1
|
Liu J, Lu W, Wu H, Yan Z, Liu Y, Tang C, Chen Y, Wang S, Tang W, Han J, Wei C, Jiang N. Rational design of dual-agonist peptides targeting GLP-1 and NPY2 receptors for regulating glucose homeostasis and body weight with minimal nausea and emesis. Eur J Med Chem 2025; 287:117320. [PMID: 39892093 DOI: 10.1016/j.ejmech.2025.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
There is an urgent need for effective treatments targeting comorbidities of type 2 diabetes (T2DM) and obesity. Developing dual agonists of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y receptor type 2 (NPY2R) with combined PYY3-36 and GLP-1 bioactivity is promising. However, designing such dual agonists that effectively control glycemia and reduce weight while minimizing gastrointestinal side effects is challenging. In this study, we systematically evaluated the side effects induced by co-administering various GLP-1R agonists and PYY3-36 analogue. Our findings revealed that different GLP-1R agonist-PYY analogue combinations elicited gastrointestinal side effects of varying intensities. Among these, the co-administration of bullfrog GLP-1 analogue (bGLP-1) with PYY3-36 analogue resulted in lower gastrointestinal side effects. Thus, bGLP-1 was selected as the preferred candidate for designing dual GLP-1R/NPY2R agonists. Through stepwise structural design, optimization of linker arms, and durability enhancements, coupled with in vitro receptor screening, the novel peptide bGLP/PYY-19 emerged as the lead candidate. Notably, experimental results in mice and rats showed a significant reduction in emesis with bGLP/PYY-19 compared to semaglutide and bGLP-1 long-acting analogue (LAbGLP-1). Furthermore, bGLP/PYY-19 significantly outperformed semaglutide and LAbGLP-1 in reducing body weight in diet-induced obese (DIO) mice, without inducing nausea-associated behavior. These findings underscore the potential of dual-targeting single peptide conjugates as a promising strategy for developing glucoregulatory treatments that offer superior weight loss benefits and are better tolerated compared to treatments targeting GLP-1R alone.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Weiwen Lu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Han Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Yun Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Yangxin Chen
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Shuang Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China
| | - Weizhong Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Changhong Wei
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University & the First People's Hospital of Nanning, Nanning, Guangxi, PR China.
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
2
|
le Roux CW, Steen O, Lucas KJ, Startseva E, Unseld A, Hussain SA, Hennige AM. Subgroup analysis by sex and baseline BMI in people with a BMI ≥27 kg/m 2 in the phase 2 trial of survodutide, a glucagon/GLP-1 receptor dual agonist. Diabetes Obes Metab 2025; 27:1773-1782. [PMID: 39821928 DOI: 10.1111/dom.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
AIM To explore the effects of sex and baseline body mass index (BMI) on the efficacy and safety of survodutide in people with a BMI ≥27 kg/m2. MATERIALS AND METHODS Totally 387 people (aged 18-75 years, BMI ≥27 kg/m2, without diabetes) were randomized 1:1:1:1:1 to once-weekly subcutaneous survodutide (0.6, 2.4, 3.6 or 4.8 mg) or placebo for 46 weeks (20-week dose escalation; 26-week dose maintenance). Participants were categorized according to sex and baseline BMI. Data were analysed descriptively for the full analysis set (FAS), according to dose assigned at randomization (planned treatment) using on-treatment data or all data censored for COVID-19-related treatment discontinuations. (ClinicalTrials.gov number: NCT04667377). RESULTS After 46 weeks of survodutide treatment, females had greater reductions in bodyweight and waist circumference than males. Participants with a lower baseline BMI had greater proportional reductions in bodyweight than those with a higher baseline BMI; the trend was reversed for reductions in waist circumference. Rates of adverse events (AEs) were comparable between subgroups for sex and baseline BMI. Nausea was the most frequently reported gastrointestinal AE in all subgroups. CONCLUSIONS In people with a BMI ≥27 kg/m2, survodutide was associated with clinically meaningful reductions in bodyweight and waist circumference when compared with placebo, in prespecified subgroups based on sex and baseline BMI, and was tolerated at all doses tested.
Collapse
Affiliation(s)
- Carel W le Roux
- St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Oren Steen
- Private Practice, Toronto, Ontario, Canada
| | - Kathryn J Lucas
- Diabetes and Endocrinology Consultants, Morehead City, North Carolina, USA
| | | | - Anna Unseld
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | |
Collapse
|
3
|
Finkle J, Brost BC. Role of Glucagon-Like Peptide-1 Receptor Agonists in People With Infertility and Pregnancy. Obstet Gynecol 2025; 145:286-296. [PMID: 39847778 DOI: 10.1097/aog.0000000000005825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/14/2024] [Indexed: 01/25/2025]
Abstract
Obesity is a chronic condition that causes significant morbidity and mortality in people in the United States and around the world. Traditional means of weight loss include diet, exercise, behavioral modifications, and surgery. New weight loss medications, glucagon-like peptide-1 receptor agonists, are revolutionizing the management of weight loss but have implications for fertility and pregnancy. Obesity is associated with infertility and may affect response to ovulation induction medications. In pregnancy, obesity increases the risks of spontaneous abortion, birth defects, gestational diabetes, hypertensive disorders of pregnancy, cesarean delivery, and stillbirth. Lifestyle changes alone for weight loss have not improved outcomes. Glucagon-like peptide-1 receptor agonists and new medications targeting gut hormones can help people achieve their weight loss goals but are contraindicated in pregnancy. Obstetrician-gynecologists should work with patients to manage these medications before they become pregnant, between pregnancies, and after delivery.
Collapse
Affiliation(s)
- Johanna Finkle
- Department of Obstetrics and Gynecology and the Division of Maternal Fetal Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| | | |
Collapse
|
4
|
Kim BI, LaValva SM, Parks ML, Sculco PK, Della Valle AG, Lee GC. Glucagon-Like Peptide-1 Receptor Agonists Decrease Medical and Surgical Complications in Morbidly Obese Patients Undergoing Primary TKA. J Bone Joint Surg Am 2025; 107:348-355. [PMID: 39719003 DOI: 10.2106/jbjs.24.00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
BACKGROUND Weight optimization methods in morbidly obese patients with a body mass index (BMI) of ≥40 kg/m 2 undergoing total knee arthroplasty (TKA) have shown mixed results. The purpose of this study was to evaluate the effect of perioperative use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in patients with a BMI of ≥40 kg/m 2 undergoing primary TKA. METHODS Using an administrative claims database, patients with morbid obesity undergoing primary TKA were stratified into GLP-1 RA use for 3 months before and after the surgical procedure (treatment group) and GLP-1 RA non-use (control group), and were matched on the basis of patient age, gender, diagnosis of type-2 diabetes mellitus, and Charlson Comorbidity Index (CCI). In addition, these groups were compared with a contemporaneous cohort of patients undergoing TKA with a BMI of 35.0 to 39.9 kg/m 2 . Outcomes including infection, complications, revision, and readmission were compared between the matched cohorts. RESULTS There were significant decreases in the rates of 90-day periprosthetic joint infection (PJI) (1.0% compared with 1.8%; p = 0.037), any medical complications (10.6% compared with 12.7%; p = 0.033), pulmonary embolism (<0.4% compared with 0.6%; p = 0.050), and readmissions (5.3% compared with 8.9%; p < 0.001) in patients with a BMI of ≥40 kg/m 2 who were taking GLP-1 RA versus the control group who were not. There were no differences in the 2-year rates of surgical complications (p > 0.05) between these groups. Compared with obese patients (BMI of 35.0 to 39.9 kg/m 2 ), patients who had a BMI of ≥40 kg/m 2 and were taking a GLP-1 RA did not have increased rates of infection or 90-day or 2-year complications (p > 0.05). CONCLUSIONS GLP-1 RA administration for at least 90 days prior to and after primary TKA in patients with a BMI of ≥40 kg/m 2 was associated with reductions in the risks of 90-day PJI, any medical complications, and readmission. Additionally, the reduced complication rate that was achieved was similar to that of obese patients with a BMI of 35.0 to 39.9 kg/m 2 undergoing TKA. Randomized clinical trials are needed to define the true effect of these agents on clinical outcomes following TKA. LEVEL OF EVIDENCE Therapeutic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Billy I Kim
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY
| | | | | | | | | | | |
Collapse
|
5
|
Zhang J, Wei J, Lai W, Sun J, Bai Y, Cao H, Guo J, Su Z. Focus on Glucagon-like Peptide-1 Target: Drugs Approved or Designed to Treat Obesity. Int J Mol Sci 2025; 26:1651. [PMID: 40004115 PMCID: PMC11855704 DOI: 10.3390/ijms26041651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity is closely related to metabolic diseases, which brings a heavy burden to the health care system. It is urgent to formulate and implement effective treatment strategies. Glucagon-like peptide-1 (GLP-1) is a protein with seven transmembrane domains connected by type B and G proteins, which is widely distributed and expressed in many organs and tissues. GLP-1 analogues can reduce weight, lower blood pressure, and improve blood lipids. Obesity, diabetes, cardiovascular diseases, and other diseases have caused scientists' research and development boom. Among them, GLP-1R agonist drugs have developed rapidly in weight-loss drugs. In this paper, based on the target of GLP-1, the mechanism of action of GLP-1 in obesity treatment was deeply studied, and the drugs approved and designed for obesity treatment based on GLP-1 target were elaborated in detail. Innovatively put forward and summarized the double and triple GLP-1 targeted drugs in the treatment of obesity with better effects and less toxic and side effects, and this can make full use of multi-target methods to treat other diseases in the future. Finally, it is pointed out that intestinal flora and microorganisms have many benefits in the treatment of obesity, and fecal bacteria transplantation may be a potential treatment for obesity with less harm to the body. This article provides some promising methods to treat obesity, which have strong practical value.
Collapse
Affiliation(s)
- Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Jiao Q, Huang Y, He J, Xu Y. Advances in Oral Biomacromolecule Therapies for Metabolic Diseases. Pharmaceutics 2025; 17:238. [PMID: 40006605 PMCID: PMC11859201 DOI: 10.3390/pharmaceutics17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic diseases like obesity and diabetes are on the rise, and therapies with biomacromolecules (such as proteins, peptides, antibodies, and oligonucleotides) play a crucial role in their treatment. However, these drugs are traditionally injected. For patients with chronic diseases (e.g., metabolic diseases), long-term injections are accompanied by inconvenience and low compliance. Oral administration is preferred, but the delivery of biomacromolecules is challenging due to gastrointestinal barriers. In this article, we introduce the available biomacromolecule drugs for the treatment of metabolic diseases. The gastrointestinal barriers to oral drug delivery and strategies to overcome these barriers are also explored. We then discuss strategies for alleviating metabolic defects, including glucose metabolism, lipid metabolism, and energy metabolism, with oral biomacromolecules such as insulin, glucagon-like peptide-1 receptor agonists, proprotein convertase subtilisin/kexin type 9 inhibitors, fibroblast growth factor 21 analogues, and peptide YY analogues.
Collapse
Affiliation(s)
- Qiuxia Jiao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Dinoi E, Daniele G, Michelucci A, Baldinotti F, Campi F, Marchetti P, Del Prato S, Dardano A. Efficacy and safety of once-weekly semaglutide monotherapy in a young subject with Prader-Willi syndrome, obesity, and type 2 diabetes: a case report. Front Endocrinol (Lausanne) 2025; 16:1533209. [PMID: 39996062 PMCID: PMC11847660 DOI: 10.3389/fendo.2025.1533209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Background The treatment of obesity and type 2 diabetes (T2D) in Prader-Willi syndrome (PWS) is still a challenge. Glucagon-like peptide 1 receptor agonists (GLP-1 RA) are attractive options, since they effectively reduce weight and improve blood glucose, without increasing the risk of hypoglycemia. However, data on their use in PWS are scarce. Case description In 2019, a 27-year-old male came to our Clinic because of first appearance of severe hyperglycemia (fasting plasma glucose 22.5 mmol/L). Based on clinical presentation, PWS was suspected, and diagnosis was confirmed by genetic tests. The patient was discharged on a basal-bolus insulin therapy managed by his parents due to his cognitive impairment. In spite of COVID-19 pandemic, the patient achieved tight glycemic control (HbA1c 41 mmol/mol) with non-severe hypoglycemic events in the face of significant body weight (BW) increase (+ 13 kg vs baseline). Insulin therapy was then discontinued, and once-weekly semaglutide (up to 0,5 mg weekly) was started. At 12-month follow-up, BW dropped from 79 to 73 kg while maintaining excellent glycemic control (HbA1c 40 mmol/mol). At 24-month follow-up, glycemic control remained optimal (HbA1c 38 mmol/mol) with further BW reduction (71 kg). Neither hypoglycemia nor gastro-intestinal or psychiatric adverse events were reported. Conclusion This case supports the potential use of semaglutide for the treatment of subjects with PWS, obesity and T2D. Ad hoc trials are needed to evaluate the long-term efficacy and tolerability in these subjects.
Collapse
Affiliation(s)
- Elisa Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), Pisa, Italy
| | - Angela Michelucci
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - Fulvia Baldinotti
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - Fabrizio Campi
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Del Prato
- Interdisciplinary Research Center “Health Science”, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), Pisa, Italy
| |
Collapse
|
8
|
Daniels S, Karlsson C, Schrauwen P, Parker VER. Glucagon-like peptide-1 receptor agonism and end-organ protection. Trends Endocrinol Metab 2025:S1043-2760(25)00002-5. [PMID: 39934020 DOI: 10.1016/j.tem.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/13/2025]
Abstract
Identification of exendin-4 (a glucagon-like peptide 1 receptor agonist, GLP-1RA) in Gila monster venom may be regarded as one of the most serendipitous discoveries of recent times. GLP-1RAs are now an established therapeutic approach in type 2 diabetes (T2D), body weight management, and cardiovascular (CV) risk protection. Furthermore, there is a growing platform of evidence that GLP-1RA has extended benefit in renal, hepatic, respiratory, and neurological diseases. One can speculate on the biological advantage of exendin-4 to the Gila monster, but for humankind GLP-1RAs are peptides with significant potential to improve disease-related outcomes. We report on the latest evidence and mechanisms for GLP-1RA-mediated end-organ protection that uniquely highlight its future development potential across multiple disease areas.
Collapse
Affiliation(s)
- Samuel Daniels
- Early-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Victoria E R Parker
- Late-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
9
|
Ma L, Wang J, Ma L, Wang XM. The link between hyperuricemia and diabetes: insights from a quantitative analysis of scientific literature. Front Endocrinol (Lausanne) 2025; 15:1441503. [PMID: 39991045 PMCID: PMC11842261 DOI: 10.3389/fendo.2024.1441503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Background Hyperuricemia (HUA) is a significant public health issue, ranking second only to diabetes in prevalence. While existing research demonstrates a robust correlation between these two conditions, the precise etiological mechanisms remain inadequately elucidated. This study utilized scientometric analysis to investigate the global association between HUA and diabetes. Methods Data on HUA and diabetes were retrieved from the Web of Science Core Collection database, encompassing the period from its inception until September 30, 2024. Collaboration networks were examined using VOSviewer, cluster analysis was executed with CiteSpace, and systematic mapping was conducted using Bibliometrix. Results By September 30, 2024, 1,464 studies indicated a consistent yearly increase in publications connecting HUA and diabetes despite some fluctuations. The lead authors were Richard J. Johnson, Miguel A. Lanaspa, and Masanari Kuwabara, with most contributors from China, the United States, and Japan. Key institutions include China Medical University, Shanghai Jiao Tong University, and Capital Medical University. The most published journal was Nutrition, Metabolism and Cardiovascular Diseases (CVDs), whereas the most cited journal was Diabetes Care. The reference network from 1987 to September 30, 2024, identified 19 clusters highlighting key research areas in HUA and diabetes, such as metabolic syndrome, uropathology, chronic kidney disease (CKD), and CVD. Exploring pathological mechanisms and pharmacological interventions linked to diabetes concomitant with HUA has emerged as a focal point of research and a burgeoning trend within the field. Conclusion This study is the first scientometric analysis to synthesize research trends on HUA and diabetes, revealing molecular mechanisms and treatment strategies and providing theoretical insights for future clinical use.
Collapse
Affiliation(s)
- Lili Ma
- Department of Internal Medicine, Shengzhou Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Hospital of Traditional Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, China
| | - Li Ma
- Department of Endocrinology, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xian Min Wang
- Department of Scientific Research Management, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Duran M, Willis JR, Dalvi N, Fokakis Z, Virkus SA, Hardaway JA. Integration of Glucagon-Like Peptide 1 Receptor Actions Through the Central Amygdala. Endocrinology 2025; 166:bqaf019. [PMID: 39888375 PMCID: PMC11850305 DOI: 10.1210/endocr/bqaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Understanding the detailed mechanism of action of glucagon-like peptide 1 receptor (GLP-1R) agonists on distinct topographic and genetically defined brain circuits is critical for improving the efficacy and mitigating adverse side effects of these compounds. In this mini-review, we propose that the central nucleus of the amygdala (CeA) is a critical mediator of GLP-1R agonist-driven hypophagia. Here, we review the extant literature demonstrating CeA activation via GLP-1R agonists across multiple species and through multiple routes of administration. The precise role of GLP-1Rs within the CeA is unclear but the site-specific GLP-1Rs may mediate distinct behavioral and physiological hallmarks of GLP-1R agonists on food intake. Thus, we propose important novel directions and methods to test the role of the CeA in mediating GLP-1R actions.
Collapse
Affiliation(s)
- Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer R Willis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nilay Dalvi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zoe Fokakis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Pihl EVK. Bettie's travels: How pigs enable new connections between human health innovations and industrial agricultural pork production in Denmark. SOCIAL STUDIES OF SCIENCE 2025; 55:109-130. [PMID: 39150336 DOI: 10.1177/03063127241268772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Drawing on ethnographic fieldwork, this paper unfolds the past and present uses of pigs that structured the emergence of a pig model of gut-hormone based appetite control, leading to the current scientific breakthrough in treatment of obesity. While the hyping of next generation medications for obesity and type 2 diabetes centers on the efficacy and profits attached to these drugs, I unfold how science embedded in this development had the in-vivo and in-vitro travels of Bettie-an obese Göttingen Minipig pig-at its heart. Tracing how she became embedded in a circuit of vitality connecting industrial agriculture and science on human health, I show how both are governed by a shared valuation of pigs' fat. Bettie's fat, however, was not to be eaten. Instead, Bettie was consumed in knowledge production. For pigs to enter this new trajectory, Bettie emerged as a promissory site for extraction of molecular information made possible by new visualization technologies and representational strategies that allowed for the coupling of human-pig physiology at the cellular level. While her travels were spurred by the hope of discovery of small molecules, Bettie allows us to grasp an important shift in science, as the insights derived from her work emphasized the importance of physiology and the environment for human obesity. In doing so, she served as a visceral model. On a larger scale, Bettie's entering science on human health reflects a recursive structure of knowledge in which the present problems with obesity and type 2 diabetes derive from the solutions to previous problems associated with alleviating hunger.
Collapse
|
12
|
Moore KT, Gupta A, Shen J, Kumar P. Ensuring the Appropriate Use of Glucagon-Like Peptide-1 Receptor Agonists. J Clin Pharmacol 2025; 65:153-159. [PMID: 39297583 DOI: 10.1002/jcph.6136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 01/28/2025]
Affiliation(s)
| | - Aman Gupta
- ACCP Public Policy Committee, Ashburn, VA, USA
| | | | - Parag Kumar
- ACCP Public Policy Committee, Ashburn, VA, USA
| |
Collapse
|
13
|
da Silva RS, de Paiva IHR, Mendonça IP, de Souza JRB, Lucena-Silva N, Peixoto CA. Anorexigenic and anti-inflammatory signaling pathways of semaglutide via the microbiota-gut--brain axis in obese mice. Inflammopharmacology 2025; 33:845-864. [PMID: 39586940 DOI: 10.1007/s10787-024-01603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Our study focused on a mouse model of obesity induced by a high-fat diet (HFD). We administered Semaglutide intraperitoneally (Ozempic ®-0.05 mg/Kg-translational dose) every seven days for six weeks. HFD-fed mice had higher blood glucose, lipid profile, and insulin resistance. Moreover, mice fed HFD showed high gut levels of TLR4, NF-kB, TNF-α, IL-1β, and nitrotyrosine and low levels of occludin, indicating intestinal inflammation and permeability, culminating in higher serum levels of IL-1β and LPS. Treatment with semaglutide counteracted the dyslipidemia and insulin resistance, reducing gut and serum inflammatory markers. Structural changes in gut microbiome were determined by 16S rRNA sequencing. Semaglutide reduced the relative abundance of Firmicutes and augmented that of Bacteroidetes. Meanwhile, semaglutide dramatically changed the overall composition and promoted the growth of acetate-producing bacteria (Bacteroides acidifaciens and Blautia coccoides), increasing hypothalamic acetate levels. Semaglutide intervention increased the number of hypothalamic GLP-1R+ neurons that mediate endogenous action on feeding and energy. In addition, semaglutide treatment reversed the hypothalamic neuroinflammation HDF-induced decreasing TLR4/MyD88/NF-κB signaling and JNK and AMPK levels, improving the hypothalamic insulin resistance. Also, semaglutide modulated the intestinal microbiota, promoting the growth of acetate-producing bacteria, inducing high levels of hypothalamic acetate, and increasing GPR43+ /POMC+ neurons. In the ARC, acetate activated the GPR43 and its downstream PI3K-Akt pathway, which activates POMC neurons by repressing the FoxO-1. Thus, among the multifactorial effectors of hypothalamic energy homeostasis, possibly higher levels of acetate derived from the intestinal microbiota contribute to reducing food intake.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil.
| |
Collapse
|
14
|
Westermeier F, Fisman EZ. Glucagon like peptide-1 (GLP-1) agonists and cardiometabolic protection: historical development and future challenges. Cardiovasc Diabetol 2025; 24:44. [PMID: 39881322 PMCID: PMC11781064 DOI: 10.1186/s12933-025-02608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have revolutionized the treatment of cardiometabolic diseases, extending their therapeutic applications far beyond glycemic control in type 2 diabetes (T2D) and obesity. This editorial synthesizes key milestones, from the discovery of GLP-1 to recent clinical trials highlighting the pleiotropic effects of GLP-1RAs in addressing the interconnected spectrum of cardiometabolic conditions, with a focus on cardiovascular, renal, and hepatic benefits. In addition, as GLP-1RAs continue to reshape the management of cardiometabolic disease and global public health, we discuss future challenges to better elucidate their mechanisms of cardiometabolic protection and maximize their therapeutic potential.
Collapse
Affiliation(s)
- Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria.
- Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| | - Enrique Z Fisman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Facultad de Medicina, Universidad del Salvador (USAL), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Huang R, Xia H, Meng T, Fan Y, Tang X, Li Y, Zhang T, Deng J, Yao B, Huang Y, Yang Y. Construction of human pluripotent stem cell-derived testicular organoids and their use as humanized testis models for evaluating the effects of semaglutide. Theranostics 2025; 15:2597-2623. [PMID: 39990223 PMCID: PMC11840739 DOI: 10.7150/thno.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Background: The generation of human testicular organoids from human induced pluripotent stem cells (hiPSCs) presents exciting opportunities for gonadal developmental biology, and reproductive disease modeling. However, creating organoids that closely mimic the tissue structure of testes remains challenging. Methods: In this study, we established a method for generating testicular organoids (TOs) from hiPSCs using a stepwise differentiation approach and a combination of hanging drop and rotational culture systems. The capability of hiPSC-derived precursor testicular cells to self-assemble into organoids was confirmed by detection of morphology, single-cell RNA-sequencing, and protein profiles. The reliability of testicular organoids as a drug evaluation model was assessed by the measurements of transcriptome signatures and functional features, including hormone responsiveness and blood-testis barrier (BTB) formation, and drug sensitivity assessment by recording cell viability and BTB integrity in organoids exposed to reproductive toxicants. Finally, we applied testicular organoids to evaluate the effects of semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1 RA), on testicular function, thereby underscoring their utility as a model for drug evaluation. Results: These organoids exhibited testicular cord-like structures and BTB function. RNA sequencing and functional assays confirmed that testicular organoids possess gene expression profiles and endocrine functions regulated by gonadotropins, closely resembling those of testicular tissue. Notably, these organoids displayed sensitivity to semaglutide. Treatment with semaglutide resulted in reduced testosterone levels and downregulation of INHBB expression, aligning with previous clinical observations. Conclusions: These findings introduced a method for generating testicular organoids from human pluripotent stem cells, highlighting their potential as valuable models for studying testicular function, drug toxicity, and the effects of compounds like semaglutide on testicular health.
Collapse
Affiliation(s)
- Rufei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huan Xia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Meng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yufei Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yifang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tiantian Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jingxian Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yadong Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Yan Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| |
Collapse
|
16
|
Zhang X, Cao C, Zheng F, Liu C, Tian X. Therapeutic Potential of GLP-1 Receptor Agonists in Diabetes and Cardiovascular Disease: Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07670-9. [PMID: 39832069 DOI: 10.1007/s10557-025-07670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice. OBJECTIVE This review aims to comprehensively summarize the role of GLP-1 RAs in the management of diabetes mellitus (DM) and cardiovascular disease (CVD), with a particular emphasis on the underlying signal transduction pathways and their therapeutic potential. METHODS A comprehensive review was carried out through literature research. RESULTS AND DISCUSSION In pancreatic β-cells, GLP-1 RAs regulate the secretion of insulin and glucagon in a glucosedependent manner by influencing signaling pathways such as cAMP, PI3K, and MAPK. They also contribute to the regulation of blood glucose levels by promoting the proliferation of β-cells and inhibiting apoptosis in these cells. Recent comprehensive studies have also demonstrated the favorable impact of GLP-1 RAs on cardiovascular wellbeing. In addition to the cardiovascular protection afforded by glucose metabolism regulation, a large body of evidence from animal and cellular studies has corroborated the beneficial effects of GLP-1 RAs on conditions such as heart failure (HF), hypertension, and ischemic cardiomyopathy. These benefits are mainly attributed to the alleviation of inflammatory responses, reduction of oxidative stress, and prevention of cell apoptosis. Clinical data shows that GLP-1 RAs can reduce the risk of major adverse cardiovascular events (MACE) in diabetic patients. CONCLUSION GLP-1 RAs play an important role in the management of both diabetes and cardiovascular diseases. They show potential therapeutic value through the modulation of multiple signal transduction pathways. However, there may still be some issues in practical applications that require further research and resolution.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China
| | - Chao Cao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Fei Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Chang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Xiuqing Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China.
| |
Collapse
|
17
|
Chen Q, Song JX, Zhang Z, An JR, Gou YJ, Tan M, Zhao Y. Exploring Liraglutide's mechanism in reducing renal fibrosis: the Fsp1-CoQ10-NAD(P)H pathway. Sci Rep 2025; 15:1754. [PMID: 39799153 PMCID: PMC11724886 DOI: 10.1038/s41598-025-85658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect. In our study, we used db/db mice to simulate Type 2 diabetes mellitus (T2DM). The mice were intraperitoneally injected with LIRA (200 µg/kg/d) daily for 6 weeks. Renal function, pathologic changes, lipid peroxidation levels, iron levels, and ferroptosis were assessed. First, LIRA ameliorated renal dysfunction and fibrosis in db/db mice. Second, LIRA inhibited lipid peroxidation by up-regulating T-SOD, GSH-Px, and GSH activities as well as down-regulating the levels of 8-OHDG, MDA, LPO, 4-HNE, 12-Lox, and NOX4 in db/db mice. In addition, LIRA attenuated iron deposition by decreasing the expression of TfR1 and increasing the expression of FPN1. Meanwhile, LIRA reduced high levels of high glucose-induced cell viability decline and intracellular lipid peroxidation. Furthermore, LIRA inhibited ferroptosis by adjusting the Fsp1-CoQ10-NAD(P)H pathway in vivo and in vitro. These findings suggested that LIRA attenuated kidney fibrosis injury in db/db mice by inhibiting ferroptosis through the Fsp1-CoQ10-NAD(P)H pathway.
Collapse
Affiliation(s)
- Qi Chen
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, China
| | - Ji-Xian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Ji-Ren An
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
| | - Yu-Jing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, China
| | - Miao Tan
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.
| |
Collapse
|
18
|
Moo EV, Møller TC, Sørensen FA, Inoue A, Bräuner-Osborne H. Arrestin-independent internalization of the GLP-1 receptor is facilitated by a GRK, clathrin, and caveolae-dependent mechanism. FEBS J 2025. [PMID: 39756024 DOI: 10.1111/febs.17338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function. Utilizing a reliable and sensitive time-resolved fluorescence resonance energy transfer (TR-FRET) internalization assay, combined with HEK293-derived knockout cell lines, we were able to directly compare the involvement of different endocytic machinery in GLP-1R internalization. Our findings indicate that the receptor internalizes independently of arrestin and is dependent on Gs and Gi/o activation and G protein-coupled receptor kinase phosphorylation. Mechanistically, we observed that the receptor undergoes distinct clathrin- and caveolae-mediated internalization in HEK293 cells. This study also investigated the role of arrestins in GLP-1R function and regulation. These insights into key endocytic components that are involved in the GLP-1R internalization pathway could enhance the rational design of GLP-1R therapeutics for type 2 diabetes and other GLP-1R-related diseases.
Collapse
Affiliation(s)
- Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | | | | | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
19
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
20
|
Wharton S, le Roux CW, Kosiborod MN, Platz E, Brueckmann M, Jastreboff AM, Ajaz Hussain S, Pedersen SD, Borowska L, Unseld A, Kloer IM, Kaplan LM. Survodutide for treatment of obesity: rationale and design of two randomized phase 3 clinical trials (SYNCHRONIZE™-1 and -2). Obesity (Silver Spring) 2025; 33:67-77. [PMID: 39495965 DOI: 10.1002/oby.24184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/06/2024]
Abstract
OBJECTIVE The objective of this study was to describe the rationale and design of two multinational phase 3 clinical trials of survodutide, an investigational glucagon and glucagon-like peptide-1 receptor dual agonist for the treatment of obesity with or without type 2 diabetes (T2D; SYNCHRONIZE-1 and -2). METHODS In these ongoing double-blind trials, participants were randomized to once-weekly subcutaneous injections of survodutide or placebo added to lifestyle modification. Survodutide doses are uptitrated to 3.6 or 6.0 mg, and dose flexibility is permitted. Participants (n = 726) in SYNCHRONIZE-1 (NCT06066515) have a baseline BMI ≥ 30 kg/m2 or ≥27 kg/m2 with at least one obesity-related complication but without T2D; participants (n = 755) in SYNCHRONIZE-2 (NCT06066528) have a baseline BMI ≥ 27 kg/m2 and T2D. The primary endpoints are percentage change in body weight and proportion of participants achieving ≥5% body weight reduction from baseline to week 76. Secondary endpoints include change in systolic blood pressure and measures of glycemia. A SYNCHRONIZE-1 substudy is evaluating changes in body composition and liver fat content using magnetic resonance imaging. CONCLUSIONS These trials are designed to provide robust evaluation of the efficacy, safety, and tolerability of survodutide for the treatment of obesity in the presence or absence of T2D.
Collapse
Affiliation(s)
- Sean Wharton
- McMaster University, Hamilton, Ontario and University of Toronto, Toronto, Ontario, Canada
| | - Carel W le Roux
- St. Vincent's University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Elke Platz
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Martina Brueckmann
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ania M Jastreboff
- Section of Endocrinology (Internal Medicine & Pediatrics) and Yale Obesity Research Center (Y-Weight), Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Sue D Pedersen
- C-ENDO Diabetes and Endocrinology Clinic and University of Calgary, Calgary, Alberta, Canada
| | - Luiza Borowska
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Anna Unseld
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Isabel M Kloer
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Lee M Kaplan
- Section of Obesity Medicine and Center for Digestive Health, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
21
|
Shah N, Sanyal AJ. A Pragmatic Management Approach for Metabolic Dysfunction-Associated Steatosis and Steatohepatitis. Am J Gastroenterol 2025; 120:75-82. [PMID: 39569874 DOI: 10.14309/ajg.0000000000003215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Obesity and associated insulin resistance induce a chronic metaboinflammatory state that lead to injury and dysfunction of multiple organs resulting in a cluster of noncommunicable diseases such as type 2 diabetes mellitus, hypertension, cardiovascular disease, chronic kidney disease, and metabolic dysfunction-associated steatotic liver disease (MASLD). Metabolic dysfunction-associated steatohepatitis (MASH) is a histologically active form of MASLD and characterized by greater injury and inflammation and progresses to cirrhosis with greater certainty than steatosis alone. The progression to cirrhosis is characterized by increasing fibrosis. The goal of treatment of MASLD/MASH was to improve the metaboinflammatory state i.e., the root cause of the liver disease and to prevent fibrosis progression to cirrhosis whereas in those who already have cirrhosis need additional care to prevent portal hypertension-related outcomes. Fibrosis regression is thus a key objective of treatment. The recent approval of resmetirom for MASH with fibrosis and the use of glucagon-like peptide-1 receptor agonists for obesity and type 2 diabetes has increased awareness of these NCDs and resulted in the growing demand for liver assessment and care in obese individuals. Patients with MASLD also have multiple metabolic comorbidities which represent competing threats to life, and the care of the patient requires both assessment of the totality of the risk and a more holistic approach integrating the care of all of the threats to life. Here, we provide a pragmatic and easily implementable risk-based approach to the evaluation and management of MASLD.
Collapse
Affiliation(s)
- Neha Shah
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
22
|
Torbahn G, Lischka J, Brown T, Ells LJ, Kelly AS, Wabitsch M, Weghuber D. Anti-Obesity Medication in the Management of Children and Adolescents With Obesity: Recent Developments and Research Gaps. Clin Endocrinol (Oxf) 2025; 102:51-61. [PMID: 39257303 PMCID: PMC11612549 DOI: 10.1111/cen.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/20/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Paediatric obesity is a global public health concern. While in most countries the incidence keeps rising, the need for effective and long-term management for children and adolescents living with this chronic, relapsing disease is pressing. Health behaviour and lifestyle treatment (HBLT) is recommended as first-line treatment. METHODS Narrative review. RESULTS A new generation of recently approved anti-obesity medications (AOM) now has the potential to fill the gap between limited effects on body mass index (BMI) by HBLT alone and large effects by metabolic and bariatric surgery in adolescents with obesity aged 12 years and older. While, for semaglutide and phentermine/topiramate, effectiveness is substantial with relevant, but mostly mild to moderate adverse events, there is a gap in evidence regarding long-term effects and safety, effects on outcomes beyond BMI reduction and data for certain groups of patients, such as children < 12 years and minority groups. When integrating AOM treatment into national healthcare systems it should be offered as part of a comprehensive patient-centred approach. CONCLUSION This article summarizes recent AOM developments, integration into paediatric obesity management, and identifies research gaps.
Collapse
Affiliation(s)
- Gabriel Torbahn
- Department of PediatricsParacelsus Medical University, Klinikum Nürnberg, Universitätsklinik der Paracelsus Medizinischen Privatuniversität NürnbergNurembergGermany
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria
- Department of PediatricsObesity Research Unit, Paracelsus Medical UniversitySalzburgAustria
| | - Julia Lischka
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria
- Department of PediatricsObesity Research Unit, Paracelsus Medical UniversitySalzburgAustria
| | - Tamara Brown
- School of Health, Obesity Institute, Leeds Beckett UniversityLeedsUK
| | - Louisa J. Ells
- School of Health, Obesity Institute, Leeds Beckett UniversityLeedsUK
| | - Aaron S. Kelly
- Department of PediatricsCenter for Pediatric Obesity Medicine, University of Minnesota Medical School MinneapolisMinneapolisMinnesotaUSA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and DiabetesCenter for Rare Endocrine Diseases, University of UlmUlmGermany
| | - Daniel Weghuber
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria
- Department of PediatricsObesity Research Unit, Paracelsus Medical UniversitySalzburgAustria
| |
Collapse
|
23
|
Stanton EW, Manasyan A, Banerjee R, Hong K, Koesters E, Daar DA. Glucagon-Like Peptide-1 Agonists: A Practical Overview for Plastic and Reconstructive Surgeons. Ann Plast Surg 2025; 94:121-127. [PMID: 39293069 DOI: 10.1097/sap.0000000000004089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) agonists, such as exenatide, liraglutide, dulaglutide, semaglutide, and tirzepatide, effectively manage type 2 diabetes by promoting insulin release, suppressing glucagon secretion, and enhancing glucose metabolism. They also aid weight reduction and cardiovascular health, potentially broadening their therapeutic scope. In plastic surgery, they hold promise for perioperative weight management and glycemic control, potentially impacting surgical outcomes. METHODS A comprehensive review was conducted to assess GLP-1 agonists' utilization in plastic surgery. We analyzed relevant studies, meta-analyses, and trials to evaluate their benefits and limitations across surgical contexts, focusing on weight reduction, glycemic control, cardiovascular risk factors, and potential complications. RESULTS Studies demonstrate GLP-1 agonists' versatility, spanning weight management, cardiovascular health, neurological disorders, and metabolic dysfunction-associated liver diseases. Comparative analyses highlight variations in glycemic control, weight loss, and cardiometabolic risk. Meta-analyses reveal significant reductions in hemoglobin A1C levels, especially with high-dose semaglutide (2 mg) and tirzepatide (15 mg). However, increased dosing may lead to gastrointestinal side effects and serious complications like pancreatitis and bowel obstruction. Notably, GLP-1 agonists' efficacy in weight reduction and glycemic control may impact perioperative management in plastic surgery, potentially expanding surgical candidacy for procedures like autologous flap-based breast reconstruction and influencing outcomes related to lymphedema. Concerns persist regarding venous thromboembolism and delayed gastric emptying, necessitating further investigation into bleeding and aspiration risk with anesthesia. CONCLUSIONS GLP-1 agonists offer advantages in perioperative weight management and glycemic control in plastic surgery patients. They may broaden surgical candidacy and mitigate lymphedema risk but require careful consideration of complications, particularly perioperative aspiration risk. Future research should focus on their specific impacts on surgical outcomes to optimize their integration into perioperative protocols effectively. Despite challenges, GLP-1 agonists promise to enhance surgical outcomes and patient care in plastic surgery.
Collapse
Affiliation(s)
| | - Artur Manasyan
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rakhi Banerjee
- From the Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kurt Hong
- Division of Internal Medicine, Keck School of Medicine of USC, Los Angeles, CA
| | | | | |
Collapse
|
24
|
Psaltis JP, Marathe JA, Nguyen MT, Le R, Bursill CA, Marathe CS, Nelson AJ, Psaltis PJ. Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future. Med Res Rev 2025; 45:29-65. [PMID: 39139038 PMCID: PMC11638809 DOI: 10.1002/med.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
Collapse
Affiliation(s)
- James P. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
| | - Jessica A. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Mau T. Nguyen
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Richard Le
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Christina A. Bursill
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chinmay S. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Department of EndocrinologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Adam J. Nelson
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Peter J. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
25
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
26
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
27
|
Karagiannakis DS, Stefanaki K, Paschou SA, Papatheodoridi M, Tsiodras S, Papanas N. Addressing the essentials of the recent guidelines for managing patients with metabolic dysfunction-associated steatotic liver disease. Hormones (Athens) 2024:10.1007/s42000-024-00625-z. [PMID: 39695010 DOI: 10.1007/s42000-024-00625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of end-stage liver disease and liver transplantation in the Western world, with an approximate prevalence of 30% worldwide which is continuously rising. It is characterized by intrahepatic fat deposition along with at least one cardiometabolic risk factor, such as diabetes mellitus, obesity, hypertriglyceridemia, and hypertension. MASLD consists of a spectrum of liver diseases ranging from simple liver steatosis to steatohepatitis, liver fibrosis, and cirrhosis. Recently, the European Association for the Study of the Liver (EASL), the European Association for the Study of Diabetes (EASD), and the European Association for the Study of Obesity (EASO) released the latest guidelines regarding the management of patients with MASLD. This article highlights the critical points of these guidelines and emphasizes problematic issues that need further evaluation.
Collapse
Affiliation(s)
- Dimitrios S Karagiannakis
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Margarita Papatheodoridi
- Academic Department of Gastroenterology, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, Thrace, Alexandroupolis, Greece
| |
Collapse
|
28
|
Falkenberg C, Sørensen DB, Hansen CH, Toft MF, Hansen AK. Pre-immunization of diet-induced obese male mice with inactivated pathogens increases power in a liraglutide intervention study. Lab Anim 2024:236772241279058. [PMID: 39696895 DOI: 10.1177/00236772241279058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Pre-immunization with inactivated antigens has been developed as an alternative to the use of 'dirty' mice, which in contrast to specific pathogen free (SPF) mice, harbour a range of pathogens. Within certain research areas, such mice are considered better models for humans than SPF mice, as they have an immune system that better mirrors human immunity. We inactivated murine adenovirus type 1 (FL), minute virus of mice, mouse hepatitis virus (A59), respirovirus muris (Sendai), Theiler's encephalomyelitis virus (GD7) and Mycoplasma pulmonis by ultraviolet irradiation. We show that pre-immunization with these inactivated pathogens combined with adjuvant prior to the dietary induction of obesity in C57BL/6NTac mice substantially reduced the group sizes needed for showing an effect of the GLP-1 receptor analogue, liraglutide. Nesting, open field and novel object behaviours of the mice were unaffected. We conclude that pre-immunization with inactivated pathogens may be a simple tool to increase power in this type of intervention study on the DIO mouse model.
Collapse
Affiliation(s)
- Caroline Falkenberg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte B Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Camilla Hf Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Kim BI, Khilnani TK, LaValva SM, Goodman SM, Della Valle AG, Lee GC. Utilization of Glucagon-Like Peptide-1 Receptor Agonist at the Time of Total Hip Arthroplasty for Patients Who Have Morbid Obesity. J Arthroplasty 2024:S0883-5403(24)01288-9. [PMID: 39662850 DOI: 10.1016/j.arth.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Morbid obesity negatively affects outcomes after total hip arthroplasty (THA). The optimal strategy for weight loss before THA has not been identified. Recently, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have become increasingly popular as an effective pharmacologic weight loss agent. The goal of this study was to evaluate the effect of perioperative GLP-1 RA use in patients who have morbid obesity undergoing primary THA on postoperative outcomes. METHODS Using an administrative claims database, patients who had morbid obesity (body mass index [BMI] ≥ 40.0) undergoing primary THA were identified. Patients who had morbid obesity and GLP-1 RA use for three months before and after surgery (treatment) were matched to patients who had morbid obesity without GLP-1 RA use (control) and to a comparison group of patients who had severe obesity (BMI = 35.0 to 39.9) in a 1:4:4 ratio, resulting in 771, 3,084, and 3,084 patients in the treatment, control, and severe obesity comparison group, respectively. Overall group differences in 90-day and 2-year postoperative outcomes were compared using univariable tests, followed by post hoc pairwise testing and P-value adjustment. RESULTS Patients who had morbid obesity on GLP-1 RA had a significantly lower rate of 90-day periprosthetic joint infection (1.6 versus 3.2%; P = 0.03), readmission (6.9 versus 9.7%; P = 0.04), any medical complication (10.5 versus 14.1%; P = 0.03), and postoperative hematoma formation (0 versus 1.3%, P < 0.01) than controls. Patients who had morbid obesity on GLP-1 RA demonstrated lower rates of hematoma formation (0 versus 1.0%; P < 0.01) than patients who had severe obesity (BMI = 35.0 to 39.9). There were no differences in 2-year surgical complications. CONCLUSIONS Perioperative use of GLP-1 RA in patients who had morbid obesity is associated with reduced risk of acute periprosthetic joint infection and 90-day hospital readmission. The risk is reduced to a level comparable to obese patients who have a BMI < 40.0. Randomized controlled trials are necessary to determine the true effect and mechanism of action.
Collapse
Affiliation(s)
- Billy I Kim
- Hospital for Special Surgery, Department of Orthopaedic Surgery, New York, New York
| | - Tyler K Khilnani
- Hospital for Special Surgery, Department of Orthopaedic Surgery, New York, New York
| | - Scott M LaValva
- Hospital for Special Surgery, Department of Orthopaedic Surgery, New York, New York
| | - Susan M Goodman
- Hospital for Special Surgery, Department of Rheumatology, New York, New York
| | | | - Gwo-Chin Lee
- Hospital for Special Surgery, Department of Orthopaedic Surgery, New York, New York
| |
Collapse
|
30
|
MacDonald DI, Jayabalan M, Seaman J, Balaji R, Nickolls A, Chesler A. Pain persists in mice lacking both Substance P and CGRPα signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567208. [PMID: 38076807 PMCID: PMC10705526 DOI: 10.1101/2023.11.15.567208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Jonathan Seaman
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Rakshita Balaji
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alec Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alexander Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
31
|
Cao Y, Tong Q. Hunting for heroes: Brain neurons mediating GLP-1R agonists in obesity treatment. OBESITY MEDICINE 2024; 52:100569. [PMID: 39831282 PMCID: PMC11741184 DOI: 10.1016/j.obmed.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) have proven to be highly effective in reducing obesity across species and ages, gaining unmet popularity in clinical treatments against obesity. Although extensive research efforts have been made to explore how the brain regulates body weight homeostasis including the effect brought up by GLP-1 and its synthetic analogs GLP-1RAs, the identity of neurons and neural pathways that are responsible for the observed anti-obesity effect of GLP-1RAs remain largely elusive. Excitingly, three recent high-profile studies presented compelling evidence that each argues for the importance of GLP-1Rs in the dorsomedial hypothalamus, hindbrain, or lateral septum, respectively, in mediating the anti-obesity effect of GLP-1RAs. While these studies clearly illustrated the contributions of each of these distinct brain regions involved in GLP-1RAs in body weight regulation, the presented results also suggest the complexity of the involved brain neural network. This commentary briefly introduces these studies and highlights key knowledge gaps that require further investigation.
Collapse
Affiliation(s)
- Yuhan Cao
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Texas, 77030, USA
| | - Qingchun Tong
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Texas, 77030, USA
| |
Collapse
|
32
|
Rasouli MA, Dumesic DA, Singhal V. Male infertility and obesity. Curr Opin Endocrinol Diabetes Obes 2024; 31:203-209. [PMID: 39253759 DOI: 10.1097/med.0000000000000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The increasing rate of obesity is having an adverse impact on male reproduction. RECENT FINDINGS The negative effect of reactive oxygen species on male reproductive tissues and the age of onset of obesity are new areas of research on male infertility. SUMMARY This review highlights how obesity impairs male reproduction through complex mechanisms, including metabolic syndrome, lipotoxicity, sexual dysfunction, hormonal and adipokine alterations as well as epigenetic changes, and how new management strategies may improve the reproductive health of men throughout life.
Collapse
Affiliation(s)
| | | | - Vibha Singhal
- Division of Endocrinology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
33
|
Ibrahim SS, Ibrahim RS, Arabi B, Brockmueller A, Shakibaei M, Büsselberg D. The effect of GLP-1R agonists on the medical triad of obesity, diabetes, and cancer. Cancer Metastasis Rev 2024; 43:1297-1314. [PMID: 38801466 PMCID: PMC11554930 DOI: 10.1007/s10555-024-10192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists have garnered significant attention for their therapeutic potential in addressing the interconnected health challenges of diabetes, obesity, and cancer. The role of GLP-1R in type 2 diabetes mellitus (T2DM) is highlighted, emphasizing its pivotal contribution to glucose homeostasis, promoting β-cell proliferation, and facilitating insulin release. GLP-1R agonists have effectively managed obesity by reducing hunger, moderating food intake, and regulating body weight. Beyond diabetes and obesity, GLP-1R agonists exhibit a multifaceted impact on cancer progression across various malignancies. The mechanisms underlying these effects involve the modulation of signaling pathways associated with cell growth, survival, and metabolism. However, the current literature reveals a lack of in vivo studies on specific GLP-1R agonists such as semaglutide, necessitating further research to elucidate its precise mechanisms and effects, particularly in cancer. While other GLP-1R agonists have shown promising outcomes in mitigating cancer progression, the association between some GLP-1R agonists and an increased risk of cancer remains a topic requiring more profound investigation. This calls for more extensive research to unravel the intricate relationships between the GLP-1R agonist and different cancers, providing valuable insights for clinicians and researchers alike.
Collapse
Affiliation(s)
| | | | - Batoul Arabi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, 24144, Qatar
| | - Aranka Brockmueller
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Mehdi Shakibaei
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, 24144, Qatar.
| |
Collapse
|
34
|
Dimitri P, Roth CL. Treatment of Hypothalamic Obesity With GLP-1 Analogs. J Endocr Soc 2024; 9:bvae200. [PMID: 39703362 PMCID: PMC11655849 DOI: 10.1210/jendso/bvae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Congenital and acquired damage to hypothalamic nuclei or neuronal circuits controlling satiety and energy expenditure results in hypothalamic obesity (HO). To date, successful weight loss and satiety has only been achieved in a limited number of affected patients across multiple drug trials. Glucagon-like peptide-1 (GLP-1) acts via central pathways that are independent from the hypothalamus to induce satiety. GLP-1 receptor agonists (GLP-1RAs) may provide an alternative approach to treating HO. Methods We performed a comprehensive search in Medline, Google Scholar, and clinical trials registries (ClinicalTrials.gov; clinicaltrialsregister.eur). This nonsystematic literature review was conducted to identify scientific papers published from January 2005 to February 2024 using the Pubmed and Embase databases. Key words used were GLP-1, GLP-1RA, hypothalamic obesity, suprasellar tumor, and craniopharyngioma. Results Our search identified 7 case studies, 5 case series, and 2 published clinical trials relating to the use of GLP-1RAs in HO. All case studies demonstrated weight loss and improved metabolic function. In contrast, results from case series were variable, with some showing no weight loss and others demonstrating moderate to significant weight loss and improved metabolic parameters. In the ECHO clinical trial, nearly half the subjects randomized to weekly exenatide showed reduced body mass index (BMI). Paradoxically, BMI reduction was greater in patients with more extensive hypothalamic injuries. Conclusion GLP-1RAs potentially offer a new approach to treating HO. There is a need to stratify patients who are more likely to respond. Further randomized controlled trials are required to determine their efficacy either in isolation or combined with other therapies.
Collapse
Affiliation(s)
- Paul Dimitri
- The Department of Paediatric Endocrinology, Sheffield Children's NHS Foundation Trust, Sheffield, S10 2TH, UK
- University of Sheffield, Sheffield, S10 2TN, UK
| | - Christian L Roth
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
35
|
Guney-Coskun M, Basaranoglu M. Interplay of gut microbiota, glucagon-like peptide receptor agonists, and nutrition: New frontiers in metabolic dysfunction-associated steatotic liver disease therapy. World J Gastroenterol 2024; 30:4682-4688. [PMID: 39575401 PMCID: PMC11572635 DOI: 10.3748/wjg.v30.i43.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/31/2024] Open
Abstract
The gut-liver axis plays a crucial role in the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Key metabolites, including lipopolysaccharides, short-chain fatty acids (SCFAs), bile acids, and beneficial gut bacteria such as Bifidobacterium and Lactobacillus, are pivotal in this process. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) show promise in managing MASLD by promoting weight loss, enhancing insulin secretion, and improving liver health. They restore gut-liver axis functionality, and their effects are amplified through dietary modifications and gut microbiome-targeted therapies. Emerging research highlights the interplay between GLP-1 RAs and gut microbiota, indicating that the gut microbiome significantly influences therapeutic outcomes. Metabolites produced by gut bacteria, can stimulate glucagon-like peptide-1 (GLP-1) secretion, further improving metabolic health. Integrating dietary interventions with GLP-1 RA treatment may enhance liver health by modulating the gut microbiota-SCFAs-GLP-1 pathway. Future research is needed to understand personalized effects, with prebiotics and probiotics offering treatment avenues for MASLD.
Collapse
Affiliation(s)
- Merve Guney-Coskun
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Nutrition and Dietetics, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Metin Basaranoglu
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Türkiye
| |
Collapse
|
36
|
Lyu YS, Ahn H, Hong S, Park CY. Safety and Effectiveness of Naltrexone-Bupropion in Korean Adults with Obesity: Post-Marketing Surveillance Study. Drug Des Devel Ther 2024; 18:5255-5268. [PMID: 39583631 PMCID: PMC11585262 DOI: 10.2147/dddt.s492913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose To investigate the safety and effectiveness of naltrexone-bupropion in Korean adults with obesity. Patients and methods This was a prospective, observational multicenter study from April 29, 2016, to April 28, 2022. Individuals with obesity with a body mass index of ≥30 kg/m2 or ≥27 kg/m2 who had obesity-related comorbidities were included. The naltrexone-bupropion dose was gradually titrated weekly from 8/90 to 32/360 mg and maintained at the maximum tolerated dose. In total, 612 and 300 individuals were evaluated for safety and effectiveness, respectively. Results In total, 41.34% individuals reported drug-related adverse reactions, such as nausea (19.12%), headache (7.68%), and dizziness (5.23%). Older age and comorbidities were significantly associated with adverse events. At 12 weeks after reaching the maintenance dose, naltrexone-bupropion 32/360 mg resulted in the greatest weight reduction (-7.21%) compared with other doses, which persisted at week 24 (-7.69%). The naltrexone-bupropion 16/180 mg resulted in significant weight reduction, achieving -5.99% and -9.18% reductions at weeks 12 and 24, similar to that with naltrexone-bupropion 32/360 mg. Young age and no comorbidities were significantly associated >5% weight reduction. Conclusion Naltrexone-bupropion demonstrated marked stability and weight loss effectiveness, particularly in young individuals with obesity without comorbidities. Therefore, individualized treatment is necessary when prescribing naltrexone-bupropion.
Collapse
Affiliation(s)
- Young Sang Lyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Hongyup Ahn
- Department of Statistics, Dongguk University, Seoul, Republic of Korea
| | - Sangmo Hong
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Cheol-Young Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Wang ZJ, Han WN, Chai SF, Li Y, Fu CJ, Wang CF, Cai HY, Li XY, Wang X, Hölscher C, Wu MN. Semaglutide promotes the transition of microglia from M1 to M2 type to reduce brain inflammation in APP/PS1/tau mice. Neuroscience 2024; 563:222-234. [PMID: 39547338 DOI: 10.1016/j.neuroscience.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A growing number of studies show that the diabetes drug Semaglutide is neuroprotective in Alzheimer's disease (AD) animal models, but its mode of action is not fully understood. In order to explore the mechanism of Semaglutide, 7-month-old APP/PS1/tau transgenic (3xTg) mice and wild-type (WT) mice were randomly divided into four groups: control group (WT + PBS), AD model group (3xTg + PBS), Semaglutide control group (WT + Semaglutide) and Semaglutide treatment group (3xTg + Semaglutide). Semaglutide (25 nmol/kg) or PBS was administered intraperitoneally once every two days for 30 days, followed by behavioral and molecular experiments. The results show that Semaglutide can improve working memory and spatial reference memory of 3xTg-AD mice, promote the release of anti-inflammatory factors and inhibit the production of pro-inflammatory factors in the cortex and hippocampus, and reduce Aβ deposition in the hippocampal CA1 region of 3xTg mice. Semaglutide can inhibit the apoptosis of BV2 cells induced by Aβ1-42 in a dose-dependent manner and promote the transformation of microglia from M1 to M2, thereby exerting anti-inflammatory and neuroprotective effects. Therefore, we speculate that Semaglutide shows an anti-inflammatory effect by promoting the transformation of microglia from M1 to M2 type in the brain of 3xTg mice, and thus exerts a neuroprotective effect.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Wei-Na Han
- Department of Physiology, Puai Medical College (Medical College), Shaoyang University, Shaoyang, Hunan Province, PR China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Yan Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Chao-Jing Fu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Chen-Fang Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Xin-Yi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, Shanxi Province, PR China
| | - Xiao Wang
- Department of Psychiatry, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, Henan Province, PR China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, PR China.
| |
Collapse
|
38
|
Chen W, Xian S, Webber B, DeWolf EL, Schmidt CR, Kilmer R, Liu D, Power EM, Webber MJ. Engineering Supramolecular Nanofiber Depots from a Glucagon-Like Peptide-1 Therapeutic. ACS NANO 2024; 18:31274-31285. [PMID: 39471057 DOI: 10.1021/acsnano.4c10248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Diabetes and obesity have emerged as major global health concerns. Glucagon-like peptide-1 (GLP-1), a natural incretin hormone, stimulates insulin production and suppresses glucagon secretion to stabilize and reduce blood glucose levels and control appetite. The therapeutic use of GLP-1 receptor agonists (e.g., semaglutide) has transformed the standard of care in recent years for treating type 2 diabetes and reversing obesity. The native GLP-1 sequence has a very short half-life, and therapeutic advances have come from molecular engineering to alter the pharmacokinetic profile of synthetic GLP-1 receptor agonists to enable once-weekly administration, reduce the frequency of injection, and improve adherence. Efforts to further extend this profile would offer additional convenience or enable entirely different treatment modalities. Here, an injectable GLP-1 receptor agonist depot is engineered through integration of a prosthetic self-assembling peptide motif to enable supramolecular nanofiber formation and hydrogelation. This supramolecular GLP-1 receptor agonistic (PA-GLP1) offers sustained release in vitro for multiple weeks, supporting long-lasting therapy. Moreover, in a rat model of type 2 diabetes, a single injection of the supramolecular PA-GLP1 formulation achieved sustained serum concentrations for at least 40 days, with an overall reduction in blood glucose levels and reduced weight gain, comparing favorably to daily injections of semaglutide. The general and modular approach is also extensible to other next-generation peptide therapies. Accordingly, the formation of supramolecular nanofiber depots offers a more convenient and long-lasting therapeutic option to manage diabetes and treat metabolic disorders.
Collapse
Affiliation(s)
- Weike Chen
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bernice Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emily L DeWolf
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Connor R Schmidt
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rory Kilmer
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elizabeth M Power
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
39
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
40
|
O'Donnell C, Ryan O, Hogan AE, Killick D, Crilly S, Dodd JD, Murphy DJ, Ryan S, O'Shea D. GLP-1 therapy increases visceral adipose tissue metabolic activity: lessons from a randomized controlled trial in obstructive sleep apnea. Obesity (Silver Spring) 2024; 32:2077-2081. [PMID: 39169732 DOI: 10.1002/oby.24126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) analogues are currently the most widely used pharmacotherapies for weight loss. Their primary mechanism of action is attributed to reduction in energy intake. Data from murine studies also support an additional impact of those agents on energy homeostasis through upregulation of visceral adipose tissue (VAT) metabolic activity, but this remains uncertain in humans. METHODS Here, we present data from a proof-of-concept study on 30 individuals with obstructive sleep apnea and obesity who were randomized to a GLP-1 therapy-based weight loss regimen, continuous positive airway pressure, or a combination of both for 24 weeks. At baseline and study completion, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) was performed to evaluate VAT metabolic activity, expressed as VAT target to background ratio. RESULTS Treatment with GLP-1, but not with continuous positive airway pressure, was associated with a significant increase in VAT target to background ratio. There was a strong correlation between the increase in VAT metabolic activity and the degree of weight loss. CONCLUSIONS These data support the hypothesis that upregulation of VAT metabolic activity by GLP-1 contributes to its weight loss action in humans, and this subject warrants further detailed investigation.
Collapse
Affiliation(s)
- Cliona O'Donnell
- Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Odhrán Ryan
- Department of Endocrinology, St. Vincent's University Hospital, Dublin, Ireland
- St. Columcille's Hospital, Dublin, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Desmond Killick
- Department of Endocrinology, St. Vincent's University Hospital, Dublin, Ireland
| | - Shane Crilly
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | - Jonathan D Dodd
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | - David J Murphy
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | - Silke Ryan
- Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Donal O'Shea
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Endocrinology, St. Vincent's University Hospital, Dublin, Ireland
- St. Columcille's Hospital, Dublin, Ireland
| |
Collapse
|
41
|
Mohr K, Butcher C. Glucagon Like Peptide -1 Receptor Agonists for Weight Loss: A Primary Care Perspective. MISSOURI MEDICINE 2024; 121:489-494. [PMID: 39697577 PMCID: PMC11651266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In this article we review the glucagon like peptide -1 receptor agonist (GLP-1) medications and discuss how to approach using them for weight loss and management in non-diabetic patients.
Collapse
Affiliation(s)
| | - Clayton Butcher
- Associate Professor at the University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
42
|
Drucker DJ. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. Diabetes Care 2024; 47:1873-1888. [PMID: 38843460 DOI: 10.2337/dci24-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/14/2024] [Indexed: 10/23/2024]
Abstract
The development of glucagon-like peptide 1 receptor agonists (GLP-1RA) for type 2 diabetes and obesity was followed by data establishing the cardiorenal benefits of GLP-1RA in select patient populations. In ongoing trials investigators are interrogating the efficacy of these agents for new indications, including metabolic liver disease, peripheral artery disease, Parkinson disease, and Alzheimer disease. The success of GLP-1-based medicines has spurred the development of new molecular entities and combinations with unique pharmacokinetic and pharmacodynamic profiles, exemplified by tirzepatide, a GIP-GLP-1 receptor coagonist. Simultaneously, investigational molecules such as maritide block the GIP and activate the GLP-1 receptor, whereas retatrutide and survodutide enable simultaneous activation of the glucagon and GLP-1 receptors. Here I highlight evidence establishing the efficacy of GLP-1-based medicines, while discussing data that inform safety, focusing on muscle strength, bone density and fractures, exercise capacity, gastrointestinal motility, retained gastric contents and anesthesia, pancreatic and biliary tract disorders, and the risk of cancer. Rapid progress in development of highly efficacious GLP-1 medicines, and anticipated differentiation of newer agents in subsets of metabolic disorders, will provide greater opportunities for use of personalized medicine approaches to improve the health of people living with cardiometabolic disorders.
Collapse
Affiliation(s)
- Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
Žižka O, Haluzík M, Jude EB. Pharmacological Treatment of Obesity in Older Adults. Drugs Aging 2024; 41:881-896. [PMID: 39514148 PMCID: PMC11554829 DOI: 10.1007/s40266-024-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Obesity is a complex health issue with growing prevalence worldwide. It is also becoming more prevalent in the population of older adults (i.e., 65 years of age and older), affecting frequency and severity as well as other comorbidities, quality of life and consequently, life expectancy. In this article we review currently available data on pharmacotherapy of obesity in the population of older adults and its role in obesity management. Even though there is growing evidence, in particular in the general population, of favourable efficacy and safety profiles of glucagon-like peptide-1 (GLP-1) receptor agonists liraglutide and semaglutide, and recently dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) agonist tirzepatide, concise guidelines for older adults are not available to this day. We further discuss specific approaches to frequently represented phenotype of obesity in older adults, in particular sarcopenic obesity and rationale when to treat and how. In older adults with obesity there is a need for more drug trials focusing not only on weight loss, but also on geriatric endpoints including muscle mass preservation, bone quality and favourable fat distribution changes to get enough data for evidence-based recommendation on obesity treatment in this growing sub-population.
Collapse
Affiliation(s)
- Ondřej Žižka
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Haluzík
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia.
- First Faculty of Medicine, Charles University, Prague, Czechia.
| | - Edward B Jude
- Department of Diabetes and Endocrinology, Tameside and Glossop Integrated Care NHS Foundation Trust and University of Manchester, Ashton under Lyne, UK.
| |
Collapse
|
44
|
Esparham A, Mehri A, Dalili A, Richards J, Khorgami Z. Safety and efficacy of glucagon-like peptide-1 (GLP-1) receptor agonists in patients with weight regain or insufficient weight loss after metabolic bariatric surgery: A systematic review and meta-analysis. Obes Rev 2024; 25:e13811. [PMID: 39134066 DOI: 10.1111/obr.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/13/2024] [Accepted: 07/17/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Weight regain and insufficient weight loss are major challenges after metabolic bariatric surgery (MBS), affecting patients' comorbidities and quality of life. The current systematic review and meta-analysis aim to assess the efficacy and safety of GLP-1 receptor agonists (GLP-1 RA) in patients with weight regain or insufficient weight loss after MBS. METHODS A systematic search was conducted across PubMed, Embase, Scopus, and Web of Science databases to find the relevant studies. RESULTS A total of 19 articles were included. The highest doses of liraglutide and semaglutide were 3 mg per day and 1 mg once weekly, respectively, in the included studies. The mean differences in weight and body mass index after treatment were -7.02 kg or 3.07 kg/m2, -8.65 or -5.22 kg/m2, and -6.99 kg or -3.09 kg/m2 for treatment durations of ≤ 6 months, 6-12 months, and >12 months with liraglutide, respectively. Additionally, weekly semaglutide showed significantly greater weight loss compared to daily liraglutide, with a mean difference of 4.15 kg. Common complications included nausea (19.1%), constipation (8.6%), abdominal pain (3.7%), and vomiting (2.4%). CONCLUSION Using GLP-1 RA is a safe and effective treatment for weight regain and insufficient weight loss after MBS.
Collapse
Affiliation(s)
- Ali Esparham
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Dalili
- Department of General Surgery, School of Medicine, Surgical Oncology Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesse Richards
- Department of Internal Medicine, University of Oklahoma School of Community Medicine, Tulsa, Oklahoma, USA
| | - Zhamak Khorgami
- Department of Surgery, University of Oklahoma, School of Community Medicine, Tulsa, Oklahoma, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
45
|
Mendez CE, Shiffermiller JF, Razzeto A, Hannoush Z. Endocrine Care for the Surgical Patient: Diabetes Mellitus, Thyroid and Adrenal Conditions. Med Clin North Am 2024; 108:1185-1200. [PMID: 39341621 DOI: 10.1016/j.mcna.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Patients with hyperglycemia, thyroid dysfunction, and adrenal insufficiency face increased perioperative risk, which may be mitigated by appropriate management. This review addresses preoperative glycemic control, makes evidence-based recommendations for the increasingly complex perioperative management of noninsulin diabetes medications, and provides guideline-supported strategies for the perioperative management of insulin, including suggested indications for continuous intravenous insulin. The authors propose a strategy for determining when surgery should be delayed in patients with thyroid dysfunction and present a matrix for managing perioperative stress dose corticosteroids based on the limited evidence available.
Collapse
Affiliation(s)
- Carlos E Mendez
- Division of General Internal Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Jason F Shiffermiller
- Division of Hospital Medicine, Department of Internal Medicine, University of Nebraska Medical Center, 986435 Nebraska Medical Center, Omaha, NE 68198-6435, USA
| | - Alejandra Razzeto
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Miami, Miller School of Medicine, FL 33136, USA
| | - Zeina Hannoush
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Miami, Miller School of Medicine, FL 33136, USA
| |
Collapse
|
46
|
Almohareb SN, Alfayez OM, Aljuaid SS, Alshahrani WA, Bakhsh G, Alshammari MK, Al Yami MS, Alshaya OA, Alomran AS, Korayem GB, Almohammed OA. Effectiveness and Safety of GLP-1 Receptor Agonists in Patients with Type 1 Diabetes. J Clin Med 2024; 13:6532. [PMID: 39518671 PMCID: PMC11546400 DOI: 10.3390/jcm13216532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background: GLP-1 receptor agonists (GLP-1RA) are used in the management of type II diabetes mellitus or obesity, although its role in patients with type I diabetes mellitus (T1DM) has been debated. This study aimed to investigate the efficacy and safety of GLP-1RA in patients with T1DM using real-world data. Methods: This multicenter, retrospective study was conducted at three tertiary medical centers in Riyadh, Saudi Arabia. The study followed up patients (>16 years old) with T1DM treated with insulin followed by GLP-1RA add-on therapy. The efficacy outcomes included changes in HbA1c, body weight, and insulin requirements from baseline to each follow-up visit. The main safety outcomes assessed included hypoglycemic events and gastrointestinal (GI) adverse events. Results: The study included 144 patients with a mean age of 33.0 ± 10.1 years. Semaglutide was the most used GLP-1RA (63.9%) followed by liraglutide (34.0%). From baseline to 3-month follow-up, HbA1c (mean difference (MD) = -0.8%; p = 0.0053), weight (MD = -2.4 kg; p = 0.0253), and daily basal insulin dose (MD = -2.1 units; p = 0.0349) were significantly reduced. Likewise, HbA1c (MD = -0.5%; p = 0.0004), weight (MD = -3.6 kg; p < 0.0001), and daily basal insulin (MD = -2.4 units; p = 0.0282) were significantly reduced at the 4-6-month follow-up. The significant reductions in HbA1c, weight, and daily basal insulin levels were consistent for up to 18-month follow-up. Only one patient had a major hypoglycemic event, whereas 8.3% of the patients had GI adverse events. Conclusions: Overall, significant improvements in glycemic control, weight loss, and insulin requirements were observed with the use of GLP-1RA in patients with T1DM, with a limited number of GI adverse events.
Collapse
Affiliation(s)
- Sumaya N. Almohareb
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (S.N.A.); (O.A.A.)
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia;
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Osamah M. Alfayez
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 52571, Saudi Arabia;
| | - Shoroq S. Aljuaid
- Department of Pharmaceutical Care, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia; (S.S.A.); (A.S.A.)
| | - Walaa A. Alshahrani
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia;
| | - Ghalia Bakhsh
- Department of Pharmaceutical Care, King Fahad Medical City, Riyadh 12231, Saudi Arabia; (G.B.); (M.K.A.)
| | - Mohammed K. Alshammari
- Department of Pharmaceutical Care, King Fahad Medical City, Riyadh 12231, Saudi Arabia; (G.B.); (M.K.A.)
| | - Majed S. Al Yami
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (S.N.A.); (O.A.A.)
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia;
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Omar A. Alshaya
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia; (S.N.A.); (O.A.A.)
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia;
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh 11481, Saudi Arabia
| | - Abdullah S. Alomran
- Department of Pharmaceutical Care, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia; (S.S.A.); (A.S.A.)
| | - Ghazwa B. Korayem
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Omar A. Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Pharmacoeconomics Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
47
|
Oteng AB, Liu L, Cui Y, Gavrilova O, Lu H, Chen M, Weinstein LS, Campbell JE, Lewis JE, Gribble FM, Reimann F, Wess J. Activation of Gs signaling in mouse enteroendocrine K cells greatly improves obesity- and diabetes-related metabolic deficits. J Clin Invest 2024; 134:e182325. [PMID: 39436694 DOI: 10.1172/jci182325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Following a meal, glucagon-like peptide 1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), the 2 major incretins promoting insulin release, are secreted from specialized enteroendocrine cells (L and K cells, respectively). Although GIP is the dominant incretin in humans, the detailed molecular mechanisms governing its release remain to be explored. GIP secretion is regulated by the activity of G protein-coupled receptors (GPCRs) expressed by K cells. GPCRs couple to 1 or more specific classes of heterotrimeric G proteins. In the present study, we focused on the potential metabolic roles of K cell Gs. First, we generated a mouse model that allowed us to selectively stimulate K cell Gs signaling. Second, we generated a mouse strain harboring an inactivating mutation of Gnas, the gene encoding the α-subunit of Gs, selectively in K cells. Metabolic phenotyping studies showed that acute or chronic stimulation of K cell Gs signaling greatly improved impaired glucose homeostasis in obese mice and in a mouse model of type 2 diabetes, due to enhanced GIP secretion. In contrast, K cell-specific Gnas-KO mice displayed markedly reduced plasma GIP levels. These data strongly suggest that strategies aimed at enhancing K cell Gs signaling may prove useful for the treatment of diabetes and related metabolic diseases.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
- Center for Research on Genomics and Global Health (CRGGH), National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | | | - Huiyan Lu
- Mouse Transgenic Core Facility, NIDDK, NIH, Bethesda, Maryland, USA
| | - Min Chen
- Signal Transduction Section, Metabolic Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Lee S Weinstein
- Signal Transduction Section, Metabolic Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jo E Lewis
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Frank Reimann
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Barros DR, Hegele RA. Fibroblast growth factor 21: update on genetics and molecular biology. Curr Opin Lipidol 2024:00041433-990000000-00094. [PMID: 39450972 DOI: 10.1097/mol.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW Since its discovery, most research on fibroblast growth factor 21 (FGF21) has focused on its antihyperglycemia properties. However, attention has recently shifted towards elucidating the ability of FGF21 to lower circulating lipid levels and ameliorate liver inflammation and steatosis. We here discuss the physiology of FGF21 and its role in lipid metabolism, with a focus on genetics, which has up until now not been fully appreciated. RECENT FINDINGS New developments have uncovered associations of common small-effect variants of the FGF21 gene, such as the single nucleotide polymorphisms rs2548957 and rs838133, with numerous physiological, biochemical and behavioural phenotypes linked to energy metabolism and liver function. In addition, rare loss-of-function variants of the cellular receptors for FGF21 have been recently associated with severe endocrine and metabolic phenotypes. These associations corroborate the findings from basic studies and preliminary clinical investigations into the therapeutic potential of FGF21 for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertriglyceridemia. Furthermore, recent breakthrough research has begun to dissect mechanisms of a potential FGF21 brain-adipose axis. Such inter-organ communication would be comparable to that seen with other potent metabolic hormones. A deeper understanding of FGF21 could prove to be further beneficial for drug development. SUMMARY FGF21 is a potent regulator of lipid and energy homeostasis and its physiology is currently at the centre of investigative efforts to develop agents targeting hypertriglyceridemia and MASLD.
Collapse
Affiliation(s)
- Daniel R Barros
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
49
|
Pinto S, Viegas J, Cristelo C, Pacheco C, Barros S, Buckley ST, Garousi J, Gräslund T, Santos HA, Sarmento B. Bioengineered Nanomedicines Targeting the Intestinal Fc Receptor Achieve the Improved Glucoregulatory Effect of Semaglutide in a Type 2 Diabetic Mice Model. ACS NANO 2024; 18:28406-28424. [PMID: 39356547 DOI: 10.1021/acsnano.4c11172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The oral administration of the glucagon-like peptide-1 analogue, semaglutide, remains a hurdle due to its limited bioavailability. Herein, neonatal Fc receptor (FcRn)-targeted nanoparticles (NPs) were designed to enhance the oral delivery of semaglutide. The nanocarriers were covalently linked to the FcRn-binding peptide FcBP or the affibody molecule ZFcRn that specifically binds to the human FcRn (hFcRn) in a pH-dependent manner. These FcRn-targeted ligands were selected over the endogenous ligands of the receptor (albumin and IgG) due to their smaller size and simpler structure, which could facilitate the transport of functionalized NPs through the tissues. The capacity of FcRn-targeted semaglutide-NPs in controlling the blood glucose levels was evaluated in an hFcRn transgenic mice model, where type 2 diabetes mellitus (T2DM) was induced via intraperitoneal injection of nicotinamide followed by streptozotocin. The encapsulation of semaglutide into FcRn-targeted NPs was translated in an improved glucoregulatory effect in T2DM-induced mice when compared to the oral free semaglutide or nontargeted NP groups, after daily oral administrations for 7 days. Notably, a similar glucose-lowering response was observed between both FcRn-targeted NPs and the subcutaneous semaglutide groups. An increase in insulin pancreatic content and a recovery in β cell mass were visualized in the mice treated with FcRn-targeted semaglutide-NPs. The biodistribution of fluorescently labeled NPs through the gastrointestinal tract demonstrated that the nanosystems targeting the hFcRn are retained longer in the ileum and colorectum, where the expression of FcRn is more prevalent, than nontargeted NPs. Therefore, FcRn-targeted nanocarriers proved to be an effective platform for improving the pharmacological effect of semaglutide in a T2DM-induced mice model.
Collapse
Affiliation(s)
- Soraia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Juliana Viegas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Cecília Cristelo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Catarina Pacheco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| | - Sofia Barros
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park 1, Måløv 2760, Denmark
| | - Javad Garousi
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 114 17, Sweden
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV Groningen 9713, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Rua Central de Gandra 1317, Gandra 4585-116, Portugal
| |
Collapse
|
50
|
Pellegrini V, La Grotta R, Carreras F, Giuliani A, Sabbatinelli J, Olivieri F, Berra CC, Ceriello A, Prattichizzo F. Inflammatory Trajectory of Type 2 Diabetes: Novel Opportunities for Early and Late Treatment. Cells 2024; 13:1662. [PMID: 39404426 PMCID: PMC11476093 DOI: 10.3390/cells13191662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Low-grade inflammation (LGI) represents a key driver of type 2 diabetes (T2D) and its associated cardiovascular diseases (CVDs). Indeed, inflammatory markers such as hs-CRP and IL-6 predict the development of T2D and its complications, suggesting that LGI already increases before T2D diagnosis and remains elevated even after treatment. Overnutrition, unhealthy diets, physical inactivity, obesity, and aging are all recognized triggers of LGI, promoting insulin resistance and sustaining the pathogenesis of T2D. Once developed, and even before frank appearance, people with T2D undergo a pathological metabolic remodeling, with an alteration of multiple CVD risk factors, i.e., glycemia, lipids, blood pressure, and renal function. In turn, such variables foster a range of inflammatory pathways and mechanisms, e.g., immune cell stimulation, the accrual of senescent cells, long-lasting epigenetic changes, and trained immunity, which are held to chronically fuel LGI at the systemic and tissue levels. Targeting of CVD risk factors partially ameliorates LGI. However, some long-lasting inflammatory pathways are unaffected by common therapies, and LGI burden is still increased in many T2D patients, a phenomenon possibly underlying the residual inflammatory risk (i.e., having hs-CRP > 2 mg/dL despite optimal LDL cholesterol control). On the other hand, selected disease-modifying drugs, e.g., GLP-1RA, seem to also act on the pathogenesis of T2D, curbing the inflammatory trajectory of the disease and possibly preventing it if introduced early. In addition, selected trials demonstrated the potential of canonical anti-inflammatory therapies in reducing the rate of CVDs in patients with this condition or at high risk for it, many of whom had T2D. Since colchicine, an inhibitor of immune cell activation, is now approved for the prevention of CVDs, it might be worth exploring a possible therapeutic paradigm to identify subjects with T2D and an increased LGI burden to treat them with this drug. Upcoming studies will reveal whether disease-modifying drugs reverse early T2D by suppressing sources of LGI and whether colchicine has a broad benefit in people with this condition.
Collapse
Affiliation(s)
- Valeria Pellegrini
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Rosalba La Grotta
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Francesca Carreras
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | - Angelica Giuliani
- Cardiac Rehabilitation Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60127 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60127 Ancona, Italy; (J.S.); (F.O.)
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60127 Ancona, Italy
| | | | - Antonio Ceriello
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (V.P.); (R.L.G.)
| | | |
Collapse
|