1
|
Kan W, Gao Y, Zhu Y, Wang Z, Yang Z, Cheng Y, Guo J, Wang D, Tang C, Wu L. Genome-wide identification and expression analysis of TaFDL gene family responded to vernalization in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:255. [PMID: 40091016 PMCID: PMC11912598 DOI: 10.1186/s12864-025-11436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND FLOWERING LOCUS D (FD) is a basic leucine zipper (bZIP) transcription factor known to be crucial in vernalization, flowering, and stress response across a variety of plants, including biennial and winter annual species. The TaFD-like (TaFDL) gene in wheat is the functional homologue of Arabidopsis FD, yet research on the TaFDL gene family in wheat is still lacking. RESULTS In this study, a total of 62 TaFDL gene family members were identified and classified into 4 main subfamilies, and these genes were located on 21 chromosomes. A comprehensive analysis of the basic physicochemical properties, gene structure, conservation motif, conserved domain, and advanced protein structure of TaFDL gene family revealed the conservation among its individual subfamily. The family members underwent purifying selection. The segmental duplication events were the main driving force behind the expansion of the TaFDL gene family. The TaFDL gene family underwent differentiation in the evolution of FD genes. Additionally, the subcellular localization and transcriptional activation activities of five key TaFDL members were demonstrated. Gene Ontology (GO) annotations and promoter cis-regulatory element analysis indicated that the TaFDL members may play potential roles in regulating flowering, hormone response, low-temperature response, light response, and stress response, which were verified by transcriptome data analysis. Specifically, quantitative real-time PCR (qRT-PCR) analysis revealed that five TaFDL genes exhibited differential responses to different vernalization conditions in winter wheat seeding. Finally, the homologous genes of the five key TaFDL genes across nine different wheat cultivars highlight significant genetic diversity. CONCLUSION These findings enrich the research on FD and its homologous genes, providing valuable insights into the TaFDL gene family's response to vernalization.
Collapse
Affiliation(s)
- Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ziqi Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhu Yang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuan Cheng
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jianjun Guo
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Zhongke Taihe Experimental Station, Taihe, Anhui, 236626, PR China.
| |
Collapse
|
2
|
Tan X, Zeng W, Yang Y, Lin Z, Li F, Liu J, Chen S, Liu YG, Xie W, Xie X. Genome-wide profiling of polymorphic short tandem repeats and their influence on gene expression and trait variation in diverse rice populations. J Genet Genomics 2025:S1673-8527(25)00078-5. [PMID: 40089018 DOI: 10.1016/j.jgg.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Short tandem repeats (STRs) modulate gene expression and contribute to trait variation. However, a systematic evaluation of the genomic characteristics of STRs has not been conducted, and their influence on gene expression in rice remains unclear. Here, we construct a map of 137,629 polymorphic STRs in the rice (Oryza sativa L.) genome using a population-scale resequencing dataset. A genome-wide survey encompassing 4,726 accessions shows that the occurrence frequency, mutational patterns, chromosomal distribution, and functional properties of STRs are correlated with the sequences and lengths of repeat motifs. Leveraging a transcriptome dataset from 127 rice accessions, we identify 44,672 expression STRs (eSTRs) by modeling gene expression in response to the length variation of STRs. These eSTRs are notably enriched in the regulatory regions of genes with active transcriptional signatures. Population analysis identifies numerous STRs that have undergone genetic divergence among different rice groups and 1,726 tagged STRs that may be associated with agronomic traits. By editing the (ACT)7 STR in OsFD1 promoter, we further experimentally validate its role in regulating gene expression and phenotype. Our study highlights the contribution of STRs to transcriptional regulation in plants and establishes the foundation for their potential use as alternative targets for genetic improvement.
Collapse
Affiliation(s)
- Xiyu Tan
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wanyong Zeng
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yujian Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhansheng Lin
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fuquan Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianhong Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaotong Chen
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yao-Guang Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xianrong Xie
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Sun WX, Chang XY, Chen Y, Zhao Q, Zhang YM. The integration of quantile regression with 3VmrMLM identifies more QTNs and QTN-by-environment interactions using SNP- and haplotype-based markers. PLANT COMMUNICATIONS 2025; 6:101196. [PMID: 39580620 PMCID: PMC11956104 DOI: 10.1016/j.xplc.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Current methods used in genome-wide association studies frequently lack power owing to their inability to detect heterogeneous associations and rare and multiallelic variants. To address these issues, quantile regression is integrated with a three (compressed) variance component multi-locus random-SNP-effect mixed linear model (3VmrMLM) to propose q3VmrMLM for detecting heterogeneous quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs), and then design haplotype-based q3VmrMLM (q3VmrMLM-Hap) for identifying multiallelic haplotypes and rare variants. In Monte Carlo simulation studies, q3VmrMLM had higher power than 3VmrMLM, sequence kernel association test (SKAT), and integrated quantile rank test (iQRAT). In a re-analysis of 10 traits in 1439 rice hybrids, 261 known genes were identified only by q3VmrMLM and q3VmrMLM-Hap, whereas 175 known genes were detected by both the new and existing methods. Of all the significant QTNs with known genes, q3VmrMLM (179: 140 variance heterogeneity and 157 quantile effect heterogeneity) found more heterogeneous QTNs than 3VmrMLM (123), SKAT (27), and iQRAT (29); q3VmrMLM-Hap (121) mapped more low-frequency (<0.05) QTNs than q3VmrMLM (51), 3VmrMLM (43), SKAT (11), and iQRAT (12); and q3VmrMLM-Hap (12), q3VmrMLM (16), and 3VmrMLM (12) had similar power in identifying gene-by-environment interactions. All significant and suggested QTNs achieved the highest predictive accuracy (r = 0.9045). In conclusion, this study describes a new and complementary approach to mining genes and unraveling the genetic architecture of complex traits in crops.
Collapse
Affiliation(s)
- Wen-Xian Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Yu Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Sun Q, Zhao J, Wang G, Wang Y, Zhu Y, Yan Y, Chen Z, Chen Z, Feng Z, Zuo S. Isolation of OsMetAP10, a Peptidase_M24 Superfamily Gene, Regulating Heading Date in Rice. BIOLOGY 2025; 14:178. [PMID: 40001946 PMCID: PMC11851548 DOI: 10.3390/biology14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The heading date is one of the important traits in rice, which greatly affects grain yield and regional adaptability. Although the flowering pathways in rice have been extensively investigated, the genes involved in flowering remain largely unknown. Here, we report a rice lhd mutant, which showed late flowering under both long-day (LD) and short-day (SD) conditions. Through MutMap+ and linkage analysis, a deletion mutation in OsMetAP10 was inferred as the most likely candidate for lhd late flowering. OsMetAP10 encodes a methionine aminopeptidase that belongs to the peptidase_M24 subfamily III. The OsMetAP10 gene is constitutively expressed in rice and is induced by light, with a rhythmic expression pattern. OsMetAP10 knockout lines displayed late heading as the lhd mutation, while no alternations in morphology and heading were observed on OsMetAP10 overexpression lines, further confirming the mutation of OsMetAP10 as responsible for the late heading of lhd. Through RT-qPCR and transcriptome analysis, we revealed that the upregulated expression of the FT-like gene OsFLT4, a negatively flowering regulator, and the downregulation of flower development-related genes, OsMADS14, OsMADS15, and OsMADS34, played critical roles in determining the late flowering of the OsMetAP10 mutation. This study reports a new gene affecting flowering and provides a new insight into the role of OsMetAP10 in regulating rice heading.
Collapse
Affiliation(s)
- Quanyi Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
| | - Guangda Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
| | - Yu Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yuntao Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
| | - Yu Yan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
| | - Zihang Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
| | - Zongxiang Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Feng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Q.S.); (J.Z.); (G.W.); (Y.Z.); (Y.Y.); (Z.C.); (Z.C.); (Z.F.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China/Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhao HY, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Yu HX, Lu ZQ, Guo SQ, Lei JJ, Liao B, Lin HX. A QTL GN1.1, encoding FT-L1, regulates grain number and yield by modulating polar auxin transport in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2158-2174. [PMID: 39083298 DOI: 10.1111/jipb.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024]
Abstract
Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus (QTL), GRAIN NUMBER 1.1 (GN1.1), which encodes a Flowering Locus T-like1 (FT-L1) protein and acts as a negative regulator of grain number in rice. The elite allele GN1.1B, derived from the Oryza indica variety, BF3-104, exhibits a 14.6% increase in grain yield compared with the O. japonica variety, Nipponbare, based on plot yield tests. We demonstrated that GN1.1 interacted with and enhanced the stability of ADP-ribosylation factor (Arf)-GTPase-activating protein (Gap), OsZAC. Loss of function of OsZAC results in increased grain number. Based on our data, we propose that GN1.1B facilitates the elevation of auxin content in young rice panicles by affecting polar auxin transport (PAT) through interaction with OsZAC. Our study unveils the pivotal role of the GN1.1 locus in rice panicle development and presents a novel, promising allele for enhancing rice grain yield through genetic improvement.
Collapse
Affiliation(s)
- Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Song J, Tang L, Cui Y, Fan H, Zhen X, Wang J. Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Curr Issues Mol Biol 2024; 46:10299-10311. [PMID: 39329965 PMCID: PMC11430500 DOI: 10.3390/cimb46090613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Heading date is a critical physiological process in rice that is influenced by both genetic and environmental factors. The photoperiodic pathway is a primary regulatory mechanism for rice heading, with key florigen genes Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T1) playing central roles. Upstream regulatory pathways, including Hd1 and Ehd1, also significantly impact this process. This review aims to provide a comprehensive examination of the localization, cloning, and functional roles of photoperiodic pathway-related genes in rice, and to explore the interactions among these genes as well as their pleiotropic effects on heading date. We systematically review recent advancements in the identification and functional analysis of genes involved in the photoperiodic pathway. We also discuss the molecular mechanisms underlying rice heading date variation and highlight the intricate interactions between key regulatory genes. Significant progress has been made in understanding the molecular mechanisms of heading date regulation through the cloning and functional analysis of photoperiod-regulating genes. However, the regulation of heading date remains complex, and many underlying mechanisms are not yet fully elucidated. This review consolidates current knowledge on the photoperiodic regulation of heading date in rice, emphasizing novel findings and gaps in the research. It highlights the need for further exploration of the interactions among flowering-related genes and their response to environmental signals. Despite advances, the full regulatory network of heading date remains unclear. Further research is needed to elucidate the intricate gene interactions, transcriptional and post-transcriptional regulatory mechanisms, and the role of epigenetic factors such as histone methylation in flowering time regulation. This review provides a detailed overview of the current understanding of photoperiodic pathway genes in rice, setting the stage for future research to address existing gaps and improve our knowledge of rice flowering regulation.
Collapse
Affiliation(s)
- Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueqiang Zhen
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
7
|
Wu B, Luo H, Chen Z, Amin B, Yang M, Li Z, Wu S, Salmen SH, Alharbi SA, Fang Z. Rice Promoter Editing: An Efficient Genetic Improvement Strategy. RICE (NEW YORK, N.Y.) 2024; 17:55. [PMID: 39212859 PMCID: PMC11364747 DOI: 10.1186/s12284-024-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Gene expression levels in rice (Oryza sativa L.) and other plant species are determined by the promoters, which directly control phenotypic characteristics. As essential components of genes, promoters regulate the intensity, location, and timing of gene expression. They contain numerous regulatory elements and serve as binding sites for proteins that modulate transcription, including transcription factors and RNA polymerases. Genome editing can alter promoter sequences, thereby precisely modifying the expression patterns of specific genes, and ultimately affecting the morphology, quality, and resistance of rice. This paper summarizes research on rice promoter editing conducted in recent years, focusing on improvements in yield, heading date, quality, and disease resistance. It is expected to inform the application of promoter editing and encourage further research and development in crop genetic improvement with promote.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Hangfei Luo
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongbo Chen
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Manyu Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Shuai Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
9
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
10
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
11
|
Lee Z, Kim S, Choi SJ, Joung E, Kwon M, Park HJ, Shim JS. Regulation of Flowering Time by Environmental Factors in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3680. [PMID: 37960036 PMCID: PMC10649094 DOI: 10.3390/plants12213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.
Collapse
Affiliation(s)
- Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Eui Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Vicentini G, Biancucci M, Mineri L, Chirivì D, Giaume F, Miao Y, Kyozuka J, Brambilla V, Betti C, Fornara F. Environmental control of rice flowering time. PLANT COMMUNICATIONS 2023; 4:100610. [PMID: 37147799 PMCID: PMC10504588 DOI: 10.1016/j.xplc.2023.100610] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Correct measurement of environmental parameters is fundamental for plant fitness and survival, as well as for timing developmental transitions, including the switch from vegetative to reproductive growth. Important parameters that affect flowering time include day length (photoperiod) and temperature. Their response pathways have been best described in Arabidopsis, which currently offers a detailed conceptual framework and serves as a comparison for other species. Rice, the focus of this review, also possesses a photoperiodic flowering pathway, but 150 million years of divergent evolution in very different environments have diversified its molecular architecture. The ambient temperature perception pathway is strongly intertwined with the photoperiod pathway and essentially converges on the same genes to modify flowering time. When observing network topologies, it is evident that the rice flowering network is centered on EARLY HEADING DATE 1, a rice-specific transcriptional regulator. Here, we summarize the most important features of the rice photoperiodic flowering network, with an emphasis on its uniqueness, and discuss its connections with hormonal, temperature perception, and stress pathways.
Collapse
Affiliation(s)
- Giulio Vicentini
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Marco Biancucci
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Lorenzo Mineri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Daniele Chirivì
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Francesca Giaume
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Yiling Miao
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
13
|
Mineri L, Cerise M, Giaume F, Vicentini G, Martignago D, Chiara M, Galbiati F, Spada A, Horner D, Fornara F, Brambilla V. Rice florigens control a common set of genes at the shoot apical meristem including the F-BOX BROADER TILLER ANGLE 1 that regulates tiller angle and spikelet development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1647-1660. [PMID: 37285314 DOI: 10.1111/tpj.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Rice flowering is triggered by transcriptional reprogramming at the shoot apical meristem (SAM) mediated by florigenic proteins produced in leaves in response to changes in photoperiod. Florigens are more rapidly expressed under short days (SDs) compared to long days (LDs) and include the HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1) phosphatidylethanolamine binding proteins. Hd3a and RFT1 are largely redundant at converting the SAM into an inflorescence, but whether they activate the same target genes and convey all photoperiodic information that modifies gene expression at the SAM is currently unclear. We uncoupled the contribution of Hd3a and RFT1 to transcriptome reprogramming at the SAM by RNA sequencing of dexamethasone-inducible over-expressors of single florigens and wild-type plants exposed to photoperiodic induction. Fifteen highly differentially expressed genes common to Hd3a, RFT1, and SDs were retrieved, 10 of which still uncharacterized. Detailed functional studies on some candidates revealed a role for LOC_Os04g13150 in determining tiller angle and spikelet development and the gene was renamed BROADER TILLER ANGLE 1 (BRT1). We identified a core set of genes controlled by florigen-mediated photoperiodic induction and defined the function of a novel florigen target controlling tiller angle and spikelet development.
Collapse
Affiliation(s)
- Lorenzo Mineri
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Martina Cerise
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Francesca Giaume
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy
| | - Giulio Vicentini
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy
| | - Damiano Martignago
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Francesca Galbiati
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Alberto Spada
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy
| | - David Horner
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Fabio Fornara
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Vittoria Brambilla
- Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
14
|
Wang F, Li S, Kong F, Lin X, Lu S. Altered regulation of flowering expands growth ranges and maximizes yields in major crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1094411. [PMID: 36743503 PMCID: PMC9892950 DOI: 10.3389/fpls.2023.1094411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/04/2023] [Indexed: 06/14/2023]
Abstract
Flowering time influences reproductive success in plants and has a significant impact on yield in grain crops. Flowering time is regulated by a variety of environmental factors, with daylength often playing an important role. Crops can be categorized into different types according to their photoperiod requirements for flowering. For instance, long-day crops include wheat (Triticum aestivum), barley (Hordeum vulgare), and pea (Pisum sativum), while short-day crops include rice (Oryza sativa), soybean (Glycine max), and maize (Zea mays). Understanding the molecular regulation of flowering and genotypic variation therein is important for molecular breeding and crop improvement. This paper reviews the regulation of flowering in different crop species with a particular focus on how photoperiod-related genes facilitate adaptation to local environments.
Collapse
Affiliation(s)
| | | | | | - Xiaoya Lin
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| | - Sijia Lu
- *Correspondence: Xiaoya Lin, ; Sijia Lu,
| |
Collapse
|
15
|
Gao C, Lu S, Zhou R, Wang Z, Li Y, Fang H, Wang B, Chen M, Cao Y. The OsCBL8-OsCIPK17 Module Regulates Seedling Growth and Confers Resistance to Heat and Drought in Rice. Int J Mol Sci 2022; 23:12451. [PMID: 36293306 PMCID: PMC9604039 DOI: 10.3390/ijms232012451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2023] Open
Abstract
The calcium signaling pathway is critical for plant growth, development, and response to external stimuli. The CBL-CIPK pathway has been well characterized as a calcium-signaling pathway. However, in most reports, only a single function for this module has been described. Here, we examined multiple functions of this module. CIPK showed a similar distribution to that of CBL, and OsCBL and OsCIPK families were retained after experiencing whole genome duplication events through the phylogenetic and synteny analysis. This study found that OsCBL8 negatively regulated rice seed germination and seedling growth by interacting with OsCIPK17 with overexpression and gene editing mutant plants as materials combining plant phenotype, physiological indicators and transcriptome sequencing. This process is likely mediated by OsPP2C77, which is a member of the ABA signaling pathway. In addition, OsCBL mediated the targeting of OsNAC77 and OsJAMYB by OsCIPK17, thus conferring resistance to high temperatures and pathogens in rice. Our work reveals a unique signaling pathway, wherein OsCBL8 interacts with OsCIPK17 and provides rice with multiple resistance while also regulating seedling growth.
Collapse
Affiliation(s)
- Cong Gao
- College of Life Sciences, Nantong University, Nantong 226007, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuai Lu
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Rong Zhou
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Zihui Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Yi Li
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Baohua Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Moxian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, China
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226007, China
| |
Collapse
|
16
|
Pan T, He M, Liu H, Tian X, Wang Z, Yu X, Miao X, Li X. Transcription factor bZIP65 delays flowering via suppressing Ehd1 expression in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:63. [PMID: 37313010 PMCID: PMC10248685 DOI: 10.1007/s11032-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/15/2023]
Abstract
Flowering time is one of the most fundamental factors that determine the distribution and final yield of rice. Ehd1 (Early heading date 1) is a B-type response regulator which functions as a flowering time activator. Although diverse flowering time genes have been reported as regulatory factors of Ehd1 expression, the potential regulators of Ehd1 largely remain to be identified. Here, we identified a basic leucine zipper transcription factor bZIP65, a homolog of bZIP71, as a new negative regulator of Ehd1. The overexpression of bZIP65 delays flowering, while bzip65 mutants have similar flowering time to SJ2 (Songjing2) in both long-day and short-day conditions. Biochemically, bZIP65 associates with Ehd1 promoter and transcriptionally represses the expression of Ehd1. Moreover, we found that bZIP65 enhances H3K27me3 level of Ehd1. Taken together, we cloned a new gene, bZIP65, regulating rice heading date, and uncovered the mechanism of bZIP65 delaying flowering time, where bZIP65 increases the H3K27me3 level of Ehd1 and transcriptionally represses the expression of Ehd1, similar to its homolog bZIP71. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01334-4.
Collapse
Affiliation(s)
- Tingting Pan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hualong Liu
- College of Agriculture, Rice Research Institute, Northeast Agricultural University, Harbin, 150030 China
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
| | - Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
| | - Xinglong Yu
- Beidahuang Group Erdaohe Farm Co., Ltd, Harbin, China
| | - Xingfen Miao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081 China
| |
Collapse
|
17
|
Zhang L, Zhang F, Zhou X, Poh TX, Xie L, Shen J, Yang L, Song S, Yu H, Chen Y. The tetratricopeptide repeat protein OsTPR075 promotes heading by regulating florigen transport in rice. THE PLANT CELL 2022; 34:3632-3646. [PMID: 35762970 PMCID: PMC9516190 DOI: 10.1093/plcell/koac190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/22/2022] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa) is one of the most important crops worldwide. Heading date is a vital agronomic trait that influences rice yield and adaption to local conditions. Hd3a, a proposed florigen that primarily functions under short-day (SD) conditions, is a mobile flowering signal that promotes the floral transition in rice. Nonetheless, how Hd3a is transported from leaves to the shoot apical meristem (SAM) under SDs remains elusive. Here, we report that FT-INTERACTING PROTEIN9 (OsFTIP9) specifically regulates rice flowering time under SDs by facilitating Hd3a transport from companion cells (CCs) to sieve elements (SEs). Furthermore, we show that the tetratricopeptide repeat (TPR) protein OsTPR075 interacts with both OsFTIP9 and OsFTIP1 and strengthens their respective interactions with Hd3a and the florigen RICE FLOWERING LOCUS T1 (RFT1). This in turn affects the trafficking of Hd3a and RFT1 to the SAM, thus regulating flowering time under SDs and long-day conditions, respectively. Our findings suggest that florigen transport in rice is mediated by different OsFTIPs under different photoperiods and those interactions between OsTPR075 and OsFTIPs are essential for mediating florigen movement from leaves to the SAM.
Collapse
Affiliation(s)
| | | | | | - Toon Xuan Poh
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore 117543, Singapore
| | - Lijun Xie
- College of Agriculture and Biotechnology, Zhejiang University, State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Hangzhou 310058, China
| | - Jun Shen
- College of Agriculture and Biotechnology, Zhejiang University, State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Hangzhou 310058, China
| | - Lijia Yang
- College of Agriculture and Biotechnology, Zhejiang University, State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Hangzhou 310058, China
| | - Shiyong Song
- Authors for correspondence: (S.S.), (H.Y.), and (Y.C.)
| | - Hao Yu
- Authors for correspondence: (S.S.), (H.Y.), and (Y.C.)
| | - Ying Chen
- Authors for correspondence: (S.S.), (H.Y.), and (Y.C.)
| |
Collapse
|
18
|
Yu M, Huang D, Yin X, Liu X, Yang D, Gong C, Wang H, Wu Y. The phosphoinositide-specific phospholipase C1 modulates flowering time and grain size in rice. PLANTA 2022; 256:29. [PMID: 35781561 DOI: 10.1007/s00425-022-03941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Preferential expression of OsPLC1 is detected at the heading stage of rice, OsPLC1 overexpression results in early flowering, increased-grain size and yield; however, opposing phenotypes produced in the osplc1 mutants. Abstract: The importance of phospholipase C (PLC) in plant development has been demonstrated in several studies. OsPLC1, a member of PI-PLC in rice, although its role in the response to salt stress of rice seedlings has been reported, its functions in the growth and development of rice is elusive. Here, we report that OsPLC1 expression could be detectable in various tissues throughout the developmental stages of rice, and the highest expression level of OsPLC1 was detected at the heading stage. OsPLC1 overexpression (OE) produced rice plants with early flowering, whereas OsPLC1 loss-of-function led to delay in flowering. The expression levels of subset genes, which are involved in the control of flowering time in rice, were altered in the plants of OE and osplc1. In addition, the enlargement of grain size was observed in OE plants, however, the reduction of grain size was noticed in osplc1 mutants. The increase in the grain size and the grain yield of OE lines were associated with the improvement of cell length and expression levels of a set of genes related to cell expansion, contrarily, the decrease in osplc1 mutant grain size and yield were linked to declined cell length and expression levels of related genes. No significant differences, in terms of the grain quality of mature seeds, were found in OE and osplc1 mutants, with compared to those in Nipponbare (Nip). In summary, our study suggests that OsPLC1 could modulate rice flowering time and grain size.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chunyan Gong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hengtao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
19
|
Wang C, Han B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics. MOLECULAR PLANT 2022; 15:593-619. [PMID: 35331914 DOI: 10.1016/j.molp.2022.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Since the completion of the rice genome sequencing project in 2005, we have entered the era of rice genomics, which is still in its ascendancy. Rice genomics studies can be classified into three stages: structural genomics, functional genomics, and quantitative genomics. Structural genomics refers primarily to genome sequencing for the construction of a complete map of rice genome sequence. This is fundamental for rice genetics and molecular biology research. Functional genomics aims to decode the functions of rice genes. Quantitative genomics is large-scale sequence- and statistics-based research to define the quantitative traits and genetic features of rice populations. Rice genomics has been a transformative influence on rice biological research and contributes significantly to rice breeding, making rice a good model plant for studying crop sciences.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China.
| |
Collapse
|
20
|
Gao C, Zhu X, Lu S, Xu J, Zhou R, Lv J, Chen Y, Cao Y. Functional Analysis of OsCIPK17 in Rice Grain Filling. FRONTIERS IN PLANT SCIENCE 2022; 12:808312. [PMID: 35145535 PMCID: PMC8821165 DOI: 10.3389/fpls.2021.808312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We used mutant cipk17 and Nipponbare in field experiments to analyze agronomic traits, photosynthetic parameters, transcriptome, and gene expression. The results demonstrated cytoplasmic localization of OsCIPK17, while GUS allogeneic (A. thaliana) tissue-staining and quantitative analysis showed the gene was expressed in many organs, including flower buds; furthermore, it was involved in root, stem, and leaf growth. Compared to Nipponbare plants, grain filling rate and final grain weight decreased in plants of the knockout mutant owing to a delay in attainment of maximum grain filling rate. Photosystem II (PSII) efficiency was also reduced. Enrichment analysis showed that the functions of differentially expressed genes (DEGs) focused on nucleoside-, nucleotide-, and lipid-binding, as well as hydrolase, transferase, and phosphorylase activities. Signaling pathways mainly included starch and sucrose metabolism, as well as photosynthesis. Additionally, some DEGs were verified by fluorescence analysis. The results showed that knockout of OsCIPK17 affected photosynthesis and starch-, sucrose-, and amino acid metabolism-related gene expression; furthermore, the mutation reduced PSII utilization efficiency, it blocked the synthesis and metabolism of starch and sucrose, and affected the formation and transport of assimilates, thereby reducing final grain weight.
Collapse
|
21
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
22
|
Qu L, Chu YJ, Lin WH, Xue HW. A secretory phospholipase D hydrolyzes phosphatidylcholine to suppress rice heading time. PLoS Genet 2021; 17:e1009905. [PMID: 34879072 PMCID: PMC8654219 DOI: 10.1371/journal.pgen.1009905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time. Secretory phospholipases play essential roles in physiological processes of mammals, while functions of them in plants remain unknown. We identified a rice secretory PLD (spPLD) harboring a signal peptide which is indispensable for secretion of spPLD. Functional studies showed that altered spPLD expression resulted in the changed heading time of rice under both short-day and long-day conditions, which is dependent on the secretory character of spPLD. Rice Hd3a and RFT1, the homologs of Arabidopsis Flowing Locus T (FT), bind to phosphatidylcholine (PC) to promote heading. Analysis of phospholipids profiles in shoot apical meristem by using a mass spectrometry-based lipidomic approach demonstrated that spPLD regulates heading time by hydrolyzing the light period-predominant PC species, further revealing the crucial role of secretory proteins in regulating plant growth and development.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Chu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (W-HL); (H-WX)
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (W-HL); (H-WX)
| |
Collapse
|