1
|
Kamble OS, Chatterjee R, Abishek KG, Chandra J, Alsayari A, Wahab S, Sahebkar A, Kesharwani P, Dandela R. Small molecules targeting mitochondria as an innovative approach to cancer therapy. Cell Signal 2024; 124:111396. [PMID: 39251050 DOI: 10.1016/j.cellsig.2024.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cellular death evasion is a defining characteristic of human malignancies and a significant contributor to therapeutic inefficacy. As a result of oncogenic inhibition of cell death mechanisms, established therapeutic regimens seems to be ineffective. Mitochondria serve as the cellular powerhouses, but they also function as repositories of self-destructive weaponry. Changes in the structure and activities of mitochondria have been consistently documented in cancer cells. In recent years, there has been an increasing focus on using mitochondria as a targeted approach for treating cancer. Considerable attention has been devoted to the development of delivery systems that selectively aim to deliver small molecules called "mitocans" to mitochondria, with the ultimate goal of modulating the physiology of cancer cells. This review summarizes the rationale and mechanism of mitochondrial targeting with small molecules in the treatment of cancer, and their impact on the mitochondria. This paper provides a concise overview of the reasoning and mechanism behind directing treatment towards mitochondria in cancer therapy, with a particular focus on targeting using small molecules. This review also examines diverse small molecule types within each category as potential therapeutic agents for cancer.
Collapse
Affiliation(s)
- Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - K G Abishek
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
2
|
Fan T, Shen L, Huang Y, Wang X, Zhao L, Zhong R, Wang P, Sun G. Lonidamine Increases the Cytotoxic Effect of 1-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea via Energy Inhibition, Disrupting Redox Homeostasis, and Downregulating MGMT Expression in Human Lung Cancer Cell Line. ACS OMEGA 2024; 9:36134-36147. [PMID: 39220482 PMCID: PMC11360010 DOI: 10.1021/acsomega.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer ranks as the second most diagnosed cancer and the leading cause of cancer-related deaths worldwide. Novel chemotherapeutic strategies are crucial to efficiently target tumor cells while minimizing toxicity to normal cells. In this study, we proposed a combination strategy using energy blocker lonidamine (LND) and cytotoxic drug nimustine (ACNU, 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea) to enhance the killing of a human lung cancer cell line and investigated the potential chemo-sensitizing mechanism of LND. LND was found to remarkably increase the cytotoxicity of ACNU to A549 and H1299 cells without significantly affecting normal lung BEAS2B cells. The combination of LND and ACNU also produced significant effects on cell apoptosis, colony formation, cell migration, and invasion assays compared to single drug treatment. Mechanistically, LND decreased intracellular ATP levels by inhibiting glycolysis and inducing mitochondrial dysfunction. Furthermore, the combination of LND and ACNU could intensify cellular oxidative stress, decrease cellular GSH contents, and increase reactive oxygen species (ROS) production. Notably, LND alone dramatically downregulated the expression of DNA repair protein MGMT (O6-methylguanine-DNA methyltransferase), enhancing DNA interstrand cross-link formation induced by ACNU. Overall, LND represents a potential chemo-sensitizer to enhance ACNU therapy through energy inhibition, disrupting redox homeostasis and downregulating MGMT expression in human lung cancer cell line under preclinical and clinical background.
Collapse
Affiliation(s)
- Tengjiao Fan
- Department
of Medical Technology, Beijing Pharmaceutical
University of Staff and Workers, Beijing 100079, P. R. China
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Lin Shen
- Department
of Dermatology, the First Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Yaxin Huang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Xin Wang
- Department
of Clinical Trials Center, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P. R. China
| | - Lijiao Zhao
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Peng Wang
- Department
of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Guohui Sun
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| |
Collapse
|
3
|
Forbes M, Kempa R, Mastrobuoni G, Rayman L, Pietzke M, Bayram S, Arlt B, Spruessel A, Deubzer HE, Kempa S. L-Glyceraldehyde Inhibits Neuroblastoma Cell Growth via a Multi-Modal Mechanism on Metabolism and Signaling. Cancers (Basel) 2024; 16:1664. [PMID: 38730615 PMCID: PMC11083149 DOI: 10.3390/cancers16091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Glyceraldehyde (GA) is a three-carbon monosaccharide that can be present in cells as a by-product of fructose metabolism. Bruno Mendel and Otto Warburg showed that the application of GA to cancer cells inhibits glycolysis and their growth. However, the molecular mechanism by which this occurred was not clarified. We describe a novel multi-modal mechanism by which the L-isomer of GA (L-GA) inhibits neuroblastoma cell growth. L-GA induces significant changes in the metabolic profile, promotes oxidative stress and hinders nucleotide biosynthesis. GC-MS and 13C-labeling was employed to measure the flow of carbon through glycolytic intermediates under L-GA treatment. It was found that L-GA is a potent inhibitor of glycolysis due to its proposed targeting of NAD(H)-dependent reactions. This results in growth inhibition, apoptosis and a redox crisis in neuroblastoma cells. It was confirmed that the redox mechanisms were modulated via L-GA by proteomic analysis. Analysis of nucleotide pools in L-GA-treated cells depicted a previously unreported observation, in which nucleotide biosynthesis is significantly inhibited. The inhibitory action of L-GA was partially relieved with the co-application of the antioxidant N-acetyl-cysteine. We present novel evidence for a simple sugar that inhibits cancer cell proliferation via dysregulating its fragile homeostatic environment.
Collapse
Affiliation(s)
- Martin Forbes
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Richard Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Guido Mastrobuoni
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Liam Rayman
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Matthias Pietzke
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Mass Spectrometry Facility, MaxPlanck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Safak Bayram
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Birte Arlt
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Annika Spruessel
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Invalidenstr. 80, 10115 Berlin, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC), Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Stefan Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| |
Collapse
|
4
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
6
|
Naik HM, Kumar S, Reddy JV, Gonzalez JE, McConnell BO, Dhara VG, Wang T, Yu M, Antoniewicz MR, Betenbaugh MJ. Chemical inhibitors of hexokinase-2 enzyme reduce lactate accumulation, alter glycosylation processing, and produce altered glycoforms in CHO cell cultures. Biotechnol Bioeng 2023; 120:2559-2577. [PMID: 37148536 DOI: 10.1002/bit.28417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Chinese hamster ovary (CHO) cells, predominant hosts for recombinant biotherapeutics production, generate lactate as a major glycolysis by-product. High lactate levels adversely impact cell growth and productivity. The goal of this study was to reduce lactate in CHO cell cultures by adding chemical inhibitors to hexokinase-2 (HK2), the enzyme catalyzing the conversion of glucose to glucose 6-phosphate, and examine their impact on lactate accumulation, cell growth, protein titers, and N-glycosylation. Five inhibitors of HK2 enzyme at different concentrations were evaluated, of which 2-deoxy- d-glucose (2DG) and 5-thio- d-glucose (5TG) successfully reduced lactate accumulation with only limited impacts on CHO cell growth. Individual 2DG and 5TG supplementation led to a 35%-45% decrease in peak lactate, while their combined supplementation resulted in a 60% decrease in peak lactate. Inhibitor supplementation led to at least 50% decrease in moles of lactate produced per mol of glucose consumed. Recombinant EPO-Fc titers peaked earlier relative to the end of culture duration in supplemented cultures leading to at least 11% and as high as 32% increase in final EPO-Fc titers. Asparagine, pyruvate, and serine consumption rates also increased in the exponential growth phase in 2DG and 5TG treated cultures, thus, rewiring central carbon metabolism due to low glycolytic fluxes. N-glycan analysis of EPO-Fc revealed an increase in high mannose glycans from 5% in control cultures to 25% and 37% in 2DG and 5TG-supplemented cultures, respectively. Inhibitor supplementation also led to a decrease in bi-, tri-, and tetra-antennary structures and up to 50% lower EPO-Fc sialylation. Interestingly, addition of 2DG led to the incorporation of 2-deoxy-hexose (2DH) on EPO-Fc N-glycans and addition of 5TG resulted in the first-ever observed N-glycan incorporation of 5-thio-hexose (5TH). Six percent to 23% of N-glycans included 5TH moieties, most likely 5-thio-mannose and/or 5-thio-galactose and/or possibly 5-thio-N-acetylglucosamine, and 14%-33% of N-glycans included 2DH moieties, most likely 2-deoxy-mannose and/or 2-deoxy-galactose, for cultures treated with different concentrations of 5TG and 2DG, respectively. Our study is the first to evaluate the impact of these glucose analogs on CHO cell growth, protein production, cell metabolism, N-glycosylation processing, and formation of alternative glycoforms.
Collapse
Affiliation(s)
- Harnish Mukesh Naik
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Brian O McConnell
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, Delaware, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tiexin Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcella Yu
- Process Science Cell Culture, Boehringer Ingelheim Fremont, Inc., Fremont, California, USA
- currently at Upstream Process Development, Sutro Biopharma, South San Francisco, California, USA
| | - Maciek R Antoniewicz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Pourbaghi M, Haghani L, Zhao K, Karimi A, Marinelli B, Erinjeri JP, Geschwind JFH, Yarmohammadi H. Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options. Curr Oncol 2023; 30:6609-6622. [PMID: 37504345 PMCID: PMC10377758 DOI: 10.3390/curroncol30070485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatocellular cancer (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death. Locoregional therapies, including transarterial embolization (TAE: bland embolization), chemoembolization (TACE), and radioembolization, have demonstrated survival benefits when treating patients with unresectable HCC. TAE and TACE occlude the tumor's arterial supply, causing hypoxia and nutritional deprivation and ultimately resulting in tumor necrosis. Embolization blocks the aerobic metabolic pathway. However, tumors, including HCC, use the "Warburg effect" and survive hypoxia from embolization. An adaptation to hypoxia through the Warburg effect, which was first described in 1956, is when the cancer cells switch to glycolysis even in the presence of oxygen. Hence, this is also known as aerobic glycolysis. In this article, the adaptation mechanisms of HCC, including glycolysis, are discussed, and anti-glycolytic treatments, including systemic and locoregional options that have been previously reported or have the potential to be utilized in the treatment of HCC, are reviewed.
Collapse
Affiliation(s)
- Miles Pourbaghi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Leila Haghani
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Ken Zhao
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Anita Karimi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Brett Marinelli
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Joseph P. Erinjeri
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | | | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| |
Collapse
|
9
|
Lei P, Wang W, Sheldon M, Sun Y, Yao F, Ma L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers (Basel) 2023; 15:3390. [PMID: 37444501 PMCID: PMC10341343 DOI: 10.3390/cancers15133390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The involvement of glucose metabolic reprogramming in breast cancer progression, metastasis, and therapy resistance has been increasingly appreciated. Studies in recent years have revealed molecular mechanisms by which glucose metabolic reprogramming regulates breast cancer. To date, despite a few metabolism-based drugs being tested in or en route to clinical trials, no drugs targeting glucose metabolism pathways have yet been approved to treat breast cancer. Here, we review the roles and mechanisms of action of glucose metabolic reprogramming in breast cancer progression and drug resistance. In addition, we summarize the currently available metabolic inhibitors targeting glucose metabolism and discuss the challenges and opportunities in targeting this pathway for breast cancer treatment.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzhou Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston TX 77030, USA
| |
Collapse
|
10
|
Venturini G, Alvim JM, Padilha K, Toepfer CN, Gorham JM, Wasson LK, Biagi D, Schenkman S, Carvalho VM, Salgueiro JS, Cardozo KHM, Krieger JE, Pereira AC, Seidman JG, Seidman CE. Cardiomyocyte infection by Trypanosoma cruzi promotes innate immune response and glycolysis activation. Front Cell Infect Microbiol 2023; 13:1098457. [PMID: 36814444 PMCID: PMC9940271 DOI: 10.3389/fcimb.2023.1098457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Chagas cardiomyopathy, a disease caused by Trypanosoma cruzi (T. cruzi) infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy. Methods To investigate the effects of T. cruzi on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses. Results Analyses of multiomic data revealed that cardiomyocyte infection caused a rapid increase in genes and proteins related to activation innate and adaptive immune systems and pathways, including alpha and gamma interferons, HIF-1α signaling, and glycolysis. These responses resemble prototypic responses observed in pathogen-activated immune cells. Infection also caused an activation of glycolysis that was dependent on HIF-1α signaling. Using gene editing and pharmacological inhibitors, we found that T. cruzi uptake was mediated in part by the glucose-facilitated transporter GLUT4 and that the attenuation of glycolysis, HIF-1α activation, or GLUT4 expression decreased T. cruzi infection. In contrast, pre-activation of pro-inflammatory immune responses with LPS resulted in increased infection rates. Conclusion These findings suggest that T. cruzi exploits a HIF-1α-dependent, cardiomyocyte-intrinsic stress-response activation of glycolysis to promote intracellular infection and replication. These chronic immuno-metabolic responses by cardiomyocytes promote dysfunction, cell death, and the emergence of cardiomyopathy.
Collapse
Affiliation(s)
- Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Juliana M. Alvim
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Lauren K. Wasson
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Howard Hughes Medical Institute, Chevy Chase, MD, United States,*Correspondence: Christine E. Seidman,
| |
Collapse
|
11
|
Mendes MIP, Arnaut LG. Redaporfin Development for Photodynamic Therapy and its Combination with Glycolysis Inhibitors. Photochem Photobiol 2022; 99:769-776. [PMID: 36564949 DOI: 10.1111/php.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Photodynamic therapy (PDT) remains an underutilized treatment modality in oncology. Many efforts have been dedicated to the development of better photosensitizers, better formulations and delivery methods, rigorous planning of light dose distribution in tissues, mechanistic insight, improvement of treatment protocols and combinations with other therapeutic agents. Hopefully, progress in all these fields will eventually expand the use of PDT. Here we offer a brief review of our own contribution to the development of a photosensitizer for PDT - redaporfin - currently in Phase II clinical trials, and present data on its combination with two glycolysis inhibitors: 2-deoxyglucose and 3-bromopyruvate. We show that 3-bromopyruvate is more cytotoxic to a carcinoma cell line (CT26) than to a normal fibroblast (3T3) cell line, and that this selectivity is maintained in the in vitro combination with redaporfin-PDT. This combination was investigated in BALB/c mice with large subcutaneous CT26 tumors and it is shown that the cure rate in the combination is higher (33% cures) than in PDT (11% cures) or in 3-bromopyruvate (no cures) alone. The combination of redaporfin-PDT with 3-bromopyruvate illustrates the potential of combination therapies and how PDT benefits can be enhanced by systemic drugs with complementary targets.
Collapse
Affiliation(s)
| | - Luis G Arnaut
- CQC-IMS, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers (Basel) 2022; 14:cancers14194568. [PMID: 36230492 PMCID: PMC9559313 DOI: 10.3390/cancers14194568] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Reprogramming of glucose metabolism is a hallmark of cancer and can be targeted by therapeutic agents. Some metabolism regulators, such as ivosidenib and enasidenib, have been approved for cancer treatment. Currently, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Furthermore, some natural products have shown efficacy in killing tumor cells by regulating glucose metabolism, offering novel therapeutic opportunities in cancer. However, most of them have failed to be translated into clinical applications due to low selectivity, high toxicity, and side effects. Recent studies suggest that combining glucose metabolism modulators with chemotherapeutic drugs, immunotherapeutic drugs, and other conventional anticancer drugs may be a future direction for cancer treatment. Abstract Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.
Collapse
|
13
|
Beygi F, Mostoufi A, Mojaddami A. Novel Hydrazone Derivatives of 3-Bromopyruvate: Synthesis, Evaluation of the Cytotoxic Effects, Molecular Docking and ADME Studies. Chem Biodivers 2022; 19:e202100754. [PMID: 35427437 DOI: 10.1002/cbdv.202100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
A series of 3-bromopyruvate (3-BP) derivatives were synthesized to develop new potent anticancer agents. The chemical structures of the compounds were characterized using FT-IR, 1 H-, 13 C-NMR spectroscopy, and elemental analysis (CHN). Their cytotoxic activities were investigated against four cancer cell lines, including colon (SW1116), breast (MDA-MB-231), lung (A549), and liver (HepG2) cancer cell lines. Among the synthesized compounds, 3b showed promising cytotoxic activity compared to 3-BP, with IC50 values of 16.3 μM, 19.1 μM, 27.8 μM, and 14.5 μM against A549, MDA-MB-231, SW1116 and, HepG2 cell lines, respectively. Furthermore, the effect of these compounds on MCF-10A (a normal breast cell lines) was investigated to determine their selectivity between tumorigenic and non-tumorigenic cells. Since the 3-BP inhibits hexokinase II (HK II), molecular docking of 3-BP derivatives was carried out using AutoDock 4.2. The binding energies of these derivatives were greater than 3-BP, indicating that they had a higher affinity for HK II. For validation of docking, a 40 ns MD simulation was performed. SwissADME was used to predict pharmacokinetics, drug-likeness, and ADME parameters of the screened compounds. The results demonstrated that these derivatives are suitable candidates for developing orally potent HK II inhibitors.
Collapse
Affiliation(s)
- Farzaneh Beygi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azar Mostoufi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ayyub Mojaddami
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Nikravesh H, Khodayar MJ, Behmanesh B, Mahdavinia M, Teimoori A, Alboghobeish S, Zeidooni L. The combined effect of dichloroacetate and 3-bromopyruvate on glucose metabolism in colorectal cancer cell line, HT-29; the mitochondrial pathway apoptosis. BMC Cancer 2021; 21:903. [PMID: 34364387 PMCID: PMC8349486 DOI: 10.1186/s12885-021-08564-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Background 5-Fluorouracil (5-FU) is regarded as the first line treatment for colorectal cancer; however, its effectiveness is limited by drug resistance. The ultimate goal of cancer therapy is induction of cancer cell death to achieve an effective outcome with minimal side effects. The present work aimed to assess the anti-cancer activities of mitocans which can be considered as an effective anticancer drug due to high specificity in targeting cancer cells. Methods MTT (3–4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay was performed to determine the effects of our mitocans on cell viability and cell death. Apoptosis and necrosis, caspase 3 activity, mitochondrial membrane potential and ROS production in HT29 cell lines were analyzed by ApopNexin™ FITC/PI Kit, Caspase- 3 Assay Kit, MitoTracker Green and DCFH-DA, respectively. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) genes in HT29 cell lines. Results Treatment with mitocans (3Br-P + DCA) inhibited the growth of HT29. Moreover, 3Br-P + DCA significantly induced apoptosis and necrosis, activation of caspase 3 activity, depolarize the mitochondrial membrane potential, and ROS production. At a molecular level, 3Br-P + DCA treatment remarkably down-regulated the expression of Bcl-2, while up-regulated the expression of Bax. Conclusion Mitocans, in particular the combined drug, 3Br-P + DCA, could be regarded and more evaluated as a safe and effective compound for CRC treatment. Targeting hexokinase and pyruvate dehydrogenase kinase enzymes may be an option to overcome 5-FU -mediated chemo-resistant in colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08564-3.
Collapse
Affiliation(s)
- Hojatolla Nikravesh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center,Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Behmanesh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Toxicology Research Center,Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Cal M, Matyjaszczyk I, Filik K, Ogórek R, Ko Y, Ułaszewski S. Mitochondrial Function Are Disturbed in the Presence of the Anticancer Drug, 3-Bromopyruvate. Int J Mol Sci 2021; 22:ijms22126640. [PMID: 34205737 PMCID: PMC8235118 DOI: 10.3390/ijms22126640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
3-bromopuryvate (3-BP) is a compound with unique antitumor activity. It has a selective action against tumor cells that exhibit the Warburg effect. It has been proven that the action of 3-BP is pleiotropic: it acts on proteins, glycolytic enzymes, reduces the amount of ATP, induces the formation of ROS (reactive oxygen species), and induces nuclear DNA damage. Mitochondria are important organelles for the proper functioning of the cell. The production of cellular energy (ATP), the proper functioning of the respiratory chain, or participation in the production of amino acids are one of the many functions of mitochondria. Here, for the first time, we show on the yeast model that 3-BP acts in the eukaryotic cell also by influence on mitochondria and that agents inhibiting mitochondrial function can potentially be used in cancer therapy with 3-BP. We show that cells with functional mitochondria are more resistant to 3-BP than rho0 cells. Using an MTT assay (a colorimetric assay for assessing cell metabolic activity), we demonstrated that 3-BP decreased mitochondrial activity in yeast in a dose-dependent manner. 3-BP induces mitochondrial-dependent ROS generation which results in ∆sod2, ∆por1, or ∆gpx1 mutant sensitivity to 3-BP. Probably due to ROS mtDNA lesions rise during 3-BP treatment. Our findings may have a significant impact on the therapy with 3-BP.
Collapse
Affiliation(s)
- Magdalena Cal
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
- Correspondence: ; Tel.: +48-71-375-6269
| | - Irwin Matyjaszczyk
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
| | - Karolina Filik
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
| | - Young Ko
- KoDiscovery, LLC, Baltimore, MD 21202, USA;
| | - Stanisław Ułaszewski
- Department of Mycology and Genetics, University of Wroclaw, 51-148 Wroclaw, Poland; (I.M.); (R.O.); (S.U.)
| |
Collapse
|
16
|
Petricciuolo M, Davidescu M, Fettucciari K, Gatticchi L, Brancorsini S, Roberti R, Corazzi L, Macchioni L. The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells. Heliyon 2020; 6:e05741. [PMID: 33364504 PMCID: PMC7753915 DOI: 10.1016/j.heliyon.2020.e05741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of tumour cells sustains cancer progression. Similar to other cancer cells, glioblastoma cells exhibit an increased glycolytic flow, which encourages the use of antiglycolytics as an effective complementary therapy. We used the antiglycolytic 3-bromopyruvate (3BP) as a metabolic modifier to treat U118 glioblastoma cells and investigated the toxic effects and the conditions to increase drug effectiveness at the lowest concentration. Cellular vitality was not affected by 3BP concentrations lower than 40 μM, although p-Akt dephosphorylation, p53 degradation, and ATP reduction occurred already at 30 μM 3BP. ROS generated in mitochondria were enhanced at 30 μM 3BP, possibly by unbalancing their generation and their disposal because of glutathione peroxidase inhibition. ROS triggered JNK and ERK phosphorylation, and cyt c release outside mitochondria, not accompanied by caspases-9 and -3 activation, probably due to 3BP-dependent alkylation of cysteine residues at caspase-9 catalytic site. To explore the possibility of sensitizing cells to 3BP treatment, we exploited 3BP effects on mitochondria by using 30 μM 3BP in association with antimycin A or menadione concentrations that in themselves exhibit poor toxicity. 3BP effect on cyt c release and cell vitality loss was potentiated due the greater oxidative stress induced by antimycin or menadione association with 3BP, supporting a preeminent role of mitochondrial ROS in 3BP toxicity. Indeed, the scavenger of mitochondrial superoxide MitoTEMPO counteracted 3BP-induced cyt c release and weakened the potentiating effect of 3BP/antimycin association. In conclusion, the biochemical mechanisms leading U118 glioblastoma cells to viability loss following 3BP treatment rely on mitochondrial ROS-dependent pathways. Their potentiation at low 3BP concentrations is consistent with the goal to minimize the toxic effect of the drug towards non-cancer cells.
Collapse
Affiliation(s)
- Maya Petricciuolo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Magdalena Davidescu
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
17
|
Development and Evaluation of Paclitaxel and Curcumin Dry Powder for Inhalation Lung Cancer Treatment. Pharmaceutics 2020; 13:pharmaceutics13010009. [PMID: 33375181 PMCID: PMC7822152 DOI: 10.3390/pharmaceutics13010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the effort to develop efficient targeted drug delivery for lung cancer treatment, the outcome remains unsatisfactory with a survival rate of 15% after 5 years of diagnosis. Inhalation formulation is an ideal alternative that could ensure the direct deposition of chemotherapeutics to the lungs. However, the design of an inhalable formulation that could simultaneously achieve a high local chemotherapeutic dose to the solid tumor and exert low pulmonary toxicities is a challenge, as the presence of 10–30% of chemotherapeutics in the lung is sufficient to induce toxicity. Therefore, this study aimed to develop a simple dry powder inhalation (DPI) formulation containing a model chemotherapeutic agent (paclitaxel, PTX) and a natural antioxidant (curcumin, CUR) that acts to protect healthy lung cells from injury during direct lung delivery. The co-jet-milling of CUR and PTX resulted in formulations with suitable aerosol performance, as indicated in the high fine particle fractions (FPF) (>60%) and adequate mass median aerodynamic diameter (MMAD). The CUR/PTX combination showed a more potent cytotoxic effect against lung cancer cells. This is evident from the induction of apoptosis/necrotic cell death and G2/M cell cycle arrests in both A549 and Calu-3 cells. The increased intracellular ROS, mitochondrial depolarization and reduced ATP content in A549 and Calu-3 cells indicated that the actions of CUR and PTX were associated with mitochondrial oxidative stress. Interestingly, the presence of CUR is crucial to neutralize the cytotoxic effects of PTX against healthy cells (Beas-2B), and this is dose-dependent. This study presents a simple approach to formulating an effective DPI formulation with preferential cytotoxicity towards lung cancer.
Collapse
|
18
|
Fendt SM, Frezza C, Erez A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov 2020; 10:1797-1807. [PMID: 33139243 PMCID: PMC7710573 DOI: 10.1158/2159-8290.cd-20-0844] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells continuously rewire their metabolism to fulfill their need for rapid growth and survival while subject to changes in environmental cues. Thus, a vital component of a cancer cell lies in its metabolic adaptability. The constant demand for metabolic alterations requires flexibility, that is, the ability to utilize different metabolic substrates; as well as plasticity, that is, the ability to process metabolic substrates in different ways. In this review, we discuss how dynamic changes in cancer metabolism affect tumor progression and the consequential implications for cancer therapy. SIGNIFICANCE: Recognizing cancer dynamic metabolic adaptability as an entity can lead to targeted therapy that is expected to decrease drug resistance.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
19
|
Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, Wong ALA. Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules 2020; 25:molecules25204831. [PMID: 33092283 PMCID: PMC7588013 DOI: 10.3390/molecules25204831] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting altered tumour metabolism is an emerging therapeutic strategy for cancer treatment. The metabolic reprogramming that accompanies the development of malignancy creates targetable differences between cancer cells and normal cells, which may be exploited for therapy. There is also emerging evidence regarding the role of stromal components, creating an intricate metabolic network consisting of cancer cells, cancer-associated fibroblasts, endothelial cells, immune cells, and cancer stem cells. This metabolic rewiring and crosstalk with the tumour microenvironment play a key role in cell proliferation, metastasis, and the development of treatment resistance. In this review, we will discuss therapeutic opportunities, which arise from dysregulated metabolism and metabolic crosstalk, highlighting strategies that may aid in the precision targeting of altered tumour metabolism with a focus on combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yaw Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
| | - Andrea L. A. Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
20
|
Braun LA, Varpetyan EE, Zav’yalov GA, Kulikov FV, Marievskii VE, Tyul’ganova DA, Shishnenko AO, Stepanova DS, Shimanovskii NL. Metabolic Enzymes: New Targets for the Design of Antitumor Drugs. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Chen X, Shen R, Liu S, Xiao X, Yan J, Zhang Y, Jiang Z, Nie B, Liu J. The sensitive detection of single-cell secreted lactic acid for glycolytic inhibitor screening with a microdroplet biosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3250-3259. [PMID: 32930188 DOI: 10.1039/d0ay00633e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lactic acid (LA) plays an important role in the tumor metabolism and malignant progression of various cancers. Herein, we have developed a one-step, wash-free microfluidic approach with droplet biosensors for the sensitive detection of LA secreted by a single tumor cell. Our assay integrates the enzyme-assisted chemical conversion of LA in small-volume (4.2 nL) droplets for fluorescence signal readout. The microdroplet assay achieved a limit of detection of 1.02 μM and was more sensitive than the commercial ELISA kit by nearly two orders of magnitude. A good specificity has been demonstrated for this assay by testing various ions and biomolecules from the culture medium. This droplet assay allows us to acquire the profiles of the lactic acid secretion of tumor cells under the influence of glycolytic inhibitors at the single-cell level. It offers a useful research tool to study the cell-to-cell differences of LA secretion and glycolytic inhibitor screening for cancer research.
Collapse
Affiliation(s)
- Xuyue Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Rui Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Xiang Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Jun Yan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Yiqiu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Zhongyun Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
22
|
The Anticancer Drug 3-Bromopyruvate Induces DNA Damage Potentially Through Reactive Oxygen Species in Yeast and in Human Cancer Cells. Cells 2020; 9:cells9051161. [PMID: 32397119 PMCID: PMC7290944 DOI: 10.3390/cells9051161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
3-bromopyruvate (3-BP) is a small molecule with anticancer and antimicrobial activities. 3-BP is taken up selectively by cancer cells’ mono-carboxylate transporters (MCTs), which are highly overexpressed by many cancers. When 3-BP enters cancer cells it inactivates several glycolytic and mitochondrial enzymes, leading to ATP depletion and the generation of reactive oxygen species. While mechanisms of 3-BP uptake and its influence on cell metabolism are well understood, the impact of 3-BP at certain concentrations on DNA integrity has never been investigated in detail. Here we have collected several lines of evidence suggesting that 3-BP induces DNA damage probably as a result of ROS generation, in both yeast and human cancer cells, when its concentration is sufficiently low and most cells are still viable. We also demonstrate that in yeast 3-BP treatment leads to generation of DNA double-strand breaks only in S-phase of the cell cycle, possibly as a result of oxidative DNA damage. This leads to DNA damage, checkpoint activation and focal accumulation of the DNA response proteins. Interestingly, in human cancer cells exposure to 3-BP also induces DNA breaks that trigger H2A.X phosphorylation. Our current data shed new light on the mechanisms by which a sufficiently low concentration of 3-BP can induce cytotoxicity at the DNA level, a finding that might be important for the future design of anticancer therapies.
Collapse
|
23
|
Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R, Peng Y. 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol 2020; 177:113988. [PMID: 32330495 DOI: 10.1016/j.bcp.2020.113988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Chloroethylnitrosoureas (CENUs) are bifunctional antitumor alkylating agents, which exert their antitumor activity through inducing the formation of dG-dC interstrand crosslinks (ICLs) within DNA double strand. However, the complex process of tumor biology enables tumor cells to escape the killing triggered by CENUs, as for instance with the detoxifying activity of O6-methylguanine DNA methyltransferase (MGMT) to accomplish DNA damage repair. Considering the fact that most tumor cells highly depend on aerobic glycolysis to provide energy for survival even in the presence of oxygen (Warburg effect), inhibition of aerobic glycolysis may be an attractive strategy to overcome the resistance and improve the chemotherapeutic effects of CENUs. Especially, 3-bromopyruvate (3-BrPA), a small molecule alkylating agent, has been emerged as an effective glycolytic inhibitor (energy blocker) in cancer treatment. In view of its tumor specificity and inhibition on cellular multiple targets, it is likely to reduce the chemoresistance when chemotherapeutic drugs are combined with 3-BrPA. In this study, we investigated the effects of 3-BrPA on the chemosensitivity of two human hepatocellular carcinoma (HCC) cell lines to the cytotoxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and the underlying molecular mechanism. The sensitivity of SMMC-7721 and HepG2 cells to BCNU was significantly increased by 2 h pretreatment with micromolar dosage of 3-BrPA. Moreover, 3-BrPA decreased the cellular ATP and GSH levels, and extracellular lactate excreted by tumor cells, and the effects were more effective when 3-BrPA was combined with BCNU. Cellular hexokinase-II (HK-II) activity was also reduced after exposure to the treatment of 3-BrPA plus BCNU. Based on the above results, the effects of 3-BrPA on the formation of dG-dC ICLs induced by BCNU was investigated by stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results indicated that BCNU produced higher levels of dG-dC ICLs in SMMC-7721 and HepG2 cells pretreated with 3-BrPA compared to that without 3-BrPA pretreatment. Notably, in MGMT-deficient HepG2 cells, the levels of dG-dC ICLs were significantly higher than MGMT-proficient SMMC-7721 cells. In general, these findings revealed that 3-BrPA, as an effective glycolytic inhibitor, may be considered as a potential clinical chemosensitizer to optimize the therapeutic index of CENUs.
Collapse
Affiliation(s)
- Xiaodong Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yaxin Huang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yuxing Hao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaoyu Tang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
24
|
Wang X, Wang Y, Zhang Z, Huang M, Fei Y, Ma J, Mi L. Discriminating different grades of cervical intraepithelial neoplasia based on label-free phasor fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1977-1990. [PMID: 32341861 PMCID: PMC7173885 DOI: 10.1364/boe.386999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 05/06/2023]
Abstract
This study proposed label-free fluorescence lifetime imaging and phasor analysis methods to discriminate different grades of cervical intraepithelial neoplasia (CIN). The human cervical tissue lesions associated with cellular metabolic abnormalities were detected by the status changes of important coenzymes in cells and tissues, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD). Fluorescence lifetime imaging microscopy (FLIM) was used to study human cervical tissues, human cervical epithelial cells, and standard samples. Phasor analysis was applied to reveal the interrelation between the metabolic changes and cancer development, which can distinguish among different stages of cervical lesions from low risk to high risk. This approach also possessed high sensitivity, especially for healthy sites of CIN3 tissues, and indicated the dominance of the glycolytic pathway over oxidative phosphorylation in high-grade cervical lesions. This highly adaptive, sensitive, and rapid diagnostic tool exhibits a great potential for cervical precancer diagnosis.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
- Contributed equally
| | - Yulan Wang
- Department of Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
- Contributed equally
| | - Zixiao Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Maojia Huang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
- The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Green Photoelectron Platform, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
25
|
Garcia SN, Guedes RC, Marques MM. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem 2020; 26:7285-7322. [PMID: 30543165 DOI: 10.2174/0929867326666181213092652] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Glycolysis is a tightly regulated process in which several enzymes, such as Hexokinases (HKs), play crucial roles. Cancer cells are characterized by specific expression levels of several isoenzymes in different metabolic pathways and these features offer possibilities for therapeutic interventions. Overexpression of HKs (mostly of the HK2 isoform) have been consistently reported in numerous types of cancer. Moreover, deletion of HK2 has been shown to decrease cancer cell proliferation without explicit side effects in animal models, which suggests that targeting HK2 is a viable strategy for cancer therapy. HK2 inhibition causes a substantial decrease of glycolysis that affects multiple pathways of central metabolism and also destabilizes the mitochondrial outer membrane, ultimately enhancing cell death. Although glycolysis inhibition has met limited success, partly due to low selectivity for specific isoforms and excessive side effects of the reported HK inhibitors, there is ample ground for progress. The current review is focused on HK2 inhibition, envisaging the development of potent and selective anticancer agents. The information on function, expression, and activity of HKs is presented, along with their structures, known inhibitors, and reported effects of HK2 ablation/inhibition. The structural features of the different isozymes are discussed, aiming to stimulate a more rational approach to the design of selective HK2 inhibitors with appropriate drug-like properties. Particular attention is dedicated to a structural and sequence comparison of the structurally similar HK1 and HK2 isoforms, aiming to unveil differences that could be explored therapeutically. Finally, several additional catalytic- and non-catalytic roles on different pathways and diseases, recently attributed to HK2, are reviewed and their implications briefly discussed.
Collapse
Affiliation(s)
- Sara N Garcia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
26
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
27
|
Yoo JJ, Yu SJ, Na J, Kim K, Cho YY, Lee YB, Cho EJ, Lee JH, Kim YJ, Youn H, Yoon JH. Hexokinase-II Inhibition Synergistically Augments the Anti-tumor Efficacy of Sorafenib in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20061292. [PMID: 30875800 PMCID: PMC6471302 DOI: 10.3390/ijms20061292] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to examine whether inhibition of hexokinase (HK)-II activity enhances the efficacy of sorafenib in in-vivo models of hepatocellular carcinoma (HCC), and to evaluate the prognostic implication of HK-II expression in patients with HCC. We used 3-bromopyruvate (3-BP), a HK-II inhibitor to target HK-II. The human HCC cell line was tested as both subcutaneous and orthotopic tumor xenograft models in BALB/c nu/nu mice. The prognostic role of HK-II was evaluated in data from HCC patients in The Cancer Genome Atlas (TCGA) database and validated in patients treated with sorafenib. Quantitative real-time PCR, western blot analysis, and immunohistochemical staining revealed that HK-II expression is upregulated in the presence of sorafenib. Further analysis of the endoplasmic reticulum-stress network model in two different murine HCC models showed that the introduction of additional stress by 3-BP treatment synergistically increased the in vivo/vitro efficacy of sorafenib. We found that HCC patients with increased HK-II expression in the TCGA database showed poor overall survival, and also confirmed similar results for TCGA database HCC patients who had undergone sorafenib treatment. These results suggest that HK-II is a promising therapeutic target to enhance the efficacy of sorafenib and that HK-II expression might be a prognostic factor in HCC.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do 14584, Korea.
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Juri Na
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Kyungmin Kim
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Young Youn Cho
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul 03080, Korea.
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea.
| |
Collapse
|
28
|
Tumor Energy Metabolism and Potential of 3-Bromopyruvate as an Inhibitor of Aerobic Glycolysis: Implications in Tumor Treatment. Cancers (Basel) 2019; 11:cancers11030317. [PMID: 30845728 PMCID: PMC6468516 DOI: 10.3390/cancers11030317] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor formation and growth depend on various biological metabolism processes that are distinctly different with normal tissues. Abnormal energy metabolism is one of the typical characteristics of tumors. It has been proven that most tumor cells highly rely on aerobic glycolysis to obtain energy rather than mitochondrial oxidative phosphorylation (OXPHOS) even in the presence of oxygen, a phenomenon called “Warburg effect”. Thus, inhibition of aerobic glycolysis becomes an attractive strategy to specifically kill tumor cells, while normal cells remain unaffected. In recent years, a small molecule alkylating agent, 3-bromopyruvate (3-BrPA), being an effective glycolytic inhibitor, has shown great potential as a promising antitumor drug. Not only it targets glycolysis process, but also inhibits mitochondrial OXPHOS in tumor cells. Excellent antitumor effects of 3-BrPA were observed in cultured cells and tumor-bearing animal models. In this review, we described the energy metabolic pathways of tumor cells, mechanism of action and cellular targets of 3-BrPA, antitumor effects, and the underlying mechanism of 3-BrPA alone or in combination with other antitumor drugs (e.g., cisplatin, doxorubicin, daunorubicin, 5-fluorouracil, etc.) in vitro and in vivo. In addition, few human case studies of 3-BrPA were also involved. Finally, the novel chemotherapeutic strategies of 3-BrPA, including wafer, liposomal nanoparticle, aerosol, and conjugate formulations, were also discussed for future clinical application.
Collapse
|
29
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|
30
|
Akins NS, Nielson TC, Le HV. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Curr Top Med Chem 2018; 18:494-504. [PMID: 29788892 PMCID: PMC6110043 DOI: 10.2174/1568026618666180523111351] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/05/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022]
Abstract
Cancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the "Warburg effect", has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.
Collapse
Affiliation(s)
- Nicholas S. Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677, USA
| | - Tanner C. Nielson
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677, USA
| | - Hoang V. Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677, USA
| |
Collapse
|
31
|
Dornfeld KJ, Skildum AJ. Mitochondria Remodeling in Cancer. MITOCHONDRIAL BIOLOGY AND EXPERIMENTAL THERAPEUTICS 2018:153-191. [DOI: 10.1007/978-3-319-73344-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Friend or foe? Mitochondria as a pharmacological target in cancer treatment. Future Med Chem 2017; 9:2197-2210. [PMID: 29182013 DOI: 10.4155/fmc-2017-0110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondria have acquired numerous functions over the course of evolution, such as those involved in controlling energy production, cellular metabolism, cell survival, apoptosis and autophagy within host cells. Tumor cells can develop defects in mitochondrial function, presenting a potential strategy for designing selective anticancer therapies. Therefore, cancer has been the main focus of recent research to uncover possible mitochondrial targets for therapeutic benefit. This comprehensive review covers not only the recent discoveries of the roles of mitochondria in cancer development, progression and therapeutic implications but also the findings regarding emerging mitochondrial therapeutic targets and mitochondria-targeted agents. Current challenges and future directions for developments and applications of mitochondrial-targeted therapeutics are also discussed.
Collapse
|
33
|
Yadav S, Pandey SK, Kumar A, Kujur PK, Singh RP, Singh SM. Antitumor and chemosensitizing action of 3-bromopyruvate: Implication of deregulated metabolism. Chem Biol Interact 2017; 270:73-89. [DOI: 10.1016/j.cbi.2017.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/22/2023]
|
34
|
Chen TC, Yu J, Nouri Nigjeh E, Wang W, Myint PT, Zandi E, Hofman FM, Schönthal AH. A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells. Cancer Lett 2017; 400:161-174. [PMID: 28450161 DOI: 10.1016/j.canlet.2017.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
The anticancer agent 3-bromopyruvate (3-BP) is viewed as a glycolytic inhibitor that preferentially kills glycolytic cancer cells through energy depletion. However, its cytotoxic activity is dependent on cellular drug import through transmembrane monocarboxylate transporter 1 (MCT-1), which restricts its anticancer potential to MCT-1-positive tumor cells. We created and characterized an MCT-1-independent analog of 3-BP, called NEO218. NEO218 was synthesized by covalently conjugating 3-BP to perillyl alcohol (POH), a natural monoterpene. The responses of various tumor cell lines to treatment with either compound were characterized in the presence or absence of supplemental pyruvate or antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH). Drug effects on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme activity were investigated by mass spectrometric analysis. The development of 3-BP resistance was investigated in MCT-1-positive HCT116 colon carcinoma cells in vitro. Our results show that NEO218: (i) pyruvylated GAPDH on all 4 of its cysteine residues and shut down enzymatic activity; (ii) severely lowered cellular ATP content below life-sustaining levels, and (iii) triggered rapid necrosis. Intriguingly, supplemental antioxidants effectively prevented cytotoxic activity of NEO218 as well as 3-BP, but supplemental pyruvate powerfully protected cells only from 3-BP, not from NEO218. Unlike 3-BP, NEO218 exerted its potent cytotoxic activity irrespective of cellular MCT-1 status. Treatment of HCT116 cells with 3-BP resulted in prompt development of resistance, based on the emergence of MCT-1-negative cells. This was not the case with NEO218, and highly 3-BP-resistant cells remained exquisitely sensitive to NEO218. Thus, our study identifies a mechanism by which tumor cells develop rapid resistance to 3-BP, and presents NEO218 as a superior agent not subject to this cellular defense. Furthermore, our results offer alternative interpretations of previously published models on the role of supplemental antioxidants: Rather than quenching reactive oxygen species (ROS), supplemental NAC or GSH directly interact with 3-BP, thereby neutralizing the drug's cytotoxic potential before it can trigger ROS production. Altogether, our study introduces new aspects of the cytotoxic mechanism of 3-BP, and characterizes NEO218 as an analog able to overcome a key cellular defense mechanism towards this drug.
Collapse
Affiliation(s)
- Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jiali Yu
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Eslam Nouri Nigjeh
- Research Center for Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Weijun Wang
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Phyo Thazin Myint
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ebrahim Zandi
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Florence M Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
35
|
Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2017; 1868:212-220. [PMID: 28400131 DOI: 10.1016/j.bbcan.2017.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022]
Abstract
Metabolic reprogramming and immune evasion are two hallmarks of cancer. Metabolic reprogramming is exemplified by cancer's propensity to utilize glucose at an exponential rate which in turn is linked with "aerobic glycolysis", popularly known as the "Warburg effect". Tumor glycolysis is pivotal for the efficient management of cellular bioenergetics and uninterrupted cancer growth. Mounting evidence suggests that tumor glycolysis also plays a key role in instigating immunosuppressive networks that are critical for cancer cells to escape immune surveillance ("immune evasion"). Recent data show that induction of cellular stress or metabolic dysregulation sensitize cancer cells to antitumor immune cells implying that metabolic reprogramming and immune evasion harmonize during cancer progression. However, the molecular link between these two hallmarks of cancer remains obscure. In this review the molecular intricacies of tumor glycolysis that facilitate immune evasion has been discussed in the light of recent research to explore immunotherapeutic potential of targeting cancer metabolism.
Collapse
|
36
|
Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices. Sci Rep 2017; 7:46213. [PMID: 28387379 PMCID: PMC5384208 DOI: 10.1038/srep46213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/20/2023] Open
Abstract
Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P < 0.05), suggesting that a sperm-related enzymatic reaction is involved in sperm motility. Under this protocol, MTT reduction was coupled with catalysis of GAPDH and was promoted by electron transfer from NADH. Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.
Collapse
|
37
|
Wang Z, Liao K, Zuo W, Liu X, Qiu Z, Gong Z, Liu C, Zeng Q, Qian Y, Jiang L, Bu Y, Hong S, Hu G. Depletion of NFBD1/MDC1 Induces Apoptosis in Nasopharyngeal Carcinoma Cells Through the p53-ROS-Mitochondrial Pathway. Oncol Res 2017; 25:123-136. [PMID: 28081741 PMCID: PMC7840771 DOI: 10.3727/096504016x14732772150226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NFBD1, a signal amplifier of the p53 pathway, is vital for protecting cells from p53-mediated apoptosis and the early phase of DNA damage response under normal culture conditions. Here we investigated its expression in patients with nasopharyngeal carcinoma (NPC), and we describe the biological functions of the NFBD1 gene. We found that NFBD1 mRNA and protein were more highly expressed in NPC tissues than in nontumorous tissues. To investigate the function of NFBD1, we created NFBD1-depleted NPC cell lines that exhibited decreased cellular proliferation and colony formation, an increase in their rate of apoptosis, and an enhanced sensitivity to chemotherapeutic agents compared with in vitro controls. However, N-acetyl cysteine (NAC) and downregulation of p53 expression could partially reverse the apoptosis caused by the loss of NFBD1. Further analysis showed that loss of NFBD1 resulted in increased production of intracellular reactive oxygen species (ROS) depending on p53, which subsequently triggered the mitochondrial apoptotic pathway. Using a xenograft model in nude mice, we showed that silencing NFBD1 also significantly inhibited tumor growth and led to apoptosis. Taken together, our data suggest that inhibition of NFBD1 in NPC could be therapeutically useful.
Collapse
|
38
|
Ganapathy-Kanniappan S. Taming Tumor Glycolysis and Potential Implications for Immunotherapy. Front Oncol 2017; 7:36. [PMID: 28348977 PMCID: PMC5346534 DOI: 10.3389/fonc.2017.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Immune evasion and deregulation of energy metabolism play a pivotal role in cancer progression. Besides the coincidence in their historical documentation and concurrent recognition as hallmarks of cancer, both immune evasion and metabolic deregulation may be functionally linked as well. For example, the metabolic phenotype, particularly tumor glycolysis (aerobic glycolysis), impacts the tumor microenvironment (TME), which in turn acts as a major barrier for successful targeting of cancer by antitumor immune cells and other therapeutics. Similarly, in the light of recent research, it has been known that some of the immune sensitive antigens that are downregulated in cancer may also be restored or induced by cellular/metabolic stress. For instance, cancer cells downregulate the cell surface ligands such as MHC class I chain-related (MIC) protein-(A/B) that are normally upregulated in disease/pathological conditions. Noteworthy, the MHC class I chain-related protein A and B (MIC-A/B) are recognized by natural killer (NK) cells for immune elimination. Interestingly, MIC-A/B is stress inducible as demonstrated by oxidative stress and other cellular-stress factors. Consequently, stimulation of metabolic stress has also been shown to sensitize cancer cells to NK cell-mediated cytotoxicity. Taken together, data from recent reports imply that dysregulation of tumor glycolysis could facilitate induction of immune sensitive surface ligands leading to increased efficacy of antitumor immunotherapeutics. Nonetheless, dysregulated tumor glycolysis may also impact the TME and alter it from acidic, low pH into a therapeutically desirable TME that can enhance the effective infiltration of antitumor immune cells. In this mini-review, targeting tumor glycolysis has been discussed to evaluate its potential implications to enhance and/or facilitate anticancer immunity.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- Division of Interventional Radiology, Russell H. Morgan, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
39
|
Abstract
Glycolysis is highly upregulated in head and neck squamous cell carcinoma (HNSCC). HNSCC glycolysis is an important contributor to disease progression and decreases sensitivity to radiation or chemotherapy. Despite therapeutic advances, the survival rates for HNSCC patients remain low. Understanding glycolysis regulation in HNSCC will facilitate the development of effective therapeutic strategies for this disease. In this review, we will evaluate the regulation of altered HNSCC glycolysis and possible therapeutic approaches by targeting glycolytic pathways.
Collapse
Affiliation(s)
- Dhruv Kumar
- Department of Bioinformatics, SRM University, Sonepat, Haryana-131029, India
| |
Collapse
|
40
|
Lis P, Jurkiewicz P, Cal-Bąkowska M, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget 2016; 7:10153-73. [PMID: 26862728 PMCID: PMC4891110 DOI: 10.18632/oncotarget.7174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/23/2016] [Indexed: 01/19/2023] Open
Abstract
In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.
Collapse
Affiliation(s)
- Paweł Lis
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Paweł Jurkiewicz
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Cal-Bąkowska
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Young H Ko
- KoDiscovery LLC, UM BioPark, Innovation Center, Baltimore, MD, USA
| | - Peter L Pedersen
- Departments of Biological Chemistry and Oncology, Sydney Kimmel Comprehensive Cancer Center and Center for Obesity Research and Metabolism, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andre Goffeau
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium
| | - Stanisław Ułaszewski
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
41
|
The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate. Molecules 2016; 21:molecules21121730. [PMID: 27983708 PMCID: PMC6273842 DOI: 10.3390/molecules21121730] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/30/2022] Open
Abstract
This review summarizes the current state of knowledge about the metabolism of cancer cells, especially with respect to the "Warburg" and "Crabtree" effects. This work also summarizes two key discoveries, one of which relates to hexokinase-2 (HK2), a major player in both the "Warburg effect" and cancer cell immortalization. The second discovery relates to the finding that cancer cells, unlike normal cells, derive as much as 60% of their ATP from glycolysis via the "Warburg effect", and the remaining 40% is derived from mitochondrial oxidative phosphorylation. Also described are selected anticancer agents which generally act as strong energy blockers inside cancer cells. Among them, much attention has focused on 3-bromopyruvate (3BP). This small alkylating compound targets both the "Warburg effect", i.e., elevated glycolysis even in the presence oxygen, as well as mitochondrial oxidative phosphorylation in cancer cells. Normal cells remain unharmed. 3BP rapidly kills cancer cells growing in tissue culture, eradicates tumors in animals, and prevents metastasis. In addition, properly formulated 3BP shows promise also as an effective anti-liver cancer agent in humans and is effective also toward cancers known as "multiple myeloma". Finally, 3BP has been shown to significantly extend the life of a human patient for which no other options were available. Thus, it can be stated that 3BP is a very promising new anti-cancer agent in the process of undergoing clinical development.
Collapse
|
42
|
Tran Q, Lee H, Park J, Kim SH, Park J. Targeting Cancer Metabolism - Revisiting the Warburg Effects. Toxicol Res 2016; 32:177-93. [PMID: 27437085 PMCID: PMC4946416 DOI: 10.5487/tr.2016.32.3.177] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/21/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022] Open
Abstract
After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism.
Collapse
Affiliation(s)
- Quangdon Tran
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jisoo Park
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
43
|
The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr 2016; 48:349-62. [PMID: 27457582 DOI: 10.1007/s10863-016-9670-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.
Collapse
|
44
|
Ho N, Morrison J, Silva A, Coomber BL. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep 2016; 36:e00299. [PMID: 26740252 PMCID: PMC4759612 DOI: 10.1042/bsr20150267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation.
Collapse
Affiliation(s)
- Nelson Ho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jodi Morrison
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Andreza Silva
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
45
|
Savic LJ, Chapiro J, Duwe G, Geschwind JF. Targeting glucose metabolism in cancer: new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepat Oncol 2016; 3:19-28. [PMID: 26989470 DOI: 10.2217/hep.15.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and the third leading cause of cancer-related deaths worldwide. In patients with unresectable disease, loco-regional catheter-based intra-arterial therapies (IAT) can achieve selective tumor control while minimizing systemic toxicity. As molecular features of tumor growth and microenvironment are better understood, new targets arise for selective anticancer therapy. Particularly, antiglycolytic drugs that exploit the hyperglycolytic cancer cell metabolism - also known as the 'Warburg effect' - have emerged as promising therapeutic options. Thus, future developments will combine the selective character of loco-regional drug delivery platforms with highly specific molecular targeted antiglycolytic agents. This review will exemplify literature on antiglycolytic approaches and particularly focus on intra-arterial delivery methods.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Julius Chapiro
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Gregor Duwe
- Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | | |
Collapse
|
46
|
Diedrich J, Gusky HC, Podgorski I. Adipose tissue dysfunction and its effects on tumor metabolism. Horm Mol Biol Clin Investig 2015; 21:17-41. [PMID: 25781550 DOI: 10.1515/hmbci-2014-0045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Growing by an alarming rate in the Western world, obesity has become a condition associated with a multitude of diseases such as diabetes, metabolic syndrome and various cancers. Generally viewed as an abnormal accumulation of hypertrophied adipocytes, obesity is also a poor prognostic factor for recurrence and chemoresistance in cancer patients. With more than two-thirds of the adult population in the United States considered clinically overweight or obese, it is critical that the relationship between obesity and cancer is further emphasized and elucidated. Adipocytes are highly metabolically active cells, which, through release of adipokines and cytokines and activation of endocrine and paracrine pathways, affect processes in neighboring and distant cells, altering their normal homeostasis. This work will examine specifically how adipocyte-derived factors regulate the cellular metabolism of malignant cells within the tumor niche. Briefly, tumor cells undergo metabolic pressure towards a more glycolytic and hypoxic state through a variety of metabolic regulators and signaling pathways, i.e., phosphoinositol-3 kinase (PI3K), hypoxia-inducible factor-1 alpha (HIF-1α), and c-MYC signaling. Enhanced glycolysis and high lactate production are hallmarks of tumor progression largely because of a process known as the Warburg effect. Herein, we review the latest literature pertaining to the body of work on the interactions between adipose and tumor cells, and underlining the changes in cancer cell metabolism that have been targeted by the currently available treatments.
Collapse
|
47
|
Ngo H, Tortorella SM, Ververis K, Karagiannis TC. The Warburg effect: molecular aspects and therapeutic possibilities. Mol Biol Rep 2015; 42:825-34. [PMID: 25253100 DOI: 10.1007/s11033-014-3764-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been about nine decades since the proposal of Otto Warburg on the metabolism of cancer cells. Unlike normal cells which undergo glycolysis and oxidative phosphorylation in the presence of oxygen, proliferating and cancer cells exhibit an increased uptake of glucose and increased rate of glycolysis and predominantly undergo lactic acid fermentation. Whether this phenomenon is the consequence of genetic dysregulation in cancer or is the cause of cancer still remains unknown. However, there is certainly a strong link between the genetic factors, epigenetic modulation, cancer immunosurveillance and the Warburg effect, which will be discussed in this review. Dichloroacetate and 3-bromopyruvate are among the substances that have been studied as potential cancer therapies. With our expanding knowledge of cellular metabolism, therapies targeting the Warburg effect appear very promising. This review discusses different aspects of these emerging therapies.
Collapse
Affiliation(s)
- Hanh Ngo
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, 75 Commercial Road, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
48
|
A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells. Sci Rep 2015; 5:13543. [PMID: 26337336 PMCID: PMC4559806 DOI: 10.1038/srep13543] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/30/2015] [Indexed: 01/24/2023] Open
Abstract
Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment.
Collapse
|
49
|
James AD, Patel W, Butt Z, Adiamah M, Dakhel R, Latif A, Uggenti C, Swanton E, Imamura H, Siriwardena AK, Bruce JIE. The Plasma Membrane Calcium Pump in Pancreatic Cancer Cells Exhibiting the Warburg Effect Relies on Glycolytic ATP. J Biol Chem 2015; 290:24760-71. [PMID: 26294767 PMCID: PMC4598988 DOI: 10.1074/jbc.m115.668707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that the plasma membrane Ca2+-ATPase (PMCA), which is critical for maintaining a low intracellular Ca2+ concentration ([Ca2+]i), utilizes glycolytically derived ATP in pancreatic ductal adenocarcinoma (PDAC) and that inhibition of glycolysis in PDAC cell lines results in ATP depletion, PMCA inhibition, and an irreversible [Ca2+]i overload. We explored whether this is a specific weakness of highly glycolytic PDAC by shifting PDAC cell (MIA PaCa-2 and PANC-1) metabolism from a highly glycolytic phenotype toward mitochondrial metabolism and assessing the effects of mitochondrial versus glycolytic inhibitors on ATP depletion, PMCA inhibition, and [Ca2+]i overload. The highly glycolytic phenotype of these cells was first reversed by depriving MIA PaCa-2 and PANC-1 cells of glucose and supplementing with α-ketoisocaproate or galactose. These culture conditions resulted in a significant decrease in both glycolytic flux and proliferation rate, and conferred resistance to ATP depletion by glycolytic inhibition while sensitizing cells to mitochondrial inhibition. Moreover, in direct contrast to cells exhibiting a high glycolytic rate, glycolytic inhibition had no effect on PMCA activity and resting [Ca2+]i in α-ketoisocaproate- and galactose-cultured cells, suggesting that the glycolytic dependence of the PMCA is a specific vulnerability of PDAC cells exhibiting the Warburg phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carolina Uggenti
- the Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Hiromi Imamura
- the Hakubi Center for Advanced Research and Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan, and
| | - Ajith K Siriwardena
- the Hepatobiliary Surgery Unit, Manchester Royal Infirmary, Manchester M13 9NT, United Kingdom
| | | |
Collapse
|
50
|
Lactate dehydrogenase inhibitors sensitize lymphoma cells to cisplatin without enhancing the drug effects on immortalized normal lymphocytes. Eur J Pharm Sci 2015; 74:95-102. [PMID: 25930121 DOI: 10.1016/j.ejps.2015.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 04/25/2015] [Indexed: 12/24/2022]
Abstract
Up-regulation of glycolysis, a well recognized hallmark of cancer cells, was also found to be predictive of poor chemotherapy response. This observation suggested the attempt of sensitizing cancer cells to conventional chemotherapeutic agents by inhibiting glucose metabolism. Lactate dehydrogenase (LDH) inhibition can be a way to hinder glycolysis of cancer cells without affecting the metabolism of normal tissues, which usually does not require this enzymatic activity. In this paper, we showed that two LDH inhibitors (oxamate and galloflavin) can increase the efficacy of cisplatin in cultured Burkitt's lymphoma (BL) cells and that this potentiating effect is not exerted in proliferating normal lymphocytes. This result was explained by the finding that in BL cells LDH inhibition induced reactive oxygen species (ROS) generation, which was not evidenced in proliferating normal lymphocytes. In BL cells treated with the association of cisplatin and LDH inhibitors, these ROS can be a further cause of DNA damage, to be added to that produced by cisplatin, leading to the failure of the response repair. At present LDH inhibitors suitable for clinical use are actively searched; our results can allow a better understanding of the potentiality of LDH as a possible target to develop innovative anticancer treatments.
Collapse
|