1
|
Zhang H, Li L, Wang C, Liu Q, Chen WT, Gao S, Hu G. Recent advances in designable nanomaterial-based electrochemical sensors for environmental heavy-metal detection. NANOSCALE 2025; 17:2386-2407. [PMID: 39844644 DOI: 10.1039/d4nr04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The detection of heavy metals serves as a defence measure to safeguard the well-being of the human body and the ecological environment. Electrochemical sensors (ECS) offer significant benefits such as exceptional sensitivity, excellent selectivity, affordability, and portability. This review begins by elucidating the ECS principles and delves into recent advancements in the field of heavy metal detection, including the use of metal nanoparticles, carbon-based nanomaterials, and organic framework materials. Advanced materials enhance the sensitivity and selectivity of ECS, allowing it to efficiently and rapidly identify metallic contaminants in food and the environment. Finally, the future development of ECS and challenges encountered in the development process are discussed, and testing materials for the detection of heavy-metal ions for human health and environmental safety are comprehensively considered. This study is likely to attract the interest of environmentalists and those who prioritise human health.
Collapse
Affiliation(s)
- Hao Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Chunqiong Wang
- Yunnan Tobacco Quality Supervision and Test Station, Kunming 650106, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China
| | - Sanshuang Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
2
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Abd El-Raheem H, Helim R, Hassan RY, Youssef AF, Korri-Youssoufi H, Kraiya C. Electrochemical methods for the detection of heavy metal ions: From sensors to biosensors. Microchem J 2024; 207:112086. [DOI: 10.1016/j.microc.2024.112086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Banza M, Seodigeng T, Linda S, Christian MM, Owona S, Musampa P. Batch and continuous fixed bed adsorption of copper (II) from acid mine drainage (AMD) using green and recyclable adsorbent from cellulose microcrystals (CMCs). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024:1-11. [PMID: 39558634 DOI: 10.1080/10934529.2024.2429284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
The CMCs are viable materials for applications in industry and process innovation for removing heavy metal ions since they may be used in static and dynamic adsorption processes. It is necessary to develop simple, low-cost water treatment methods that use organic, biodegradable polymers such as nanomaterial-modified cellulose microcrystals. The column technique was used to investigate the effects of operational parameters such as pH, bed depth, concentration and flow rate. The input concentrations of 20, 40, 80 and 120 mg L-1, feed flow rates of 5, 10, 15 and 20 mL min-1, and bed heights of 5, 7.5, 10 and 12.5 cm. Experimental findings showed that the adsorption capacity decreased with increasing flow rate and increased with bed depth and input concentration, which were among the breakthrough parameters evaluated. The optimum adsorption capacity of 258.09 ± 0.96 mg g-1 was found to be achieved with an ideal pH of 6, an initial concentration of 200 mg L-1, a contact period of 300 min, and a dosage of 5 g/200 mL. The Langmuir model best fits the adsorption of indigo carmine, whereas the pseudo-second-order model, which governs the adsorption mechanism, may be described by physisorption combined with chemisorption. From a thermodynamic perspective, the adsorption was exothermic and spontaneous. In continuous adsorption, the Yoon-Nelson and Thomas models provided a good match for the hole curve, whereas the Bohart-Adams model fitted the breakthrough curve's initial portion ((Ct/C0) <0.5) perfectly. A three-dimensional adsorbent that has been chemically modified. The chemically modified CMCs adsorbent was characterized using FTIR, SEM and TGA.
Collapse
Affiliation(s)
- Musamba Banza
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Tumisang Seodigeng
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Sibali Linda
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA, Florida, Roodepoort, South Africa
| | - Mwabanua Mutabi Christian
- Faculty of Science, Department of Geology, University of Lubumbashi, Lubumbashi, Democratic Republic of Congo
| | - Sebastien Owona
- Faculty of Science, Department of Earth Science, University of Douala, Douala, Cameroun
| | - Papy Musampa
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
5
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
6
|
Eleryan A, Aigbe UO, Ukhurebor KE, Onyancha RB, Eldeeb TM, El-Nemr MA, Hassaan MA, Ragab S, Osibote OA, Kusuma HS, Darmokoesoemo H, El Nemr A. Copper(II) ion removal by chemically and physically modified sawdust biochar. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:9283-9320. [DOI: 10.1007/s13399-022-02918-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2025]
Abstract
Abstract
The difference between physical activations (by sonications) and chemical activations (by ammonia) on sawdust biochar has been investigated in this study by comparing the removal of Cu(II) ions from an aqueous medium by adsorption on sawdust biochar (SD), sonicated sawdust biochar (SSD), and ammonia-modified sawdust biochar (SDA) with stirring at room temperature, pH value of 5.5–6.0, and 200 rpm. The biochar was prepared by the dehydrations of wood sawdust by reflux with sulfuric acid, and the biochar formed has been activated physically by sonications and chemically by ammonia solutions and then characterized by the Fourier transform infrared (FTIR); Brunauer, Emmett, and Teller (BET); scanning electron microscope (SEM); thermal gravimetric analysis (TGA); and energy-dispersive spectroscopy (EDX) analyses. The removal of Cu(II) ions involves 100 mL of sample volume and initial Cu(II) ion concentrations (conc) 50, 75, 100, 125, 150, 175, and 200 mg L−1 and the biochar doses of 100, 150, 200, 250, and 300 mg. The maximum removal percentage of Cu(II) ions was 95.56, 96.67, and 98.33% for SD, SSD, and SDA biochars, respectively, for 50 mg L−1 Cu(II) ion initial conc and 1.0 g L−1 adsorbent dose. The correlation coefficient (R2) was used to confirm the data obtained from the isotherm models. The Langmuir isotherm model was best fitted to the experimental data of SD, SSD, and SDA. The maximum adsorption capacities (Qm) of SD, SSD, and SDA are 91.74, 112.36, and 133.33 mg g−1, respectively. The degree of fitting using the non-linear isotherm models was in the sequence of Langmuir (LNR) (ideal fit) > Freundlich (FRH) > Temkin (SD and SSD) and FRH (ideal fit) > LNR > Temkin (SDA). LNR and FRH ideally described the biosorption of Cu(II) ions to SD and SSD and SDA owing to the low values of χ2 and R2 obtained using the non-linear isotherm models. The adsorption rate was well-ordered by the pseudo-second-order (PSO) rate models. Finally, chemically modified biochar with ammonia solutions (SDA) enhances the Cu(II) ions’ adsorption efficiency more than physical activations by sonications (SSD). Response surface methodology (RSM) optimization analysis was studied for the removal of Cu(II) ions using SD, SSD, and SDA biochars.
Collapse
|
7
|
Eldeeb TM, Aigbe UO, Ukhurebor KE, Onyancha RB, El-Nemr MA, Hassaan MA, Osibote OA, Ragab S, Okundaye B, Balogun VA, El Nemr A. Biosorption of acid brown 14 dye to mandarin-CO-TETA derived from mandarin peels. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:5053-5073. [DOI: 10.1007/s13399-022-02664-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 01/12/2025]
Abstract
AbstractSeveral agronomic waste-materials are presently being widely used as bio-adsorbents for the treatment of toxic wastes such as dyes and heavy metals from industrial activities, which has resulted in critical global environmental issues. Therefore, there is a need to continue searching for more effective means of mitigating these industrial effluents. Synthetic aromatic dyes such as Acid Brown (AB14) dye are one such industrial effluent that is causing a serious global issue owing to the huge amount of these unsafe effluents released into the ecosystem daily as contaminants. Consequently, their confiscation from the environment is critical. Hence, in this study, Mandarin-CO-TETA (MCT) derived from mandarin peels was utilized for the removal of AB14 dyes. The synthesized biosorbent was subsequently characterized employing FTIR, TGA, BET, and SEM coupled with an EDX. The biosorption of this dye was observed to be pH-dependent, with the optimum removal of this dye being noticed at pH 1.5 and was ascribed to the electrostatic interaction between the positively charged sites on the biosorbent and the anionic AB14 dye. The biosorption process of AB14 dye was ideally described by employing the pseudo-second-order (PSO) and the Langmuir (LNR) models. The ideal biosorption capacity was calculated to be 416.67 mg/g and the biosorption process was indicative of monolayer sorption of AB14 dye to MCT biosorbent. Thus, the studied biosorbent can be employed as a low-cost activated biomass-based biosorbent for the treatment of AB14 dyes from industrial activities before they are further released into the environment, thus mitigating environmental contamination.
Collapse
|
8
|
El-Nemr MA, Aigbe UO, Hassaan MA, Ukhurebor KE, Ragab S, Onyancha RB, Osibote OA, El Nemr A. The use of biochar-NH2 produced from watermelon peels as a natural adsorbent for the removal of Cu(II) ion from water. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:1975-1991. [DOI: 10.1007/s13399-022-02327-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/12/2025]
|
9
|
Lisboa ES, Serafim C, Santana W, Dos Santos VLS, de Albuquerque-Junior RLC, Chaud MV, Cardoso JC, Jain S, Severino P, Souto EB. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs. J Control Release 2024; 365:617-639. [PMID: 38043727 DOI: 10.1016/j.jconrel.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.
Collapse
Affiliation(s)
- Erika S Lisboa
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Carine Serafim
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Wanessa Santana
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Victoria L S Dos Santos
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Ricardo L C de Albuquerque-Junior
- Post-Graduate Program in Dentistry, Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil; Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology of UNISO (LaBNUS), University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Juliana C Cardoso
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Sona Jain
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Patrícia Severino
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
11
|
Obayomi KS, Lau SY, Danquah MK, Zhang J, Chiong T, Takeo M, Jeevanandam J. Novel Concepts for Graphene-Based Nanomaterials Synthesis for Phenol Removal from Palm Oil Mill Effluent (POME). MATERIALS (BASEL, SWITZERLAND) 2023; 16:4379. [PMID: 37374562 DOI: 10.3390/ma16124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
In recent years, the global population has increased significantly, resulting in elevated levels of pollution in waterways. Organic pollutants are a major source of water pollution in various parts of the world, with phenolic compounds being the most common hazardous pollutant. These compounds are released from industrial effluents, such as palm oil milling effluent (POME), and cause several environmental issues. Adsorption is known to be an efficient method for mitigating water contaminants, with the ability to eliminate phenolic contaminants even at low concentrations. Carbon-based materials have been reported to be effective composite adsorbents for phenol removal due to their excellent surface features and impressive sorption capability. However, the development of novel sorbents with higher specific sorption capabilities and faster contaminant removal rates is necessary. Graphene possesses exceptionally attractive chemical, thermal, mechanical, and optical properties, including higher chemical stability, thermal conductivity, current density, optical transmittance, and surface area. The unique features of graphene and its derivatives have gained significant attention in the application of sorbents for water decontamination. Recently, the emergence of graphene-based adsorbents with large surface areas and active surfaces has been proposed as a potential alternative to conventional sorbents. The aim of this article is to discuss novel synthesis approaches for producing graphene-based nanomaterials for the adsorptive uptake of organic pollutants from water, with a special focus on phenols associated with POME. Furthermore, this article explores adsorptive properties, experimental parameters for nanomaterial synthesis, isotherms and kinetic models, mechanisms of nanomaterial formation, and the ability of graphene-based materials as adsorbents of specific contaminants.
Collapse
Affiliation(s)
- Kehinde Shola Obayomi
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Tung Chiong
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
12
|
El-Nemr MA, Hassaan MA, Ashour I. Fabrication of N-doping activated carbons from fish waste and sawdust for Acid Yellow 36 dye removal from an aquatic environment. Sci Rep 2023; 13:5892. [PMID: 37041270 PMCID: PMC10090169 DOI: 10.1038/s41598-023-33075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Acid Yellow 36 (AY36) dye is a synthetic azo dye that is excessively used in various industries, causing hazardous environmental effects. The main target of this study is the preparation of self-N-doped porous activated carbon (NDAC) and the investigation in eliminating the AY36 dye from the water solution. The NDAC was prepared by mixing fish waste (60% protein content) which was considered a self-nitrogen dopant. A combination of Fish waste, sawdust, zinc chloride and urea with a mass ratio (5:5:5:1) was submitted to hydrothermal process at 180 °C for 5 h followed by pyrolysis for 1 h under N2 stream at 600, 700, and 800 °C. Fabricated NDAC was qualified as an adsorbent for recovering AY36 dye from water using batch trials. The fabricated NDAC samples were characterized by FTIR, TGA, DTA, BET, BJH, MP, t-plot, SEM, EDX, and XRD methods. The results showed the successful formation of NDAC with nitrogen mass percentage content (4.21, 8.13 and 9.85%). The NDAC prepared at 800 °C had the largest nitrogen content (9.85%) and was labeled as NDAC800. This later had 727.34 m2/g, 167.11 cm3/g, and 1.97 nm for specific surface area, the monolayer volume and the mean pores diameter respectively. By being the more efficient adsorbent, NDAC800 was chosen to test AY36 dye removal. Therefore, it is selected to investigate the removal of AY36 dye from aqueous solution by varying important parameters such as solution pH, initial dye concentration, adsorbent dosage and contact time. The removal of AY36 dye by NDAC800 was pH-dependent, with the optimum pH value 1.5 giving 85.86% removal efficiency and 232.56 mg/g maximum adsorption capacity (Qm). The kinetic data exhibited the best fit model with the pseudo-second-order (PSOM), while the equilibrium data fit well with the Langmuir (LIM) and Temkin (TIM). The mechanism of AY36 dye adsorption may be ascribed to the electrostatic contact between the dye and the available charged sites on NDAC800 surface. The prepared NDAC800 may be considered as an efficient, available, and eco-friendly adsorbent for AY36 dye adsorption from simulated water.
Collapse
Affiliation(s)
- Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt.
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ibrahim Ashour
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| |
Collapse
|
13
|
Kordzadeh A, Zarif M, Amjad-Iranagh S. Molecular dynamics insight of interaction between the functionalized-carbon nanotube and cancerous cell membrane in doxorubicin delivery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107332. [PMID: 36603233 DOI: 10.1016/j.cmpb.2022.107332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin (DOX) is a known anticancer drug which is widely used in cancer therapy. Carbon nanotubes (CNTs) are among the most promising platforms for smart drug delivery applications. However, due to the toxicity and their low sulubility their application is limited and their functionalization with wide range of biomolecules are suggested. Therefore, the functionalized carbon nanotubes (f-CNT) with carboxyl (CNT-COO) and folic acid (CNT-COO-FA) were investigated as drug-carrier. METHODS Molecular dynamics (MD) simulation along with the Density Functional Theory (DFT) methods are being used to study the drug loading process on functionalized carbon nanotubes. RESULTS The results indicate that doxorubicin molecules interact more with CNT-COO-FA than CNT-COO. The embedded dipalmitoylphosphatidylcholine (DPPC) lipid bilayer with a folate receptor was considered a cancerous cell's representative model. Then the drug release from the f-CNTs near the lipid bilayer was simulated. The results showed that CNT-COO-FA with a pH and ligand-sensitive mechanism strongly interacts with cancerous cells, which led to higher drug release, in agreement with the experimental results. The conformational changes of the lipid bilayer and folate receptor during drug release were evaluated. The analysis showed that drug release from CNT-COO-FA has significantly changed lipid bilayer and receptor conformations. The obtained results were interpreted and justified by considering the molecular mechanisms which control the drug delivery in the studied systems. CONCLUSIONS Based on the obtained results, CNT-COO-FA has a better performance during the drug release compared to CNT-COO in delivering doxorubicin. Both pH and ligand sensitive mechanisms are found to be responsible for higher drug delivery efficiency of CNT-COO-FA. In contrast, CNT-COO can only enhance drug delivery efficiently with a pH-sensitive mechanism.
Collapse
Affiliation(s)
- Azadeh Kordzadeh
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran 145888-9694, Tehran, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Tehran, Iran.
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 115875-4313, Tehran, Iran.
| |
Collapse
|
14
|
Anigol LB, Sajjan VP, Gurubasavaraj PM, Ganachari SV, Patil D. Study on the effect of pH on the biosynthesis of silver nanoparticles using Capparis moonii fruit extract: their applications in anticancer activity, biocompatibility and photocatalytic degradation. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Abdollahi-Moghadam M, Keypour H, Azadbakht R, Koolivand M. An experimental and theoretical study of a new sensitive and selective Al3+ Schiff base fluorescent chemosensor bearing a homopiperazine moiety. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kanaoujiya R, Saroj SK, Rajput VD, Alimuddin, Srivastava S, Minkina T, Igwegbe CA, Singh M, Kumar A. Emerging application of nanotechnology for mankind. EMERGENT MATERIALS 2023; 6:439-452. [PMID: 36743193 PMCID: PMC9888745 DOI: 10.1007/s42247-023-00461-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
Nanotechnology has proven to be the greatest multidisciplinary field in the current years with potential applications in agriculture, pollution remediation, environmental sustainability, as well as most recently in pharmaceutical industries. As a result of its physical, chemical, and biological productivity, resistance, and matricular organization at a larger scale, the potential of nanocomposites revealed different sorts of assembling structures via testing. Biosensors are known some specifically promising inventions whereas carbon nanotube, magnetic nanoparticles (NPs), quantum dots, and gold NPs showed capability to repair damaged cells, molecular docking, drug-delivery, and nano-remediation of toxic elements. PEGylated(Poly ethyl glycol amyl gated) redox-responsive nanoscale COFs drug delivery from AgNPs and AuNPs are known to be sun blockers in sunscreen lotions. The emerging trends and yet more to be discovered to bridge the gaps forming in the field of nanotechnology, especially insights into environmental concerns and health issues most importantly the food web which is connected with the well beings of mankind to perform its tasks giving necessary results. The current review detailed emerging role of nanomaterials in human life. Supplementary Information The online version contains supplementary material available at 10.1007/s42247-023-00461-8.
Collapse
Affiliation(s)
- Rahul Kanaoujiya
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Shruti Kumari Saroj
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Alimuddin
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, 500032, Hyderabad, Telangana India
| | - Shekhar Srivastava
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090 Russia
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamadi Azikiwe University, P. M. B., 5025 Awka, Nigeria
| | - Mukta Singh
- Synthetic Inorganic and Metallo Organic Research Laboratory, Department of Chemistry, University of Allahabad, 211002 Prayagraj, India
| | - Aditya Kumar
- Department of Physics, School of Science, IFTM University Moradabad, 244102 Moradabad, India
| |
Collapse
|
17
|
Sowmya P, Prakash S, Joseph A. Adsorption of heavy metal ions by thiophene containing mesoporous polymers: An experimental and theoretical study. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Biosorption of Methylene Blue using Clove Leaves Waste Modified with Sodium Hydroxide. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
19
|
El-Nemr MA, Aigbe UO, Ukhurebor KE, Onyancha RB, El Nemr A, Ragab S, Osibote OA, Hassaan MA. Adsorption of Cr 6+ ion using activated Pisum sativum peels-triethylenetetramine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91036-91060. [PMID: 35881295 PMCID: PMC9722890 DOI: 10.1007/s11356-022-21957-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/06/2022] [Indexed: 05/21/2023]
Abstract
The adsorption of Cr6+ ions from water-soluble solution onto activated pea peels (PPs) embellished with triethylenetetramine (TETA) was studied. The synthesized activated TETA-PP biosorbent was further characterized by SEM together with EDX, FTIR and BET to determine the morphology and elementary composition, functional groups (FGs) present and the biosorbent surface area. The confiscation of Cr6+ ions to activated TETA-PP biosorbent was observed to be pH-reliant, with optimum removal noticed at pH 1.6 (99%). Cr6+ ion adsorption to activated TETA-PP biosorbent was well defined using the Langmuir (LNR) and the pseudo-second-order (PSO) models, with a determined biosorption capacity of 312.50 mg/g. Also, it was found that the activated TETA-PP biosorbent can be restored up to six regeneration cycles for the sequestration of Cr6+ ions in this study. In comparison with other biosorbents, it was found that this biosorbent was a cost-effective and resourceful agro-waste for the Cr6+ ion confiscation. The possible mechanism of Cr6+ to the biosorbent was by electrostatic attraction following the surface protonation of the activated TETA-PP biosorbent sites.
Collapse
Affiliation(s)
- Mohamed A. El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, Egypt
| | - Uyiosa O. Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Kingsley E. Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, Iyamho, Edo State Nigeria
| | - Robert B. Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, Nairobi, Kenya
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Otolorin A. Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mohamed A. Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| |
Collapse
|
20
|
Onyancha RB, Ukhurebor KE, Aigbe UO, Mogire NB, Chanzu I, Kitoto VA, Kusuma HS, Darmokoesoemo H. A review of the capabilities of carbon dots for the treatment and diagnosis of cancer-related diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Mahesh N, Balakumar S, Shyamalagowri S, Manjunathan J, Pavithra MKS, Babu PS, Kamaraj M, Govarthanan M. Carbon-based adsorbents as proficient tools for the removal of heavy metals from aqueous solution: A state of art-review emphasizing recent progress and prospects. ENVIRONMENTAL RESEARCH 2022; 213:113723. [PMID: 35752329 DOI: 10.1016/j.envres.2022.113723] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Carbon-centric adsorbents (CCA) are diverse forms, from simple biochar (BC) to graphene derivatives, carbon nanotubes (CNTs), and activated carbon (AC), which have been vastly explored for their removal of a plethora of pollutants, including heavy metals (HM). The prominent features of CCA are their operational attributes like extensive surface area, the occurrence of flexible surface functional groups, etc. This work offers a comprehensive examination of contemporary research on CCA for their superior metal removal aptitude and performances in simulated solutions and wastewater flows; via portraying the recent research advances as an outlook on the appliances of CACs for heavy metal adsorption for removal via distinct forms like AC, BC, Graphene oxide (GO), and CNTs. The bibliometric analysis tool was employed to highlight the number of documents, country-wise contribution, and co-occurrence mapping based on the Scopus database. The coverage of research works in this review is limited to the last 5 years (2017-2021) to highlight recent progress and prospects in using CCAs such as AC, BC, GO, and CNTs to remove HM from aqueous media, which makes the review unique. Besides an overview of the common mechanisms of CACs, the future scope of CAC, especially towards HM mitigation, is also discussed in this review. This review endorses that further efforts should be commenced to enhance the repertory of CCAs that effectively eliminate multiple targeted metals in both simulated and real wastewater.
Collapse
Affiliation(s)
- Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | | | - Jagadeesan Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, 600117, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Murugesan Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
22
|
Ukhurebor KE, Aigbe UO, Onyancha RB, UK-Eghonghon G, Balogun VA, Egielewa PE, Ngonso BF, Osibote OA, Imoisi SE, Ndunagu JN, Kusuma HS, Darmokoesoemo H. Greenhouse Gas Emission: Perception during the COVID-19 Pandemic. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6166276. [PMID: 36246992 PMCID: PMC9553500 DOI: 10.1155/2022/6166276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
The period 2020/2021 was an unprecedented and historic time for industrial, economic, and societal activities all over the world with great challenges to human health, the ecosystems, and other aspects of human endeavors owing to the COVID-19 or SARS-CoV-2 (CV-19) pandemic which is now a topical aspect of research interest. Despite the negative impacts of the CV-19 pandemic, there are also positive reports during the CV-19 pandemic such as the reduction of gas flare, reduction in the burning of fossil fuels from automobile exhaust and a reduction in the other ensuing factors of greenhouse gases emissions (which is one of the major drives for global warming and climate change as well as other environmental effluences). Hence, this brief perspective review study is centered on greenhouse gas (GHG) emission. The study employs a methodical approach to analyze some already available research studies from existing publications and databases on GHG emission using the perception during the CV-19 pandemic. The specific findings from this review show that, from the meteorological perspective, the global response to the catastrophe ensuing from the CV-19 pandemic has a great influence on the reduction of GHGs, the reduction in the burning of fossil fuels from automobiles and industrial devices, and the reduction in the other ensuing factors of GHG emission. Hence, it will not be far from the truth to conclude that there is a possible positive connection between the CV-19 pandemic and GHG emissions. The study has a direct impact on the environment owing to the negative and positive environmental consequences of the CV-19 pandemic. Suggestions and recommendations in the form of future prospects of GHG emission vis-à-vis global warming and climate change are also discussed. Furthermore, suggestions on how to improve food security and agriculture during a pandemic such as the CV-19 outbreak period are highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Robert Birundu Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Gladys UK-Eghonghon
- Department of Nursing Services, University of Benin Teaching Hospital, P.M.B., 1111 Benin City, Nigeria
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Peter Eshioke Egielewa
- Department of Mass Communication, Edo State University Uzairue, P.M.B. 04 Auchi, 312101 Edo State, Nigeria
| | - Blessed Frederick Ngonso
- Department of Mass Communication, Edo State University Uzairue, P.M.B. 04 Auchi, 312101 Edo State, Nigeria
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Simon Ejokema Imoisi
- Department of Public and International Law, Faculty of Law, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Juliana Ngozi Ndunagu
- Faculty of Sciences/Africa Centre of Excellence on Technology Enhanced Learning (ACETEL), National Open University of Nigeria, Abuja, Nigeria
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
23
|
Akhdhar A, Yakout AA. Enhanced simultaneous sequestration of Cd(II) and Pb(II) ions from industrial wastewater samples based on poly-(2-aminothiophenol) functionalized graphene oxide. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, Saudi Arabia
| | - Amr A. Yakout
- Department of Chemistry, College of Science, University of Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Sheoran K, Kaur H, Siwal SS, Saini AK, Vo DVN, Thakur VK. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. CHEMOSPHERE 2022; 299:134364. [PMID: 35318024 DOI: 10.1016/j.chemosphere.2022.134364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanomaterials (CBNMs) have attracted significant alert due to the affluent science underpinning their implementations associated with a novel mixture of high aspect proportions, greater thermal and electrical performance, outstanding optical features, and high exterior area. CBNMs not only bear assurance in a broad range of implementations in medication, nano and microelectronics, and ecological remedies but may also be utilized in practical laboratory determinations. More specifically, CBNMs perform as an outstanding adsorbent in terminating heavy metal ions (HMI) from wastewater. There is presently a deficiency of powerful threat inspection instruments owing to their complex detection and related deficit in the health risk database. Therefore, our present review concentrates on spreading CBNMs to release pollutants from wastewater. The article wraps the effect of these contaminants and photocatalytic strategies towards treating these mixtures in wastewater, along with their restrictions and challenges, convincing resolutions, and possibilities of these approaches.
Collapse
Affiliation(s)
- Karamveer Sheoran
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Adesh Kumar Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC (Scotland's Rural College), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
25
|
A Methodical Review on Carbon-Based Nanomaterials in Energy-Related Applications. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/4438286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carbon nanomaterials are endowed with novel and magnificent optical, electrical, chemical, mechanical, and thermal properties, with a promising prospect in different advanced applications such as electronics, batteries, capacitors, wastewater treatment, membranes, heterogeneous catalysis, and medical sciences. However, macroscopic synthesis of carbon materials for industrial use has been a great challenge. Furthermore, structural nonhomogeneity and indefinite fabrication have hindered vigorous and consistent implementation of these materials in extensive technologies. Nevertheless, they offer exotic physics, and as a result, they have continued to attract great interest from the scientific community in an effort aimed to optimize their properties through innovative synthesis techniques, ensuring macroscopic production and discovering new applications. Hence, this study endeavours to provide a conscious review of these materials via the comprehensive discussion of the various allotropes of carbon (fullerenes, carbon nanotubes, and graphene), synthesis techniques (arc discharge, laser ablation, and chemical vapor deposition), and their applications in energy-related fields (batteries, capacitors, photocells, hydrogen storage, sensors, etc.) and their impending prospects.
Collapse
|
26
|
Bao Z, Feng H, Tu W, Li L, Li Q. Method and mechanism of chromium removal from soil: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35501-35517. [PMID: 35226261 DOI: 10.1007/s11356-022-19452-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution has increasingly affected human life, and the treatment of heavy metal pollution, especially chromium pollution, is still a major problem in the field of environmental governance. As a commonly used industrial metal, chromium can easily enter the environment with improperly treated industrial waste or wastewater, then pollute soil and water sources, and eventually accumulate in the human body through the food chain. Many countries and regions in the world are threatened by soil chromium pollution, resulting in the occurrence of cancer and a variety of metabolic diseases. However, as a serious threat to agriculture, food, and human health. Notwithstanding, there are limited latest and systematic review on the removal methods, mechanisms, and effects of soil chromium pollution in recent years. Hence, this article outlines some of the methods and mechanisms for the removal of chromium in soil, including physical, chemical, biological, and biochar methods, which provide a reference for the treatment and research on soil chromium pollution drawn from existing publications.
Collapse
Affiliation(s)
- Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
A Facile Review on the Sorption of Heavy Metals and Dyes Using Bionanocomposites. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8030175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Presently, hazardous metal and dye removal from wastewater is one of the major areas of research focus. For the elimination of these contaminants, many approaches have been devised and applied. However, the accomplishment of various water treatment processes has largely depended on the medium utilized and the associated problem with the leaching of harmful compounds into the water process with most commercial and chemically manufactured materials for water treatment processes. Hence, this study is aimed at reviewing existing studies on the sorption of heavy metals (HMs) and dyes using bionanocomposites (BNCs). The key focus of this review is on the development of eco-friendly, effective, and appropriate nanoadsorbents that could accomplish superior and enhanced contaminant sequestration using BNCs owing to their biodegradability, biocompatible, environmentally friendly, and not posing as secondary waste to the environment. The sorption of most pollutants was observed to be pH, sorbent dosage, and initial contaminant concentration-dependent, with most contaminants’ elimination taking place in the pH range of 2-10. The sorption process of HMs and dyes to various BNCs was superlatively depicted utilizing the Langmuir (LNR) and Freundlich (FL) as well as the pseudo-second-order (PSO) models, suggestive of the sorption process of a monolayer and multilayer and the chemisorption process, the rate-limiting stage in surface sorption. The established sorption capacities for the reviewed sorption process for various contaminants ranged from 1.47 to 740.97 mg/g. Future prospective for the treatment and remediation of contaminated water using BNCs was also discussed.
Collapse
|
28
|
Aigbe UO, Osibote OA. Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9640-9684. [PMID: 34997491 DOI: 10.1007/s11356-021-17571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Fluoride is an anionic pollutant found superfluous in surface or groundwater as a result of anthropogenic actions from improper disposal of industrial effluents. In drinking water, superfluous fluoride has been revealed to trigger severe health problems in humans. Hence, developing a comprehensive wastewater decontamination process for the effective management and preservation of water contaminated with fluoride is desirable, as clean water demand is anticipated to intensify considerably over the upcoming years. In this regard, there have been increased efforts by researchers to create novel magnetic metal oxide nanocomposites which are functionalized for the remediation of wastewater owing to their biocompatibility, cost-effectiveness, relative ease to recover and reuse, non-noxiousness, and ease to separate from solutions using a magnetic field. This review makes an all-inclusive effort to assess the effects of experimental factors on the sorption of fluoride employing magnetic metal oxide nanosorbents. The removal efficiency of fluoride ions onto magnetic metal oxides nanocomposites were largely influenced by the solution pH and ions co-existing with fluoride. Overall, it was noticed from the reviewed researches that the maximum sorption capacity using various metal oxides for fluoride sorption was in the order of aluminium oxides >cerium oxides > iron oxides > magnesium oxides> titanium oxides, and most sorption of fluoride ions was inhibited by the existence of phosphate trailed by sulphate. The mechanism of fluoride sorption onto various sorbents was due to ion exchange, electrostatic attraction, and complexation mechanism.
Collapse
Affiliation(s)
- Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
29
|
Ukhurebor KE, Onyancha RB, Aigbe UO, UK-Eghonghon G, Kerry RG, Kusuma HS, Darmokoesoemo H, Osibote OA, Balogun VA. A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1682502. [PMID: 35103234 PMCID: PMC8799955 DOI: 10.1155/2022/1682502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, 00200 Nairobi, Kenya
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Gladys UK-Eghonghon
- Nursing Services Department, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Nigeria
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| |
Collapse
|
30
|
Zhao W, Huang X, Gong J, Ma L, Qian J. Influence of aquifer heterogeneity on Cr(VI) diffusion and removal from groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3918-3929. [PMID: 34402009 DOI: 10.1007/s11356-021-15803-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have indicated aquifer heterogeneity has an important influence on the removal of Cr(VI) in groundwater, but little attention is paid to the effects of aquifer heterogeneity during the process especially under conditions like actual groundwater temperature and hydraulic gradient in the field. Thus, in this study, in situ remediation of Cr(VI)-contaminated shallow groundwater in a sandbox was conducted, and the influences of the heterogeneous aquifer composed of coarse, medium, and fine sand on Cr(VI) diffusion and removal before and after emulsified vegetable oil (EVO) injection were investigated, under the conditions of 19±0.5 °C and hydraulic gradient 3‰. The results show that Cr(VI) diffused consistently with groundwater from top left to bottom right; Cr(VI) spread faster in the horizontal direction than in vertical direction, and the horizontal diffusion of Cr(VI) in coarse, medium, and fine sand was 0.054 m/day, 0.036 m/day, and 0.018 m/day, respectively; a high performance of EVO toward Cr(VI) removal by over 95% was mainly because different concentrations of microorganisms migrated among heterogeneous aquifers vertically and horizontally; compared with coarse and medium sand, fine sand, with a better adsorption capacity and a lower permeability, retained relatively more microorganisms, providing favorable conditions during the remediation; a stable and unified effective removal zone, similar to the shape of Ʃ (approximately 1357.87 cm2), was ultimately formed downstream of the injection well.
Collapse
Affiliation(s)
- Weidong Zhao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinxiang Huang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianshi Gong
- Nanjing Geological Survey Center, China Geological Survey, Nanjing, 210016, China
| | - Lei Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Jiazhong Qian
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
31
|
Onyancha RB, Aigbe UO, Ukhurebor KE, Kusuma HS, Darmokoesoemo H, Osibote OA, Pal K. Influence of magnetism-mediated potentialities of recyclable adsorbents for heavy metal ions removal from aqueous solutions – An organized review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
32
|
Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Pham VV, Nguyen XP. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. CHEMOSPHERE 2022; 287:131959. [PMID: 34454224 DOI: 10.1016/j.chemosphere.2021.131959] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of heavy metal ions found in waterways near industrial zones are often exceed the prescribed limits, posing a continued danger to the environment and public health. Therefore, greater attention has been devoted into finding the efficient solutions for adsorbing heavy metal ions. This review paper focuses on the synthesis of carbon nanotubes (CNTs) from biomass and their application in the removal of heavy metals from aqueous solutions. Techniques to produce CNTs, benefits of modification with various functional groups to enhance sorption uptake, effects of operating parameters, and adsorption mechanisms are reviewed. Adsorption occurs via physical adsorption, electrostatic interaction, surface complexation, and interaction between functional groups and heavy metal ions. Moreover, factors such as pH level, CNTs dosage, duration, temperature, ionic strength, and surface property of adsorbents have been identified as the common factors influencing the adsorption of heavy metals. The oxygenated functional groups initially present on the surface of the modified CNTs are responsible towards the adsorption enhancement of commonly-encountered heavy metals such as Pb2+, Cu2+, Cd2+, Co2+, Zn2+, Ni2+, Hg2+, and Cr6+. Despite the recent advances in the application of CNTs in environmental clean-up and pollution treatment have been demonstrated, major obstacles of CNTs such as high synthesis cost, the agglomeration in the post-treated solutions and the secondary pollution from chemicals in the surface modification, should be critically addressed in the future studies for successful large-scale applications of CNTs.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia.
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Tien Long Banh
- Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
33
|
A systematic review on the detection and monitoring of toxic gases using carbon nanotube-based biosensors. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
34
|
Malachite Green Removal by Activated Potassium Hydroxide Clove Leaf Agrowaste Biosorbent: Characterization, Kinetic, Isotherm, and Thermodynamic Studies. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/1145312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although several approaches have been explored for the removal of dyes and other toxic materials from water as well as the entire environment, notwithstanding, researchers/scientists are still pursuing novel, low-cost, and eco-friendly biosorbents for the effective removal of such contaminants. Herein, clove leaves (CL) were utilized as a biosorbent for the sequestration of malachite green (MG) from a water-soluble solution. The CL was subsequently activated using potassium hydroxide (KOH) and characterized using the FTIR and FESEM to determine the functional groups on the activated clove leaves (CL-KOH) and the morphology of the adsorbent. The adsorption of MG was observed to be relatively dependent on the dosage of sorbent utilized, initial MG concentration, and sorption process contact time. The adsorption process of MG to CL was ideally described using the Dubinin–Radushkevich and Elovich models with the determination of maximum sorption capacity of approximately 131.6 mg·g-1. Furthermore, the thermodynamic parameters calculated showed that the adsorption of MG to the adsorbent was exothermic with the process involving physical sorption as well as chemical sorption processes with negligible adsorption energy. In conclusion, the study has revealed that the CL is a cost-effective biosorbent with high adsorption efficiency for the sequestration of MG from a water-soluble solution and can be recycled for further usage.
Collapse
|
35
|
Ukhurebor KE, Athar H, Adetunji CO, Aigbe UO, Onyancha RB, Abifarin O. Environmental implications of petroleum spillages in the Niger Delta region of Nigeria: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112872. [PMID: 34044235 DOI: 10.1016/j.jenvman.2021.112872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The issue of environmental pollution has been recognized as a typical example of an anthropogenic activity that constitutes a global challenge coupled with the influence of climate change. This has constituted several hazards which include bioaccumulation of toxic substances, pollution of the aquatic environment, and high rate of dilapidation of soil structure and texture, health hazards, high level of imbalance in the ecosystem and a high level of toxicity in humans and the environment. Despite the intervention of governments, industries, researchers and relevant stakeholders, these problems remain paramount in most regions. Therefore, given the aforementioned, it is essential to identify sustainable remediation techniques, innovative knowledge on remediation strategies and clean up techniques that could help in the mitigation of all these highlighted challenges. Moreover, several studies have revealed the deleterious influence of petroleum or oil spillages resulting in irreparable environmental dilapidation and other potential hazards to human health, agriculture, climate system, and the ecosystem in general. From the systematic analysis of the evidence-based, meta-data-based review and other reviewed literature, it is noticeable that there is scant holistic review study that will incorporate all these aforementioned environmental implications resulting from the activities of petroleum resources in the Niger Delta region of Nigeria (NDRN) in just a single study. In the interim, it is alleged that there is hardly a permanent and tangible solution to these petroleum spillage issues and their impacts on the region; albeit, awareness will be fundamental for its mitigation. Hence, this review study will attempt to fill this gap by holistically reviewing the selected environmental implications of petroleum spillages in the NDRN drawn from 219 evidence and meta-data-based reviews and other articles. Furthermore, the relevant legal frameworks that could guild in protecting against environmental issues and petroleum spillages, are discussed in this study. In conclusion, the study cautiously provides a way forward by submitting that effective research and development measures ranging from public health assessments of petroleum contamination to an all-embracing application of bioremediation technology should frequently be carried out as a matter of urgency with resilient adaptation, mollification and management of these menaces.
Collapse
Affiliation(s)
| | - Hussain Athar
- Department of Meteorology, COMSATS University Islamabad, Islamabad, 45550, Pakistan; Centre for Climate Research and Development, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | | | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Cape Peninsula University of Technology, Cape Town, South Africa
| | | | - Olufemi Abifarin
- Department of Private Law, Faculty of Law, Federal University Oye Ekiti, Ekiti State, Nigeria
| |
Collapse
|
36
|
Alzahrani FM, Alsaiari NS, Katubi KM, Amari A, Elkhaleefa AM, Rebah FB, Tahoon MA. Magnetic Nitrogen-Doped Porous Carbon Nanocomposite for Pb(II) Adsorption from Aqueous Solution. Molecules 2021; 26:4809. [PMID: 34443398 PMCID: PMC8401485 DOI: 10.3390/molecules26164809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
We report in the present study the in situ formation of magnetic nanoparticles (Fe3O4 or Fe) within porous N-doped carbon (Fe3O4/N@C) via simple impregnation, polymerization, and calcination sequentially. The synthesized nanocomposite structural properties were investigated using different techniques showing its good construction. The formed nanocomposite showed a saturation magnetization (Ms) of 23.0 emu g-1 due to the implanted magnetic nanoparticles and high surface area from the porous N-doped carbon. The nanocomposite was formed as graphite-type layers. The well-synthesized nanocomposite showed a high adsorption affinity toward Pb2+ toxic ions. The nanosorbent showed a maximum adsorption capacity of 250.0 mg/g toward the Pb2+ metallic ions at pH of 5.5, initial Pb2+ concentration of 180.0 mg/L, and room temperature. Due to its superparamagnetic characteristics, an external magnet was used for the fast separation of the nanocomposite. This enabled the study of the nanocomposite reusability toward Pb2+ ions, showing good chemical stability even after six cycles. Subsequently, Fe3O4/N@C nanocomposite was shown to have excellent efficiency for the removal of toxic Pb2+ ions from water.
Collapse
Affiliation(s)
- Fatimah Mohammed Alzahrani
- Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Norah Salem Alsaiari
- Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | | | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia;
- Research Laboratory of Energy and Environment, Department of Chemical Engineering, National School of Engineers, Gabes University, Gabes 6072, Tunisia
| | - Abubakr M. Elkhaleefa
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia;
| | - Faouzi Ben Rebah
- Higher Institute of Biotechnology of Sfax (ISBS), Sfax University, P.O. Box 263, Sfax 3000, Tunisia;
| | - Mohamed A. Tahoon
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|