1
|
Hu H, Zhao J, Thomas WJW, Batley J, Edwards D. The role of pangenomics in orphan crop improvement. Nat Commun 2025; 16:118. [PMID: 39746989 PMCID: PMC11696220 DOI: 10.1038/s41467-024-55260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Global food security depends heavily on a few staple crops, while orphan crops, despite being less studied, offer the potential benefits of environmental adaptation and enhanced nutritional traits, especially in a changing climate. Major crops have benefited from genomics-based breeding, initially using single genomes and later pangenomes. Recent advances in DNA sequencing have enabled pangenome construction for several orphan crops, offering a more comprehensive understanding of genetic diversity. Orphan crop research has now entered the pangenomics era and applying these pangenomes with advanced selection methods and genome editing technologies can transform these neglected species into crops of broader agricultural significance.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of Rice Science and Technology, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of Rice Science and Technology, Guangzhou, China
| | - William J W Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Zhang X, Yang M, Liu Z, Yang F, Zhang L, Guo Y, Huo D. Genetic analysis of yield components in buckwheat using high-throughput sequencing analysis and wild resource populations. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1313-1328. [PMID: 39184561 PMCID: PMC11341512 DOI: 10.1007/s12298-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Fagopyrum tataricum, an important medicinal and edible crop, possesses significant agricultural and economic value. However, the development of buckwheat varieties and yields has been hindered by the delayed breeding progress despite the abundant material resources in China. Current research indicates that quantitative trait loci (QTLs) play a crucial role in controlling plant seed type and yield. To address these limitations, this study constructed recombinant inbred lines (RILs) utilizing both cultivated species and wild buckwheat as raw materials. In total, 84,521 Single Nucleotide Polymorphism (SNP) markers were identified through Genotyping-by-Sequencing (GBS) technology, and high-resolution and high-density SNP genetic maps were developed, which had significant value for QTL mapping, gene cloning and comparative mapping of buckwheat. In this study, we successfully identified 5 QTLs related to thousand grain weight (TGW), 9 for grain length (GL), and 1 for grain width (GW) by combining seed type and TGW data from 202 RIL populations in four different environments, within which one co-located QTL for TGW were discovered on the first chromosome. Transcriptome analysis during different grain development stages revealed 59 significant expression differences between the two materials, which can serve as candidate genes for further investigation into the regulation of grain weight and yield enhancement. The mapped major loci controlling TGW, GL and GW will be valuable for gene cloning and reveal the mechanism underlying grain development and marker-assisted selection in Tartary buckwheat.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Miao Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031 China
| | - Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Yajing Guo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, 030619 China
| |
Collapse
|
3
|
Liu Y, Cheng Z, Chen W, Wu C, Chen J, Sui Y. Establishment of genome-editing system and assembly of a near-complete genome in broomcorn millet. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1688-1702. [PMID: 38695644 DOI: 10.1111/jipb.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 08/17/2024]
Abstract
The ancient crop broomcorn millet (Panicum miliaceum L.) is an indispensable orphan crop in semi-arid regions due to its short life cycle and excellent abiotic stress tolerance. These advantages make it an important alternative crop to increase food security and achieve the goal of zero hunger, particularly in light of the uncertainty of global climate change. However, functional genomic and biotechnological research in broomcorn millet has been hampered due to a lack of genetic tools such as transformation and genome-editing techniques. Here, we successfully performed genome editing of broomcorn millet. We identified an elite variety, Hongmi, that produces embryogenic callus and has high shoot regeneration ability in in vitro culture. We established an Agrobacterium tumefaciens-mediated genetic transformation protocol and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system for Hongmi. Using these techniques, we produced herbicide-resistant transgenic plants and edited phytoene desaturase (PmPDS), which is involved in chlorophyll biosynthesis. To facilitate the rapid adoption of Hongmi as a model line for broomcorn millet research, we assembled a near-complete genome sequence of Hongmi and comprehensively annotated its genome. Together, our results open the door to improving broomcorn millet using biotechnology.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiyao Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Sui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Montgomery J, Morran S, MacGregor DR, McElroy JS, Neve P, Neto C, Vila-Aiub MM, Sandoval MV, Menéndez AI, Kreiner JM, Fan L, Caicedo AL, Maughan PJ, Martins BAB, Mika J, Collavo A, Merotto A, Subramanian NK, Bagavathiannan MV, Cutti L, Islam MM, Gill BS, Cicchillo R, Gast R, Soni N, Wright TR, Zastrow-Hayes G, May G, Malone JM, Sehgal D, Kaundun SS, Dale RP, Vorster BJ, Peters B, Lerchl J, Tranel PJ, Beffa R, Fournier-Level A, Jugulam M, Fengler K, Llaca V, Patterson EL, Gaines TA. Current status of community resources and priorities for weed genomics research. Genome Biol 2024; 25:139. [PMID: 38802856 PMCID: PMC11129445 DOI: 10.1186/s13059-024-03274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.
Collapse
Affiliation(s)
- Jacob Montgomery
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Sarah Morran
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Dana R MacGregor
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - J Scott McElroy
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Paul Neve
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Célia Neto
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Martin M Vila-Aiub
- IFEVA-Conicet-Department of Ecology, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Analia I Menéndez
- Department of Ecology, Faculty of Agronomy, University of Buenos Aires, Buenos Aires, Argentina
| | - Julia M Kreiner
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Longjiang Fan
- Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Ana L Caicedo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Jagoda Mika
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Aldo Merotto
- Department of Crop Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Nithya K Subramanian
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Luan Cutti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Robert Cicchillo
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Roger Gast
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Neeta Soni
- Crop Protection Discovery and Development, Corteva Agriscience, Indianapolis, IN, USA
| | - Terry R Wright
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | | | - Gregory May
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Deepmala Sehgal
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Shiv Shankhar Kaundun
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Richard P Dale
- Jealott's Hill International Research Centre, Syngenta Ltd, Bracknell, Berkshire, UK
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Bodo Peters
- Bayer AG, Weed Control Research, Frankfurt, Germany
| | | | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Senior Scientist Consultant, Herbicide Resistance Action Committee / CropLife International, Liederbach, Germany
| | | | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Kevin Fengler
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Victor Llaca
- Genome Center of Excellence, Corteva Agriscience, Johnston, IA, USA
| | - Eric L Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
5
|
Jadhav Y, Thakur NR, Ingle KP, Ceasar SA. The role of phenomics and genomics in delineating the genetic basis of complex traits in millets. PHYSIOLOGIA PLANTARUM 2024; 176:e14349. [PMID: 38783512 DOI: 10.1111/ppl.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Millets, comprising a diverse group of small-seeded grains, have emerged as vital crops with immense nutritional, environmental, and economic significance. The comprehension of complex traits in millets, influenced by multifaceted genetic determinants, presents a compelling challenge and opportunity in agricultural research. This review delves into the transformative roles of phenomics and genomics in deciphering these intricate genetic architectures. On the phenomics front, high-throughput platforms generate rich datasets on plant morphology, physiology, and performance in diverse environments. This data, coupled with field trials and controlled conditions, helps to interpret how the environment interacts with genetics. Genomics provides the underlying blueprint for these complex traits. Genome sequencing and genotyping technologies have illuminated the millet genome landscape, revealing diverse gene pools and evolutionary relationships. Additionally, different omics approaches unveil the intricate information of gene expression, protein function, and metabolite accumulation driving phenotypic expression. This multi-omics approach is crucial for identifying candidate genes and unfolding the intricate pathways governing complex traits. The review highlights the synergy between phenomics and genomics. Genomically informed phenotyping targets specific traits, reducing the breeding size and cost. Conversely, phenomics identifies promising germplasm for genomic analysis, prioritizing variants with superior performance. This dynamic interplay accelerates breeding programs and facilitates the development of climate-smart, nutrient-rich millet varieties and hybrids. In conclusion, this review emphasizes the crucial roles of phenomics and genomics in unlocking the genetic enigma of millets.
Collapse
Affiliation(s)
- Yashoda Jadhav
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
| | - Niranjan Ravindra Thakur
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
- Vasantrao Naik Marathwada Agricultural University, Parbhani, MS, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, KL, India
| |
Collapse
|
6
|
Ramírez Gonzales LY, Cannarozzi G, Jäggi L, Assefa K, Chanyalew S, Dell'Acqua M, Tadele Z. The role of omics in improving the orphan crop tef. Trends Genet 2024; 40:449-461. [PMID: 38599921 DOI: 10.1016/j.tig.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Tef or teff [Eragrostis tef (Zucc.) Trotter] is a cereal crop indigenous to the Horn of Africa, where it is a staple food for a large population. The popularity of tef arises from its resilience to environmental stresses and its nutritional value. For many years, tef has been considered an orphan crop, but recent research initiatives from across the globe are helping to unravel its undisclosed potential. Advanced omics tools and techniques have been directed toward the exploration of tef's diversity with the aim of increasing its productivity. In this review, we report on the most recent advances in tef omics that brought the crop into the spotlight of international research.
Collapse
Affiliation(s)
| | - Gina Cannarozzi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lea Jäggi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Kebebew Assefa
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | - Solomon Chanyalew
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | | | - Zerihun Tadele
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
7
|
Parada-Rojas CH, Stahr M, Childs KL, Quesada-Ocampo LM. Effector Repertoire of the Sweetpotato Black Rot Fungal Pathogen Ceratocystis fimbriata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:315-326. [PMID: 38353601 DOI: 10.1094/mpmi-09-23-0146-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In 2015, sweetpotato producers in the United States experienced one of the worst outbreaks of black rot recorded in history, with up to 60% losses reported in the field and packing houses and at shipping ports. Host resistance remains the ideal management tool to decrease crop losses. Lack of knowledge of Ceratocystis fimbriata biology represents a critical barrier for the deployment of resistance to black rot in sweetpotato. In this study, we scanned the recent near chromosomal-level assembly for putative secreted effectors in the sweetpotato C. fimbriata isolate AS236 using a custom fungal effector annotation pipeline. We identified a set of 188 putative effectors on the basis of secretion signal and in silico prediction in EffectorP. We conducted a deep RNA time-course sequencing experiment to determine whether C. fimbriata modulates effectors in planta and to define a candidate list of effectors expressed during infection. We examined the expression profile of two C. fimbriata isolates, a pre-epidemic (1990s) isolate and a post-epidemic (2015) isolate. Our in planta expression profiling revealed clusters of co-expressed secreted effector candidates. Based on fold-change differences of putative effectors in both isolates and over the course of infection, we suggested prioritization of 31 effectors for functional characterization. Among this set, we identified several effectors that provide evidence for a marked biotrophic phase in C. fimbriata during infection of sweetpotato storage roots. Our study revealed a catalog of effector proteins that provide insight into C. fimbriata infection mechanisms and represent a core catalog to implement effector-assisted breeding in sweetpotato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Camilo H Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Madison Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lina M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| |
Collapse
|
8
|
Rogo U, Simoni S, Fambrini M, Giordani T, Pugliesi C, Mascagni F. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops. Int J Mol Sci 2024; 25:2374. [PMID: 38397047 PMCID: PMC10888583 DOI: 10.3390/ijms25042374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The worldwide agricultural system confronts a significant challenge represented by the increasing demand for food in the face of a growing global population. This challenge is exacerbated by a reduction in cultivable land and the adverse effects of climate change on crop yield quantity and quality. Breeders actively embrace cutting-edge omics technologies to pursue resilient genotypes in response to these pressing issues. In this global context, new breeding techniques (NBTs) are emerging as the future of agriculture, offering a solution to introduce resilient crops that can ensure food security, particularly against challenging climate events. Indeed, the search for domestication genes as well as the genetic modification of these loci in wild species using genome editing tools are crucial steps in carrying out de novo domestication of wild plants without compromising their genetic background. Current knowledge allows us to take different paths from those taken by early Neolithic farmers, where crop domestication has opposed natural selection. In this process traits and alleles negatively correlated with high resource environment performance are probably eradicated through artificial selection, while others may have been lost randomly due to domestication and genetic bottlenecks. Thus, domestication led to highly productive plants with little genetic diversity, owing to the loss of valuable alleles that had evolved to tolerate biotic and abiotic stresses. Recent technological advances have increased the feasibility of de novo domestication of wild plants as a promising approach for crafting optimal crops while ensuring food security and using a more sustainable, low-input agriculture. Here, we explore what crucial domestication genes are, coupled with the advancement of technologies enabling the precise manipulation of target sequences, pointing out de novo domestication as a promising application for future crop development.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; (U.R.); (S.S.); (M.F.); (T.G.); (F.M.)
| | | |
Collapse
|
9
|
Shorinola O, Marks R, Emmrich P, Jones C, Odeny D, Chapman MA. Integrative and inclusive genomics to promote the use of underutilised crops. Nat Commun 2024; 15:320. [PMID: 38191605 PMCID: PMC10774273 DOI: 10.1038/s41467-023-44535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Underutilised crops or orphan crops are important for diversifying our food systems towards food and nutrition security. Here, the authors discuss how the development of underutilised crop genomic resource should align with their breeding and capacity building strategies, and leverage advances made in major crops.
Collapse
Affiliation(s)
- Oluwaseyi Shorinola
- International Livestock Research Institute, Naivasha Road, Nairobi, Kenya.
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rose Marks
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Peter Emmrich
- Norwich Institute for Sustainable Development, School of Global Development, University of East Anglia, England, NR4 7TJ, UK
| | - Chris Jones
- International Livestock Research Institute, Naivasha Road, Nairobi, Kenya
| | - Damaris Odeny
- Center of Excellence in Genomics and Systems Biology, ICRISAT, Patancheru, 502324, Telangana, India
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
10
|
Efficient genetic improvement of orphan crops cannot follow the old path. Nat Commun 2024; 15:321. [PMID: 38191480 PMCID: PMC10774366 DOI: 10.1038/s41467-023-44458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
|
11
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PVV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM CROPS & FOOD 2023; 14:1-20. [PMID: 36606637 PMCID: PMC9828793 DOI: 10.1080/21645698.2022.2146952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
Affiliation(s)
- Huwaida Yaqoob
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Arooj Tariq
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Kaisar Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Iqra Bashir Nehvi
- Department of Clinical Biochemistry, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China,Ali Raza College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India,CONTACT Rakeeb Ahmad MirDepartment of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
12
|
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, Khashi U Rahman M, Saati-Santamaría Z, García-Fraile P, Ferreira EA, Frazão LA, Cowling WA, Siddique KHM, Pandey MK, Farooq M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH. Enhancing climate change resilience in agricultural crops. Curr Biol 2023; 33:R1246-R1261. [PMID: 38052178 DOI: 10.1016/j.cub.2023.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Collapse
Affiliation(s)
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sibongile Zimba
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK; Horticulture Department, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Liam German
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Anastasia Kolesnikova
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Jessica A Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Azahara C Martin
- Institute for Sustainable Agriculture (IAS-CSIC), Córdoba 14004, Spain
| | - Muhammad Khashi U Rahman
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Evander A Ferreira
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Leidivan A Frazão
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Wallace A Cowling
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Muhammad Farooq
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Chen J, Liu Y, Liu M, Guo W, Wang Y, He Q, Chen W, Liao Y, Zhang W, Gao Y, Dong K, Ren R, Yang T, Zhang L, Qi M, Li Z, Zhao M, Wang H, Wang J, Qiao Z, Li H, Jiang Y, Liu G, Song X, Deng Y, Li H, Yan F, Dong Y, Li Q, Li T, Yang W, Cui J, Wang H, Zhou Y, Zhang X, Jia G, Lu P, Zhi H, Tang S, Diao X. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat Genet 2023; 55:2243-2254. [PMID: 38036791 PMCID: PMC10703678 DOI: 10.1038/s41588-023-01571-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Broomcorn millet (Panicum miliaceum L.) is an orphan crop with the potential to improve cereal production and quality, and ensure food security. Here we present the genetic variations, population structure and diversity of a diverse worldwide collection of 516 broomcorn millet genomes. Population analysis indicated that the domesticated broomcorn millet originated from its wild progenitor in China. We then constructed a graph-based pangenome of broomcorn millet based on long-read de novo genome assemblies of 32 representative accessions. Our analysis revealed that the structural variations were highly associated with transposable elements, which influenced gene expression when located in the coding or regulatory regions. We also identified 139 loci associated with 31 key domestication and agronomic traits, including candidate genes and superior haplotypes, such as LG1, for panicle architecture. Thus, the study's findings provide foundational resources for developing genomics-assisted breeding programs in broomcorn millet.
Collapse
Affiliation(s)
- Jinfeng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyao Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Liao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Liyuan Zhang
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Mingyu Qi
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Zhiguang Li
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Min Zhao
- Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China
| | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Junjie Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoqiang Song
- High Latitude Crops Institute to Shanxi Academy, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Datong, China
| | - Yarui Deng
- High Latitude Crops Institute to Shanxi Academy, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Datong, China
| | - Hai Li
- High Latitude Crops Institute to Shanxi Academy, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Datong, China
| | - Feng Yan
- Qiqihar Sub-academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yang Dong
- Qiqihar Sub-academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Qingquan Li
- Qiqihar Sub-academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Tao Li
- Institute of Crop Sciences, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenyao Yang
- Institute of Crop Sciences, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jianghui Cui
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
14
|
Liu Y, Gao Y, Chen M, Jin Y, Qin Y, Hao G. GIFTdb: a useful gene database for plant fruit traits improving. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1030-1040. [PMID: 37856620 DOI: 10.1111/tpj.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Fruit traits are critical determinants of plant fitness, resource diversity, productive and quality. Gene regulatory networks in plants play an essential role in determining fruit traits, such as fruit size, yield, firmness, aroma and other important features. Many research studies have focused on elucidating the associated signaling pathways and gene interaction mechanism to better utilize gene resources for regulating fruit traits. However, the availability of specific database of genes related to fruit traits for use by the plant research community remains limited. To address this limitation, we developed the Gene Improvements for Fruit Trait Database (GIFTdb, http://giftdb.agroda.cn). GIFTdb contains 35 365 genes, including 896 derived from the FR database 1.0, 305 derived from 30 882 articles from 2014 to 2021, 236 derived from the Universal Protein Resource (UniProt) database, and 33 928 identified through homology analysis. The database supports several aided analysis tools, including signal transduction pathways, gene ontology terms, protein-protein interactions, DNAWorks, Basic Local Alignment Search Tool (BLAST), and Protein Subcellular Localization Prediction (WoLF PSORT). To provide information about genes currently unsupported in GIFTdb, potential fruit trait-related genes can be searched based on homology with the supported genes. GIFTdb can provide valuable assistance in determining the function of fruit trait-related genes, such as MYB306-like, by conducting a straightforward search. We believe that GIFTdb will be a valuable resource for researchers working on gene function annotation and molecular breeding to improve fruit traits.
Collapse
Affiliation(s)
- Yingwei Liu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, P.R. China
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yin Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yongbin Qin
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
| | - Gefei Hao
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| |
Collapse
|
15
|
Zhang X, Chen Y, Wang L, Yuan Y, Fang M, Shi L, Lu R, Comes HP, Ma Y, Chen Y, Huang G, Zhou Y, Zheng Z, Qiu Y. Pangenome of water caltrop reveals structural variations and asymmetric subgenome divergence after allopolyploidization. HORTICULTURE RESEARCH 2023; 10:uhad203. [PMID: 38046854 PMCID: PMC10689057 DOI: 10.1093/hr/uhad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/01/2023] [Indexed: 12/05/2023]
Abstract
Water caltrop (Trapa spp., Lythraceae) is a traditional but currently underutilized non-cereal crop. Here, we generated chromosome-level genome assemblies for the two diploid progenitors of allotetraploid Trapa. natans (4x, AABB), i.e., diploid T. natans (2x, AA) and Trapa incisa (2x, BB). In conjunction with four published (sub)genomes of Trapa, we used gene-based and graph-based pangenomic approaches and a pangenomic transposable element (TE) library to develop Trapa genomic resources. The pangenome displayed substantial gene-content variation with dispensable and private gene clusters occupying a large proportion (51.95%) of the total cluster sets in the six (sub)genomes. Genotyping of presence-absence variation (PAVs) identified 40 453 PAVs associated with 2570 genes specific to A- or B-lineages, of which 1428 were differentially expressed, and were enriched in organ development process, organic substance metabolic process and response to stimulus. Comparative genome analyses showed that the allotetraploid T. natans underwent asymmetric subgenome divergence, with the B-subgenome being more dominant than the A-subgenome. Multiple factors, including PAVs, asymmetrical amplification of TEs, homeologous exchanges (HEs), and homeolog expression divergence, together affected genome evolution after polyploidization. Overall, this study sheds lights on the genome architecture and evolution of Trapa, and facilitates its functional genomic studies and breeding program.
Collapse
Affiliation(s)
- Xinyi Zhang
- Systematic and Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yang Chen
- Systematic and Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Lingyun Wang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, 321000, Zhejiang, China
| | - Ye Yuan
- Jiaxing Academy of Agricultural Sciences, Jiaxing, 314016, Zhejiang, China
| | - Mingya Fang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, 321000, Zhejiang, China
| | - Lin Shi
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, 321000, Zhejiang, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, 5020, Austria
| | - Yazhen Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yuanyuan Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Guizhou Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, Guangdong, China
| | - Yongfeng Zhou
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture; Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, Guangdong, China
| | - Zhaisheng Zheng
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Jinhua, 321000, Zhejiang, China
| | - Yingxiong Qiu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| |
Collapse
|
16
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Luyckx A, Lutts S, Quinet M. Comparison of Salt Stress Tolerance among Two Leaf and Six Grain Cultivars of Amaranthus cruentus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3310. [PMID: 37765474 PMCID: PMC10535409 DOI: 10.3390/plants12183310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Amaranths (Amaranthus L.) are multi-use crop species renowned for their nutritional quality and their tolerance to biotic and abiotic stresses. Since the soil salinity of croplands is a growing problem worldwide, we tested the salinity tolerance of six grain and two leaf cultivars of Amaranthus cruentus L. The plants were grown for 53 days under hydroponic conditions at 0, 50 and 100 mM NaCl. We investigated the growth rate, photosynthetic activity, mineral content, pigments and biochemical compounds involved in oxidative stress. Although 100 mM NaCl always decreased biomass production, we highlighted Don Leon and K91 as tolerant cultivars under moderate salt stress (50 mM NaCl). Under salinity, sodium accumulated more in the shoots than in the roots, particularly in the stems. Sodium accumulation in the plants decreased the net photosynthetic rate, transpiration rate and stomatal conductance but increased water use efficiency, and it decreased chlorophyll, betalain and polyphenol content in the leaves. It also decreased the foliar content of calcium, magnesium and potassium but not the iron and zinc content. The physiological parameters responded differently to sodium accumulation depending on the cultivar, suggesting a different relative importance of ionic and osmotic phases of salt stress among cultivars. Our results allowed us to identify the morpho-physiological traits of the cultivars with different salt tolerance levels.
Collapse
Affiliation(s)
| | | | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (A.L.); (S.L.)
| |
Collapse
|
18
|
Imbert B, Kreplak J, Flores RG, Aubert G, Burstin J, Tayeh N. Development of a knowledge graph framework to ease and empower translational approaches in plant research: a use-case on grain legumes. Front Artif Intell 2023; 6:1191122. [PMID: 37601035 PMCID: PMC10435283 DOI: 10.3389/frai.2023.1191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
While the continuing decline in genotyping and sequencing costs has largely benefited plant research, some key species for meeting the challenges of agriculture remain mostly understudied. As a result, heterogeneous datasets for different traits are available for a significant number of these species. As gene structures and functions are to some extent conserved through evolution, comparative genomics can be used to transfer available knowledge from one species to another. However, such a translational research approach is complex due to the multiplicity of data sources and the non-harmonized description of the data. Here, we provide two pipelines, referred to as structural and functional pipelines, to create a framework for a NoSQL graph-database (Neo4j) to integrate and query heterogeneous data from multiple species. We call this framework Orthology-driven knowledge base framework for translational research (Ortho_KB). The structural pipeline builds bridges across species based on orthology. The functional pipeline integrates biological information, including QTL, and RNA-sequencing datasets, and uses the backbone from the structural pipeline to connect orthologs in the database. Queries can be written using the Neo4j Cypher language and can, for instance, lead to identify genes controlling a common trait across species. To explore the possibilities offered by such a framework, we populated Ortho_KB to obtain OrthoLegKB, an instance dedicated to legumes. The proposed model was evaluated by studying the conservation of a flowering-promoting gene. Through a series of queries, we have demonstrated that our knowledge graph base provides an intuitive and powerful platform to support research and development programmes.
Collapse
Affiliation(s)
- Baptiste Imbert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Raphaël-Gauthier Flores
- Université Paris-Saclay, INRAE, URGI, Versailles, France
- Université Paris-Saclay, INRAE, BioinfOmics, Plant Bioinformatics Facility, Versailles, France
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
19
|
May D, Sanchez S, Gilby J, Altpeter F. Multi-allelic gene editing in an apomictic, tetraploid turf and forage grass ( Paspalum notatum Flüggé) using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2023; 14:1225775. [PMID: 37521929 PMCID: PMC10373592 DOI: 10.3389/fpls.2023.1225775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Polyploidy is common among grasses (Poaceae) and poses challenges for conventional breeding. Genome editing technology circumvents crossing and selfing, enabling targeted modifications to multiple gene copies in a single generation while maintaining the heterozygous context of many polyploid genomes. Bahiagrass (Paspalum notatum Flüggé; 2n=4x=40) is an apomictic, tetraploid C4 species that is widely grown in the southeastern United States as forage in beef cattle production and utility turf. The chlorophyll biosynthesis gene magnesium chelatase (MgCh) was selected as a rapid readout target for establishing genome editing in tetraploid bahiagrass. Vectors containing sgRNAs, Cas9 and nptII were delivered to callus cultures by biolistics. Edited plants were characterized through PCR-based assays and DNA sequencing, and mutagenesis frequencies as high as 99% of Illumina reads were observed. Sequencing of wild type (WT) bahiagrass revealed a high level of sequence variation in MgCh likely due to the presence of at least two copies with possibly eight different alleles, including pseudogenes. MgCh mutants exhibited visible chlorophyll depletion with up to 82% reductions in leaf greenness. Two lines displayed progression of editing over time which was linked to somatic editing. Apomictic progeny of a chimeric MgCh editing event were obtained and allowed identification of uniformly edited progeny plants among a range of chlorophyll depletion phenotypes. Sanger sequencing of a highly edited mutant revealed elevated frequency of a WT allele, probably due to frequent homology-directed repair (HDR). To our knowledge these experiments comprise the first report of genome editing applied in perennial, warm-season turf or forage grasses. This technology will accelerate bahiagrass cultivar development.
Collapse
Affiliation(s)
- David May
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jennifer Gilby
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Cellular and Molecular Biology Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Machado IP, DoVale JC, Sabadin F, Fritsche-Neto R. On the usefulness of mock genomes to define heterotic pools, testers, and hybrid predictions in orphan crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1164555. [PMID: 37332727 PMCID: PMC10272588 DOI: 10.3389/fpls.2023.1164555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
The advances in genomics in recent years have increased the accuracy and efficiency of breeding programs for many crops. Nevertheless, the adoption of genomic enhancement for several other crops essential in developing countries is still limited, especially for those that do not have a reference genome. These crops are more often called orphans. This is the first report to show how the results provided by different platforms, including the use of a simulated genome, called the mock genome, can generate in population structure and genetic diversity studies, especially when the intention is to use this information to support the formation of heterotic groups, choice of testers, and genomic prediction of single crosses. For that, we used a method to assemble a reference genome to perform the single-nucleotide polymorphism (SNP) calling without needing an external genome. Thus, we compared the analysis results using the mock genome with the standard approaches (array and genotyping-by-sequencing (GBS)). The results showed that the GBS-Mock presented similar results to the standard methods of genetic diversity studies, division of heterotic groups, the definition of testers, and genomic prediction. These results showed that a mock genome constructed from the population's intrinsic polymorphisms to perform the SNP calling is an effective alternative for conducting genomic studies of this nature in orphan crops, especially those that do not have a reference genome.
Collapse
Affiliation(s)
| | - Júlio César DoVale
- Department of Crop Science, Federal University of Ceará, Fortaleza, Brazil
| | - Felipe Sabadin
- School of Plant and Environmental Sciences, Virginia Tech: Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Roberto Fritsche-Neto
- LSU AgCenter, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
21
|
Neik TX, Siddique KHM, Mayes S, Edwards D, Batley J, Mabhaudhi T, Song BK, Massawe F. Diversifying agrifood systems to ensure global food security following the Russia–Ukraine crisis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1124640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The recent Russia–Ukraine conflict has raised significant concerns about global food security, leaving many countries with restricted access to imported staple food crops, particularly wheat and sunflower oil, sending food prices soaring with other adverse consequences in the food supply chain. This detrimental effect is particularly prominent for low-income countries relying on grain imports, with record-high food prices and inflation affecting their livelihoods. This review discusses the role of Russia and Ukraine in the global food system and the impact of the Russia–Ukraine conflict on food security. It also highlights how diversifying four areas of agrifood systems—markets, production, crops, and technology can contribute to achieving food supply chain resilience for future food security and sustainability.
Collapse
|
22
|
Huang Y, Wu D, Huang Z, Li X, Merotto A, Bai L, Fan L. Weed genomics: yielding insights into the genetics of weedy traits for crop improvement. ABIOTECH 2023; 4:20-30. [PMID: 37220539 PMCID: PMC10199979 DOI: 10.1007/s42994-022-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 05/25/2023]
Abstract
Weeds cause tremendous economic and ecological damage worldwide. The number of genomes established for weed species has sharply increased during the recent decade, with some 26 weed species having been sequenced and de novo genomes assembled. These genomes range from 270 Mb (Barbarea vulgaris) to almost 4.4 Gb (Aegilops tauschii). Importantly, chromosome-level assemblies are now available for 17 of these 26 species, and genomic investigations on weed populations have been conducted in at least 12 species. The resulting genomic data have greatly facilitated studies of weed management and biology, especially origin and evolution. Available weed genomes have indeed revealed valuable weed-derived genetic materials for crop improvement. In this review, we summarize the recent progress made in weed genomics and provide a perspective for further exploitation in this emerging field.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| | - Dongya Wu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| | - Zhaofeng Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiangyu Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School Federal University of Rio Grande do Sul, Porto Alegre, 91540-000 Brazil
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Sciences, Changshang, 410125 China
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
23
|
Babele PK, Srivastava A, Selim KA, Kumar A. Millet-inspired systems metabolic engineering of NUE in crops. Trends Biotechnol 2022; 41:701-713. [PMID: 36566140 DOI: 10.1016/j.tibtech.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
The use of nitrogen (N) fertilizers in agriculture has a great ability to increase crop productivity. However, their excessive use has detrimental effects on the environment. Therefore, it is necessary to develop crop varieties with improved nitrogen use efficiency (NUE) that require less N but have substantial yields. Orphan crops such as millets are cultivated in limited regions and are well adapted to lower input conditions. Therefore, they serve as a rich source of beneficial traits that can be transferred into major crops to improve their NUE. This review highlights the tremendous potential of systems biology to unravel the enzymes and pathways involved in the N metabolism of millets, which can open new possibilities to generate transgenic crops with improved NUE.
Collapse
Affiliation(s)
- Piyoosh K Babele
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| |
Collapse
|
24
|
Kumar B, Singh AK, Bahuguna RN, Pareek A, Singla‐Pareek SL. Orphan crops: A genetic treasure trove for hunting stress tolerance genes. Food Energy Secur 2022. [DOI: 10.1002/fes3.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Brijesh Kumar
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Anil Kumar Singh
- ICAR‐National Institute for Plant Biotechnology LBS Centre New Delhi India
| | - Rajeev Nayan Bahuguna
- Center for Advanced Studies on Climate Change Dr. Rajendra Prasad Central Agricultural University Bihar Pusa, Samastipur India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Sneh L. Singla‐Pareek
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| |
Collapse
|
25
|
Li Z, Zhong F, Guo J, Chen Z, Song J, Zhang Y. Improving Wheat Salt Tolerance for Saline Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14989-15006. [PMID: 36442507 DOI: 10.1021/acs.jafc.2c06381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Crops have evolved various strategies to facilitate survival and production of harvestable yield under salinity stress. Wheat (Triticum aestivum L.) is the main crop in arid and semiarid land areas, which are often affected by soil salinity. In this review, we summarize the conventional approaches to enhance wheat salt tolerance, including cross-breeding, exogenous application of chemical compounds, beneficial soil microorganisms, and transgenic engineering. We also propose several new breeding techniques for increasing salt tolerance in wheat, such as identifying new quantitative trait loci or genes related to salt tolerance, gene stacking and multiple genome editing, and wheat wild relatives and orphan crops domestication. The challenges and possible countermeasures in enhancing wheat salinity tolerance are also discussed.
Collapse
Affiliation(s)
- Zihan Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fan Zhong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
26
|
Kumar K, Mandal SN, Pradhan B, Kaur P, Kaur K, Neelam K. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. PLANT & CELL PHYSIOLOGY 2022; 63:1607-1623. [PMID: 36018059 DOI: 10.1093/pcp/pcac124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crop domestication has a tremendous impact on socioeconomic conditions and human civilization. Modern cultivars were domesticated from their wild progenitors thousands of years ago by the selection of natural variation by humans. New cultivars are being developed by crossing two or more compatible individuals. But the limited genetic diversity in the cultivars severely affects the yield and renders the crop susceptible to many biotic and abiotic stresses. Crop wild relatives (CWRs) are the rich reservoir for many valuable agronomic traits. The incorporation of useful genes from CWR is one of the sustainable approaches for enriching the gene pool of cultivated crops. However, CWRs are not suited for urban and intensive cultivation because of several undesirable traits. Researchers have begun to study the domestication traits in the CWRs and modify them using genome-editing tools to make them suitable for extensive cultivation. Growing evidence has shown that modification in these genes is not sufficient to bring the desired change in the neodomesticated crop. However, the other dynamic genetic factors such as microRNAs (miRNAs), transposable elements, cis-regulatory elements and epigenetic changes have reshaped the domesticated crops. The creation of allelic series for many valuable domestication traits through genome editing holds great potential for the accelerated development of neodomesticated crops. The present review describes the current understanding of the genetics of domestication traits that are responsible for the agricultural revolution. The targeted mutagenesis in these domestication genes via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 could be used for the rapid domestication of CWRs.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Swarupa Nanda Mandal
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79415, USA
| | - Bhubaneswar Pradhan
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
27
|
Verma SK, Singh CK, Taunk J, Gayacharan, Chandra Joshi D, Kalia S, Dey N, Singh AK. Vignette of Vigna domestication: From archives to genomics. Front Genet 2022; 13:960200. [PMID: 36338960 PMCID: PMC9634637 DOI: 10.3389/fgene.2022.960200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 06/26/2024] Open
Abstract
The genus Vigna comprises fast-growing, diploid legumes, cultivated in tropical and subtropical parts of the world. It comprises more than 200 species among which Vigna angularis, Vigna radiata, Vigna mungo, Vigna aconitifolia, Vigna umbellata, Vigna unguiculata, and Vigna vexillata are of enormous agronomic importance. Human selection along with natural variability within these species encompasses a vital source for developing new varieties. The present review convokes the early domestication history of Vigna species based on archeological pieces of evidence and domestication-related traits (DRTs) together with genetics of domestication. Traces of early domestication of Vigna have been evidenced to spread across several temperate and tropical regions of Africa, Eastern Asia, and few parts of Europe. Several DRTs of Vigna species, such as pod shattering, pod and seed size, dormancy, seed coat, seed color, maturity, and pod dehiscence, can clearly differentiate wild species from their domesticates. With the advancement in next-generation high-throughput sequencing techniques, exploration of genetic variability using recently released reference genomes along with de novo sequencing of Vigna species have provided a framework to perform genome-wide association and functional studies to figure out different genes related to DRTs. In this review, genes and quantitative trait loci (QTLs) related to DRTs of different Vigna species have also been summarized. Information provided in this review will enhance the in-depth understanding of the selective pressures that causes crop domestication along with nature of evolutionary selection made in unexplored Vigna species. Furthermore, correlated archeological and domestication-related genetic evidence will facilitate Vigna species to be considered as suitable model plants.
Collapse
Affiliation(s)
| | | | - Jyoti Taunk
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Chandra Joshi
- ICAR-Vivekananda Institute of Hill Agriculture (Vivekananda Parvatiya Krishi Anusandhan Sansthan), Uttarakhand, Almora, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Nrisingha Dey
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
28
|
Yang T, Liu R, Luo Y, Hu S, Wang D, Wang C, Pandey MK, Ge S, Xu Q, Li N, Li G, Huang Y, Saxena RK, Ji Y, Li M, Yan X, He Y, Liu Y, Wang X, Xiang C, Varshney RK, Ding H, Gao S, Zong X. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet 2022; 54:1553-1563. [PMID: 36138232 PMCID: PMC9534762 DOI: 10.1038/s41588-022-01172-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/26/2022] [Indexed: 12/21/2022]
Abstract
Complete and accurate reference genomes and annotations provide fundamental resources for functional genomics and crop breeding. Here we report a de novo assembly and annotation of a pea cultivar ZW6 with contig N50 of 8.98 Mb, which features a 243-fold increase in contig length and evident improvements in the continuity and quality of sequence in complex repeat regions compared with the existing one. Genome diversity of 118 cultivated and wild pea demonstrated that Pisum abyssinicum is a separate species different from P. fulvum and P. sativum within Pisum. Quantitative trait locus analyses uncovered two known Mendel's genes related to stem length (Le/le) and seed shape (R/r) as well as some candidate genes for pod form studied by Mendel. A pan-genome of 116 pea accessions was constructed, and pan-genes preferred in P. abyssinicum and P. fulvum showed distinct functional enrichment, indicating the potential value of them as pea breeding resources in the future.
Collapse
Affiliation(s)
- Tao Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Chenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Guan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuning Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rachit K Saxena
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yishan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengwei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua He
- Institute of Grain Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, China
| | - Xuejun Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Chao Xiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanfeng Ding
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China.
- College of Life Science, Shandong Normal University, Jinan, China.
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Xuxiao Zong
- National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
29
|
Babele PK, Kudapa H, Singh Y, Varshney RK, Kumar A. Mainstreaming orphan millets for advancing climate smart agriculture to secure nutrition and health. FRONTIERS IN PLANT SCIENCE 2022; 13:902536. [PMID: 36035707 PMCID: PMC9412166 DOI: 10.3389/fpls.2022.902536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/18/2022] [Indexed: 05/29/2023]
Abstract
The ever-changing climate and the current COVID-19 pandemic compound the problems and seriously impact agriculture production, resulting in socio-economic insecurities and imposing health implications globally. Most of the poor and malnourished population in the developing countries depends on agriculture for food, income, and employment. Impact of climate change together with the COVID-19 outbreak revealed immense problems highlighting the importance of mainstreaming climate-resilient and low input crops with more contemporary agriculture practices. Orphan millets play a vital role in the poor and malnourished population's livelihood, food and nutrition security. Recognizing their unique potential, the United Nations-Food and Agriculture Organization has announced the year 2023 as the "International Year of Millets". However, despite the unique properties for present and future agriculture of orphan millets, their cultivation is declining in many countries. As a result, millets have gained attention from researchers which eventually decelerated "multi-omics" resource generation. This review summarizes the benefits of millets and major barriers/ bottlenecks in their improvement. We also discuss the pre- and post-harvest technologies; policies required to introduce and establish millets in mainstream agriculture. To improve and ensure the livelihood of the poor/malnourished population, intensive efforts are urgently needed in advancing the research and development, implementing pre- and post-harvest technological intervention strategies, and making favorable policies for orphan crops to accomplish food and nutrition security. National and international collaborations are also indispensable to address the uncertain effects of climate change and COVID-19.
Collapse
Affiliation(s)
- Piyoosh K. Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Himabindu Kudapa
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yogeshwar Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- Murdoch's Centre for Crop Research & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Anil Kumar
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
30
|
Mekonnen TW, Gerrano AS, Mbuma NW, Labuschagne MT. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121583. [PMID: 35736733 PMCID: PMC9230997 DOI: 10.3390/plants11121583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Currently, the world population is increasing, and humanity is facing food and nutritional scarcity. Climate change and variability are a major threat to global food and nutritional security, reducing crop productivity in the tropical and subtropical regions of the globe. Cowpea has the potential to make a significant contribution to global food and nutritional security. In addition, it can be part of a sustainable food system, being a genetic resource for future crop improvement, contributing to resilience and improving agricultural sustainability under climate change conditions. In malnutrition prone regions of sub-Saharan Africa (SSA) countries, cowpea has become a strategic dryland legume crop for addressing food insecurity and malnutrition. Therefore, this review aims to assess the contribution of cowpea to SSA countries as a climate-resilient crop and the existing production challenges and perspectives. Cowpea leaves and immature pods are rich in diverse nutrients, with high levels of protein, vitamins, macro and micronutrients, minerals, fiber, and carbohydrates compared to its grain. In addition, cowpea is truly a multifunctional crop for maintaining good health and for reducing non-communicable human diseases. However, as a leafy vegetable, cowpea has not been researched and promoted sufficiently because it has not been promoted as a food security crop due to its low yield potential, susceptibility to biotic and abiotic stresses, quality assurance issues, policy regulation, and cultural beliefs (it is considered a livestock feed). The development of superior cowpea as a leafy vegetable can be approached in different ways, such as conventional breeding and gene stacking, speed breeding, mutation breeding, space breeding, demand-led breeding, a pan-omics approach, and local government policies. The successful breeding of cowpea genotypes that are high-yielding with a good nutritional value as well as having resistance to biotics and tolerant to abiotic stress could also be used to address food security and malnutrition-related challenges in sub-Saharan Africa.
Collapse
Affiliation(s)
- Tesfaye Walle Mekonnen
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
- Correspondence: ; Tel.: +27-796540514
| | - Abe Shegro Gerrano
- Agricultural Research Council-Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa;
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Ntombokulunga Wedy Mbuma
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
| | - Maryke Tine Labuschagne
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
| |
Collapse
|
31
|
Chapman MA, He Y, Zhou M. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. THE NEW PHYTOLOGIST 2022; 234:1583-1597. [PMID: 35318683 PMCID: PMC9994440 DOI: 10.1111/nph.18021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 04/14/2023]
Abstract
Underutilized crops are, by definition, under-researched compared to staple crops yet come with traits that may be especially important given climate change and the need to feed a globally increasing population. These crops are often stress-tolerant, and this combined with unique and beneficial nutritional profiles. Whilst progress is being made by generating reference genome sequences, in this Tansley Review, we show how this is only the very first step. We advocate that going 'beyond a reference genome' should be a priority, as it is only at this stage one can identify the specific genes and the adaptive alleles that underpin the valuable traits. We sum up how population genomic and pangenomic approaches have led to the identification of stress- and disease-tolerant alleles in staple crops and compare this to the small number of examples from underutilized crops. We also demonstrate how previously underutilized crops have benefitted from genomic advances and that many breeding targets in underutilized crops are often well studied in staple crops. This cross-crop population-level resequencing could lead to an understanding of the genetic basis of adaptive traits in underutilized crops. This level of investment may be crucial for fully understanding the value of these crops before they are lost.
Collapse
Affiliation(s)
- Mark A. Chapman
- Biological SciencesUniversity of SouthamptonLife Sciences Building 85, Highfield CampusSouthamptonSO17 1BJUK
| | - Yuqi He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| | - Meiliang Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| |
Collapse
|
32
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
33
|
Sun Y, Shen E, Hu Y, Wu D, Feng Y, Lao S, Dong C, Du T, Hua W, Ye CY, Zhu J, Zhu QH, Cai D, Skuza L, Qiu J, Fan L. Population genomic analysis reveals domestication of cultivated rye from weedy rye. MOLECULAR PLANT 2022; 15:552-561. [PMID: 34971791 DOI: 10.1016/j.molp.2021.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Rye (Secale cereale) is an important crop with multiple uses and a valuable genetic resource for wheat breeding. However, due to its complex genome and outcrossing nature, the origin of cultivated rye remains elusive. The geneticist N.I. Vavilov proposed that cultivated rye had been domesticated from weedy rye, rather than directly from wild species like other crops. Unraveling the domestication history of rye will extend our understanding of crop evolution and upend our inherent understanding of agricultural weeds. To this end, in this study we generated the 8.5 Tb of whole-genome resequencing data from 116 worldwide accessions of wild, weedy, and cultivated rye, and demonstrated that cultivated rye was domesticated directly from weedy relatives with a similar but enhanced genomic selection by humans. We found that a repertoire of genes that experienced artificial selection is associated with important agronomic traits, including shattering, grain yield, and disease resistance. Furthermore, we identified a composite introgression in cultivated rye from the wild perennial Secale strictum and detected a 2-Mb introgressed fragment containing a candidate ammonium transporter gene with potential effect on the grain yield and plant growth of rye. Taken together, our findings unravel the domestication history of cultivated rye, suggest that interspecific introgression serves as one of the likely causes of obscure species taxonomy of the genus Secale, and provide an important resource for future rye and wheat breeding.
Collapse
Affiliation(s)
- Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture of Zhejiang University, Linyi 310014, China
| | - Enhui Shen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture of Zhejiang University, Linyi 310014, China
| | - Yiyu Hu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Dongya Wu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yu Feng
- Institute of Ecology, Zhejiang University, Hangzhou 310058, China
| | - Sangting Lao
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chenfeng Dong
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Tianyu Du
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Wei Hua
- Institute of Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 322105, China
| | - Chu-Yu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jinhuan Zhu
- Institute of Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 322105, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Daguang Cai
- Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200235, China
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture of Zhejiang University, Linyi 310014, China.
| |
Collapse
|
34
|
Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, Jia L, Lin HY, Xie L, Weng X, Dong C, Qian Q, Lin F, Xu H, Lu H, Cutti L, Chen H, Deng S, Guo L, Chuah TS, Song BK, Scarabel L, Qiu J, Zhu QH, Yu Q, Timko MP, Yamaguchi H, Merotto A, Qiu Y, Olsen KM, Fan L, Ye CY. Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nat Commun 2022; 13:689. [PMID: 35115514 PMCID: PMC8814039 DOI: 10.1038/s41467-022-28359-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
Collapse
Affiliation(s)
- Dongya Wu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Enhui Shen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China
| | - Bowen Jiang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Yu Feng
- Institute of Ecology, Zhejiang University, Hangzhou, 310058, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Sangting Lao
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Lei Jia
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Han-Yang Lin
- Institute of Ecology, Zhejiang University, Hangzhou, 310058, China
| | - Lingjuan Xie
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Xifang Weng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Chenfeng Dong
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Qinghong Qian
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Feng Lin
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Haiming Xu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Huabing Lu
- Institute of Maize and Upland Grain, Zhejiang Academy of Agricultural Sciences, Dongyang, 322105, China
| | - Luan Cutti
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil
| | - Huajun Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Shuiguang Deng
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Tse-Seng Chuah
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 02600, Arau, Perlis, Malaysia
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, 46150, Bandar Sunway, Selangor, Malaysia
| | - Laura Scarabel
- Istituto per la Protezione Sostenibile delle Piante (IPSP), CNR, Viale dell'Università, 16, 35020, Legnaro (PD), Italy
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil
| | - Yingxiong Qiu
- Institute of Ecology, Zhejiang University, Hangzhou, 310058, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China
| | - Chu-Yu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Bhardwaj AK, Kashyap PL, Kumar S, Singh GP. Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.811056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Globally, between one quarter and one-third of total grains produced each year are lost during storage mainly through infestation of insect pests. Among the available control options such as chemical and physical techniques, fumigation with aluminum phosphide (AlP) is so far considered the best control strategy against storage insect pests. However, these insect pests are now developing resistance against AIP due to its indiscriminate use due to non-availability of any effective alternative control option. Resistance to AIP among storage insect pests is increasing, and its inhalation has shown adverse effects on animals and human beings. Nanotechnology has opened up a wide range of opportunities in various fields such as agriculture (pesticides, fertilizers, etc.), pharmaceuticals, and electronics. One of the applications of nanotechnology is the usage of nanomaterial-based insecticide formulations for mitigating field and storage insect pests. Several formulations, namely, nanoemulsions, nanosuspensions, controlled release formulations, and solid-based nanopesticides, have been developed with different modes of action and application. The major advantage is their small size which helps in proper spreading on the pest surface, and thus, better action than conventional pesticides is achieved. Besides their minute size, these have no or reduced harmful effects on non-target species. Nanopesticides can therefore provide green and efficient alternatives for the management of insect pests of field and storage. However, an outcry against the utilization of nano-based pesticides is also revealed. It is considered by some that nano-insecticides may also have hazardous effects on humans as well as on the environment. Due to limited available data, nanopesticides have become a double-edged weapon. Therefore, nanomaterials need to be evaluated extensively for their large-scale adoption. In this article, we reviewed the nanoformulations that are developed and have proved effective against the insect pests under postharvest storage of grains.
Collapse
|
36
|
Yan N, Yang T, Yu XT, Shang LG, Guo DP, Zhang Y, Meng L, Qi QQ, Li YL, Du YM, Liu XM, Yuan XL, Qin P, Qiu J, Qian Q, Zhang ZF. Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Commun Biol 2022; 5:36. [PMID: 35017643 PMCID: PMC8752815 DOI: 10.1038/s42003-021-02993-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Chinese wild rice (Zizania latifolia; family: Gramineae) is a valuable medicinal homologous grain in East and Southeast Asia. Here, using Nanopore sequencing and Hi-C scaffolding, we generated a 547.38 Mb chromosome-level genome assembly comprising 332 contigs and 164 scaffolds (contig N50 = 4.48 Mb; scaffold N50 = 32.79 Mb). The genome harbors 38,852 genes, with 52.89% of the genome comprising repetitive sequences. Phylogenetic analyses revealed close relation of Z. latifolia to Leersia perrieri and Oryza species, with a divergence time of 19.7-31.0 million years. Collinearity and transcriptome analyses revealed candidate genes related to seed shattering, providing basic information on abscission layer formation and degradation in Z. latifolia. Moreover, two genomic blocks in the Z. latifolia genome showed good synteny with the rice phytocassane biosynthetic gene cluster. The updated genome will support future studies on the genetic improvement of Chinese wild rice and comparative analyses between Z. latifolia and other plants.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Ting Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiu-Ting Yu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lian-Guang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lin Meng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Li Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Mei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xin-Min Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
37
|
Zsögön A, Peres LEP, Xiao Y, Yan J, Fernie AR. Enhancing crop diversity for food security in the face of climate uncertainty. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:402-414. [PMID: 34882870 DOI: 10.1111/tpj.15626] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 05/23/2023]
Abstract
Global agriculture is dominated by a handful of species that currently supply a huge proportion of our food and feed. It additionally faces the massive challenge of providing food for 10 billion people by 2050, despite increasing environmental deterioration. One way to better plan production in the face of current and continuing climate change is to better understand how our domestication of these crops included their adaptation to environments that were highly distinct from those of their centre of origin. There are many prominent examples of this, including the development of temperate Zea mays (maize) and the alteration of day-length requirements in Solanum tuberosum (potato). Despite the pre-eminence of some 15 crops, more than 50 000 species are edible, with 7000 of these considered semi-cultivated. Opportunities afforded by next-generation sequencing technologies alongside other methods, including metabolomics and high-throughput phenotyping, are starting to contribute to a better characterization of a handful of these species. Moreover, the first examples of de novo domestication have appeared, whereby key target genes are modified in a wild species in order to confer predictable traits of agronomic value. Here, we review the scale of the challenge, drawing extensively on the characterization of past agriculture to suggest informed strategies upon which the breeding of future climate-resilient crops can be based.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
38
|
Jiang B, Lao S, Wu D, Fan L, Ye CY. The complete chloroplast genome of Echinochloa haploclada. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3105-3106. [PMID: 34621989 PMCID: PMC8491716 DOI: 10.1080/23802359.2021.1982654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genus Echinochloa (Poaceae) includes orphan crops and important agricultural weeds. Here, we assembled the complete chloroplast genome of a diploid Echinochloa species (E. haploclada). The chloroplast genome is 139,844 bp in length, which includes a large single copy region (81,893 bp), a small single copy region (12,533 bp) and two separated inverted repeat regions (45,418 bp). A total of 119 unique genes were annotated, consisting of 83 protein-coding genes, 32 tRNA genes and 4 rRNA genes. Hexaploid E. crus-galli, one of the most serious weeds worldwide, was derived from a hybrid between tetraploid E. oryzicola and an unknown diploid species. Based on chloroplast genomes of eight Echinochloa species (varieties), the phylogenetic analysis showed that E. crus-galli clustered firstly with diploid E. haploclada rather than tetraploid E. oryzicola, supporting previous assumption that E. oryzicola is the paternal donor of E. crus-galli.
Collapse
Affiliation(s)
- Bowen Jiang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sangting Lao
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dongya Wu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chu-Yu Ye
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Lloyd JR, Kossmann J. Improving Crops for a Changing World. FRONTIERS IN PLANT SCIENCE 2021; 12:728328. [PMID: 34552610 PMCID: PMC8450564 DOI: 10.3389/fpls.2021.728328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 05/04/2023]
|