1
|
Gong C, Guo G, Pan B, Gao C, Zhu X, Liu J, Wang S, Diao W. Global transcription and metabolic profiles of five tissues in pepper fruits. Sci Data 2024; 11:1129. [PMID: 39406716 PMCID: PMC11480384 DOI: 10.1038/s41597-024-03947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Studying the regulatory mechanisms in different tissues of pepper is crucial for understanding organ formation, growth, and development. However, relevant studies are far from sufficient. In the current study, the stipe, calyx, pericarp, placenta, and seed of ripe pepper were sampled, and metabolites were determined by the untargeted metabolomics method. Transcriptome sequencing was performed by Illumina NovaSeq 6000, and then a high-throughput data set was built. The results showed that a total of 4879 annotated metabolites were detected in 15 samples of the five tissues under positive and negative ion mode. A total of 110.66 Gb of clean data was obtained by transcriptome sequencing, the clean data of each sample reached 6.21 Gb, and a total of 35 336 annotated expression genes were obtained. Furthermore, validate the accuracy of the data by combining principal component analysis and other methods. In summary, this study provides valuable information for the genetic improvement and breeding of peppers, and it holds potential application value, particularly in enhancing the quality and nutritional value of pepper fruits.
Collapse
Affiliation(s)
- Chengsheng Gong
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangjun Guo
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baogui Pan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Changzhou Gao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianwei Zhu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinbing Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shubin Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiping Diao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Zhu F, Ahchige MW, Wen W, Cheng Y, Alseekh S, Fernie AR. The natural variance of Arabidopsis secondary metabolism on extended darkness. Sci Data 2024; 11:841. [PMID: 39097666 PMCID: PMC11297995 DOI: 10.1038/s41597-024-03694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
In plants due to their sessile nature, secondary metabolites are important components against different abiotic and biotic stress, such as extended darkness. For this reason, the variation of secondary metabolite content of the Arabidopsis thaliana HapMap natural population following 0-and 6-d darkness treatment were detected and the raw data of different accessions at two timepoints were deposited in the Zenodo database. Moreover, the annotated secondary metabolites of these samples are presented in this data descriptor, which we believe will be a usefully re-usable resource for future integrative analysis with dark-treated transcripts, proteins or other phenotypic data in order to comprehensively illustrate the multiomic landscape of Arabidopsis in response to the stresses exerted by extended darkness.
Collapse
Affiliation(s)
- Feng Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Micha Wijesingha Ahchige
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, Huazhong Agricultural University, 430070, Wuhan, China
- Hubei Hongshan Laboratory, 430070, Wuhan, China
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
3
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
4
|
Mai TD, Kim HM, Park SY, Ma SH, Do JH, Choi W, Jang HM, Hwang HB, Song EG, Shim JS, Joung YH. Metabolism of phenolic compounds catalyzed by Tomato CYP736A61. Enzyme Microb Technol 2024; 176:110425. [PMID: 38479200 DOI: 10.1016/j.enzmictec.2024.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/24/2024]
Abstract
Cytochrome P450s (CYPs) regulate plant growth and stress responses by producing diverse primary and secondary metabolites. However, the function of many plant CYPs remains unknown because, despite their structural similarity, predicting the enzymatic activity of CYPs is difficult. In this study, one member of the CYP736A subfamily (CYP736A61) from tomatoes was isolated and characterized its enzymatic functions. CYP736A61 was successfully expressed in Escherichia coli through co-expression with molecular chaperones. The purified CYP736A61 showed hydroxylation activity toward 7-ethoxycoumarin, producing 7-hydroxycoumarin or 3-hydroxy 7-ethoxycoumarin. Further substrate screening revealed that dihydrochalcone and stilbene derivates (resveratrol and polydatin) are the substrates of CYP736A61. CYP736A61 also mediated the hydroxylation of resveratrol and polydatin, albeit with low activity. Importantly, CYP736A61 mediated the cleavage of resveratrol and polydatin as well as pinostilbene and pterostilbene. Interestingly, CY736A61 also converted phloretin to naringenin chalcone. These results suggest that CYP736A61 is a novel CYP enzyme with stilbene cleavage activity.
Collapse
Affiliation(s)
- Thanh Dat Mai
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Won Choi
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hye Min Jang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Hyeon Bae Hwang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Eun Gyeong Song
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea.
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
Hossain Z, Zhao S, Luo X, Liu K, Li L, Hubbard M. Deciphering Aphanomyces euteiches-pea-biocontrol bacterium interactions through untargeted metabolomics. Sci Rep 2024; 14:8877. [PMID: 38632368 PMCID: PMC11024177 DOI: 10.1038/s41598-024-52949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024] Open
Abstract
Aphanomyces euteiches causes root rot in pea, leading to significant yield losses. However, the metabolites involved in this pathosystem have not been thoroughly studied. This study aimed to fill this gap and explore mechanisms of bacterial suppression of A. euteiches via untargeted metabolomics using pea grown in a controlled environment. Chemical isotope labeling (CIL), followed by liquid chromatography-mass spectrometry (LC-MS), was used for metabolite separation and detection. Univariate and multivariate analyses showed clear separation of metabolites from pathogen-treated pea roots and roots from other treatments. A three-tier approach positively or putatively identified 5249 peak pairs or metabolites. Of these, 403 were positively identified in tier 1; 940 were putatively identified with high confidence in tier 2. There were substantial changes in amino acid pool, and fatty acid and phenylpropanoid pathway products. More metabolites, including salicylic and jasmonic acids, were upregulated than downregulated in A. euteiches-infected roots. 1-aminocyclopropane-1-carboxylic acid and 12-oxophytodienoic acid were upregulated in A. euteiches + bacterium-treated roots compared to A. euteiches-infected roots. A great number of metabolites were up- or down-regulated in response to A. euteiches infection compared with the control and A. euteiches + bacterium-treated plants. The results of this study could facilitate improved disease management.
Collapse
Affiliation(s)
- Zakir Hossain
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| | - Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Kui Liu
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Michelle Hubbard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| |
Collapse
|
6
|
Song HY, Zhao K, Pei YG, Chen HX, Wang XA, Jiang GL, Xie HJ, Chen D, Gong RG. Multi-omics analysis provides new insights into the changes of important nutrients and fructose metabolism in loquat bud sport mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1374925. [PMID: 38606078 PMCID: PMC11008694 DOI: 10.3389/fpls.2024.1374925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Bud sport is a common and stable somatic variation in perennial fruit trees, and often leads to significant modification of fruit traits and affects the breeding value. To investigate the impact of bud sport on the main metabolites in the fruit of white-fleshed loquat, we conducted a multi-omics analysis of loquat fruits at different developmental stages of a white-fleshed bud sport mutant of Dongting loquat (TBW) and its wild type (TBY). The findings from the detection of main fruit quality indices and metabolites suggested that bud sport resulted in a reduction in the accumulation of carotenoids, fructose, titratable acid and terpenoids at the mature stage of TBW, while leading to the accumulation of flavonoids, phenolic acids, amino acids and lipids. The comparably low content of titratable acid further enhances the balanced and pleasent taste profile of TBW. Expression patterns of differentially expressed genes involved in fructose metabolism exhibited a significant increase in the expression level of S6PDH (EVM0006243, EVM0044405) prior to fruit maturation. The comparison of protein sequences and promoter region of S6PDH between TBY and TBW revealed no structural variations that would impact gene function or expression, indicating that transcription factors may be responsible for the rapid up-regulation of S6PDH before maturation. Furthermore, correlation analysis helped to construct a comprehensive regulatory network of fructose metabolism in loquat, including 23 transcription factors, six structural genes, and nine saccharides. Based on the regulatory network and existing studies, it could be inferred that transcription factors such as ERF, NAC, MYB, GRAS, and bZIP may promote fructose accumulation in loquat flesh by positively regulating S6PDH. These findings improve our understanding of the nutritional value and breeding potential of white-fleshed loquat bud sport mutant, as well as serve as a foundation for exploring the genes and transcription factors that regulate fructose metabolism in loquat.
Collapse
Affiliation(s)
- Hai-yan Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Ke Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Yan-Gang Pei
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Hong-xu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao-an Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guo-Liang Jiang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hong-Jiang Xie
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Dong Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Rong-gao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Gu C, Pei MS, Guo ZH, Wu L, Qi KJ, Wang XP, Liu H, Liu Z, Lang Z, Zhang S. Multi-omics provide insights into the regulation of DNA methylation in pear fruit metabolism. Genome Biol 2024; 25:70. [PMID: 38486226 PMCID: PMC10938805 DOI: 10.1186/s13059-024-03200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Extensive research has been conducted on fruit development in crops, but the metabolic regulatory networks underlying perennial fruit trees remain poorly understood. To address this knowledge gap, we conduct a comprehensive analysis of the metabolome, proteome, transcriptome, DNA methylome, and small RNAome profiles of pear fruit flesh at 11 developing stages, spanning from fruitlet to ripening. Here, we systematically investigate the metabolic landscape and regulatory network involved. RESULTS We generate an association database consisting of 439 metabolites and 14,399 genes to elucidate the gene regulatory network of pear flesh metabolism. Interestingly, we detect increased DNA methylation in the promoters of most genes within the database during pear flesh development. Application of a DNA methylation inhibitor to the developing fruit represses chlorophyll degradation in the pericarp and promotes xanthophyll, β-carotene, and abscisic acid (ABA) accumulation in the flesh. We find the gradual increase in ABA production during pear flesh development is correlated with the expression of several carotenoid pathway genes and multiple transcription factors. Of these transcription factors, the zinc finger protein PbZFP1 is identified as a positive mediator of ABA biosynthesis in pear flesh. Most ABA pathway genes and transcription factors are modified by DNA methylation in the promoters, although some are induced by the DNA methylation inhibitor. These results suggest that DNA methylation inhibits ABA accumulation, which may delay fruit ripening. CONCLUSION Our findings provide insights into epigenetic regulation of metabolic regulatory networks during pear flesh development, particularly with regard to DNA methylation.
Collapse
Affiliation(s)
- Chao Gu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mao-Song Pei
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Hua Guo
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Wu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai-Jie Qi
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue-Ping Wang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Liu
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Shaoling Zhang
- Jiangsu Engineering Research Center for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
Affiliation(s)
- Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
9
|
Hua YJ, Xie F, Mao KJ, Luo YY, Ding YJ. Insights into the metabolite profiles of Rubus chingii Hu at different developmental stages of fruit. J Sep Sci 2023; 46:e2300264. [PMID: 37353914 DOI: 10.1002/jssc.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023]
Abstract
The fruits of Rubus chingii Hu have high medicinal and nutritional values. However, the metabolite profiles of R. chingii, especially the alterations during different development stages of fruit, have not been comprehensively analyzed, hindering the effective utilization of the unique species. In this study, we comprehensively analyzed the metabolites of R. chingii fruit at four developmental stages using systematic untargeted and targeted liquid chromatography-mass spectrometry metabolomics analysis and identified 682 metabolites. Significant changes were observed in metabolite accumulation and composition in fruits during the different developmental stages. The contents of the index components, kaempferol-3-O-rutinoside and ellagic acid, were the highest in immature fruit. The analysis identified 64 differentially expressed flavonoids and 39 differentially expressed phenolic acids; the accumulation of most of these differentially expressed metabolites decreased with the developmental stages of fruit from immaturity to maturity. These results confirmed that the developmental stages of fruit are a critical factor in determining its secondary metabolite compositions. This study elucidated the metabolic profile of R. chingii fruit at different stages of development to understand the dynamic changes in metabolites.
Collapse
Affiliation(s)
- Yu-Jiao Hua
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Fen Xie
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| | - Kun-Jun Mao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Yi-Yuan Luo
- College of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, P. R. China
| | - Yong-Juan Ding
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
10
|
Guo H, Cao P, Wang C, Lai J, Deng Y, Li C, Hao Y, Wu Z, Chen R, Qiang Q, Fernie AR, Yang J, Wang S. Population analysis reveals the roles of DNA methylation in tomato domestication and metabolic diversity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1888-1902. [PMID: 36971992 DOI: 10.1007/s11427-022-2299-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023]
Abstract
DNA methylation is an important epigenetic marker, yet its diversity and consequences in tomato breeding at the population level are largely unknown. We performed whole-genome bisulfite sequencing (WGBS), RNA sequencing, and metabolic profiling on a population comprising wild tomatoes, landraces, and cultivars. A total of 8,375 differentially methylated regions (DMRs) were identified, with methylation levels progressively decreasing from domestication to improvement. We found that over 20% of DMRs overlapped with selective sweeps. Moreover, more than 80% of DMRs in tomato were not significantly associated with single-nucleotide polymorphisms (SNPs), and DMRs had strong linkages with adjacent SNPs. We additionally profiled 339 metabolites from 364 diverse accessions and further performed a metabolic association study based on SNPs and DMRs. We detected 971 and 711 large-effect loci via SNP and DMR markers, respectively. Combined with multi-omics, we identified 13 candidate genes and updated the polyphenol biosynthetic pathway. Our results showed that DNA methylation variants could complement SNP profiling of metabolite diversity. Our study thus provides a DNA methylome map across diverse accessions and suggests that DNA methylation variation can be the genetic basis of metabolic diversity in plants.
Collapse
Affiliation(s)
- Hao Guo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Peng Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Chao Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Jun Lai
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Yuan Deng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Chun Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Yingchen Hao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Zeyong Wu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Ridong Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Qi Qiang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 144776, Germany
| | - Jun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 572208, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
- College of Tropical Crops, Hainan University, Haikou, 572208, China.
| |
Collapse
|
11
|
Yang J, Liu Y, Liang B, Yang Q, Li X, Chen J, Li H, Lyu Y, Lin T. Genomic basis of selective breeding from the closest wild relative of large-fruited tomato. HORTICULTURE RESEARCH 2023; 10:uhad142. [PMID: 37564272 PMCID: PMC10410300 DOI: 10.1093/hr/uhad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/31/2023] [Indexed: 08/12/2023]
Abstract
The long and intricate domestication history of the tomato (Solanum lycopersicum) includes selection sweeps that have not been fully explored, and these sweeps show significant evolutionary trajectories of domestication traits. Using three distinct selection strategies, we represented comprehensive selected sweeps from 53 Solanum pimpinellifolium (PIM) and 166 S. lycopersicum (BIG) accessions, which are defined as pseudo-domestication in this study. We identified 390 potential selection sweeps, some of which had a significant impact on fruit-related traits and were crucial to the pseudo-domestication process. During tomato pseudo-domestication, we discovered a minor-effect allele of the SlLEA gene related to fruit weight (FW), as well as the major haplotypes of fw2.2/cell number regulator (CNR), fw3.2/SlKLUH, and fw11.3/cell size regulator (CSR) in cultivars. Furthermore, 18 loci were found to be significantly associated with FW and six fruit-related agronomic traits in genome-wide association studies. By examining population differentiation, we identified the causative variation underlying the divergence of fruit flavonoids across the large-fruited tomatoes and validated BRI1-EMS-SUPPRESSOR 1.2 (SlBES1.2), a gene that may affect flavonoid content by modulating the MYB12 expression profile. Our results provide new research routes for the genetic basis of fruit traits and excellent genomic resources for tomato genomics-assisted breeding.
Collapse
Affiliation(s)
- Junwei Yang
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yun Liu
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bin Liang
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qinqin Yang
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuecheng Li
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiacai Chen
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongwei Li
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaqing Lyu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Tao Lin
- State Key Laborary of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Brouckaert M, Peng M, Höfer R, El Houari I, Darrah C, Storme V, Saeys Y, Vanholme R, Goeminne G, Timokhin VI, Ralph J, Morreel K, Boerjan W. QT-GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits. MOLECULAR PLANT 2023; 16:1212-1227. [PMID: 37349988 PMCID: PMC7614782 DOI: 10.1016/j.molp.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits.
Collapse
Affiliation(s)
- Marlies Brouckaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Meng Peng
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - René Höfer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ilias El Houari
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chiarina Darrah
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Véronique Storme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yvan Saeys
- Ghent University, Department of Applied Mathematics, Computer Science and Statistics, 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; VIB Metabolomics Core, 9052 Ghent, Belgium
| | - Vitaliy I Timokhin
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
13
|
Alseekh S, Fernie AR. Expanding our coverage: Strategies to detect a greater range of metabolites. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102335. [PMID: 36689903 DOI: 10.1016/j.pbi.2022.102335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Whilst the study of metabolites can arguably be traced back several hundred years it began in earnest in the 20th century with studies based on single metabolites or simple metabolic pathways. The advent of metabolomics and in particular the adoption of high-resolution mass spectrometry now means we can faithfully annotate and quantify in excess of 1000 plant metabolites. Whilst this is an impressive leap it falls well short of the estimated number of metabolites in the plant kingdom. This, whilst considerable and important insights have been achieved using commonly utilized approaches, there is a need to improve the coverage of the metabolome. Here, we review three largely complementary strategies (i) methods based on using chemical libraries (ii) methods based on molecular networking and (iii) approaches that link metabolomics and genetic variance. It is our contention that using all three approaches in tandem represents the best approach to tackle this challenge.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
14
|
Vallarino JG, Jun H, Wang S, Wang X, Sade N, Orf I, Zhang D, Shi J, Shen S, Cuadros-Inostroza Á, Xu Q, Luo J, Fernie AR, Brotman Y. Limitations and advantages of using metabolite-based genome-wide association studies: focus on fruit quality traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111748. [PMID: 37230189 DOI: 10.1016/j.plantsci.2023.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.
Collapse
Affiliation(s)
- José G Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Hong Jun
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany; Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria.
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
15
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Sharma N, Shivran M, Singh N, Dubey AK, Singh SK, Sharma N, Gupta R, Vittal H, Singh BP, Sevanthi AM, Singh NK. Differential gene expression associated with flower development of mango (Mangifera indica L.) varieties with different shelf-life. Gene Expr Patterns 2023; 47:119301. [PMID: 36526239 DOI: 10.1016/j.gep.2022.119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Mango (Mangifera indica L.) is one of the most important commercial fruit crop grown in many parts of the world. Major challenges affecting mango trade are short shelf-life, high susceptibility to chilling injury, post-harvest diseases and consumer demand for improved fruit quality. The objective of the present study was to reveal the key regulators present in bud and flower tissues during flower development stage, associated with fruit development and affect the shelf-life of the mango fruit. RNA-sequencing of contrasting genotypes having short and long shelf-life, was carried out. Comparative differential expression pathway studies of long shelf-life (Totapuri) and short shelf-life (Bombay Green) mango genotypes revealed a total of 177 highly differentially expressed genes. Out of 177 total genes, 101 genes from endoplasmic reticulum pathway and very few from gibberellins (3) and jasmonic acid (1) pathway were identified. Genes from endoplasmic reticulum pathway like hsp 90, SRC2, DFRA, CHS, BG3 and ASPG1 mainly up regulated in Bombay Green. Uniprotein B9R8D3 also shows up regulation in Bombay Green. Ethylene insensitive pathway gene EIL1 up regulated in Bombay Green. Gene CAD1 from phenylpropanoid pathway mainly up regulated in Bombay Green. A total of 4 SSRs and 227 SNPs were mined from these pathways specific to the shelf-life. Molecular studies of endoplasmic reticulum, phenylpropanoid, ethylene, polygalacturonase and hormone pathways at the time of bud and flower formation revealed key regulators that determine the shelf-life of mango fruit.
Collapse
Affiliation(s)
- Nimisha Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Mukesh Shivran
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Narendra Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Kumar Dubey
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neha Sharma
- IILM Academy of Higher Learning, College of Engineering and Technology Greater, Noida, Uttar Pradesh, 201310, India
| | - Ruchi Gupta
- NGB Diagnostics Private Limited, Noida, UP, 201301, India
| | - Hatkari Vittal
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | |
Collapse
|
17
|
Zhu F, Wen W, Cheng Y, Alseekh S, Fernie AR. Integrating multiomics data accelerates elucidation of plant primary and secondary metabolic pathways. ABIOTECH 2023; 4:47-56. [PMID: 37220537 PMCID: PMC10199974 DOI: 10.1007/s42994-022-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/24/2022] [Indexed: 05/25/2023]
Abstract
Plants are the most important sources of food for humans, as well as supplying many ingredients that are of great importance for human health. Developing an understanding of the functional components of plant metabolism has attracted considerable attention. The rapid development of liquid chromatography and gas chromatography, coupled with mass spectrometry, has allowed the detection and characterization of many thousands of metabolites of plant origin. Nowadays, elucidating the detailed biosynthesis and degradation pathways of these metabolites represents a major bottleneck in our understanding. Recently, the decreased cost of genome and transcriptome sequencing rendered it possible to identify the genes involving in metabolic pathways. Here, we review the recent research which integrates metabolomic with different omics methods, to comprehensively identify structural and regulatory genes of the primary and secondary metabolic pathways. Finally, we discuss other novel methods that can accelerate the process of identification of metabolic pathways and, ultimately, identify metabolite function(s).
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Hubei Hongshan Laboratory, National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000 Bulgaria
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476 Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000 Bulgaria
| |
Collapse
|
18
|
Singh DP, Bisen MS, Shukla R, Prabha R, Maurya S, Reddy YS, Singh PM, Rai N, Chaubey T, Chaturvedi KK, Srivastava S, Farooqi MS, Gupta VK, Sarma BK, Rai A, Behera TK. Metabolomics-Driven Mining of Metabolite Resources: Applications and Prospects for Improving Vegetable Crops. Int J Mol Sci 2022; 23:ijms232012062. [PMID: 36292920 PMCID: PMC9603451 DOI: 10.3390/ijms232012062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant’s performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants.
Collapse
Affiliation(s)
- Dhananjaya Pratap Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
- Correspondence:
| | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Renu Shukla
- Indian Council of Agricultural Research (ICAR), Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi 110001, India
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Yesaru S. Reddy
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Prabhakar Mohan Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Tribhuwan Chaubey
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Krishna Kumar Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Mohammad Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Tusar Kanti Behera
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| |
Collapse
|
19
|
Xiong Q, Zhang J, Shi Q, Zhang Y, Sun C, Li A, Lu W, Hu J, Zhou N, Wei H, Wang S, Zhang H, Zhu J. The key metabolites associated with nutritional components in purple glutinous rice. Food Res Int 2022; 160:111686. [DOI: 10.1016/j.foodres.2022.111686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/10/2023]
|
20
|
LI Z, ZHENG F, XIA Y, ZHANG X, WANG X, ZHAO C, ZHAO X, LU X, XU G. A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules. Se Pu 2022; 40:788-796. [PMID: 36156625 PMCID: PMC9520374 DOI: 10.3724/sp.j.1123.2022.03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
植物次生代谢物在抵御生物/非生物胁迫、生物间互作以及信息传递等方面发挥重要作用,次生代谢途径解析对植物分子育种、天然产物合成等方面具有重要意义。液相色谱-高分辨串联质谱(LC-HRMS/MS)为次生代谢物鉴定及途径表征提供了技术手段。非靶向LC-HRMS/MS方法可获得丰富的质谱信号,包括一级质谱和二级质谱(MS, MS/MS),但受质谱数据库规模以及次生代谢物复杂性的制约,次生代谢物注释十分困难。该研究以玉米叶片中苯丙烷途径代谢物为例,发展用于非靶向代谢组数据中重要途径代谢物的高效筛选和注释新方法。首先,利用公共代谢途径数据库及文献获取参与苯丙烷代谢途径的61种修饰反应类型,进而从非靶向实验数据中筛选出修饰代谢组。其次,获取开源串联质谱数据中的苯丙烷类化合物作为探针分子,构建探针分子质谱数据库。将探针分子与修饰代谢组共建分子网络,锁定目标途径代谢物并注释结构。该方法在正、负离子模式下分别筛选出玉米叶片中392个和417个苯丙烷途径候选代谢物,去冗余后共注释出129个代谢物,涉及苯丙烷代谢的主要分支途径,如黄酮途径的8个类黄酮、19个氧苷类黄酮和32个碳苷类黄酮,31个羟基肉桂酸途径代谢物以及22个木脂素途径代谢物;其中26个在PubChem和SciFinder数据库中未见收录。该研究利用探针分子结合修饰组可快速锁定途径代谢物,且有助于快速、准确的网络传播注释,可显著提高目标途径代谢物筛选与注释效率,为植物次生代谢途径的深入解析提供分析手段。
Collapse
|
21
|
Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, Tian S, Chen T. Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods 2022; 11:2402. [PMID: 36010400 PMCID: PMC9407197 DOI: 10.3390/foods11162402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Fruits, vegetables and other plant-derived foods contribute important ingredients for human diets, and are thus favored by consumers worldwide. Among these horticultural crops, tomato belongs to the Solanaceae family, ranks only secondary to potato (S. tuberosum L.) in yields and is widely cultivated for fresh fruit and processed foods owing to its abundant nutritional constituents (including vitamins, dietary fibers, antioxidants and pigments). Aside from its important economic and nutritional values, tomato is also well received as a model species for the studies on many fundamental biological events, including regulations on flowering, shoot apical meristem maintenance, fruit ripening, as well as responses to abiotic and biotic stresses (such as light, salinity, temperature and various pathogens). Moreover, tomato also provides abundant health-promoting secondary metabolites (flavonoids, phenolics, alkaloids, etc.), making it an excellent source and experimental system for investigating nutrient biosynthesis and availability in food science. Here, we summarize some latest results on these aspects, which may provide some references for further investigations on developmental biology, stress signaling and food science.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoguo Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Wang S, Li Y, He L, Yang J, Fernie AR, Luo J. Natural variance at the interface of plant primary and specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102201. [PMID: 35349968 DOI: 10.1016/j.pbi.2022.102201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Plants produce a large number of diverse metabolites when they grow and develop as well as when they respond to the changing external environment. These are an important source of human nutrition and medicine. In this review we emphasized the major issues of the primary-specialized metabolic interface in plant metabolism, described the metabolic flow from primary to specialized metabolism, and the conservation and diversity of primary and specialized metabolites. At the same time, we summarized the regulatory mechanisms underpinning the dynamic balance primary and specialized metabolism based on multi-omics integration analysis, as well as the natural variation of primary and specialized metabolic pathways and genes during the plant evolution. Moreover, the discovery and optimization of the synthesis and regulation elements of various primary to specialized metabolic flows provide the possibility for precise modification and personalized customization of metabolic pathways, which will greatly promote the development of synthetic biology.
Collapse
Affiliation(s)
| | - Yan Li
- College of Tropical Crops, Hainan University, Haikou, China
| | - Liqiang He
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
23
|
Powell AF, Feder A, Li J, Schmidt MHW, Courtney L, Alseekh S, Jobson EM, Vogel A, Xu Y, Lyon D, Dumschott K, McHale M, Sulpice R, Bao K, Lal R, Duhan A, Hallab A, Denton AK, Bolger ME, Fernie AR, Hind SR, Mueller LA, Martin GB, Fei Z, Martin C, Giovannoni JJ, Strickler SR, Usadel B. A Solanum lycopersicoides reference genome facilitates insights into tomato specialized metabolism and immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1791-1810. [PMID: 35411592 DOI: 10.1111/tpj.15770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum lycopersicoides, have been crossed to S. lycopersicum for the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome-scale genome assembly for S. lycopersicoides LA2951, which contains 37 938 predicted protein-coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of the S. lycopersicoides introgressions in a set of S. lycopersicum cv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity-associated function of the clustered Pto gene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of the Aubergine locus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild species S. lycopersicoides, which we use to shed light on the Aubergine locus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β-cyclase whose function we demonstrate.
Collapse
Affiliation(s)
| | - Ari Feder
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Jie Li
- Department of Biochemistry and Metabolism, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Maximilian H-W Schmidt
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Lance Courtney
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Emma M Jobson
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Alexander Vogel
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
| | - Yimin Xu
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - David Lyon
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kathryn Dumschott
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Marcus McHale
- Plant Systems Biology Lab, Ryan Institute, National University of Ireland, H91 TK33, Galway, Ireland
| | - Ronan Sulpice
- Plant Systems Biology Lab, Ryan Institute, National University of Ireland, H91 TK33, Galway, Ireland
| | - Kan Bao
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Rohit Lal
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Asha Duhan
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
| | - Asis Hallab
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alisandra K Denton
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
| | - Marie E Bolger
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Gregory B Martin
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA, and
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Cathie Martin
- Department of Biochemistry and Metabolism, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - James J Giovannoni
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | | | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, 52474, Aachen, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
24
|
Inheritance of Secondary Metabolites and Gene Expression Related to Tomato Fruit Quality. Int J Mol Sci 2022; 23:ijms23116163. [PMID: 35682842 PMCID: PMC9181508 DOI: 10.3390/ijms23116163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023] Open
Abstract
Flavour and nutritional quality are important goals for tomato breeders. This study aimed to shed light upon transgressive behaviors for fruit metabolic content. We studied the metabolic contents of 44 volatile organic compounds (VOCs), 18 polyphenolics, together with transcriptome profiles in a factorial design comprising six parental lines and their 14 F1 hybrids (HF1) among which were five pairs of reciprocal HF1. After cluster analyses of the metabolome dataset and co-expression network construction of the transcriptome dataset, we characterized the mode of inheritance of each component. Both overall and per-cross mode of inheritance analyses revealed as many additive and non-additive modes of inheritance with few reciprocal effects. Up to 66% of metabolites displayed transgressions in a HF1 relative to parental values. Analysis of the modes of inheritance of metabolites revealed that: (i) transgressions were mostly of a single type whichever the cross and poorly correlated to the genetic distance between parental lines; (ii) modes of inheritance were scarcely consistent between the 14 crosses but metabolites belonging to the same cluster displayed similar modes of inheritance for a given cross. Integrating metabolome, transcriptome and modes of inheritance analyses suggested a few candidate genes that may drive important changes in fruit VOC contents.
Collapse
|
25
|
Wei S, Xiang Y, Zhang Y, Fu R. The unexpected flavone synthase-like activity of polyphenol oxidase in tomato. Food Chem 2022; 377:131958. [PMID: 34990951 DOI: 10.1016/j.foodchem.2021.131958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/04/2022]
Abstract
The biosynthesis of flavones has drawn considerable attention. However, the presence of flavones and their biosynthesis in tomato (Solanum lycopersicum) remain unclear. Here, we confirmed that flavones are present in MicroTom tomato and unexpectedly found that a tomato polyphenol oxidase (SlPPO F) possesses a flavone synthase-like activity and catalyzes the conversion of eriodictyol to luteolin without the need for any cofactor. SlPPO F showed a similar Km value to that of other polyphenol oxidases, and could be inhibited by ascorbic acid. The flavone synthase-like activity of SlPPO F exhibited strict substrate specificity and only accepted flavanones with two hydroxyl groups (3' and 4') on the B ring as substrates. SlPPO F showed higher catalytic efficiency and better thermostability than type I flavone synthase from Apium graveolens, suggesting its possible application in enzyme engineering. In summary, we identified flavones in tomato and unraveled a polyphenol oxidase exhibiting flavone synthase-like activity.
Collapse
Affiliation(s)
- Shuo Wei
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuting Xiang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
26
|
Yang J, Liang B, Zhang Y, Liu Y, Wang S, Yang Q, Geng X, Liu S, Wu Y, Zhu Y, Lin T. Genome-wide association study of eigenvectors provides genetic insights into selective breeding for tomato metabolites. BMC Biol 2022; 20:120. [PMID: 35606872 PMCID: PMC9128223 DOI: 10.1186/s12915-022-01327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023] Open
Abstract
Background Long-term domestication and intensive breeding of crop plants aim to establish traits desirable for human needs, and characteristics related to yield, disease resistance, and postharvest storage have traditionally received considerable attention. These processes have led also to negative consequences, as is the case of loss of variants controlling fruit quality, for instance in tomato. Tomato fruit quality is directly associated to metabolite content profiles; however, a full understanding of the genetics affecting metabolite content during tomato domestication and improvement has not been reached due to limitations of the single detection methods previously employed. Here, we aim to reach a broad understanding of changes in metabolite content using a genome-wide association study (GWAS) with eigenvector decomposition (EigenGWAS) on tomato accessions. Results An EigenGWAS was performed on 331 tomato accessions using the first eigenvector generated from the genomic data as a “phenotype” to understand the changes in fruit metabolite content during breeding. Two independent gene sets were identified that affected fruit metabolites during domestication and improvement in consumer-preferred tomatoes. Furthermore, 57 candidate genes related to polyphenol and polyamine biosynthesis were discovered, and a major candidate gene chlorogenate: glucarate caffeoyltransferase (SlCGT) was identified, which affected the quality and diseases resistance of tomato fruit, revealing the domestication mechanism of polyphenols. Conclusions We identified gene sets that contributed to consumer liking during domestication and improvement of tomato. Our study reports novel evidence of selective sweeps and key metabolites controlled by multiple genes, increasing our understanding of the mechanisms of metabolites variation during those processes. It also supports a polygenic selection model for the application of tomato breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01327-x.
Collapse
|
27
|
Wang P, Schumacher AM, Shiu SH. Computational prediction of plant metabolic pathways. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102171. [PMID: 35078130 DOI: 10.1016/j.pbi.2021.102171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Uncovering genes encoding enzymes responsible for the biosynthesis of diverse plant metabolites is essential for metabolic engineering and production of plant metabolite-derived medicine. With the availability of multi-omics data for an ever-increasing number of plant species and the development of computational approaches, the metabolic pathways of many important plant compounds can be predicted, complementing a more traditional genetic and/or biochemical approach. Here, we summarize recent progress in predicting plant metabolic pathways using genome, transcriptome, proteome, interactome, and/or metabolome data, and the utility of integrating these data with machine learning to further improve metabolic pathway predictions.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ally M Schumacher
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
28
|
Boutet S, Barreda L, Perreau F, Totozafy JC, Mauve C, Gakière B, Delannoy E, Martin-Magniette ML, Monti A, Lepiniec L, Zanetti F, Corso M. Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different Camelina sativa genotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:147-165. [PMID: 34997644 DOI: 10.1111/tpj.15662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Stéphanie Boutet
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Léa Barreda
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Jean-Chrisologue Totozafy
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France
| | - Andrea Monti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Federica Zanetti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
29
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
30
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
31
|
Ding X, Yin Z, Wang S, Liu H, Chu X, Liu J, Zhao H, Wang X, Li Y, Ding X. Different Fruit-Specific Promoters Drive AtMYB12 Expression to Improve Phenylpropanoid Accumulation in Tomato. Molecules 2022; 27:molecules27010317. [PMID: 35011551 PMCID: PMC8746655 DOI: 10.3390/molecules27010317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Tomato is an economically crucial vegetable/fruit crop globally. Tomato is rich in nutrition and plays an essential role in a healthy human diet. Phenylpropanoid, a critical compound in tomatoes, reduces common degenerative and chronic diseases risk caused by oxidative stress. As an MYB transcription factor, ATMYB12 can increase phenylpropanoid content by activating phenylpropanoid synthesis related genes, such as PAL, C4H, 4CL, CHS. However, the heterologous expression of AtMYB12 in tomatoes can be altered through transgenic technologies, such as unstable expression vectors and promoters with different efficiency. In the current study, the efficiency of other fruit-specific promoters, namely E8S, 2A12, E4, and PG, were compared and screened, and we determined that the expression efficiency of AtMYB12 was driven by the E8S promoter was the highest. As a result, the expression of phenylpropanoid synthesis related genes was regulated by AtMYB12, and the phenylpropanoid accumulation in transgenic tomato fruits increased 16 times. Additionally, the total antioxidant capacity of fruits was measured through Trolox equivalent antioxidant capacity (TEAC) assay, which was increased by 2.4 times in E8S transgenic lines. TEAC was positively correlated with phenylpropanoid content. Since phenylpropanoid plays a crucial role in the human diet, expressing AtMYB12 with stable and effective fruit-specific promoter E8S could improve tomato’s phenylpropanoid and nutrition content and quality. Our results can provide genetic resources for the subsequent improvement of tomato varieties and quality, which is significant for human health.
Collapse
Affiliation(s)
- Xiangyu Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Shaoli Wang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China;
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
- Correspondence: (Y.L.); (X.D.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.D.); (Z.Y.); (H.L.); (X.C.); (J.L.); (H.Z.); (X.W.)
- Correspondence: (Y.L.); (X.D.)
| |
Collapse
|
32
|
Diversity: current and prospective secondary metabolites for nutrition and medicine. Curr Opin Biotechnol 2021; 74:164-170. [PMID: 34942505 DOI: 10.1016/j.copbio.2021.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Plants have been used as sources of food, feed and medicine for millennia. The ever-increasing population has, however, dramatically increased the burden on our arable land to meet nutritional demand. Concomitantly, and in part due to poor nutrition, we are faced with massive increases in chronic diseases, meaning the need for medicine has also increased. Here, we look back on research in these areas, surveying the polyphenols as a case study for health-conferring metabolites. We conclude that the tools that will allow us to breed more nutritious crops are all at hand. We stress that collaboration between plant and medical research needs to be intensified in order to improve our understanding of the bioactivities. In doing so, we attempt to draw a roadmap for the use of plants for mid-21st Century human health.
Collapse
|
33
|
Reimer JJ, Thiele B, Biermann RT, Junker-Frohn LV, Wiese-Klinkenberg A, Usadel B, Wormit A. Tomato leaves under stress: a comparison of stress response to mild abiotic stress between a cultivated and a wild tomato species. PLANT MOLECULAR BIOLOGY 2021; 107:177-206. [PMID: 34677706 PMCID: PMC8553704 DOI: 10.1007/s11103-021-01194-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/16/2021] [Indexed: 05/03/2023]
Abstract
Tomato is one of the most produced crop plants on earth and growing in the fields and greenhouses all over the world. Breeding with known traits of wild species can enhance stress tolerance of cultivated crops. In this study, we investigated responses of the transcriptome as well as primary and secondary metabolites in leaves of a cultivated and a wild tomato to several abiotic stresses such as nitrogen deficiency, chilling or warmer temperatures, elevated light intensities and combinations thereof. The wild species responded different to varied temperature conditions compared to the cultivated tomato. Nitrogen deficiency caused the strongest responses and induced in particular the secondary metabolism in both species but to much higher extent in the cultivated tomato. Our study supports the potential of a targeted induction of valuable secondary metabolites in green residues of horticultural production, that will otherwise only be composted after fruit harvest. In particular, the cultivated tomato showed a strong induction in the group of mono caffeoylquinic acids in response to nitrogen deficiency. In addition, the observed differences in stress responses between cultivated and wild tomato can lead to new breeding targets for better stress tolerance.
Collapse
Affiliation(s)
- Julia J Reimer
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, PtJ, 52425, Jülich, Germany
| | - Björn Thiele
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Robin T Biermann
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., 14979, Großbeeren, Germany
| | - Laura V Junker-Frohn
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anika Wiese-Klinkenberg
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Bioinformatics (IBG-4), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Björn Usadel
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Bioinformatics (IBG-4), 52425, Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Heinrich-Heine-University, Chair of Biological Data Science, 40225, Düsseldorf, Germany
| | - Alexandra Wormit
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
- Bioeconomy Science Center, c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
34
|
Nakabayashi R, Takeda-Kamiya N, Yamada Y, Mori T, Uzaki M, Nirasawa T, Toyooka K, Saito K. A multimodal metabolomics approach using imaging mass spectrometry and liquid chromatography-tandem mass spectrometry for spatially characterizing monoterpene indole alkaloids secreted from roots. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:305-310. [PMID: 34782816 PMCID: PMC8562582 DOI: 10.5511/plantbiotechnology.21.0504a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
Plants release specialized (secondary) metabolites from their roots to communicate with other organisms, including soil microorganisms. The spatial behavior of such metabolites around these roots can help us understand roles for the communication; however, currently, they are unclear because soil-based studies are complex. Here, we established a multimodal metabolomics approach using imaging mass spectrometry (IMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to spatially assign metabolites under laboratory conditions using agar. In a case study using Catharanthus roseus, we showed that 58 nitrogen (N)-containing metabolites are released from the roots into the agar. For the metabolite assignment, we used 15N-labeled and non-labeled LC-MS/MS data, previously reported. Four metabolite ions were identified using authentic standard compounds as derived from monoterpene indole alkaloids (MIAs) such as ajmalicine, catharanthine, serpentine, and yohimbine. An alkaloid network analysis using dot products and spinglass methods characterized five clusters to which the 58 ions belong. The analysis clustered ions from the indolic skeleton-type MIAs to a cluster, suggesting that other communities may represent distinct metabolite groups. For future chemical assignments of the serpentine community, key fragmentation patterns were characterized using the 15N-labeled and non-labeled MS/MS spectra.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- E-mail: Tel: 81-45-503-9442
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Yamada
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mai Uzaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | | | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
35
|
Fernie AR, Alseekh S, Liu J, Yan J. Using precision phenotyping to inform de novo domestication. PLANT PHYSIOLOGY 2021; 186:1397-1411. [PMID: 33848336 PMCID: PMC8260140 DOI: 10.1093/plphys/kiab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 05/09/2023]
Abstract
An update on the use of precision phenotyping to assess the potential of lesser cultivated species as candidates for de novo domestication or similar development for future agriculture.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| |
Collapse
|
36
|
Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell Mol Life Sci 2021; 78:5743-5754. [PMID: 34196733 PMCID: PMC8316211 DOI: 10.1007/s00018-021-03868-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.
Collapse
|
37
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
38
|
Çolak NG, Eken NT, Frary A, Doğanlar S. Chromatographic Analysis for Targeted Metabolomics of Antioxidant and Flavor-Related Metabolites in Tomato. Bio Protoc 2021; 11:e3929. [PMID: 33796605 DOI: 10.21769/bioprotoc.3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 11/02/2022] Open
Abstract
Targeted metabolomics is a useful approach to evaluate crop breeding studies. Antioxidant and flavor-related traits are of increasing interest and are considered quality traits in tomato breeding. The present study presents chromatographic methods to study antioxidants (carotenoids, vitamin C, vitamin E, phenolic compounds, and glutathione) and flavor-related characters (sugars and organic acids) in tomato. Two different extraction methods (for polar and apolar entities) were applied to isolate the targeted compounds. The extraction methods developed in this work were time and cost-effective since no further purification was needed. Carotenoids, vitamin C, glutathione, and phenolic acids were analyzed by HPLC-PDA using a RP C18 column at an appropriate wavelength for each compound. Vitamin E and sugars were analyzed by HPLC with RP C18 and NH2 columns and detected by FLD and RI detectors, respectively. In addition, organic acids were analyzed with GC-FID using a Rtx 5DA column after derivatization with MSTFA. As a result, sensitive analytical methods to quantify important plant metabolites were developed and are described herein. These methods are not only applicable in tomato but are also useful to characterize other species for flavor-related and antioxidant compounds. Thus, these protocols can be used to guide selection in crop breeding.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey.,Plant Science and Technology and Application Center, Izmir Institute of Technology, Izmir, Turkey
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey.,Plant Science and Technology and Application Center, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
39
|
Zhang X, Liu P, Qing C, Yang C, Shen Y, Ma L. Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ 2021; 9:e10765. [PMID: 33717668 PMCID: PMC7934676 DOI: 10.7717/peerj.10765] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Salt stress affects crop yield by limiting growth and delaying development. In this study, we constructed 16 transcriptome libraries from maize seedling roots using two maize lines, with contrasting salt tolerance, that were exposed to salt stress for 0, 6, 18 and 36 h. In total, 6,584 differential expression genes (DEGs; 3,669 upregulated, 2,915 downregulated) were induced in the salt-sensitive line and 6,419 DEGs (3,876 upregulated, 2,543 downregulated) were induced in the salt-tolerant line. Several DEGs common to both lines were enriched in the ABA signaling pathway, which was presumed to coordinate the process of maize salt response. A total of 459 DEGs were specifically induced in the salt-tolerant line and represented candidate genes responsible for high salt-tolerance. Expression pattern analysis for these DEGs indicated that the period between 0 and 6 h was a crucial period for the rapid response of the tolerant genes under salt stress. Among these DEGs, several genes, Aux/IAA, SAUR, and CBL-interacting kinase have been reported to regulate salt tolerance. In addition, the transcription factors WRKY, bZIP and MYB acted as regulators in the salt-responsive regulatory network of maize roots. Our findings will contribute to understanding of the mechanism on salt response and provide references for functional gene revelation in plants.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Peng Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Chunyan Qing
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Cong Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Yaou Shen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Wenjiang, China
| | - Langlang Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Wenjiang, China
| |
Collapse
|
40
|
Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R. Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 2020; 62:1003-1034. [PMID: 33086895 DOI: 10.1080/10408398.2020.1832954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, MS, India
| | - Pravin Jadhav
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Vijay Kale
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS, India
| | - Atul Sathe
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
41
|
Alseekh S, Ofner I, Liu Z, Osorio S, Vallarino J, Last RL, Zamir D, Tohge T, Fernie AR. Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2007-2024. [PMID: 32538521 DOI: 10.1111/tpj.14879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Given the potential health benefits (and adverse effects), of polyphenolic and steroidal glycoalkaloids in the diet there is a growing interest in fully elucidating the genetic control of their levels in foodstuffs. Here we carried out profiling of the specialized metabolites in the seeds of the Solanum pennellii introgression lines identifying 338 putative metabolite quantitative trait loci (mQTL) for flavonoids, steroidal glycoalkaloids and further specialized metabolites. Two putative mQTL for flavonols and one for steroidal glycoalkaloids were cross-validated by evaluation of the metabolite content of recombinants harboring smaller introgression in the corresponding QTL interval or by analysis of lines from an independently derived backcross inbred line population. The steroidal glycoalkaloid mQTL was localized to a chromosomal region spanning 14 genes, including a previously defined steroidal glycoalkaloid gene cluster. The flavonoid mQTL was further validated via the use of transient and stable overexpression of the Solyc12g098600 and Solyc12g096870 genes, which encode seed-specific uridine 5'-diphosphate-glycosyltransferases. The results are discussed in the context of our understanding of the accumulation of polyphenols and steroidal glycoalkaloids, and how this knowledge may be incorporated into breeding strategies aimed at improving nutritional aspects of plants as well as in fortifying them against abiotic stress.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Itai Ofner
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, 32611, USA
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Instituto de Hortofruiticultura Subtropical y Mediterranea "La Major" - University of Malaga - Consejo Superior de Investigaciones Cientificas (IHSM-UMA-CSIC), Campus de Teatinos, Malaga, 29071, Spain
| | - Jose Vallarino
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Dani Zamir
- Faculty of Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
42
|
Tohge T. From Fruit Omics to Fruiting Omics: Systematic Studies of Tomato Fruiting by Metabolic Networks. MOLECULAR PLANT 2020; 13:1114-1116. [PMID: 32711126 DOI: 10.1016/j.molp.2020.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan.
| |
Collapse
|
43
|
Li Y, Chen Y, Zhou L, You S, Deng H, Chen Y, Alseekh S, Yuan Y, Fu R, Zhang Z, Su D, Fernie AR, Bouzayen M, Ma T, Liu M, Zhang Y. MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle. MOLECULAR PLANT 2020; 13:1203-1218. [PMID: 32561360 DOI: 10.1016/j.molp.2020.06.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/07/2020] [Accepted: 06/10/2020] [Indexed: 05/21/2023]
Abstract
Tomato (Solanum lycopersicum) is a major horticultural crop worldwide and has emerged as a preeminent model for metabolic research. Although many research efforts have focused on the analysis of metabolite differences between varieties and species, the dynamics of metabolic changes during the tomato growth cycle and the regulatory networks that underlie these changes are poorly understood. In this study, we integrated high-resolution spatio-temporal metabolome and transcriptome data to systematically explore the metabolic landscape across 20 major tomato tissues and growth stages. In the resulting MicroTom Metabolic Network, the 540 detected metabolites and their co-expressed genes could be divided into 10 distinct clusters based on their biological functions. Using this dataset, we constructed a global map of the major metabolic changes that occur throughout the tomato growth cycle and dissected the underlying regulatory network. In addition to verifying previously well-established regulatory networks for important metabolites, we identified novel transcription factors that regulate the biosynthesis of important secondary metabolites such as steroidal glycoalkaloids and flavonoids. Our findings provide insights into spatio-temporal changes in tomato metabolism and generate a valuable resource for the study of metabolic regulatory processes in model plants.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yang Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Lu Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Shengjie You
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Heng Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Ya Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Plant Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yong Yuan
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Dan Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Plant Biotechnology, 4000 Plovdiv, Bulgaria
| | - Mondher Bouzayen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China; GBF, University of Toulouse, INRA, Castanet-Tolosan, France
| | - Tao Ma
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China.
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China.
| |
Collapse
|
44
|
Calumpang CLF, Saigo T, Watanabe M, Tohge T. Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites 2020; 10:E209. [PMID: 32438728 PMCID: PMC7281770 DOI: 10.3390/metabo10050209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
Many solanaceous crops are an important part of the human daily diet. Fruit polyphenolics are plant specialized metabolites that are recognized for their human health benefits and their defensive role against plant abiotic and biotic stressors. Flavonoids and chlorogenates are the major polyphenolic compounds found in solanaceous fruits that vary in quantity, physiological function, and structural diversity among and within plant species. Despite their biological significance, the elucidation of metabolic shifts of polyphenols during fruit ripening in different fruit tissues, has not yet been well-characterized in solanaceous crops, especially at a cross-species and cross-cultivar level. Here, we performed a cross-species comparison of fruit-metabolomics to elucidate the metabolic regulation of fruit polyphenolics from three representative crops of Solanaceae (tomato, eggplant, and pepper), and a cross-cultivar comparison among different pepper cultivars (Capsicum annuum cv.) using liquid chromatography-mass spectrometry (LC-MS). We observed a metabolic trade-off between hydroxycinnamates and flavonoids in pungent pepper and anthocyanin-type pepper cultivars and identified metabolic signatures of fruit polyphenolics in each species from each different tissue-type and fruit ripening stage. Our results provide additional information for metabolomics-assisted crop improvement of solanaceous fruits towards their improved nutritive properties and enhanced stress tolerance.
Collapse
Affiliation(s)
| | | | | | - Takayuki Tohge
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan; (C.L.F.C.); (T.S.); (M.W.)
| |
Collapse
|