesthesiologists. Eur J Anaesthesiol 2025; 42:140-151. [PMID: 39620622 DOI: 10.1097/eja.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
With the growing use of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists as anti-obesity medication it is becoming increasingly important to examine its consequences in the peri-operative period. GLP-1R agonists are known for their effects of glucose-lowering and gastroparesis the latter causing some safety concerns regarding induction of anaesthesia, more specifically the risk of pulmonary aspiration. This article gathers the available evidence on this subject in addition to the already established guidelines. Current evidence makes us assume there is indeed an increased level of gastroparesis, but there are no studies to date with evidential confirmation of a presumed elevated risk of pulmonary aspiration. Future perspectives should focus on the actual risk of pulmonary aspiration and the possible implementation of ultrasound in the preoperative assessment.
Collapse
Affiliation(s)
- Larissa Paggers
- From the Department of Anaesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Ziekenhuis Oost-Limburg, Genk (LP, DM, HS), Faculty of Medicine and Life Sciences, UHasselt, Diepenbeek (DM) and CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands (HS)
| | | | | |
Collapse
|
4
|
Shi X, Hu X, Fang X, Jia L, Wei F, Peng Y, Liu M, Gao A, Zhao K, Chen F, Hu X, Hong J, Ning G, Song Y, Wang J, Wang Y. A feeding-induced myokine modulates glucose homeostasis. Nat Metab 2025:10.1038/s42255-024-01175-9. [PMID: 39747483 DOI: 10.1038/s42255-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Maintaining blood glucose homeostasis during fasting and feeding is crucial for the prevention of dysregulation that can lead to either hypo- or hyperglycaemia. Here we identified feimin, encoded by a gene with a previously unknown function (B230219D22Rik in mice, C5orf24 in humans), as a key modulator of glucose homeostasis. Feimin is secreted from skeletal muscle during feeding and binds to its receptor, receptor protein tyrosine kinase Mer (MERTK), promoting glucose uptake and inhibiting glucose production by activation of AKT. Administration of feimin and insulin synergistically improves blood glucose homeostasis in both normal and diabetic mice. Notably, a specific single nucleotide polymorphism (rs7604639, G>A) within the MERTK gene, causing an amino acid substitution (R466K) within the feimin-MERTK binding region, leads to reduced association with feimin and elevated postprandial blood glucose and insulin levels in humans. Our findings underscore a role of the feimin-MERTK signalling axis in glucose homeostasis, providing valuable insights into potential therapeutic avenues for diabetes.
Collapse
Affiliation(s)
- Xiaoliu Shi
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fangchao Wei
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Peng
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Menghao Liu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fengyi Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoli Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Shah VN, Peters AL, Umpierrez GE, Sherr JL, Akturk HK, Aleppo G, Bally L, Cengiz E, Cinar A, Dungan K, Fabris C, Jacobs PG, Lal RA, Mader JK, Masharani U, Prahalad P, Schmidt S, Zijlstra E, Ho CN, Ayers AT, Tian T, Aaron RE, Klonoff DC. Consensus Report on Glucagon-Like Peptide-1 Receptor Agonists as Adjunctive Treatment for Individuals With Type 1 Diabetes Using an Automated Insulin Delivery System. J Diabetes Sci Technol 2025; 19:191-216. [PMID: 39517127 PMCID: PMC11571606 DOI: 10.1177/19322968241291512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
With increasing prevalence of obesity and cardiovascular diseases, there is a growing interest in the use of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as an adjunct therapy in type 1 diabetes (T1D). The GLP-1RAs are currently not approved by the US Food and Drug Administration for the treatment of T1D in the absence of randomized controlled trials documenting efficacy and safety of these agents in this population. The Diabetes Technology Society convened a series of three consensus meetings of clinicians and researchers with expertise in diabetes technology, GLP-1RA therapy, and T1D management. The project was aimed at synthesizing current literature and providing conclusions on the use of GLP-1RA therapy as an adjunct to automated insulin delivery (AID) systems in adults with T1D. The expert panel members met virtually three times on January 17, 2024, and April 24, 2024, and August 14, 2024, to discuss topics ranging from physiology and outcomes of GLP-1RAs in T1D to limitations of current sensors, algorithms, and insulin for AID systems. The panelists also identified research gaps and future directions for research. The panelists voted to in favor of 31 recommendations. This report presents the consensus opinions of the participants that, in adults with T1D using AID systems, GLP-1RAs have the potential to (1) provide effective adjunct therapy and (2) improve glycemic and metabolic outcomes without increasing the risk of severe hypoglycemia or diabetic ketoacidosis.
Collapse
Affiliation(s)
- Viral N. Shah
- Division of Endocrinology & Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anne L. Peters
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | | | | | - Halis Kaan Akturk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lia Bally
- Inselspital, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Eda Cengiz
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kathleen Dungan
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chiara Fabris
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Peter G. Jacobs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Rayhan A. Lal
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Julia K. Mader
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Umesh Masharani
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Priya Prahalad
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Cindy N. Ho
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
6
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2025; 22:39-53. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Liu C, Xin Y, Huang Y, Xu L, Zhou R, Wang Y, Wang W. Reduction of Hepatic Fat Content by Dulaglutide for the Treatment of Diabetes Mellitus: A Two-Centre Open, Single-Arm Trial. Endocrinol Diabetes Metab 2025; 8:e70021. [PMID: 39718468 DOI: 10.1002/edm2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND With the elevated level of NAFLD prevalence, the incidence of diabetes, hypertension, metabolic syndrome and other diseases is also significantly elevated. GLP-1RA can exert weight loss, glucose-lowering effects and various nonglycaemic effects. However, the relationship between quantitative reduction in hepatic fat content and improvement of pancreatic islet function by GLP-1RA is unclear. METHODS This trial was a single-arm open cohort study. A total of 38 patients with T2DM and NAFLD were enrolled in the GLP-1RA treatment group. The included patients were tested for biochemical and blood glucose levels, adiponectin and FGF21 levels, and liver fat content was measured using MRI. Measure the above indicators again after at least 3 months of GLP-1RA treatment. Divided into Q1 (average decrease of 0.37%) and Q2 (average decrease of 8.6%) groups based on the degree of reduction in liver fat content. RESULTS Q2 group showed an average reduction in liver fat content of 8.6%, a decrease in glycated haemoglobin of 18.17%, a weight loss of 7.29% and an increase in fasting c-peptide release by 1.03%, 1-h and 2-h postprandial c-peptide release by 28.86% and 18.28% respectively. In contrast, Q1 group had an average reduction in liver fat content of 0.37%, a decrease in glycated haemoglobin of only 6.53%, a weight loss of 3.41%, a decrease in fasting c-peptide release by 1.91% and an increase in 1-h and 2-h postprandial c-peptide release by 19.18% and 11.66% respectively. CONCLUSION Reduction in liver fat content effectively improves pancreatic islet function secretion, particularly postprandial c-peptide secretion, especially in the first hour after a meal. This improvement leads to a decrease in glycated haemoglobin levels and promotes better compliance with blood glucose control.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Xin
- Department of Endocrinology and Metabolic Diseases, Jiaozuo People's Hospital, Jiaozuo, China
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajing Huang
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruizhi Zhou
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Yaribeygi H, Kashian K, Moghaddam KI, Karim SR, Bagheri N, Karav S, Jamialahmadi T, Rizzo M, Sahebkar A. Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways. J Diabetes Complications 2025; 39:108928. [PMID: 39644538 DOI: 10.1016/j.jdiacomp.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Patients with diabetic are at a higher risk of developing hepatic disorders compared to non-diabetic individuals. This increased risk can be attributed to the diabetic environment, which triggers and exacerbates harmful pathways involved in both diabetic complications and hepatic disorders. Therefore, it is important to consider the use of antidiabetic agents that offer benefits beyond glycemic control and have positive effects on liver tissues. Glucagon-like peptide-1 (GLP-1) mimetics are a novel class of antidiabetic medications known for their potent blood sugar-lowering effects. Emerging evidence suggests that these drugs also have favorable effects on the liver. However, the precise effects and underlying mechanisms are not yet fully understood. In this review, we aim to provide a mechanistic perspective on the liver benefits of GLP-1 mimetics and outline the mediating mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Kiana Kashian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Narges Bagheri
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Wu WB, Gao F, Tang YH, Wang HZ, Dong H, Lu FE, Yuan F. Huanglian-Renshen-Decoction Maintains Islet β-Cell Identity in T2DM Mice through Regulating GLP-1 and GLP-1R in Both Islet and Intestine. Chin J Integr Med 2025; 31:39-48. [PMID: 39551849 DOI: 10.1007/s11655-024-3915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 11/19/2024]
Abstract
OBJECTIVE To elucidate the effect of Huanglian-Renshen-Decoction (HRD) on ameliorating type 2 diabetes mellitus by maintaining islet β -cell identity through regulating paracrine and endocrine glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) in both islet and intestine. METHODS The db/db mice were divided into the model (distilled water), low-dose HRD (LHRD, 3 g/kg), high-dose HRD (HHRD, 6 g/kg), and liraglutide (400 µ g/kg) groups using a random number table, 8 mice in each group. The db/m mice were used as the control group (n=8, distilled water). The entire treatment of mice lasted for 6 weeks. Blood insulin, glucose, and GLP-1 levels were quantified using enzyme-linked immunosorbent assay kits. The proliferation and apoptosis factors of islet cells were determined by immunohistochemistry (IHC) and immunofluorescence (IF) staining. Then, GLP-1, GLP-1R, prohormone convertase 1/3 (PC1/3), PC2, v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA), and pancreatic and duodenal homeobox 1 (PDX1) were detected by Western blot, IHC, IF, and real-time quantitative polymerase chain reaction, respectively. RESULTS HRD reduced the weight and blood glucose of the db/db mice, and improved insulin sensitivity at the same time (P<0.05 or P<0.01). HRD also promoted mice to secrete more insulin and less glucagon (P<0.05 or P<0.01). Moreover, it also increased the number of islet β cell and decreased islet α cell mass (P<0.01). After HRD treatment, the levels of GLP-1, GLP-1R, PC1/3, PC2, MafA, and PDX1 in the pancreas and intestine significantly increased (P<0.05 or P<0.01). CONCLUSION HRD can maintain the normal function and identity of islet β cell, and the underlying mechanism is related to promoting the paracrine and endocrine activation of GLP-1 in pancreas and intestine.
Collapse
Affiliation(s)
- Wen-Bin Wu
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Gao
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue-Heng Tang
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Zhan Wang
- Institution of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fen Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Xu Z, Wen S, Dong M, Zhou L. Targeting central pathway of Glucose-Dependent Insulinotropic Polypeptide, Glucagon and Glucagon-like Peptide-1 for metabolic regulation in obesity and type 2 diabetes. Diabetes Obes Metab 2024. [PMID: 39723473 DOI: 10.1111/dom.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Obesity and type 2 diabetes are significant public health challenges that greatly impact global well-being. The development of effective therapeutic strategies has become more and more concentrated on the central nervous system and metabolic regulation. The primary pharmaceutical interventions for the treatment of obesity and uncontrolled hyperglycemia are now generally considered to be incretin-based anti-diabetic treatments, particularly glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonists. This is a result of their substantial influence on the central nervous system and the consequent effects on energy balance and glucose regulation. It is increasingly crucial to understand the neural pathways of these pharmaceuticals. The purpose of this review is to compile and present the most recent central pathways regarding glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide and glucagon receptors, with a particular emphasis on central metabolic regulation.
Collapse
Affiliation(s)
- Zhimin Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Fudan University, Shanghai, China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
11
|
Khan R, Doty RL. GLP-1 receptor agonists significantly impair taste function. Physiol Behav 2024; 291:114793. [PMID: 39722367 DOI: 10.1016/j.physbeh.2024.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Over 10 % of the US population are prescribed glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to combat obesity. Although they decrease cravings for foods, their influence on chemosensory function is unknown. We employed state-of-the-art quantitative taste and smell tests to address this issue. The 53-item Waterless Empirical Taste Test (WETT®) and the 40-item University of Pennsylvania Smell Identification Test (UPSIT®) were completed by 46 persons taking GLP-1 RAs and 46 controls matched on age, sex, smoking behavior, and COVID-19 infection histories. Data were analyzed using analyses of variance. The WETT® scores were significantly diminished in the GLP-1 RA group relative to controls [total means (95 % CIs) = 28.61 (25.66,31.56) and 40.63 (38.35,42.91), p < 0.001, η2 = 0.37]. Eighty five percent of the GLP-1 subjects scored worse than their individually matched controls. All 5 WETT® subtest scores were similarly affected (ps < 0.001). Smell function, although slightly decreased on average, was not significantly impacted (p = 0.076). Women outperformed men on all tests. Remarkably, UPSIT® and WETT® scores were higher, i.e., better, in those reporting nausea, diarrhoea, and other GLP-1-related side effects. This study demonstrates, for the first time, that GLP-1 RAs alter the function of a major sensory system, significantly depressing the perception of all five basic taste qualities. The physiologic basis of this effect is unknown but may involve GLP-1 receptors in the brainstem and afferent taste pathways, as well as vagus nerve-related processes.
Collapse
Affiliation(s)
- Rafa Khan
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
12
|
Raymond JS, Athanasoupoulis A, Badolato C, Doolan TJ, Scicluna R, Everett NA, Bowen MT, James MH. Emerging medications and pharmacological treatment approaches for substance use disorders. Pharmacol Biochem Behav 2024:173952. [PMID: 39719161 DOI: 10.1016/j.pbb.2024.173952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Medications to treat substance use disorders remain suboptimal or, in the case of stimulants and cannabis, non-existent. Many factors have contributed to this paucity, including the biological complexity of addiction, regulatory challenges, and a historical lack of enthusiasm among pharmaceutical companies to commit resources to this disease space. Despite these headwinds, the recent opioid crisis has highlighted the devastating consequences of SUDs for both individuals and society, stimulating urgent efforts to identify novel treatment approaches. In addition, several neurobiological systems have been recently implicated in unique aspects of drug reward, opening the door to candidate medications with novel mechanisms of action. Here, we provide an overview of efforts to target several of these new systems, with a focus on those that are the subject of ongoing clinical trials as well as being areas of interest among the authors' research groups (MHJ, MTB, NAE). Specifically, we discuss new classes of medications targeting the serotonin 2 A receptor (i.e., psychedelics), glucagon-like peptide 1 receptor, cannabidiol, dynorphin/kappa opioid receptor, orexin/hypocretin, and oxytocin receptor systems, as well as emergent approaches for modulating the more canonical dopaminergic system via agonist therapies for stimulant use disorders. Collectively, innovations in this space give reason for optimism for an improved therapeutic landscape for substance use disorders in the near future.
Collapse
Affiliation(s)
- Joel S Raymond
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA
| | - Alex Athanasoupoulis
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Connie Badolato
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tylah J Doolan
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Rhianne Scicluna
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas A Everett
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA; School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Gentinetta S, Sottotetti F, Manuelli M, Cena H. Dietary Recommendations for the Management of Gastrointestinal Symptoms in Patients Treated with GLP-1 Receptor Agonist. Diabetes Metab Syndr Obes 2024; 17:4817-4824. [PMID: 39722834 PMCID: PMC11668918 DOI: 10.2147/dmso.s494919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
GLP-1 receptor agonist (GLP-1RA) have been developed to address the global burden of obesity and are renowned for their safety and efficacy. These medications influence hunger and satiety, reducing energy intake and promoting weight loss. Despite their benefits, GLP-1RAmay cause a slowed gastric emptying, leading to gastrointestinal symptoms. This study examines how food properties and meal composition affect these symptoms. Dietary recommendations are provided, particularly for evening meals, focusing on how different foods and nutrients can influence the rate of gastric emptying, to improve patient compliance and prevent interruption in weight loss.
Collapse
Affiliation(s)
| | - Francesca Sottotetti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Matteo Manuelli
- Clinical Nutrition Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
14
|
Sola-Leyva A, Pathare ADS, Apostolov A, Aleksejeva E, Kask K, Tammiste T, Ruiz-Durán S, Risal S, Acharya G, Salumets A. The hidden impact of GLP-1 receptor agonists on endometrial receptivity and implantation. Acta Obstet Gynecol Scand 2024. [PMID: 39696822 DOI: 10.1111/aogs.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Increasing infertility rates represent a growing medical challenge in modern societies resulting from a complex interplay of sociocultural trends, lifestyle factors, exposure to environmental toxins, and underlying health problems. Women's fertility is particularly vulnerable to these shifts. The obesogenic lifestyle not only accelerates weight gain, but also disrupts ovulation driving the rise in infertility. Among several medications used for treating obesity and type 2 diabetes, glucagon-like peptide-1 receptor agonists (GLP-1RAs) show promising improvement in female fertility most likely by stimulating ovulation. However, the effects of GLP-1RAs on the endometrium remain unclear. Further studies are needed to investigate the impact of GLP-1RAs on endometrial receptivity and embryo implantation and early development. The aim of this study is to address the knowledge gap regarding the effects of GLP-1RAs on human reproduction, with special focus on the endometrium. Understanding these mechanisms may help to develop new strategies for improving fertility treatment, reduce implantation failure and address potential safety concerns regarding teratogenicity and adverse developmental outcomes for children born to women conceiving during or soon after GLP-1RA treatment.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Apostol Apostolov
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Elina Aleksejeva
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
| | - Keiu Kask
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Triin Tammiste
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- West Tallinn Central Hospital, Women's Clinic, Tallinn, Estonia
| | - Susana Ruiz-Durán
- Department of Obstetrics and Gynecology, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sanjiv Risal
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Center for Fetal Medicine Karolinska, University Hospital, Stockholm, Sweden
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Celvia CC, Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2024:10.1007/s00204-024-03920-1. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
16
|
Zhang S, Yan H, Cao D, Sun W, Li J, Xu J, Song B, Wu X. Research hotspots and trends in diabetes and insulin resistance: a bibliometric analysis. Front Nutr 2024; 11:1480491. [PMID: 39737158 PMCID: PMC11684393 DOI: 10.3389/fnut.2024.1480491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Background Many previous studies explored the relationship between diabetes and insulin resistance (IR); however, addressing the research gap where no bibliometric analysis had been conducted to summarize and analyze these publications, we will undertake a comprehensive bibliometric analysis to investigate the current status and emerging trends in publications examining the association between diabetes and IR. Methods We retrieved publications related to the interaction between diabetes and IR from the Web of Science Core Collection (WoSCC). By utilizing software such as CiteSpace, VOSviewer, and Excel 2019, we analyzed and extracted relevant information from the literature to identify and delineate the research hotspots and directions in the study of diabetes and IR. Results From 1900 to 2024, a total of 2,698 publications were included in the bibliometric analysis, showing a steady annual increase in the number of publications. The USA led in this research field, with the Harvard University being a key research institution. The author Olefsky JM, published the most papers;Defronzo RA was the most cited author. DIABETES was the journal with the highest number of published papers and was also the most cited journal. The main discipline in the field of diabetes and IR research was Endocrinology and Metabolism. The most cited article was "Mechanisms linking obesity to insulin resistance and type 2 diabetes (2006)";"The IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045(2018)" was the most cited reference. "insulin resistance" was the most frequently occurring keyword. The main research hotspots and frontier areas in diabetes and IR research were as follows: (1) The association between IR, diabetes, and obesity was a popular research topic; (2) Cardiovascular diseases secondary to diabetes and IR were another hot topic among researchers; (3) As a core pathological change in diabetes, IR was a major therapeutic target for improving diabetes. Conclusion This study summarized the research trends and hotspots in the field of diabetes and IR, provided valuable information and insights for scholars who focused on diabetes and IR scientific research, and offered a reference for future research directions.
Collapse
Affiliation(s)
- Shaobo Zhang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Huixin Yan
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Di Cao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Weichen Sun
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Traditional Chinese Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingnan Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Xu
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Bailin Song
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Xingquan Wu
- Department of Tuina, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Mohd S, Sharma V, Harish V, Kumar R, Pilli G. Exploring Thiazolidinedione-Naphthalene Analogues as Potential Antidiabetic Agents: Design, Synthesis, Molecular Docking and In-vitro Evaluation. Cell Biochem Biophys 2024:10.1007/s12013-024-01632-y. [PMID: 39673041 DOI: 10.1007/s12013-024-01632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Thiazolidinedione-naphthalene analogues were synthesized and evaluated for antidiabetic activity as Pancreatic α-Amylase (PAA) and intestinal α-glucosidase (IAG) inhibitors. The activity of the compounds (14a-g,17a-k) is compared with acarbose as the standard drug and all the compounds shows good to moderate antidiabetic activity. In-vitro PAA and IAG inhibition assay is performed for the all compounds, the compounds 17e shows superior PAA and IAG inhibitory activity with respective to standard (IC50 = 12.455 ± 0.04 μM and 9.145 ± 0. 01 μM). The molecular interaction with PAA and IAG protein was also studied with the help of molecular docking studies using AutoDock software. while SwissADME and Osiris property explorer tools computed in-silico drug likeliness and toxicity properties. The in-silico results confirmed the 17e molecule as a superior drug with high binding affinity and good drug likeness against PAA and IAG, confirming in-vitro results. We also studied antioxidant activity (AOA) of all synthesized compounds and results confined that the compound 14g and 17e has good antioxidant potential IC50 = 8.04 ± 0.02 μM and 6.36 ± 0.03 μM respectively among all compounds. In conclusion, in-vitro, in-silico antidiabetic and antioxidant studies revealed 17e compound was found to be potential compound.
Collapse
Affiliation(s)
- Sharfuddin Mohd
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Sharma
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vancha Harish
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rakesh Kumar
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Govindaiah Pilli
- Faculty of medicine, Department of Pathology, Wayne state University, Detroit, MI, USA.
| |
Collapse
|
18
|
Szczepanska-Sadowska E, Cudnoch-Jędrzejewska A, Żera T. Molecular Interaction Between Vasopressin and Insulin in Regulation of Metabolism: Impact on Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:13307. [PMCID: PMC11678547 DOI: 10.3390/ijms252413307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin. Acting on V1a receptors in the liver, AVP stimulates glycogenolysis, reduces synthesis of glycogen, and promotes fatty acid synthesis and acetyl CoA carboxylase activity. Stimulating V1b receptors in the pancreatic islands, AVP promotes release of insulin and glucagon-like peptide-1 (GLP-1) and potentiates stimulatory effects of glucose and ACTH on secretion of insulin. Simultaneously, insulin increases AVP secretion by neurons of the paraventricular nucleus and the supraoptic nucleus. There is strong evidence that secretion of AVP and its metabolic effectiveness are significantly altered in metabolic and cardiovascular diseases. Both experimental and clinical data indicate that inappropriate interactions of AVP and insulin play an important role in the development of insulin resistance in obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
19
|
Lv D, Feng P, Guan X, Liu Z, Li D, Xue C, Bai B, Hölscher C. Neuroprotective effects of GLP-1 class drugs in Parkinson's disease. Front Neurol 2024; 15:1462240. [PMID: 39719978 PMCID: PMC11667896 DOI: 10.3389/fneur.2024.1462240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive neurological disorder primarily affecting motor control, clinically characterized by resting tremor, bradykinesia, rigidity, and other symptoms that significantly diminish the quality of life. Currently, available treatments only alleviate symptoms without halting or delaying disease progression. There is a significant association between PD and type 2 diabetes mellitus (T2DM), possibly due to shared pathological mechanisms such as insulin resistance, chronic inflammation, and mitochondrial dysfunction. PD is caused by a deficiency of dopamine, a neurotransmitter in the brain that plays a critical role in the control of movement. Glucose metabolism and energy metabolism disorders also play an important role in the pathogenesis of PD. This review investigates the neuroprotective mechanisms of glucagon-like peptide-1 (GLP-1) and its receptor agonists, offering novel insights into potential therapeutic strategies for PD. GLP-1 class drugs, primarily used in diabetes management, show promise in addressing PD's underlying pathophysiological mechanisms, including energy metabolism and neuroprotection. These drugs can cross the blood-brain barrier, improve insulin resistance, stabilize mitochondrial function, and enhance neuronal survival and function. Additionally, they exhibit significant anti-inflammatory and antioxidative stress effects, which are crucial in neurodegenerative diseases like PD. Research indicates that GLP-1 receptor agonists could improve both motor and cognitive symptoms in PD patients, marking a potential breakthrough in PD treatment and prevention. Further exploration of GLP-1's molecular mechanisms in PD could provide new preventive and therapeutic approaches, especially for PD patients with concurrent T2DM. By targeting both metabolic and neurodegenerative pathways, GLP-1 receptor agonists represent a multifaceted approach to PD treatment, offering hope for better disease management and improved patient outcomes.
Collapse
Affiliation(s)
- Dongliang Lv
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Peng Feng
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xueying Guan
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhaona Liu
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongfang Li
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cunshui Xue
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Bo Bai
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, China
| |
Collapse
|
20
|
Mokdad AH, Bisignano C, Hsu JM, Bryazka D, Cao S, Bhattacharjee NV, Dalton BE, Lindstedt PA, Smith AE, Ababneh HS, Abbasgholizadeh R, Abdelkader A, Abdi P, Abiodun OO, Aboagye RG, Abukhadijah HJ, Abu-Zaid A, Acuna JM, Addo IY, Adekanmbi V, Adeyeoluwa TE, Adzigbli LA, Afolabi AA, Afrashteh F, Agyemang-Duah W, Ahmad S, Ahmadzade M, Ahmed A, Ahmed A, Ahmed SA, Akkaif MA, Akkala S, Akrami AE, Al Awaidy S, Al Hasan SM, Al Ta'ani O, Al Zaabi OAM, Alahdab F, Al-Ajlouni Y, Al-Aly Z, Alam M, Aldhaleei WA, Algammal AM, Alhassan RK, Ali MU, Ali R, Ali W, Al-Ibraheem A, Almustanyir S, Alqahatni SA, Alrawashdeh A, Al-Rifai RH, Alsabri MA, Alshahrani NZ, Al-Tawfiq JA, Al-Wardat M, Aly H, Amindarolzarbi A, Amiri S, Anil A, Anyasodor AE, Arabloo J, Arafat M, Aravkin AY, Ardekani A, Areda D, Asghariahmadabad M, Ayanore MA, Ayyoubzadeh SM, Azadnajafabad S, Azhar GS, Aziz S, Azzam AY, Babu GR, Baghdadi S, Bahreini R, Bako AT, Bärnighausen TW, Bastan MM, Basu S, Batra K, Batra R, Behnoush AH, Bemanalizadeh M, Benzian H, Bermudez ANC, Bernstein RS, Beyene KA, Bhagavathula AS, Bhala N, Bharadwaj R, Bhargava A, Bhaskar S, Bhat V, Bhuyan SS, Bodunrin AO, Boxe C, Boyko EJ, Braithwaite D, Brauer M, Bugiardini R, Bustanji Y, Butt ZA, Caetano dos Santos FL, Capodici A, Castaldelli-Maia JM, Cembranel F, Cenko E, Cerin E, Chan JSK, Chattu VK, Chaudhary AA, Chen AT, Chen G, Chi G, Ching PR, Cho DY, Chong B, Choudhari SG, Chukwu IS, Chung E, Chung SC, Coker DC, Columbus A, Conde J, Cortese S, Criqui MH, Cruz-Martins N, Dai X, Dai Z, Damiani G, D'Anna L, Daoud F, Darcho SD, Das S, Dash NR, Dashtkoohi M, Degenhardt L, Des Jarlais DC, Desai HD, Devanbu VGC, Dewan SMR, Dhama K, Dhulipala VR, Diaz LAA, Ding DD, Do TC, Do THP, Dongarwar D, D'Oria M, Dorsey ER, Doshi OP, Douiri A, Dowou RK, Dube J, Dziedzic AM, E'mar AR, Ebrahimi A, Ehrlich JRR, Ekundayo TC, El Bayoumy IF, Elhadi M, Elhadi YAM, Eltaha C, Etaee F, Ezenwankwo EF, Fadaka AO, Fagbule OF, Fahim A, Fallahpour M, Fazylov T, Feigin VL, Feizkhah A, Fekadu G, Ferreira N, Fischer F, Gadanya MA, Ganesan B, Ganiyani MA, Gao X, Gebregergis MW, Gebrehiwot M, Gholami E, Gholamrezanezhad A, Ghotbi E, Ghozy S, Gillum RF, Göbölös L, Goldust M, Golechha M, Gouravani M, Grada A, Grover A, Guha A, Guicciardi S, Gupta R, Gupta RD, Habibzadeh P, Haep N, Hajj Ali A, Haj-Mirzaian A, Haq ZA, Hasaballah AI, Hasan I, Hasan MK, Hasan SMM, Hasani H, Hasnain MS, Havmoeller RJ, Hay SI, He J, Hebert JJ, Hemmati M, Hiraike Y, Hoan NQ, Horita N, Hosseinzadeh M, Hostiuc S, Hu C, Huang J, Hushmandi K, Hussain MA, Huynh HH, Iftikhar PM, Ikiroma A, Islam MR, Islam SMS, Iyasu AN, Jacob L, Jairoun AA, Jaka S, Jakovljevic M, Jalilzadeh Yengejeh R, Jamil S, Javaheri T, Jeswani BM, Kalani R, Kamarajah SK, Kamireddy A, Kanmodi KK, Kantar RS, Karaye IM, Katamreddy A, Kazemi F, Kazemian S, Kempen JH, Khamesipour F, Khan A, Khan F, Khan MJ, Khanmohammadi S, Khatab K, Khatatbeh MM, Khorgamphar M, Khormali M, Khosla AA, Khosravi M, Kim G, Kim MS, Kimokoti RW, Kisa A, Kochhar S, Koren G, Krishnamoorthy V, Kuddus MA, Kulimbet M, Kulkarni V, Kumar A, Kumar R, Kumar V, Kundu S, Kurmi OP, Kyei EF, Lan Q, Lansingh VC, Le HH, Le NHH, Le TTT, Leasher JL, Lee M, Lee WC, Li W, Lim SS, Lin J, Liu G, Liu RT, Liu X, López-Gil JF, Lopukhov PD, Lucchetti G, Lunevicius R, Lv L, Maaty DWS, Maharaj SB, Mahmoudi E, Makram OM, Malakan Rad E, Malasala S, Manla Y, Mansouri V, Manu E, Martinez-Piedra R, Marzo RR, Mathangasinghe Y, Mathur M, Matozinhos FP, Mayeli M, McPhail SM, Mediratta RP, Mekene Meto T, Meles HN, Melese EB, Meo SA, Mestrovic T, Metanat P, Mhlanga L, Michalek IM, Miller TR, Mini GK, Mirarefin M, Moberg ME, Mohamed J, Mohamed NS, Mohammad AM, Mohammadian-Hafshejani A, Mohammadzadeh I, Mohammed S, Molavi Vardanjani H, Moni MA, Moraga P, Morrison SD, Motappa R, Munkhsaikhan Y, Murillo-Zamora E, Mustafa A, Nafei A, Naghavi P, Naik G, Najafi MS, Nanavaty DP, Nandu KTK, Nascimento GG, Naser AY, Nashwan AJ, Natto ZS, Nduaguba SO, Nguyen DH, Nguyen PT, Nguyen QP, Nguyen VT, Nikravangolsefid N, Niranjan V, Noor STA, Nugen F, Nutor JJ, Nzoputam OJ, Oancea B, Oduro MS, Ogundijo OA, Ogunsakin RE, Ojo-Akosile TR, Okeke SR, Okonji OC, Olagunju AT, Olorukooba AA, Olufadewa II, Oluwafemi YD, Omar HA, Opejin A, Ostroff SM, Owolabi MO, Ozair A, P A MP, Panda SK, Pandi-Perumal SR, Parikh RR, Park S, Pashaei A, Patel P, Patil S, Pawar S, Peprah EK, Pereira G, Pham HN, Philip AK, Phillips MR, Pigeolet M, Postma MJ, Pourbabaki R, Prabhu D, Pradhan J, Pradhan PMS, Puvvula J, Rafferty Q, Raggi C, Rahim MJ, Rahimi-Movaghar V, Rahman MA, Rahmanian M, Ramadan M, Ramasamy SK, Ramazanu S, Ranabhat CL, Rane A, Rao SJ, Rashedi S, Rashid AM, Ray A, Reddy MMRK, Redwan EMM, Rhee TG, Rodriguez JAB, Rojas-Rueda D, Rout HS, Roy P, Runghien T, Saad AMA, Sabet CJ, Saeed U, Safari M, Sagoe D, Sajib MRUZ, Saleh MA, Salum GA, Samuel VP, Samy AM, Sanabria J, Saravanan A, Saravi B, Satpathy M, Sawhney M, Schlaich MP, Schuermans A, Schumacher AE, Schwebel DC, Selvaraj S, Seylani A, Shafie M, Shahbandi A, Shahsavari HR, Shaikh MA, Shamim MA, Sharath M, Sharew NT, Sharifan A, Sharma A, Sharma M, Shayan M, Sheikh A, Shen J, Sherchan SP, Shetty M, Shetty PH, Shetty PK, Shigematsu M, Shittu A, Shivarov V, Shool S, Shuval K, Siddig EE, Singh JA, Singh S, Sleet DA, Smith G, Solanki S, Soliman SSM, Stafford LK, Stanaway JD, Straif K, Sulaiman SK, Sun J, Swain CK, Szarpak L, Szeto MD, Tabatabaei SM, Tabche C, Tadakamadla J, Taiba J, Tat NY, Temsah MH, Teramoto M, Thirunavukkarasu S, Tovani-Palone MR, Tram KH, Tran JT, Tran NH, Tran TH, Trico D, Tromans SJ, Truyen TTTT, Tumurkhuu M, Udoh A, Ullah S, Vahdati S, Vaithinathan AG, Vakili O, Van den Eynde J, Vervoort D, Vinayak M, Weerakoon KG, Wei MY, Wickramasinghe ND, Wolde AA, Wu C, Wu F, Xiao H, Xu S, Yano Y, Yasufuku Y, Yiğit A, Yon DK, Younis MZ, Yu C, Yuan CW, Zahid MH, Zare I, Zeariya MGM, Zhang H, Zhang Z, Zheng R, Zhong CC, Zhu B, Zhumagaliuly A, Zia H, Zielińska M, Zyoud SH, Vollset SE, Murray CJL. Burden of disease scenarios by state in the USA, 2022-50: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024; 404:2341-2370. [PMID: 39645377 DOI: 10.1016/s0140-6736(24)02246-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The capacity to anticipate future health issues is important for both policy makers and practitioners in the USA, as such insights can facilitate effective planning, investment, and implementation strategies. Forecasting trends in disease and injury burden is not only crucial for policy makers but also garners substantial interest from the general populace and leads to a better-informed public. Through the integration of new data sources, the refinement of methodologies, and the inclusion of additional causes, we have improved our previous forecasting efforts within the scope of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to produce forecasts at the state and national levels for the USA under various possible scenarios. METHODS We developed a comprehensive framework for forecasting life expectancy, healthy life expectancy (HALE), cause-specific mortality, and disability-adjusted life-years (DALYs) due to 359 causes of disease and injury burden from 2022 to 2050 for the USA and all 50 states and Washington, DC. Using the GBD 2021 Future Health Scenarios modelling framework, we forecasted drivers of disease, demographic drivers, risk factors, temperature and particulate matter, mortality and years of life lost (YLL), population, and non-fatal burden. In addition to a reference scenario (representing the most probable future trajectory), we explored various future scenarios and their potential impacts over the next several decades on human health. These alternative scenarios comprised four risk elimination scenarios (including safer environment, improved behavioural and metabolic risks, improved childhood nutrition and vaccination, and a combined scenario) and three USA-specific scenarios based on risk exposure or attributable burden in the best-performing US states (improved high adult BMI and high fasting plasma glucose [FPG], improved smoking, and improved drug use [encompassing opioids, cocaine, amphetamine, and others]). FINDINGS Life expectancy in the USA is projected to increase from 78·3 years (95% uncertainty interval 78·1-78·5) in 2022 to 79·9 years (79·5-80·2) in 2035, and to 80·4 years (79·8-81·0) in 2050 for all sexes combined. This increase is forecasted to be modest compared with that in other countries around the world, resulting in the USA declining in global rank over the 2022-50 forecasted period among the 204 countries and territories in GBD, from 49th to 66th. There is projected to be a decline in female life expectancy in West Virginia between 1990 and 2050, and little change in Arkansas and Oklahoma. Additionally, after 2023, we projected almost no change in female life expectancy in many states, notably in Oklahoma, South Dakota, Utah, Iowa, Maine, and Wisconsin. Female HALE is projected to decline between 1990 and 2050 in 20 states and to remain unchanged in three others. Drug use disorders and low back pain are projected to be the leading Level 3 causes of age-standardised DALYs in 2050. The age-standardised DALY rate due to drug use disorders is projected to increase considerably between 2022 and 2050 (19·5% [6·9-34·1]). Our combined risk elimination scenario shows that the USA could gain 3·8 additional years (3·6-4·0) of life expectancy and 4·1 additional years (3·9-4·3) of HALE in 2050 versus the reference scenario. Using our USA-specific scenarios, we forecasted that the USA could gain 0·4 additional years (0·3-0·6) of life expectancy and 0·6 additional years (0·5-0·8) of HALE in 2050 under the improved drug use scenario relative to the reference scenario. Life expectancy and HALE are likewise projected to be 0·4-0·5 years higher in 2050 under the improved adult BMI and FPG and improved smoking scenarios compared with the reference scenario. However, the increases in these scenarios would not substantially improve the USA's global ranking in 2050 (from 66th of 204 in life expectancy in the reference scenario to 63rd-64th in each of the three USA-specific scenarios), indicating that the USA's best-performing states are still lagging behind other countries in their rank throughout the forecasted period. Regardless, an estimated 12·4 million (11·3-13·5) deaths could be averted between 2022 and 2050 if the USA were to follow the combined scenario trajectory rather than the reference scenario. There would also be 1·4 million (0·7-2·2) fewer deaths over the 28-year forecasted period with improved adult BMI and FPG, 2·1 million (1·3-2·9) fewer deaths with improved exposure to smoking, and 1·2 million (0·9-1·5) fewer deaths with lower rates of drug use deaths. INTERPRETATION Our findings highlight the alarming trajectory of health challenges in the USA, which, if left unaddressed, could lead to a reversal of the health progress made over the past three decades for some US states and a decline in global health standing for all states. The evidence from our alternative scenarios along with other published studies suggests that through collaborative, evidence-based strategies, there are opportunities to change the trajectory of health outcomes in the USA, such as by investing in scientific innovation, health-care access, preventive health care, risk exposure reduction, and education. Our forecasts clearly show that the time to act is now, as the future of the country's health and wellbeing-as well as its prosperity and leadership position in science and innovation-are at stake. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
21
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2024; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
22
|
The burden of diseases, injuries, and risk factors by state in the USA, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024; 404:2314-2340. [PMID: 39645376 DOI: 10.1016/s0140-6736(24)01446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides a comprehensive assessment of health and risk factor trends at global, regional, national, and subnational levels. This study aims to examine the burden of diseases, injuries, and risk factors in the USA and highlight the disparities in health outcomes across different states. METHODS GBD 2021 analysed trends in mortality, morbidity, and disability for 371 diseases and injuries and 88 risk factors in the USA between 1990 and 2021. We used several metrics to report sources of health and health loss related to specific diseases, injuries, and risk factors. GBD 2021 methods accounted for differences in data sources and biases. The analysis of levels and trends for causes and risk factors within the same computational framework enabled comparisons across states, years, age groups, and sex. GBD 2021 estimated years lived with disability (YLDs) and disability-adjusted life-years (DALYs; the sum of years of life lost to premature mortality and YLDs) for 371 diseases and injuries, years of life lost (YLLs) and mortality for 288 causes of death, and life expectancy and healthy life expectancy (HALE). We provided estimates for 88 risk factors in relation to 155 health outcomes for 631 risk-outcome pairs and produced risk-specific estimates of summary exposure value, relative health risk, population attributable fraction, and risk-attributable burden measured in DALYs and deaths. Estimates were produced by sex (male and female), age (25 age groups from birth to ≥95 years), and year (annually between 1990 and 2021). 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws (ie, 500 random samples from the estimate's distribution). Uncertainty was propagated at each step of the estimation process. FINDINGS We found disparities in health outcomes and risk factors across US states. Our analysis of GBD 2021 highlighted the relative decline in life expectancy and HALE compared with other countries, as well as the impact of COVID-19 during the first 2 years of the pandemic. We found a decline in the USA's ranking of life expectancy from 1990 to 2021: in 1990, the USA ranked 35th of 204 countries and territories for males and 19th for females, but dropped to 46th for males and 47th for females in 2021. When comparing life expectancy in the best-performing and worst-performing US states against all 203 other countries and territories (excluding the USA as a whole), Hawaii (the best-ranked state in 1990 and 2021) dropped from sixth-highest life expectancy in the world for males and fourth for females in 1990 to 28th for males and 22nd for females in 2021. The worst-ranked state in 2021 ranked 107th for males (Mississippi) and 99th for females (West Virginia). 14 US states lost life expectancy over the study period, with West Virginia experiencing the greatest loss (2·7 years between 1990 and 2021). HALE ranking declines were even greater; in 1990, the USA was ranked 42nd for males and 32nd for females but dropped to 69th for males and 76th for females in 2021. When comparing HALE in the best-performing and worst-performing US states against all 203 other countries and territories, Hawaii ranked 14th highest HALE for males and fifth for females in 1990, dropping to 39th for males and 34th for females in 2021. In 2021, West Virginia-the lowest-ranked state that year-ranked 141st for males and 137th for females. Nationally, age-standardised mortality rates declined between 1990 and 2021 for many leading causes of death, most notably for ischaemic heart disease (56·1% [95% UI 55·1-57·2] decline), lung cancer (41·9% [39·7-44·6]), and breast cancer (40·9% [38·7-43·7]). Over the same period, age-standardised mortality rates increased for other causes, particularly drug use disorders (878·0% [770·1-1015·5]), chronic kidney disease (158·3% [149·6-167·9]), and falls (89·7% [79·8-95·8]). We found substantial variation in mortality rates between states, with Hawaii having the lowest age-standardised mortality rate (433·2 per 100 000 [380·6-493·4]) in 2021 and Mississippi having the highest (867·5 per 100 000 [772·6-975·7]). Hawaii had the lowest age-standardised mortality rates throughout the study period, whereas Washington, DC, experienced the most improvement (a 40·7% decline [33·2-47·3]). Only six countries had age-standardised rates of YLDs higher than the USA in 2021: Afghanistan, Lesotho, Liberia, Mozambique, South Africa, and the Central African Republic, largely because the impact of musculoskeletal disorders, mental disorders, and substance use disorders on age-standardised disability rates in the USA is so large. At the state level, eight US states had higher age-standardised YLD rates than any country in the world: West Virginia, Kentucky, Oklahoma, Pennsylvania, New Mexico, Ohio, Tennessee, and Arizona. Low back pain was the leading cause of YLDs in the USA in 1990 and 2021, although the age-standardised rate declined by 7·9% (1·8-13·0) from 1990. Depressive disorders (56·0% increase [48·2-64·3]) and drug use disorders (287·6% [247·9-329·8]) were the second-leading and third-leading causes of age-standardised YLDs in 2021. For females, mental health disorders had the highest age-standardised YLD rate, with an increase of 59·8% (50·6-68·5) between 1990 and 2021. Hawaii had the lowest age-standardised rates of YLDs for all sexes combined (12 085·3 per 100 000 [9090·8-15 557·1]), whereas West Virginia had the highest (14 832·9 per 100 000 [11 226·9-18 882·5]). At the national level, the leading GBD Level 2 risk factors for death for all sexes combined in 2021 were high systolic blood pressure, high fasting plasma glucose, and tobacco use. From 1990 to 2021, the age-standardised mortality rates attributable to high systolic blood pressure decreased by 47·8% (43·4-52·5) and for tobacco use by 5·1% (48·3%-54·1%), but rates increased for high fasting plasma glucose by 9·3% (0·4-18·7). The burden attributable to risk factors varied by age and sex. For example, for ages 15-49 years, the leading risk factors for death were drug use, high alcohol use, and dietary risks. By comparison, for ages 50-69 years, tobacco was the leading risk factor for death, followed by dietary risks and high BMI. INTERPRETATION GBD 2021 provides valuable information for policy makers, health-care professionals, and researchers in the USA at the national and state levels to prioritise interventions, allocate resources effectively, and assess the effects of health policies and programmes. By addressing socioeconomic determinants, risk behaviours, environmental influences, and health disparities among minority populations, the USA can work towards improving health outcomes so that people can live longer and healthier lives. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
23
|
Yu X, Chen S, Funcke JB, Straub LG, Pirro V, Emont MP, Droz BA, Collins KA, Joung C, Pearson MJ, James CM, Babu GJ, Efthymiou V, Vernon A, Patti ME, An YA, Rosen ED, Coghlan MP, Samms RJ, Scherer PE, Kusminski CM. The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice. Cell Metab 2024:S1550-4131(24)00449-2. [PMID: 39642881 DOI: 10.1016/j.cmet.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a chronic disease that contributes to the development of insulin resistance, type 2 diabetes (T2D), and cardiovascular risk. Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) co-agonism provide an improved therapeutic profile in individuals with T2D and obesity when compared with selective GLP-1R agonism. Although the metabolic benefits of GLP-1R agonism are established, whether GIPR activation impacts weight loss through peripheral mechanisms is yet to be fully defined. Here, we generated a mouse model of GIPR induction exclusively in the adipocyte. We show that GIPR induction in the fat cell protects mice from diet-induced obesity and triggers profound weight loss (∼35%) in an obese setting. Adipose GIPR further increases lipid oxidation, thermogenesis, and energy expenditure. Mechanistically, we demonstrate that GIPR induction activates SERCA-mediated futile calcium cycling in the adipocyte. GIPR activation further triggers a metabolic memory effect, which maintains weight loss after the transgene has been switched off, highlighting a unique aspect in adipocyte biology. Collectively, we present a mechanism of peripheral GIPR action in adipose tissue, which exerts beneficial metabolic effects on body weight and energy balance.
Collapse
Affiliation(s)
- Xinxin Yu
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Leon G Straub
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Valentina Pirro
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brian A Droz
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Kyla Ai Collins
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mackenzie J Pearson
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Corey M James
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Gopal J Babu
- Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Vissarion Efthymiou
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Ashley Vernon
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, MA, USA
| | - Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matthew P Coghlan
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ricardo J Samms
- Eli Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
VanderWielen BA, Brian Beam W. Perioperative Considerations for Patients on GLP1 Agonists. Adv Anesth 2024; 42:1-26. [PMID: 39443044 DOI: 10.1016/j.aan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
GlP-1 receptor agonists are a class of medications that are becoming increasingly popular. Large trials have shown that their use provides reliable weight loss in obese patients and improved glycemic control in diabetic patients. Its use also has broader implications for overall metabolic health and has been shown to improve cardiovascular outcomes in high-risk populations. Glucagon-like peptide 1 receptors cause multiple effects in the body through stimulation of receptors expressed in a broad range of tissues including the pancreas, liver, gastrointestinal tract, kidneys, heart, endothelium, muscle, and brain. For the anesthesia professionals the effects of these medications on gastric emptying is important.
Collapse
|
25
|
Ahmed A, Ankireddypalli A, Harindhanavudhi T, Moran A, Moheet A. Glucagon-like peptide1 receptor agonist treatment of cystic fibrosis-related diabetes complicated by obesity: A cases series and literature review. J Clin Transl Endocrinol 2024; 38:100375. [DOI: 10.1016/j.jcte.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
26
|
Bak M, Campforts B, Domen P, van Amelsvoort T, Drukker M. Glucagon-like peptide agonists for weight management in antipsychotic-induced weight gain: A systematic review and meta-analysis. Acta Psychiatr Scand 2024; 150:516-529. [PMID: 39048532 DOI: 10.1111/acps.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Managing body weight in patients with antipsychotic-induced weight gain (AIWG) is challenging. Besides lifestyle interventions, pharmacological interventions may contribute to weight loss. This systematic review and meta-analysis evaluated the effect on weight loss and adverse effects of glucagon-like peptide-1 (GLP-1) agonists in patients with AIWG. MATERIALS AND METHODS Following PRISMA guidelines, we performed a meta-analysis of blinded and open-label randomised controlled trials (RCTs), non-randomised controlled trials and cohort studies that evaluated treatment with GLP-1 in patients with AIWG, regardless of psychiatric diagnosis. PubMed, Embase, PsycINFO and Cochrane Library databases were searched. Primary outcome measures were changes in body weight and BMI. Secondary outcomes were changes in adverse effects and severity of psychopathology due to GLP-1 agonists. RESULTS Only data for exenatide and liraglutide could be included, that is, five RCTs and one cohort study. For exenatide the mean weight loss was -2.48 kg (95% Confidence Interval (CI) -5.12 to +0.64; p = 0.07), for liraglutide the mean weight loss was -4.70 kg (95% CI -4.85 to -4.56; p < 0.001). The mean change in BMI was -0.82 (95% CI -1.56 to -0.09; p = 0.03) in the exenatide groups and -1.52 (95% CI -1.83 to -1.22; p < 0.001) in the liraglutide groups. Exenatide and liraglutide did not adversely affect psychopathology. The most common adverse events were nausea, vomiting, and diarrhoea. CONCLUSION The GLP-1 agonists exenatide and liraglutide are promising drugs for inducing weight loss in patients with AIWG. The adverse effects are acceptable, and the addition of GLP-1 does not increase the severity of psychopathology. However, more research is needed.
Collapse
Affiliation(s)
- Maarten Bak
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Department of FACT and Transition Psychiatry, Mondriaan Mental Health, Maastricht, The Netherlands
| | - Bea Campforts
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Patrick Domen
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Department of FACT and Transition Psychiatry, Mondriaan Mental Health, Maastricht, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Department of FACT and Transition Psychiatry, Mondriaan Mental Health, Maastricht, The Netherlands
| | - Marjan Drukker
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
27
|
Brockway DF, Crowley NA. Emerging pharmacological targets for alcohol use disorder. Alcohol 2024; 121:103-114. [PMID: 39069210 PMCID: PMC11638729 DOI: 10.1016/j.alcohol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Alcohol Use Disorder (AUD) remains a challenging condition with limited effective treatment options; however new technology in drug delivery and advancements in pharmacology have paved the way for discovery of novel therapeutic targets. This review explores emerging pharmacological targets that offer new options for the management of AUD, focusing on the potential of somatostatin (SST), vasoactive intestinal peptide (VIP), glucagon-like peptide-1 (GLP-1), nociceptin (NOP), and neuropeptide S (NPS). These targets have been selected based on recent advancements in preclinical and clinical research, which suggest their significant roles in modulating alcohol consumption and related behaviors. SST dampens cortical circuits, and targeting both the SST neurons and the SST peptide itself presents promise for treating AUD and various related comorbidities. VIP neurons are modulated by alcohol and targeting the VIP system presents an unexplored avenue for addressing alcohol exposure at various stages of development. GLP-1 interacts with the dopaminergic reward system and reduces alcohol intake. Nociceptin modulates mesolimbic circuitry and agonism and antagonism of nociceptin receptor offers a complex but promising approach to reducing alcohol consumption. NPS stands out for its anxiolytic-like effects, particularly relevant for the anxiety associated with AUD. This review aims to synthesize the current understanding of these targets, highlighting their potential in developing more effective and personalized AUD therapies, and underscores the importance of continued research in identifying and validating novel targets for treatment of AUD and comorbid conditions.
Collapse
Affiliation(s)
- Dakota F Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| | - Nicole A Crowley
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Penn State Neuroscience Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
28
|
Alnima T, Smits MM, Hanssen NMJ. Are the lipid-lowering effects of incretin-based therapies relevant for cardiovascular benefit? Curr Opin Lipidol 2024; 35:259-267. [PMID: 39082103 DOI: 10.1097/mol.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW This review examines the impact of glucagon-like peptide 1 receptor agonists (GLP-1RAs) on lipid profiles in individuals with type 2 diabetes mellitus and/or obesity, crucial for optimizing cardiovascular risk management. RECENT FINDINGS GLP-1RAs affect lipid levels by reducing intestinal apolipoprotein B48 production and mesenteric lymph flow, while increasing catabolism of apolipoprotein B100. It remains unknown whether these effects are direct or indirect, but the improvements in lipid levels are strongly correlated to the drug-induced weight loss. Clinical trials demonstrate improvements in lipid profiles, with different effects per agent and dose. We deem it unlikely that improved lipid levels are sufficient to explain the beneficial effects of GLP-1RA on cardiovascular risk, especially given the improvement of many other risk factors (body weight, glycemic control, inflammation) while using these agents. Posthoc mediation analyses of large cardiovascular outcome trials may shed some light on the relative importance of each risk factor. SUMMARY GLP-1RAs improve lipid profiles in clinical trials, but their complete cardiovascular benefits likely involve multifactorial mechanisms beyond lipid modulation.
Collapse
Affiliation(s)
- Teba Alnima
- Radboud University Medical Center, Department of Internal Medicine, sections Vascular Medicine and Diabetology, Nijmegen
| | - Mark M Smits
- Amsterdam University Medical Center, Department of Internal Medicine
| | - Nordin M J Hanssen
- Amsterdam University Medical Center, Department of Internal Medicine
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Gudipati RK, Gaidatzis D, Seebacher J, Muehlhaeusser S, Kempf G, Cavadini S, Hess D, Soneson C, Großhans H. Deep quantification of substrate turnover defines protease subsite cooperativity. Mol Syst Biol 2024; 20:1303-1328. [PMID: 39468329 PMCID: PMC11612144 DOI: 10.1038/s44320-024-00071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Substrate specificity determines protease functions in physiology and in clinical and biotechnological applications, yet quantitative cleavage information is often unavailable, biased, or limited to a small number of events. Here, we develop qPISA (quantitative Protease specificity Inference from Substrate Analysis) to study Dipeptidyl Peptidase Four (DPP4), a key regulator of blood glucose levels. We use mass spectrometry to quantify >40,000 peptides from a complex, commercially available peptide mixture. By analyzing changes in substrate levels quantitatively instead of focusing on qualitative product identification through a binary classifier, we can reveal cooperative interactions within DPP4's active pocket and derive a sequence motif that predicts activity quantitatively. qPISA distinguishes DPP4 from the related C. elegans DPF-3 (a DPP8/9-orthologue), and we relate the differences to the structural features of the two enzymes. We demonstrate that qPISA can direct protein engineering efforts like the stabilization of GLP-1, a key DPP4 substrate used in the treatment of diabetes and obesity. Thus, qPISA offers a versatile approach for profiling protease and especially exopeptidase specificity, facilitating insight into enzyme mechanisms and biotechnological and clinical applications.
Collapse
Affiliation(s)
- Rajani Kanth Gudipati
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Sandra Muehlhaeusser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland.
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Jang AR, Jung DH, Lee TS, Kim JK, Lee YB, Lee JY, Kim SY, Yoo YC, Ahn JH, Hong EH, Kim CW, Kim SM, Yoo HH, Huh JY, Ko HJ, Park JH. Lactobacillus plantarum NCHBL-004 modulates high-fat diet-induced weight gain and enhances GLP-1 production for blood glucose regulation. Nutrition 2024; 128:112565. [PMID: 39326237 DOI: 10.1016/j.nut.2024.112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES This study investigated the therapeutic potential of Lactobacillus plantarum NCHBL-004 (NCHBL-004) in the treatment of obesity and associated metabolic disorders. METHODS Mice were fed either a normal diet (ND) or a high-fat diet (HFD) with oral administration of NCHBL-004. After euthanasia, blood, liver and adipose tissue were collected. Furthermore, the microbiome and short-chain fatty acids (SCFAs) were analyzed from feces. RESULTS Oral administration of live NCHBL-004 to mice fed a HFD resulted in notable reductions in weight gain, improvements in glucose metabolism, and maintenance of balanced lipid levels. A comparative analysis with other Lactobacillus strains highlighted the superior efficacy of NCHBL-004. Moreover, heat-killed NCHBL-004 demonstrated beneficial effects similar to those of live NCHBL-004. Additionally, administration of live NCHBL-004 induced glucagon-like peptide 1 (GLP-1) production and increased the levels of short-chain fatty acids (SCFAs), including acetate and propionate, in feces, positively influencing liver lipid metabolism and mitigating inflammation. Consistent with this, analysis of the gut microbiome following NCHBL-004 administration showed increases in SCFA-producing microbes with increased proportions of Lactobacillus spp. and a significant increase in the proportion of microbes capable of promoting GLP-1 secretion. CONCLUSIONS These findings underscore the potential of both live and inactivated NCHBL-004 as potential therapeutic approaches to managing obesity and metabolic disorders, suggesting avenues for further investigation and clinical applications.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yu-Bin Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae-Young Lee
- Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - So-Yeon Kim
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Hye Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chae-Won Kim
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Su Min Kim
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
31
|
Lin T, Zhang Y, Wei Q, Huang Z. GLP-1 receptor agonist liraglutide alleviates kidney injury by regulating nuclear translocation of NRF2 in diabetic nephropathy. Clin Exp Pharmacol Physiol 2024; 51:e70003. [PMID: 39477212 DOI: 10.1111/1440-1681.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Yuze Zhang
- Department of Cardiovascular Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Qifeng Wei
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Zugui Huang
- Department of Endocrinology and Metabolism, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, China
| |
Collapse
|
32
|
Grandl G, Novikoff A, Liu X, Müller TD. Recent achievements and future directions of anti-obesity medications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101100. [PMID: 39582489 PMCID: PMC11585837 DOI: 10.1016/j.lanepe.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
Pharmacological management of obesity long suffered from a reputation of a 'Mission Impossible,' with inefficient weight loss and/or unacceptable tolerability. However, the tide has turned with recent progress in biochemical engineering and the development of long-acting agonists at the receptor for glucagon-like peptide-1 (GLP-1), and with unimolecular peptides that simultaneously possess activity at the receptors for GLP-1, the glucose-dependent insulinotropic polypeptide (GIP) and glucagon. Some of these novel therapeutics not only improve body weight and glycemic control in individuals with obesity and type 2 diabetes with hitherto unmet efficacy and tolerable safety, but also exhibit potential therapeutic value in diverse areas such as neurodegenerative diseases, fatty liver disease, dyslipidemia, atherosclerosis, and cardiovascular diseases. In this review, we highlight recent advances in incretin-based therapies and discuss their pharmacological potential within and beyond the treatment of obesity and diabetes, as well as their limitations in use, side effects, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
33
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
34
|
Buddhiraju A, Kagabo W, Khanuja HS, Oni JK, Nikkel LE, Hegde V. Decreased Risk of Readmission and Complications With Preoperative GLP-1 Analog Use in Patients Undergoing Primary Total Joint Arthroplasty. J Arthroplasty 2024; 39:2911-2915.e1. [PMID: 38823516 DOI: 10.1016/j.arth.2024.05.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND There has been considerable interest in the use of GLP-1 receptor analogs (GLP-1 RAs) for weight optimization in patients undergoing elective arthroplasty. As there is limited data regarding the implications of their use, our study aimed to evaluate the association between preoperative GLP-1 RA use and postoperative outcomes in patients undergoing primary total hip arthroplasty (THA) and total knee arthroplasty (TKA). METHODS The TrinetX research network was queried to identify all patients undergoing primary THA or TKA between May 2005 and December 2023 across 84 health care organizations. Patients were stratified based on preoperative GLP-1 RA use. Propensity score matching (1:1) was performed to account for baseline differences in demographics, laboratory investigations, and comorbidities. Subsequently, risk ratios were evaluated for postoperative outcomes. RESULTS A total of 268,504 and 386,356 patients underwent THA and TKA, of which 1,044 and 2,095 used preoperative GLP-1 RAs. After matching, GLP-1 RA use was associated with a decreased 90-day risk of periprosthetic joint infection (2.1 versus 3.6%, RR = 0.58, P = .042) and readmission (1.1 versus 2.0%, RR = 0.53, P = .017) following THA and TKA, respectively. There was no difference in the risk of all other outcomes between comparison groups. CONCLUSIONS Preoperative GLP-1 RA use is associated with a 42% decreased risk of periprosthetic joint infection and 47% decreased risk of readmission in the 90-day postoperative period following THA and TKA, respectively, with no difference in other risks, including aspiration. Our findings indicate that GLP-1 RAs may be safe to use in patients undergoing elective arthroplasty; however, further studies are warranted to inform the routine use of GLP-1 RAs for weight management in THA and TKA patients.
Collapse
Affiliation(s)
- Anirudh Buddhiraju
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Whitney Kagabo
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harpal S Khanuja
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julius K Oni
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucas E Nikkel
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vishal Hegde
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Webster AN, Becker JJ, Li C, Schwalbe DC, Kerspern D, Karolczak EO, Bundon CB, Onoharigho RA, Crook M, Jalil M, Godschall EN, Dame EG, Dawer A, Belmont-Rausch DM, Pers TH, Lutas A, Habib N, Güler AD, Krashes MJ, Campbell JN. Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety. Nat Metab 2024; 6:2354-2373. [PMID: 39627618 DOI: 10.1038/s42255-024-01168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/17/2024] [Indexed: 12/11/2024]
Abstract
Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics. Here, we identify at least 21 afferent subtypes of AgRP neurons in the mouse mediobasal and paraventricular hypothalamus, which are predicted by our method. Among these are thyrotropin-releasing hormone (TRH)+ Arc (TRHArc) neurons, inhibitory neurons that express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TRHArc neurons inhibits AgRP neurons and feeding, probably in an AgRP neuron-dependent manner. Silencing TRHArc neurons causes overeating and weight gain and attenuates liraglutide's effect on body weight. Our results demonstrate a widely applicable method for molecular connectomics, comprehensively identify local inputs to AgRP neurons and reveal a circuit through which GLP-1RAs suppress appetite.
Collapse
Affiliation(s)
- Addison N Webster
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Jordan J Becker
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Chia Li
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Dana C Schwalbe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Damien Kerspern
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Eva O Karolczak
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | - Maisie Crook
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Maira Jalil
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Emily G Dame
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Adam Dawer
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Lutas
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Naomi Habib
- Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ali D Güler
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael J Krashes
- Section on Motivational Processes Underlying Appetite, Diabetes, Endocrinology & Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | - John N Campbell
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
36
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Mirzadeh Z, Faber C. Brain Defense of Glycemia in Health and Diabetes. Diabetes 2024; 73:1952-1966. [PMID: 39401393 PMCID: PMC11579547 DOI: 10.2337/dbi24-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 11/22/2024]
Abstract
The brain coordinates the homeostatic defense of multiple metabolic variables, including blood glucose levels, in the context of ever-changing external and internal environments. The biologically defended level of glycemia (BDLG) is the net result of brain modulation of insulin-dependent mechanisms in cooperation with the islet, and insulin-independent mechanisms through direct innervation and neuroendocrine control of glucose effector tissues. In this article, we highlight evidence from animal and human studies to develop a framework for the brain's core homeostatic functions-sensory/afferent, integration/processing, and motor/efferent-that contribute to the normal BDLG in health and its elevation in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Chelsea Faber
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| |
Collapse
|
38
|
Despain D, Hoffman BL. Optimizing nutrition, diet, and lifestyle communication in GLP-1 medication therapy for weight management: A qualitative research study with registered dietitians. OBESITY PILLARS 2024; 12:100143. [PMID: 39498283 PMCID: PMC11533596 DOI: 10.1016/j.obpill.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Background This qualitative study used semi-structured interviews to examine registered dietitians' perspectives on diet, nutrition, and lifestyle communication for patients on GLP-1 medications for obesity management. Methods Through in-depth interviews with registered dietitians, this research identifies elements that could improve both the efficacy of GLP-1 medication therapies and patient adherence. Results indicate that a comprehensive approach, integrating patient communication with proactive management of side effects and ongoing lifestyle counseling, is essential for optimizing treatment outcomes. Conclusion Key findings include the importance of using visual and metaphorical aids to improve understanding, the necessity for structured lifestyle programs, and the pivotal role of personalized diet plans. These insights offer valuable directions for enhancing patient care and formulating clinical practices around the use of GLP-1 receptor agonist medications.
Collapse
Affiliation(s)
- David Despain
- School of Communication and Journalism, Stony Brook University, Stony Brook, NY, USA
| | - Brenda L. Hoffman
- School of Communication and Journalism, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
39
|
da Silva Lima N, Cabaleiro A, Novoa E, Riobello C, Knerr PJ, He Y, Esquinas-Román EM, González-García I, Prevot V, Schwaninger M, Dieguez C, López M, Müller TD, Varela-Rey M, Douros JD, Nogueiras R. GLP-1 and GIP agonism has no direct actions in human hepatocytes or hepatic stellate cells. Cell Mol Life Sci 2024; 81:468. [PMID: 39607493 PMCID: PMC11604888 DOI: 10.1007/s00018-024-05507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The use of incretin agonists for managing metabolic dysfunction-associated steatohepatitis (MASH) is currently experiencing considerable interest. However, whether these compounds have a direct action on MASH is still under debate. This study aims to investigate whether GLP-1R/GIPR agonists act directly in hepatocytes and hepatic stellate cells (HSCs). For this, human hepatocyte and HSCs lines, as well as primary human hepatocytes and HSCs treated with Liraglutide, Acyl-GIP or the GLP-1/GIP dual agonist (MAR709) were used. We show that the concentrations of each compound, which were effective in insulin release, did not induce discernible alterations in either hepatocytes or HSCs. In hepatocytes displaying elevated fatty acid content after the treatment with oleic acid and palmitic acid, none of the three compounds reduced lipid concentration. Similarly, in HSCs activated with transforming growth factor-β (TGFb), Liraglutide, Acyl-GIP and MAR709 failed to ameliorate the elevated expression of fibrotic markers. The three compounds were also ineffective in phosphorylating CREB, which mediates insulinotropic actions, in both hepatocytes and HSCs. These findings indicate that incretin agonists have no direct actions in human hepatocytes or hepatic stellate cells, suggesting that their beneficial effects in patients with MASH are likely mediated indirectly, potentially through improvements in body weight, insulin resistance and glycemic control.
Collapse
Affiliation(s)
- Natália da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Cristina Riobello
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Patrick J Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Yantao He
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Eva M Esquinas-Román
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ismael González-García
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, Univ. Lille, Inserm, CHU Lille, European Genomic Institute for Diabetes (EGID), 59000, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Marta Varela-Rey
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
40
|
Wean J, Kowalsky AH, Laker R, Will S, Drucker DJ, Rhodes CJ, Seeley RJ. Specific loss of GIPR signaling in GABAergic neurons enhances GLP-1R agonist-induced body weight loss. Mol Metab 2024:102074. [PMID: 39612941 DOI: 10.1016/j.molmet.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVES Dual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown. METHODS To address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements. RESULTS A GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism. CONCLUSIONS Our findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.
Collapse
Affiliation(s)
- Jordan Wean
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Rhianna Laker
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sarah Will
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, Toronto, Canada
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Aguggia J, Fernandez G, Cassano D, Mustafá ER, Rodríguez SS, Cantel S, Fehrentz JA, Raingo J, Schiöth HB, Habib AM, De Francesco PN, Perello M. Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction. Endocrinology 2024; 166:bqae160. [PMID: 39737802 DOI: 10.1210/endocr/bqae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 01/01/2025]
Abstract
The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear. To explore the potential colocalization of GHSR and GLP-1R in specific neurons, we performed detailed mapping of cells positive for both receptors using GHSR-eGFP reporter mice or wild-type mice infused with fluorescent ghrelin, alongside an anti-GLP-1R antibody. We found that GHSR+ and GLP-1R+ cells are largely segregated in the mouse brain. The highest overlap was observed in the hypothalamic arcuate nucleus, where 15% to 20% of GHSR+ cells were also GLP-1R+ cells. Additionally, we examined RNA-sequencing datasets from mouse and human brains to assess the fraction and distribution of neurons expressing both receptors, finding that double-positive Ghsr+/Glp1r+ cells are highly segregated, with a small subset of double-positive Ghsr+/Glp1r+ cells representing <10% of all Ghsr+ or Glp1r+ cells, primarily enriched in the hypothalamus. Furthermore, we conducted functional studies using patch-clamp recordings in a heterologous expression system to assess potential crosstalk in regulating presynaptic calcium channels. We provide the first evidence that liraglutide-evoked GLP-1R activity inhibits presynaptic channels, and that the presence of one GPCR attenuates the inhibitory effects of ligand-evoked activity mediated by the other on presynaptic calcium channels. In conclusion, while GHSR and GLP-1R can engage in molecular crosstalk, they are largely segregated across most neuronal types within the brain.
Collapse
Affiliation(s)
- Julieta Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jesica Raingo
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, 751 24 Uppsala, Sweden
| |
Collapse
|
42
|
Widgerow AD. Adipose Tissue, Regeneration, and Skin Health: The Next Regenerative Frontier. Aesthet Surg J Open Forum 2024; 6:ojae117. [PMID: 39703369 PMCID: PMC11658414 DOI: 10.1093/asjof/ojae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Adipose tissue, or fat compartments, has long been considered a storage depot and an energy source. However, a large part of new research, starting with the discovery of adipose-derived stem cells, has redirected this thinking toward the tremendous regenerative capacity that adipose tissue possesses when it is healthy. This has resulted in multiple technologies being explored with fat as a basis or with fat as a target aiming at the stimulation of new small hyperplastic adipose cells exuding adipokines and encouraging the proliferation of a whole host of progenitor cells that can have positive effects on many organ systems. One of these organ systems is skin, and there is a direct correlation with various fat compartments and skin health. Dermal fat tissue, also known as dermal white adipose tissue, is one such compartment that originates from dermal preadipocytes transdifferentiating into adipocytes and progenitor adipose cells under the right cues. The author of this paper discusses these potential cues, including injectable fillers, fat grafts, and topical formulations, and their capacity to impact skin health through the generation of healthy fat tissue. In addition, small molecules such as glucagon-like peptide-1 peptides and their impact on fat tissue are discussed. Adipose tissue is being recognized as the next regenerative frontier with exciting prospects ahead. Level of Evidence 5 Therapeutic
Collapse
Affiliation(s)
- Alan D Widgerow
- Corresponding Author: Dr Alan D. Widgerow, 9 Waterway, Irvine, CA 92614, USA. E-mail: ; Instagram: @alanwidge
| |
Collapse
|
43
|
da Silva RS, de Paiva IHR, Mendonça IP, de Souza JRB, Lucena-Silva N, Peixoto CA. Anorexigenic and anti-inflammatory signaling pathways of semaglutide via the microbiota-gut--brain axis in obese mice. Inflammopharmacology 2024:10.1007/s10787-024-01603-y. [PMID: 39586940 DOI: 10.1007/s10787-024-01603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Our study focused on a mouse model of obesity induced by a high-fat diet (HFD). We administered Semaglutide intraperitoneally (Ozempic ®-0.05 mg/Kg-translational dose) every seven days for six weeks. HFD-fed mice had higher blood glucose, lipid profile, and insulin resistance. Moreover, mice fed HFD showed high gut levels of TLR4, NF-kB, TNF-α, IL-1β, and nitrotyrosine and low levels of occludin, indicating intestinal inflammation and permeability, culminating in higher serum levels of IL-1β and LPS. Treatment with semaglutide counteracted the dyslipidemia and insulin resistance, reducing gut and serum inflammatory markers. Structural changes in gut microbiome were determined by 16S rRNA sequencing. Semaglutide reduced the relative abundance of Firmicutes and augmented that of Bacteroidetes. Meanwhile, semaglutide dramatically changed the overall composition and promoted the growth of acetate-producing bacteria (Bacteroides acidifaciens and Blautia coccoides), increasing hypothalamic acetate levels. Semaglutide intervention increased the number of hypothalamic GLP-1R+ neurons that mediate endogenous action on feeding and energy. In addition, semaglutide treatment reversed the hypothalamic neuroinflammation HDF-induced decreasing TLR4/MyD88/NF-κB signaling and JNK and AMPK levels, improving the hypothalamic insulin resistance. Also, semaglutide modulated the intestinal microbiota, promoting the growth of acetate-producing bacteria, inducing high levels of hypothalamic acetate, and increasing GPR43+ /POMC+ neurons. In the ARC, acetate activated the GPR43 and its downstream PI3K-Akt pathway, which activates POMC neurons by repressing the FoxO-1. Thus, among the multifactorial effectors of hypothalamic energy homeostasis, possibly higher levels of acetate derived from the intestinal microbiota contribute to reducing food intake.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil.
| |
Collapse
|
44
|
Menon T, Lee S, Gong XY, Wong S, Le GH, Kwan ATH, Teopiz KM, Ho R, Cao B, Rhee TG, Jing Zheng Y, Valentino K, Lin K, Vinberg M, Lo HKY, McIntyre RS. A systematic review on the efficacy of GLP-1 receptor agonists in mitigating psychotropic drug-related weight gain. CNS Spectr 2024:1-7. [PMID: 39582175 DOI: 10.1017/s1092852924000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Many psychotropic drugs are highly associated with related weight gain. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are established anti-obesity and glucose-lowering agents. Preliminary evidence also indicates they are fit for purpose in mitigating psychotropic drug-related weight gain (PDWG). This systematic review aims to synthesize the extant evidence from randomized controlled trials (RCTs) on the effects of GLP-1RAs on weight change in persons experiencing PDWG. METHODS Online databases (ie, PubMed, OVID Medline, Google Scholar) were searched to identify relevant studies from inception to January 1, 2024. Articles were screened by title, abstract, and full-text by three independent reviewers against inclusion and exclusion criteria. RESULTS We identified six studies with participants aged ≥18 (n=374) that were eligible for inclusion in our systematic review. Most studies reported a significant and clinically meaningful effect of GLP-1RAs on anthropometrics and/or metabolics. All RCTs replicated the finding of modest or greater effects of GLP-1RAs; the most studied agents were liraglutide and exenatide. There was insufficient literature to conduct a meta-analysis. CONCLUSION Evidence suggests that GLP-1RAs are effective in mitigating weight gain in persons prescribed psychiatric medication. It is hypothesized that GLP-1RAs may moderate weight change in persons prescribed psychiatric medication through direct effects on metabolism and cognitive processes implicated in hunger/satiety. Future studies should aim to explore the long-term safety, tolerability, and efficacy profiles of various GLP-1RAs in the treatment and prevention of abnormal weight and metabolic homeostasis in psychiatric populations.
Collapse
Affiliation(s)
- Trisha Menon
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Serene Lee
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Department of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Xuan Yi Gong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
- Division of Life Science (LIFS), Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong, China
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, P. R. China
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Yang Jing Zheng
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Kyle Valentino
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Kangguang Lin
- Department of Affective Disorder, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Heidi K Y Lo
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Hsieh YY, Hou WC, Hsu SJ, Liaw CC, Huang C, Shih MCM, Shen YC, Chen YF, Lee CK, Lee OK, Wu CC, Lee IJ, Cheng JJ, Hou YC, Liu HK. Consumption of carotenoid-rich Momordica cochinchinensis (Gac) aril improves glycemic control in type 2 diabetic mice partially through taste receptor type 1 mediated glucagon-like peptide 1 secretion. Food Funct 2024; 15:11415-11431. [PMID: 39535879 DOI: 10.1039/d4fo04316b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Incretin-based therapies are widely used to improve glycemic control and β cell dysfunction in the treatment of type 2 diabetes. Momordica cochinchinensis (Gac fruit), a nutritious melon cultivated in many regions, has underexplored health benefits, particular its edible aril. This study comprehensively investigates the stimulatory effect of Gac aril on glucagon-like peptide 1 (GLP-1) secretion, identifies the responsible active constituents, and explores the underlying mechanisms related to its anti-diabetic effects. GLP-1-secreting STC-1 intestinal L cells were used to assess bioactivity and molecular mechanisms. Additionally, the in vivo anti-diabetic effects of Gac aril consumption were evaluated using type 2 diabetic mice induced by a high fat diet and streptozotocin injection, with or without GLP-1 receptor expression. The results demonstrated that Gac pulp and aril stimulated GLP-1 secretion, while Gac seeds did not. β-Carotene, a major constituent of Gac aril, was identified as the key mediator of GLP-1 secretion via sweet taste receptor-mediated signaling in STC-1 cells. Dietary intake of Gac aril significantly improved fasting blood glucose, glucose tolerance, insulin sensitivity, β-cell function, and hemoglobin A1c in type 2 diabetic mice. GLP-1 levels increased 2-fold, and decreased levels of ghrelin and adiponectin were restored. The anti-diabetic effects were partially diminished in GLP-1 receptor knockout mice, suggesting Gac aril's effects are mediated, in part, through GLP-1. In conclusion, Gac aril consumption may provide health benefits for managing type 2 diabetes, partially by enhancing endogenous GLP-1 levels.
Collapse
Affiliation(s)
- Ying-Ying Hsieh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan.
| | - Wen-Chi Hou
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11042, Taiwan.
| | - Su-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan.
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, Republic of China.
| | - Meng-Chun Monica Shih
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei City, Taipei 115021, Taiwan.
| | - Yuh-Chiang Shen
- Division of Clinical Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan.
| | - Ying-Fang Chen
- Taitung District Agriculture Research and Extension Station, Ministry of Agriculture, Taitung County 950244, Taiwan.
| | - Ching-Kuo Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11042, Taiwan.
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan.
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, Republic of China.
| | - Chia-Chune Wu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, Republic of China.
| | - I-Jung Lee
- Herbal Medicine Department, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan.
| | - Jing-Jy Cheng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nong Street, Section 2, Taipei 11221, Taiwan.
| | - Yu-Chang Hou
- Department of Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 330, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Hui-Kang Liu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11042, Taiwan.
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nong Street, Section 2, Taipei 11221, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11042, Taiwan
| |
Collapse
|
46
|
Hu YZ, Chen Z, Zhou MH, Zhao ZY, Wang XY, Huang J, Li XT, Zeng JN. Global and regional genetic association analysis of ulcerative colitis and type 2 diabetes mellitus and causal validation analysis of two-sample two-way Mendelian randomization. Front Immunol 2024; 15:1375915. [PMID: 39650653 PMCID: PMC11621067 DOI: 10.3389/fimmu.2024.1375915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Background Clinical co-occurrence of UC (Ulcerative Colitis) and T2DM (Type 2 Diabetes Mellitus) is observed. The aim of this study is to investigate the potential causal relationship between Ulcerative Colitis (UC) and Type 2 Diabetes Mellitus (T2DM) using LDSC and LAVA analysis, followed by genetic verification through TSMR, providing insights for clinical prevention and treatment. Methods Genetic loci closely related to T2DM were extracted as instrumental variables from the GWAS database, with UC as the outcome variable, involving European populations. The UC data included 27,432 samples and 8,050,003 SNPs, while the T2DM data comprised 406,831 samples and 11,914,699 SNPs. LDSC and LAVA were used for quantifying genetic correlation at both global (genome-wide) and local (genomic regions) levels. MR analysis was conducted using IVW, MR-Egger regression, Weighted median, and Weighted mode, assessing the causal relationship between UC and diabetes with OR values and 95% CI. Heterogeneity and pleiotropy were tested using Egger-intercept, MR-PRESSO, and sensitivity analysis through the "leave-one-out" method and Cochran Q test. Subsequently, a reverse MR operation was conducted using UC as the exposure data and T2DM as the outcome data for validation. Results Univariable and bivariable LDSC calculated the genetic correlation and potential sample overlap between T2DM and UC, resulting in rg = -0.0518, se = 0.0562, P = 0.3569 with no significant genetic association found for paired traits. LAVA analysis identified 9 regions with local genetic correlation, with 6negative and 3 positive associations, indicating a negative correlation between T2DM and UC. MR analysis, with T2DM as the exposure and UC as the outcome, involved 34 SNPs as instrumental variables. The OR values and 95% CI from IVW, MR-Egger, Weighted median, and Weighted mode were 0.917 (0.848~0.992), 0.949 (0.800~1.125), 0.881 (0.779~0.996), 0.834(0.723~0.962) respectively, with IVW P-value < 0.05, suggesting a negative causal relationship between T2DM and UC. MR-Egger regression showed an intercept of -0.004 with a standard error of 0.009, P = 0.666, and MR-PRESSO Global Test P-value > 0.05, indicating no pleiotropy and no outliers detected. Heterogeneity tests showed no heterogeneity, and the "leave-one-out" sensitivity analysis results were stable. With UC as the exposure and T2DM as the outcome, 32 SNPs were detected, but no clear causal association was found. Conclusion There is a causal relationship between T2DM and UC, where T2DM reduces the risk of UC, while no significant causal relationship was observed from UC to T2DM.
Collapse
Affiliation(s)
- Yan-zhi Hu
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhe Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-han Zhou
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhen-yu Zhao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-yan Wang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jun Huang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xin-tian Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Juan-ni Zeng
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
47
|
Yuen KCJ, Hjortebjerg R, Ganeshalingam AA, Clemmons DR, Frystyk J. Growth hormone/insulin-like growth factor I axis in health and disease states: an update on the role of intra-portal insulin. Front Endocrinol (Lausanne) 2024; 15:1456195. [PMID: 39665021 PMCID: PMC11632222 DOI: 10.3389/fendo.2024.1456195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Growth hormone (GH) is the key regulator of insulin-like growth factor I (IGF-I) generation in healthy states. However, portal insulin delivery is also an essential co-player in the regulation of the GH/IGF-I axis by affecting and regulating hepatic GH receptor synthesis, and subsequently altering hepatic GH sensitivity and IGF-I generation. Disease states of GH excess (e.g., acromegaly) and GH deficiency (e.g., congenital isolated GH deficiency) are characterized by increased and decreased GH, IGF-I and insulin levels, respectively, where the GH/IGF-I relationship is reflected by a "primary association". When intra-portal insulin levels are increased (e.g., obesity, Cushing's syndrome, or due to treatment with glucocorticoids and glucagon-like peptide 1 receptor agonists) or decreased (e.g., malnutrition, anorexia nervosa and type 1 diabetes mellitus), these changes secondarily alter hepatic GH sensitivity resulting in a "secondary association" with discordant GH and IGF-I levels (e.g., high GH/low IGF-I levels or low GH/high IGF-I levels, respectively). Additionally, intra-portal insulin regulates hepatic secretion of IGFBP-1, an inhibitor of IGF-I action. Through its effects on IGFBP-1 and subsequently free IGF-I, intra-portal insulin exerts its effects to influence endogenous GH secretion via the negative feedback loop. Therefore, it is important to understand the effects of changes in intra-portal insulin when interpreting the GH/IGF-I axis in disease states. This review summarizes our current understanding of how changes in intra-portal insulin delivery to the liver in health, disease states and drug therapy use and misuse that leads to alterations in GH/IGF-I secretion that may dictate management decisions in afflicted patients.
Collapse
Affiliation(s)
- Kevin C. J. Yuen
- Department of Neuroendocrinology and Neurosurgery, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, United States
| | - Rikke Hjortebjerg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Ashok Ainkaran Ganeshalingam
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - David R. Clemmons
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Wang ZJ, Han WN, Chai SF, Li Y, Fu CJ, Wang CF, Cai HY, Li XY, Wang X, Hölscher C, Wu MN. Semaglutide promotes the transition of microglia from M1 to M2 type to reduce brain inflammation in APP/PS1/tau mice. Neuroscience 2024; 563:222-234. [PMID: 39547338 DOI: 10.1016/j.neuroscience.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A growing number of studies show that the diabetes drug Semaglutide is neuroprotective in Alzheimer's disease (AD) animal models, but its mode of action is not fully understood. In order to explore the mechanism of Semaglutide, 7-month-old APP/PS1/tau transgenic (3xTg) mice and wild-type (WT) mice were randomly divided into four groups: control group (WT + PBS), AD model group (3xTg + PBS), Semaglutide control group (WT + Semaglutide) and Semaglutide treatment group (3xTg + Semaglutide). Semaglutide (25 nmol/kg) or PBS was administered intraperitoneally once every two days for 30 days, followed by behavioral and molecular experiments. The results show that Semaglutide can improve working memory and spatial reference memory of 3xTg-AD mice, promote the release of anti-inflammatory factors and inhibit the production of pro-inflammatory factors in the cortex and hippocampus, and reduce Aβ deposition in the hippocampal CA1 region of 3xTg mice. Semaglutide can inhibit the apoptosis of BV2 cells induced by Aβ1-42 in a dose-dependent manner and promote the transformation of microglia from M1 to M2, thereby exerting anti-inflammatory and neuroprotective effects. Therefore, we speculate that Semaglutide shows an anti-inflammatory effect by promoting the transformation of microglia from M1 to M2 type in the brain of 3xTg mice, and thus exerts a neuroprotective effect.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Wei-Na Han
- Department of Physiology, Puai Medical College (Medical College), Shaoyang University, Shaoyang, Hunan Province, PR China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Yan Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Chao-Jing Fu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Chen-Fang Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Xin-Yi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, Shanxi Province, PR China
| | - Xiao Wang
- Department of Psychiatry, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, Henan Province, PR China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China.
| |
Collapse
|
49
|
Tanvir A, Jo J, Park SM. Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson's Disease. Cells 2024; 13:1876. [PMID: 39594624 PMCID: PMC11592965 DOI: 10.3390/cells13221876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glucose metabolism is essential for the maintenance and function of the central nervous system. Although the brain constitutes only 2% of the body weight, it consumes approximately 20% of the body's total energy, predominantly derived from glucose. This high energy demand of the brain underscores its reliance on glucose to fuel various functions, including neuronal activity, synaptic transmission, and the maintenance of ion gradients necessary for nerve impulse transmission. Increasing evidence shows that many neurodegenerative diseases, including Parkinson's disease (PD), are associated with abnormalities in glucose metabolism. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, accompanied by the accumulation of α-synuclein protein aggregates. These pathological features are exacerbated by mitochondrial dysfunction, oxidative stress, and neuroinflammation, all of which are influenced by glucose metabolism disruptions. Emerging evidence suggests that targeting glucose metabolism could offer therapeutic benefits for PD. Several antidiabetic drugs have shown promise in animal models and clinical trials for mitigating the symptoms and progression of PD. This review explores the current understanding of the association between PD and glucose metabolism, emphasizing the potential of antidiabetic medications as a novel therapeutic approach. By improving glucose uptake and utilization, enhancing mitochondrial function, and reducing neuroinflammation, these drugs could address key pathophysiological mechanisms in PD, offering hope for more effective management of this debilitating disease.
Collapse
Affiliation(s)
- Ahmed Tanvir
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
50
|
Model JFA, Normann RS, Vogt ÉL, Dentz MV, de Amaral M, Xu R, Bachvaroff T, Spritzer PM, Chung JS, Vinagre AS. Interactions between glucagon like peptide 1 (GLP-1) and estrogens regulates lipid metabolism. Biochem Pharmacol 2024; 230:116623. [PMID: 39542180 DOI: 10.1016/j.bcp.2024.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Obesity, characterized by excessive fat accumulation in white adipose tissue (WAT), is linked to numerous health issues, including insulin resistance (IR), and type 2 diabetes mellitus (DM2). The distribution of adipose tissue differs by sex, with men typically exhibiting android adiposity and pre-menopausal women displaying gynecoid adiposity. After menopause, women have an increased risk of developing android-type obesity, IR, and DM2. Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are important in treating obesity and DM2 by regulating insulin secretion, impacting glucose and lipid metabolism. GLP-1Rs are found in various tissues including the pancreas, brain, and adipose tissue. Studies suggest GLP-1RAs and estrogen replacement therapies have similar effects on tissues like the liver, central nervous system, and WAT, probably by converging pathways involving protein kinases. To investigate these interactions, female rats underwent ovariectomy (OVR) to promote a state of estrogen deficiency. After 20 days, the rats were euthanized and the tissues were incubated with 10 μM of liraglutide, a GLP-1RA. Results showed significant changes in metabolic parameters: OVR increased lipid catabolism in perirenal WAT and basal lipolysis in subcutaneous WAT, while liraglutide treatment enhanced stimulated lipolysis in subcutaneous WAT. Liver responses included increased stimulated lipolysis with liraglutide. Transcriptome analysis revealed distinct gene expression patterns in WAT of OVR rats and those treated with GLP-1RA, highlighting pathways related to lipid and glucose metabolism. Functional enrichment analysis showed estrogen's pivotal role in these pathways, influencing genes involved in lipid metabolism regulation. Overall, the study underscores GLP-1RA acting directly on adipose tissues and highlights the complex interactions between GLP-1 and estrogen in regulating metabolism, suggesting potential synergistic therapeutic effects in treating metabolic disorders like obesity and DM2.
Collapse
Affiliation(s)
- Jorge F A Model
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafaella S Normann
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Éverton L Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maiza Von Dentz
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marjoriane de Amaral
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rui Xu
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Poli Mara Spritzer
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - J Sook Chung
- Institute of Marine and Environmental Technology (IMET), University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Anapaula S Vinagre
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|