1
|
Li Y, Ge F, Liu C, Pu W, Lv W, Zeng Z, Yin L, Liu D, Li Y, Tang D, Han P, Dai Y. Genome-wide characterization of extrachromosomal circular DNA in SLE and functional analysis reveal their association with apoptosis. Transl Res 2024; 273:115-126. [PMID: 39173965 DOI: 10.1016/j.trsl.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Extrachromosomal circular DNA (eccDNA) derived from linear chromosomes, are showed typical nucleosomal ladder pattern in agarose gel which as a known feature of apoptosis and demonstrated to be immunogenicity. In systemic lupus erythematosus (SLE) patients, elevated levels of cell-free DNA (cfDNA) can be found in either linear forms or circular forms, while circular ones are much less common and harder to detect. The molecular characteristics and function of circular forms in plasma SLE patients remains elusive. Herein, we characterized the hallmarks of plasma eccDNA in SLE patients, including the lower normalized number and GC content of eccDNA in SLE plasma than in the healthy, and SLE eccDNA number positively correlated with C3 and negatively with anti-dsDNA antibodies. The differential eccGenes (eccDNAs carrying the protein coding gene sequence) of SLE was significantly enriched in apoptosis-related pathways. The artificially synthesized eccDNA with sequences of the PRF1 exon region could promote transcriptional expression of PRF1, IFNA and IFIT3 and inhibit early-stage apoptosis. Plasma eccDNA can serve as a novel autoantigen in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yixi Li
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People' s Hospital (Affiliated People' s Hospital), Hangzhou Medical College, Hangzhou 310000, China; Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Fangfang Ge
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Chengxun Liu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Wenjun Pu
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Wei Lv
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Zhipeng Zeng
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Yasong Li
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People' s Hospital (Affiliated People' s Hospital), Hangzhou Medical College, Hangzhou 310000, China
| | - Donge Tang
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China..
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; Comprehensive Health Industry Research Center, Southern University of Science and Technology Taizhou Research Institute, Taizhou 318000, China.
| |
Collapse
|
2
|
Tsiakanikas P, Athanasopoulou K, Darioti IA, Agiassoti VT, Theocharis S, Scorilas A, Adamopoulos PG. Beyond the Chromosome: Recent Developments in Decoding the Significance of Extrachromosomal Circular DNA (eccDNA) in Human Malignancies. Life (Basel) 2024; 14:922. [PMID: 39202666 PMCID: PMC11355349 DOI: 10.3390/life14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a form of a circular double-stranded DNA that exists independently of conventional chromosomes. eccDNA exhibits a broad and random distribution across eukaryotic cells and has been associated with tumor-related properties due to its ability to harbor the complete gene information of oncogenes. The complex and multifaceted mechanisms underlying eccDNA formation include pathways such as DNA damage repair, breakage-fusion-bridge (BFB) mechanisms, chromothripsis, and cell apoptosis. Of note, eccDNA plays a pivotal role in tumor development, genetic heterogeneity, and therapeutic resistance. The high copy number and transcriptional activity of oncogenes carried by eccDNA contribute to the accelerated growth of tumors. Notably, the amplification of oncogenes on eccDNA is implicated in the malignant progression of cancer cells. The improvement of high-throughput sequencing techniques has greatly enhanced our knowledge of eccDNA by allowing for a detailed examination of its genetic structures and functions. However, we still lack a comprehensive and efficient annotation for eccDNA, while challenges persist in the study and understanding of the functional role of eccDNA, emphasizing the need for the development of robust methodologies. The potential clinical applications of eccDNA, such as its role as a measurable biomarker or therapeutic target in diseases, particularly within the spectrum of human malignancies, is a promising field for future research. In conclusion, eccDNA represents a quite dynamic and multifunctional genetic entity with far-reaching implications in cancer pathogenesis and beyond. Further research is essential to unravel the molecular pathways of eccDNA formation, elucidate its functional roles, and explore its clinical applications. Addressing these aspects is crucial for advancing our understanding of genomic instability and developing novel strategies for tailored therapeutics, especially in cancer.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Ioanna A. Darioti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vasiliki Taxiarchoula Agiassoti
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece; (V.T.A.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
3
|
Umryukhin PE, Mikheeva EN, Mishina UM, Proskurnina EV, Malinovskaya EM, Martynov AV, Ershova ES, Veiko NN, Kostyuk SV. Emotional Stress Induces Adaptive Response in Rat Lymphocytes to Subsequent Ionizing Radiation Exposure. Bull Exp Biol Med 2024; 176:548-554. [PMID: 38717568 DOI: 10.1007/s10517-024-06065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 05/18/2024]
Abstract
We studied the molecular mechanisms of cross-adaptation to ionizing radiation (1 Gy) of lymphocytes isolated from rats subjected to emotional stress. The effects of chronic (CES; various types of stress exposure) and acute (AES; forced swimming) emotional stress in rats on indicators of oxidative stress, cell death, and levels of NRF2 and NOX4 proteins involved in the development of the adaptive response were analyzed in isolated lymphocytes. It was found that stress induced an adaptive response in rat lymphocytes and triggered processes similar to the adaptive response induced by low doses of ionizing radiation: an increase in the level of oxidized DNA and cell death, as well as an increase in the content of NOX4 and NRF2 proteins. In animals subjected to emotional stress, suppressed DNA oxidation in response to irradiation, reduced levels of protective factor NRF2, as well as lymphocyte death were observed.
Collapse
Affiliation(s)
- P E Umryukhin
- Research Centre for Medical Genetics, Moscow, Russia.
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| | - E N Mikheeva
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - U M Mishina
- I. M. Se-chenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | | | | | - A V Martynov
- Research Centre for Medical Genetics, Moscow, Russia
| | - E S Ershova
- Research Centre for Medical Genetics, Moscow, Russia
| | - N N Veiko
- Research Centre for Medical Genetics, Moscow, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
4
|
Proskurina A, Nikolin V, Popova N, Varaksin N, Ryabicheva T, Ershova E, Kostyuk S, Leplina O, Ostanin A, Chernykh E, Bogachev S. Comparing the Biological Properties of Double-Stranded DNA Extracted from Human and Porcine Placenta and Salmon Sperm. Rep Biochem Mol Biol 2023; 11:577-589. [PMID: 37131888 PMCID: PMC10149128 DOI: 10.52547/rbmb.11.4.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023]
Abstract
Background Double-stranded fragmented extracellular DNA is a participant, inducer, and indicator of various processes occurring in the organism. When investigating the properties of extracellular DNA, the question regarding the specificity of exposure to DNA from different sources has always been raised. The aim of this study was to perform comparative assessment of biological properties of double-stranded DNA obtained from the human placenta, porcine placenta and salmon sperm. Methods The intensity of leukocyte-stimulating effect of different dsDNA was assessed in mice after cyclophosphamide-induced cytoreduction. The stimulatory effect of different dsDNA on maturation and functions of human dendritic cells and the intensity of cytokine production by human whole blood cells was analyzed ex vivo. The oxidation level of the dsDNA was also compared. Results Human placental DNA exhibited the strongest leukocyte-stimulating effect. DNA extracted from human and porcine placenta exhibited similar stimulatory action on maturation of dendritic cells, allostimulatory capacity, and ability of dendritic cells to induce generation of cytotoxic CD8+CD107a+ T cells in the mixed leukocyte reaction. DNA extracted from salmon sperm stimulated the maturation of dendritic cells, while having no effect on their allostimulatory capacity. DNA extracted from human and porcine placenta was shown to exhibit a stimulatory effect on cytokine secretion by human whole blood cells. The observed differences between the DNA preparations can be caused by the total methylation level and are not related to differences in oxidation level of DNA molecules. Conclusions Human placental DNA exhibited the maximum combination of all biological effects.
Collapse
Affiliation(s)
- Anastasia Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Valeriy Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nelly Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nikolay Varaksin
- JSC “Vector-Best”, Koltsovo, Novosibirsk Region, 630559, Russia.
| | | | | | | | - Olga Leplina
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia.
| | - Alexandr Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia.
| | - Elena Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia.
| | - Sergey Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Corresponding author: Sergey Bogachev; Tel: +7 383 363 49 63; E-mail:
| |
Collapse
|
5
|
Kostyuk SV, Ershova ES, Martynov AV, Artyushin AV, Porokhovnik LN, Malinovskaya EM, Jestkova EM, Zakharova NV, Kostyuk GP, Izhevskaia VL, Kutsev SI, Veiko NN. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls-Part 2: Adaptive Response. Genes (Basel) 2022; 13:genes13122283. [PMID: 36553550 PMCID: PMC9777734 DOI: 10.3390/genes13122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidized in vitro genomic DNA (gDNA) is known to launch an adaptive response in human cell cultures. The cfDNA extracted from the plasma of schizophrenic patients (sz-cfDNA) and healthy controls (hc-cfDNA) contains increased amounts of 8-oxodG, a DNA-oxidation marker. The aim of the research was answering a question: can the human cfDNA isolated from blood plasma stimulate the adaptive response in human cells? In vitro responses of ten human skin fibroblasts (HSFs) and four peripheral blood mononuclear cell (PBMC) lines after 1-24 h of incubation with sz-cfDNA, gDNA and hc-cfDNA containing different amounts of 8-oxodG were examined. Expressions of RNA of eight genes (NOX4, NFE2L2, SOD1, HIF1A, BRCA1, BRCA2, BAX and BCL2), six proteins (NOX4, NRF2, SOD1, HIF1A, γH2AX and BRCA1) and DNA-oxidation marker 8-oxodG were analyzed by RT-qPCR and flow cytometry (when analyzing the data, a subpopulation of lymphocytes (PBL) was identified). Adding hc-cfDNA or sz-cfDNA to HSFs or PBMC media in equal amounts (50 ng/mL, 1-3 h) stimulated transient synthesis of free radicals (ROS), which correlated with an increase in the expressions of NOX4 and SOD1 genes and with an increase in the levels of the markers of DNA damage γH2AX and 8-oxodG. ROS and DNA damage induced an antioxidant response (expression of NFE2L2 and HIF1A), DNA damage response (BRCA1 and BRCA2 gene expression) and anti-apoptotic response (changes in BAX and BCL2 genes expression). Heterogeneity of cells of the same HSFs or PBL population was found with respect to the type of response to (sz,hc)-cfDNA. Most cells responded to oxidative stress with an increase in the amount of NRF2 and BRCA1 proteins along with a moderate increase in the amount of NOX4 protein and a low amount of 8-oxodG oxidation marker. However, upon the exposure to (sz,hc)-cfDNA, the size of the subpopulation with apoptosis signs (high DNA damage degree, high NOX4 and low NRF2 and BRCA1 levels) also increased. No significant difference between the responses to sz-cfDNA and hc-cfDNA was observed. Sz-cfDNA and hc-cfDNA showed similarly high bioactivity towards fibroblasts and lymphocytes. Conclusion: In cultured human cells, hc-cfDNA and sz-cfDNA equally stimulated an adaptive response aimed at launching the antioxidant, repair, and anti-apoptotic processes. The mediator of the development of the adaptive response are ROS produced by, among others, NOX4 and SOD1 enzymes.
Collapse
Affiliation(s)
- Svetlana V. Kostyuk
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Elizaveta S. Ershova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Andrey V. Martynov
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Andrey V. Artyushin
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Lev N. Porokhovnik
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
- Correspondence:
| | - Elena M. Malinovskaya
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Elizaveta M. Jestkova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Natalia V. Zakharova
- N. A. Alekseev Clinical Psychiatric Hospital No 1, Moscow Healthcare Department, 117152 Moscow, Russia
| | - George P. Kostyuk
- N. A. Alekseev Clinical Psychiatric Hospital No 1, Moscow Healthcare Department, 117152 Moscow, Russia
| | - Vera L. Izhevskaia
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Sergey I. Kutsev
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Natalia N. Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
6
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
7
|
Ershova ES, Shmarina GV, Martynov AV, Zakharova NV, Veiko RV, Umriukhin PE, Kostyuk GP, Kutsev SI, Veiko NN, Kostyuk SV. NADPH-oxidase 4 gene over-expression in peripheral blood lymphocytes of the schizophrenia patients. PLoS One 2022; 17:e0269130. [PMID: 35696356 PMCID: PMC9191697 DOI: 10.1371/journal.pone.0269130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/14/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction Increased systemic oxidative stress is common in schizophrenia (SZ) patients. NADPH-oxidase 4 (NOX4) is the cell oxidoreductase, catalyzing the hydrogen peroxide formation. Presumably, NOX4 is the main oxidative stress factor in a number of diseases such as cardiovascular diseases and cancer. We hypothesized that NOX4 may be involved in the oxidative stress development caused by the disease in the schizophrenic patients’ peripheral blood lymphocytes (PBL). Materials and methods The SZ group included 100 patients (68 men and 32 women aged 28 ± 11 years). The control group included 60 volunteers (35 men and 25 women aged 25 ± 12 years). Flow cytometry analysis (FCA) was used for DNA damage markers (8-oxodG, ɣH2AX), pro- and antiapoptotic proteins (BAX1 and BCL2) and the master-regulator of anti-oxidant response NRF2 detection in the lymphocytes of the untreated SZ patients (N = 100) and the healthy control (HC, N = 60). FCA and RT-qPCR were used for NOX4 and RNANOX4 detection in the lymphocytes. RT-qPCR was used for mtDNA quantitation in peripheral blood mononuclear cells. Cell-free DNA concentration was determined in blood plasma fluorimetrically. Results 8-oxodG, NOX4, and BCL2 levels in the PBL in the SZ group were higher than those in the HC group (p < 0.001). ɣH2AX protein level was increased in the subgroup with high 8-oxodG (p<0.02) levels and decreased in the subgroup with low 8-oxodG (p <0.0001) levels. A positive correlation was found between 8-oxodG, ɣH2AX and BAX1 levels in the SZ group (p <10−6). NOX4 level in lymphocytes did not depend on the DNA damage markers values and BAX1 and BCL2 proteins levels. In 15% of PBL of the HC group a small cellular subfraction was found (5–12% of the total lymphocyte pool) with high DNA damage level and elevated BAX1 protein level. The number of such cells was maximal in PBL samples with low NOX4 protein levels. Conclusion Significant NOX4 gene expression was found a in SZ patients’ lymphocytes, but the corresponding protein is probably not a cause of the DNA damage.
Collapse
Affiliation(s)
| | | | | | - Natalia V. Zakharova
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | | | - Pavel E. Umriukhin
- Research Centre for Medical Genetics, Moscow, Russia
- Normal Physiology Departement, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - George P. Kostyuk
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | | | | | | |
Collapse
|
8
|
Khan MGM, Wang Y. Advances in the Current Understanding of How Low-Dose Radiation Affects the Cell Cycle. Cells 2022; 11:cells11030356. [PMID: 35159169 PMCID: PMC8834401 DOI: 10.3390/cells11030356] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cells exposed to ionizing radiation undergo a series of complex responses, including DNA damage, reproductive cell death, and altered proliferation states, which are all linked to cell cycle dynamics. For many years, a great deal of research has been conducted on cell cycle checkpoints and their regulators in mammalian cells in response to high-dose exposures to ionizing radiation. However, it is unclear how low-dose ionizing radiation (LDIR) regulates the cell cycle progression. A growing body of evidence demonstrates that LDIR may have profound effects on cellular functions. In this review, we summarize the current understanding of how LDIR (of up to 200 mGy) regulates the cell cycle and cell-cycle-associated proteins in various cellular settings. In light of current findings, we also illustrate the conceptual function and possible dichotomous role of p21Waf1, a transcriptional target of p53, in response to LDIR.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada;
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada;
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
9
|
The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes (Basel) 2021; 12:genes12101524. [PMID: 34680920 PMCID: PMC8535310 DOI: 10.3390/genes12101524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.
Collapse
|
10
|
Karami Fath M, Akbari Oryani M, Ramezani A, Barjoie Mojarad F, Khalesi B, Delazar S, Anjomrooz M, Taghizadeh A, Taghizadeh S, Payandeh Z, Pourzardosht N. Extra chromosomal DNA in different cancers: Individual genome with important biological functions. Crit Rev Oncol Hematol 2021; 166:103477. [PMID: 34534658 DOI: 10.1016/j.critrevonc.2021.103477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer can be caused by various factors, including the malfunction of tumor suppressor genes and the hyper-activation of proto-oncogenes. Tumor-associated extrachromosomal circular DNA (eccDNA) has been shown to adversely affect human health and accelerate malignant actions. Whole-genome sequencing (WGS) on different cancer types suggested that the amplification of ecDNA has increased the oncogene copy number in various cancers. The unique structure and function of ecDNA, its profound significance in cancer, and its help in the comprehension of current cancer genome maps, renders it as a hotspot to explore the tumor pathogenesis and evolution. Illumination of the basic mechanisms of ecDNA may provide more insights into cancer therapeutics. Despite the recent advances, different features of ecDNA require further elucidation. In the present review, we primarily discussed the characteristics, biogenesis, genesis, and origin of ecDNA and later highlighted its functions in both tumorigenesis and therapeutic resistance of different cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arefeh Ramezani
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Barjoie Mojarad
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Taghizadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Taghizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
11
|
de Miranda FS, Barauna VG, dos Santos L, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci 2021; 22:9110. [PMID: 34502023 PMCID: PMC8431421 DOI: 10.3390/ijms22179110] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health (NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision, standardization and reproducibility, suitability to the patient, straightforward interpretation by clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus, serum biomarkers should have advantages related to the simplicity of the procedures and to the fact that venous blood collection is commonplace in clinical practice. We described the potentiality of cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases. Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism. We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting, stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be overcome before its recommendation as a biomarker in the clinical setting.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Leandro dos Santos
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Gustavo Costa
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luciene Cristina Gastalho Campos
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
| |
Collapse
|
12
|
ATR-FTIR spectroscopy probing of structural alterations in the cellular membrane of abscopal liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183726. [PMID: 34375629 DOI: 10.1016/j.bbamem.2021.183726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
In this study, we utilize ATR-FTIR spectroscopy to investigate the structural damages in the cell membrane lipids and proteins as a result of the oxidative stress in abscopal liver tissue of rats either whole-body, cranially or lower limb irradiated as compared with sham-irradiated group. We also question whether the original irradiation region would influence the induction of the abscopal effect. The data present compelling evidence that an abscopal effect was induced in the liver tissue following both cranial and lower limb irradiations, marked by damage in the membrane-associated lipids and proteins. Lipid damage manifestation is evident by; 1) decrease in the lipid/protein ratio. 2) Degradation of lipid as marked by the decrease in the area ratio CH 2 asymmetric/CH 3 asymmetric stretching bands. 3) Increase in the carbonyl content evident by the increase in the band area ratio of carbonyl ester/lipid. 4) Increase in the degree of methylation as indicated by the increase in the band area ratio of CH3/lipid. 5) Disorder in the phospholipid acyl chains marked by the shift in the CH2 asymmetric stretching and olefinic HCCH absorption bands. Protein damage was indicated by 1) Shifts in the position of amide I and amide II bands. 2) Decrease in the area ratio amide I/amide II. 3) Broadening in amide II band. Our data strongly suggest similar induction of the abscopal effect as a result of either cranial or lower limb irradiation, which means that the original irradiation region did not influence the induced abscopal effect in the examined system.
Collapse
|
13
|
Wang Y, Huang R, Zheng G, Shen J. Small ring has big potential: insights into extrachromosomal DNA in cancer. Cancer Cell Int 2021; 21:236. [PMID: 33902601 PMCID: PMC8077740 DOI: 10.1186/s12935-021-01936-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Recent technical advances have led to the discovery of novel functions of extrachromosomal DNA (ecDNA) in multiple cancer types. Studies have revealed that cancer-associated ecDNA shows a unique circular shape and contains oncogenes that are more frequently amplified than that in linear chromatin DNA. Importantly, the ecDNA-mediated amplification of oncogenes was frequently found in most cancers but rare in normal tissues. Multiple reports have shown that ecDNA has a profound impact on oncogene activation, genomic instability, drug sensitivity, tumor heterogeneity and tumor immunology, therefore may offer the potential for cancer diagnosis and therapeutics. Nevertheless, the underlying mechanisms and future applications of ecDNA remain to be determined. In this review, we summarize the basic concepts, biological functions and molecular mechanisms of ecDNA. We also provide novel insights into the fundamental role of ecDNA in cancer.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
14
|
Ionizing radiation and toll like receptors: A systematic review article. Hum Immunol 2021; 82:446-454. [PMID: 33812705 DOI: 10.1016/j.humimm.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Ionizing radiation, including X and gamma rays, are used for various purposes such as; medicine, nuclear power, research, manufacturing, food preservation and construction. Furthermore, people are also exposed to ionizing radiation from their workplace or the environment. Apart from DNA fragmentation resulting in apoptosis, several additional mechanisms have been proposed to describe how radiation can alter human cell functions. Ionizing radiation may alter immune responses, which are the main cause of human disorders. Toll like receptors (TLRs) are important human innate immunity receptors which participate in several immune and non-immune cell functions including, induction of appropriate immune responses and immune related disorders. Based on the role played by ionizing radiation on human cell systems, it has been hypothesized that radiation may affect immune responses. Therefore, the main aim of this review article is to discuss recent information regarding the effects of ionizing radiation on TLRs and their related disorders.
Collapse
|
15
|
Konkova M, Abramova M, Kalianov A, Ershova E, Dolgikh O, Umriukhin P, Izhevskaya V, Kutsev S, Veiko N, Kostyuk S. Mesenchymal Stem Cells Early Response to Low-Dose Ionizing Radiation. Front Cell Dev Biol 2021; 8:584497. [PMID: 33381502 PMCID: PMC7767887 DOI: 10.3389/fcell.2020.584497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are applied as the therapeutic agents, e.g., in the tumor radiation therapy. Purpose of the Study To evaluate the human adipose MSC early response to low-dose ionizing radiation (LDIR). Materials and Methods We investigated different LDIR (3, 10, and 50 cGy) effects on reactive oxygen species production, DNA oxidation (marker 8-oxodG), and DNA breaks (marker ɣ H2AX) in the two lines of human adipose MSC. Using reverse transcriptase-polymerase chain reaction, fluorescence-activated cell sorting, and fluorescence microscopy, we determined expression of genes involved in the oxidative stress development (NOX4), antioxidative response (NRF2), antiapoptotic and proapoptotic response (BCL2, BCL2A1, BCL2L1, BIRC2, BIRC3, and BAX1), in the development of the nuclear DNA damage response (DDR) (BRCA1, BRCA2, ATM, and P53). Cell cycle changes were investigated by genes transcription changes (CCND1, CDKN2A, and CDKN1A) and using proliferation markers KI-67 and proliferating cell nuclear antigen (PCNA). Results Fifteen to 120 min after exposure to LDIR in MSCs, transient oxidative stress and apoptosis of the most damaged cells against the background of the cell cycle arrest were induced. Simultaneously, DDR and an antiapoptotic response were found in other cells of the population. The 10-cGy dose causes the strongest and fastest DDR following cell nuclei DNA damage. The 3-cGy dose induces a less noticeable and prolonged response. The maximal low range dose, 50 cGy, causes a damaging effect on the MSCs. Conclusion Transient oxidative stress and the death of a small fraction of the damaged cells are essential components of the MSC population response to LDIR along with the development of DDR and antiapoptotic response. A scheme describing the early MSC response to LDIR is proposed.
Collapse
Affiliation(s)
- Marina Konkova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Margarita Abramova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Andrey Kalianov
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Elizaveta Ershova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Department of Normal Physiology, Moscow, Russia
| | - Olga Dolgikh
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Pavel Umriukhin
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Department of Normal Physiology, Moscow, Russia.,P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Vera Izhevskaya
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Sergey Kutsev
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Veiko
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Kostyuk
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Department of Normal Physiology, Moscow, Russia
| |
Collapse
|
16
|
Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. Int J Mol Sci 2020; 21:ijms21218062. [PMID: 33137955 PMCID: PMC7662960 DOI: 10.3390/ijms21218062] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Through various pathways of cell death, degradation, and regulated extrusion, partial or complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses and microbes) are continuously shed into human body fluids in the form of segmented cell-free DNA (cfDNA) molecules. While the genetic complexity of total cfDNA is vast, the development of progressively efficient extraction, high-throughput sequencing, characterization via bioinformatics procedures, and detection have resulted in increasingly accurate partitioning and profiling of cfDNA subtypes. Not surprisingly, cfDNA analysis is emerging as a powerful clinical tool in many branches of medicine. In addition, the low invasiveness of longitudinal cfDNA sampling provides unprecedented access to study temporal genomic changes in a variety of contexts. However, the genetic diversity of cfDNA is also a great source of ambiguity and poses significant experimental and analytical challenges. For example, the cfDNA population in the bloodstream is heterogeneous and also fluctuates dynamically, differs between individuals, and exhibits numerous overlapping features despite often originating from different sources and processes. Therefore, a deeper understanding of the determining variables that impact the properties of cfDNA is crucial, however, thus far, is largely lacking. In this work we review recent and historical research on active vs. passive release mechanisms and estimate the significance and extent of their contribution to the composition of cfDNA.
Collapse
|
17
|
Ershova ES, Malinovskaya EM, Golimbet VE, Lezheiko TV, Zakharova NV, Shmarina GV, Veiko RV, Umriukhin PE, Kostyuk GP, Kutsev SI, Izhevskaya VL, Veiko NN, Kostyuk SV. Copy number variations of satellite III (1q12) and ribosomal repeats in health and schizophrenia. Schizophr Res 2020; 223:199-212. [PMID: 32773342 DOI: 10.1016/j.schres.2020.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/16/2020] [Accepted: 07/26/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Earlier we studied the copy number variations (CNVs) of ribosomal repeat (rDNA) and the satellite III fragment (1q12) (f-SatIII) in the cells of schizophrenia patients (SZ) and healthy controls (HC). In the present study we pursued two main objectives: (1) to confirm the increased rDNA and decreased f-SatIII content in the genomes of enlarged SZ and HC samples and (2) to compare the rDNA and f-SatIII content in the same DNA samples of SZ and HC individuals. METHODS We determined the rDNA CN and f-SatIII content in the genomes of leukocytes of 1770 subjects [HC (N = 814) and SZ (N = 956)]. Non-radioactive quantitative hybridization method (NQH) was applied for analysis of the various combinations of the two repeats sizes in SZ and HC groups. RESULTS f-SatIII in human leukocytes (N = 1556) varies between 5.7 and 44.7 pg/ng DNA. RDNA CN varies between 200 and 896 (N = 1770). SZ group significantly differ from the HC group by lower f-SatIII content and by rDNA abundance. The f-SatIII and rDNA CN are not randomly combined in the genome. Higher rDNA CN values are associated with higher f-SatIII index values in SZ and HC. The f-SatIII variation interval in SZ group increases significantly in the subgroup with the high rDNA CN index values (>300 copies). CONCLUSION Schizophrenia patients' genomes contain low number of f-SatIII copies corresponding with a large ribosomal repeats CN. A scheme is proposed to explain the low f-SatIII content in SZ group against the background of high rDNA CN.
Collapse
Affiliation(s)
- E S Ershova
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - E M Malinovskaya
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - V E Golimbet
- Mental Health Research Center, Department of Clinical Genetics, Moscow, Russia
| | - T V Lezheiko
- Mental Health Research Center, Department of Clinical Genetics, Moscow, Russia
| | - N V Zakharova
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | - G V Shmarina
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - R V Veiko
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - P E Umriukhin
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; P.K. Anokhin Institute of Normal Physiology, Moscow, Russia.
| | - G P Kostyuk
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | - S I Kutsev
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - V L Izhevskaya
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - N N Veiko
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia
| | - S V Kostyuk
- Research Centre for Medical Genetics, Department of Molecular Biology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
18
|
Konkova MS, Ershova ES, Savinova EA, Malinovskaya EM, Shmarina GV, Martynov AV, Veiko RV, Zakharova NV, Umriukhin P, Kostyuk GP, Izhevskaya VL, Kutsev SI, Veiko NN, Kostyuk SV. 1Q12 Loci Movement in the Interphase Nucleus Under the Action of ROS Is an Important Component of the Mechanism That Determines Copy Number Variation of Satellite III (1q12) in Health and Schizophrenia. Front Cell Dev Biol 2020; 8:386. [PMID: 32714923 PMCID: PMC7346584 DOI: 10.3389/fcell.2020.00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction: Genome repeat cluster sizes can affect the chromatin spatial configuration and function. Low-dose ionizing radiation (IR) induces an adaptive response (AR) in human cells. AR includes the change in chromatin spatial configuration that is necessary to change the expression profile of the genome in response to stress. The 1q12 heterochromatin loci movement from the periphery to the center of the nucleus is a marker of the chromatin configuration change. We hypothesized that a large 1q12 domain could affect chromatin movement, thereby inhibiting the AR. Materials and Methods: 2D fluorescent in situ hybridization (FISH) method was used for the satellite III fragment from the 1q12 region (f-SatIII) localization analysis in the interphase nuclei of healthy control (HC) lymphocytes, schizophrenia (SZ) patients, and in cultured mesenchymal stem cells (MSCs). The localization of the nucleolus was analyzed by the nucleolus Ag staining. The non-radioactive quantitative hybridization (NQH) technique was used for the f-SatIII fragment content in DNA analysis. Satellite III fragments transcription was analyzed by reverse transcriptase quantitative PCR (RT-qPCR). Results: Low-dose IR induces the small-area 1q12 domains movement from the periphery to the central regions of the nucleus in HC lymphocytes and MSCs. Simultaneously, nucleolus moves from the nucleus center toward the nuclear envelope. The nucleolus in that period increases. The distance between the 1q12 domain and the nucleolus in irradiated cells is significantly reduced. The large-area 1q12 domains do not move in response to stress. During prolonged cultivation, the irradiated cells with a large f-SatIII amount die, and the population is enriched with the cells with low f-SatIII content. IR induces satellite III transcription in HC lymphocytes. Intact SZ patients' lymphocytes have the same signs of nuclei activation as irradiated HC cells. Conclusion: When a cell population responds to stress, cells are selected according to the size of the 1q12 domain (the f-SatIII content). The low content of the f-SatIII repeat in SZ patients may be a consequence of the chronic oxidative stress and of a large copies number of the ribosomal repeats.
Collapse
Affiliation(s)
- Marina Sergeevna Konkova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | | | | - Roman Vladimirovich Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | | - Pavel Umriukhin
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | | | | | - Sergey Ivanovich Kutsev
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Nikolaevna Veiko
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
19
|
Ershova ES, Konkova MS, Malinovskaya EM, Kutsev SI, Veiko NN, Kostyuk SV. Noncanonical Functions of the Human Ribosomal Repeat. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Ershova ES, Agafonova ON, Zakharova NV, Bravve LV, Jestkova EM, Golimbet VE, Lezheiko TV, Morozova AY, Martynov AV, Veiko RV, Umriukhin PE, Kostyuk GP, Kutsev SI, Veiko NN, Kostyuk SV. Copy Number Variation of Satellite III (1q12) in Patients With Schizophrenia. Front Genet 2019; 10:1132. [PMID: 31850056 PMCID: PMC6902095 DOI: 10.3389/fgene.2019.01132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: It was shown that copy number variations (CNVs) of human satellite III (1q12) fragment (f-SatIII) reflects the human cells response to stress of different nature and intensity. Patients with schizophrenia (SZ) experience chronic stress. The major research question: What is the f-SatIII CNVs in human leukocyte as a function of SZ? Materials and Methods: Biotinylated pUC1.77 probe was used for f-SatIII quantitation in leukocyte DNA by the non-radioactive quantitative hybridization for SZ patients (N = 840) and healthy control (HC, N = 401). SZ-sample included four groups. Two groups: first-episode drug-naïve patients [SZ (M-)] and medicated patients [SZ (M+)]. The medical history of these patients did not contain reliable confirmed information about fetal hypoxia and obstetric complications (H/OCs). Two other groups: medicated patients with documented H/OCs [hypoxia group (H-SZ (M+)] and medicated patients with documented absence of H/OCs [non-hypoxia group (NH-SZ (M+)]. The content of f-SatIII was also determined in eight post-mortem brain tissues of one SZ patient. Results: f-SatIII in human leukocyte varies between 5.7 to 44 pg/ng DNA. f-SatIII CNVs in SZ patients depends on the patient’s history of H/OCs. f-SatIII CN in NH-SZ (M+)-group was significantly reduced compared to H-SZ (M+)-group and HC-group (p < 10-30). f-SatIII CN in SZ patients negatively correlated with the index reflecting the seriousness of the disease (Positive and Negative Syndrome Scale). Antipsychotic therapy increases f-SatIII CN in the untreated SZ patients with a low content of the repeat and reduces the f-SatIII CN in SZ patients with high content of the repeat. In general, the SZ (M+) and SZ (M-) groups do not differ in the content of f-SatIII, but significantly differ from the HC-group by lower values of the repeat content. f-SatIII CN in the eight regions of the brain of the SZ patient varies significantly. Conclusion: The content of f-SatIII repeat in leukocytes of the most patients with SZ is significantly reduced compared to the HC. Two hypotheses were put forward: (1) the low content of the repeat is a genetic feature of SZ; and/or (2) the genomes of the SZ patients respond to chronic oxidative stress reducing the repeats copies number.
Collapse
Affiliation(s)
- Elizaveta S Ershova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Oksana N Agafonova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia V Zakharova
- Moscow Healthcare Department, N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow, Russia
| | - Lidia V Bravve
- Moscow Healthcare Department, N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow, Russia
| | - Elizaveta M Jestkova
- Moscow Healthcare Department, P.B. Ganushkin Clinical Psychiatric Hospital №4, Moscow, Russia
| | - Vera E Golimbet
- Department of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Tatiana V Lezheiko
- Department of Clinical Genetics, Mental Health Research Center, Moscow, Russia
| | - Anna Y Morozova
- Department of Basic and Applied Neurobiology, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Andrey V Martynov
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Roman V Veiko
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Pavel E Umriukhin
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Georgiy P Kostyuk
- Moscow Healthcare Department, N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow, Russia
| | - Sergey I Kutsev
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia N Veiko
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana V Kostyuk
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
21
|
Oxidized Cell-Free DNA Is a Factor of Stress Signaling in Radiation-Induced Bystander Effects in Different Types of Human Cells. Int J Genomics 2019; 2019:9467029. [PMID: 31531341 PMCID: PMC6721096 DOI: 10.1155/2019/9467029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 08/01/2019] [Indexed: 11/21/2022] Open
Abstract
In pathology or under damaging conditions, the properties of cell-free DNA (cfDNA) change. An example of such change is GC enrichment, which drastically alters the biological properties of cfDNA. GC-rich cfDNA is a factor of stress signaling, whereas genomic cfDNA is biologically inactive. GC-rich cfDNA stimulates TLR9-MyD88-NF-κB signaling cascade, leading to an increase in proinflammatory cytokine levels in the organism. In addition, GC-rich DNA is prone to oxidation and oxidized cfDNA can stimulate secondary oxidative stress. This article is a review of works dedicated to the investigation of a low-dose ionizing radiation effect, a bystander effect, and the role of cfDNA in both of these processes.
Collapse
|
22
|
Ershova ES, Malinovskaya EM, Konkova MS, Veiko RV, Umriukhin PE, Martynov AV, Kutsev SI, Veiko NN, Kostyuk SV. Copy Number Variation of Human Satellite III (1q12) With Aging. Front Genet 2019; 10:704. [PMID: 31447880 PMCID: PMC6692473 DOI: 10.3389/fgene.2019.00704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Introduction: Human satellite DNA is organized in long arrays in peri/centromeric heterochromatin. There is little information about satellite copy number variants (CNVs) in aging and replicative cell senescence (RS). Materials and Methods: Biotinylated pUC1.77 probe was used for the satellite III (f-SatIII) quantitation in leukocyte DNA by the non-radioactive quantitative hybridization for 557 subjects between 2 and 91 years old. The effect of RS and genotoxic stress (GS, 4 or 6 µM of K2CrO4) on the f-SatIII CNV was studied on the cultured human skin fibroblast (HSF) lines of five subjects. Results: f-SatIII in leukocyte and HSFs varies between 5.7 and 40 pg/ng of DNA. During RS, the f-SatIII content in HSFs increased. During GS, HSFs may increase or decrease f-SatIII content. Cells with low f-SatIII content have the greatest proliferative potential. F-SatIII CNVs in different individuals belonging to the different generations depend on year of their birth. Children (born in 2005-2015 years) differed significantly from the other age groups by low content and low coefficient of variation of f-SatIII. In the individuals born in 1912-1925 and living in unfavorable social conditions (FWW, the Revolution and the Russian Civil War, SWW), there is a significant disproportion in the content of f-SatIII. The coefficient of variation reaches the maximum values than in individuals born in the period from 1926 to 1975. In the group of people born in 1990-2000 (Chernobyl disaster, the collapse of the Soviet Union, and a sharp decline in the population living standard), again, there is a significant disproportion of individuals in the content of f-SatIII. A similar disproportion was observed in the analysis of a group of individuals born in 1926-1975 who in their youth worked for a long time in high-radioactive environment. Conclusion: In generations that were born and who lived in childhood in a period of severe social perturbations or in conditions of environmental pollution, we found a significant increase in leukocyte DNA f-SatIII variability. It is hypothesized that the change of the f-SatIII content in the blood cells reflects the body response to stress of different nature and intensity.
Collapse
Affiliation(s)
- Elizaveta S. Ershova
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Roman V. Veiko
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Pavel E. Umriukhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | | | | | | | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
23
|
Shuryak I. Review of microbial resistance to chronic ionizing radiation exposure under environmental conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 196:50-63. [PMID: 30388428 DOI: 10.1016/j.jenvrad.2018.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Ionizing radiation (IR) produces multiple types of damage to nucleic acids, proteins and other crucial cellular components. Nevertheless, various microorganisms from phylogenetically distant taxa (bacteria, archaea, fungi) can resist IR levels many orders of magnitude above natural background. This intriguing phenomenon of radioresistance probably arose independently many times throughout evolution as a byproduct of selective pressures from other stresses (e.g. desiccation, UV radiation, chemical oxidants). Most of the literature on microbial radioresistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures grown under near-optimal conditions. There is much less information about the upper limits of radioresistance in the field, such as in radioactively-contaminated areas, where several radiation types (e.g. α and β, as well as γ) and other stressors (e.g. non-optimal temperature and nutrient levels, toxic chemicals, interspecific competition) act over multiple generations. Here we discuss several examples of radioresistant microbes isolated from extremely radioactive locations (e.g. Chernobyl and Mayak nuclear plant sites) and estimate the radiation dose rates they were able to tolerate. Some of these organisms (e.g. the fungus Cladosporium cladosporioides, the cyanobacterium Geitlerinema amphibium) are widely-distributed and colonize a variety of habitats. These examples suggest that resistance to chronic IR and chemical contamination is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap between mechanisms of resistance to IR and other stressors.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, 630 West 168(th) street, VC-11-234/5, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 2018; 93:1649-1683. [PMID: 29654714 DOI: 10.1111/brv.12413] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Since the detection of cell-free DNA (cfDNA) in human plasma in 1948, it has been investigated as a non-invasive screening tool for many diseases, especially solid tumours and foetal genetic abnormalities. However, to date our lack of knowledge regarding the origin and purpose of cfDNA in a physiological environment has limited its use to more obvious diagnostics, neglecting, for example, its potential utility in the identification of predisposition to disease, earlier detection of cancers, and lifestyle-induced epigenetic changes. Moreover, the concept or mechanism of cfDNA could also have potential therapeutic uses such as in immuno- or gene therapy. This review presents an extensive compilation of the putative origins of cfDNA and then contrasts the contributions of cellular breakdown processes with active mechanisms for the release of cfDNA into the extracellular environment. The involvement of cfDNA derived from both cellular breakdown and active release in lateral information transfer is also discussed. We hope to encourage researchers to adopt a more holistic view of cfDNA research, taking into account all the biological pathways in which cfDNA is involved, and to give serious consideration to the integration of in vitro and in vivo research. We also wish to encourage researchers not to limit their focus to the apoptotic or necrotic fraction of cfDNA, but to investigate the intercellular messaging capabilities of the actively released fraction of cfDNA and to study the role of cfDNA in pathogenesis.
Collapse
Affiliation(s)
- Janine Aucamp
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Abel J Bronkhorst
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| |
Collapse
|
25
|
Sergeeva VA, Ershova ES, Veiko NN, Malinovskaya EM, Kalyanov AA, Kameneva LV, Stukalov SV, Dolgikh OA, Konkova MS, Ermakov AV, Veiko VP, Izhevskaya VL, Kutsev SI, Kostyuk SV. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9515809. [PMID: 28904740 PMCID: PMC5585687 DOI: 10.1155/2017/9515809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
Abstract
We have hypothesized that the adaptive response to low doses of ionizing radiation (IR) is mediated by oxidized cell-free DNA (cfDNA) fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production), induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs) with low doses of IR (10 cGy) leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.
Collapse
Affiliation(s)
- V. A. Sergeeva
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - E. S. Ershova
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Moscow 107031, Russia
| | - N. N. Veiko
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Moscow 107031, Russia
| | | | - A. A. Kalyanov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - L. V. Kameneva
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - S. V. Stukalov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - O. A. Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - M. S. Konkova
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - A. V. Ermakov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - V. P. Veiko
- Bach Institute of Biochemistry and Russian Academy of Sciences, 33 Leninskii Ave., Moscow 119071, Russia
| | - V. L. Izhevskaya
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - S. I. Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- N. I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - S. V. Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| |
Collapse
|
26
|
A New Natural Antioxidant Mixture Protects against Oxidative and DNA Damage in Endothelial Cell Exposed to Low-Dose Irradiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9085947. [PMID: 28852434 PMCID: PMC5567450 DOI: 10.1155/2017/9085947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/17/2017] [Accepted: 07/03/2017] [Indexed: 01/13/2023]
Abstract
Exposure to ionizing radiation during diagnostic procedures increases systemic oxidative stress and predisposes to higher risk of cancer and cardiovascular disease development. Many studies indicated that antioxidants protect against radiation-induced damage and have high efficacy and lack of toxicity in preventing radiation exposure damages. The purpose of this study was to investigate the in vitro protective effect of a new antioxidant mixture, named RiduROS, on oxidative stress generation and DNA double-strand breaks (DSBs) induced by low doses of X-rays in endothelial cells. Human umbilical vein endothelial cells (HUVEC) were treated with RiduROS mixture 24 h before a single exposure to X-rays at an absorbed dose of 0.25 Gy. The production of reactive oxygen species (ROS) was evaluated by fluorescent dye staining and nitric oxide (NO) by the Griess reaction, and DSBs were evaluated as number of γ-H2AX foci. We demonstrated that antioxidant mixture reduced oxidative stress induced by low dose of X-ray irradiation and that RiduROS pretreatment is more effective in protecting against radiation-induced oxidative stress than single antioxidants. Moreover, RiduROS mixture is able to reduce γ-H2AX foci formation after low-dose X-ray exposure. The texted mixture of antioxidants significantly reduced oxidative stress and γ-H2AX foci formation in endothelial cells exposed to low-dose irradiation. These results suggest that RiduROS could have a role as an effective radioprotectant against low-dose damaging effects.
Collapse
|
27
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
28
|
Aucamp J, Bronkhorst AJ, Peters DL, Van Dyk HC, Van der Westhuizen FH, Pretorius PJ. Kinetic analysis, size profiling, and bioenergetic association of DNA released by selected cell lines in vitro. Cell Mol Life Sci 2017; 74:2689-2707. [PMID: 28315952 PMCID: PMC11107759 DOI: 10.1007/s00018-017-2495-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023]
Abstract
Although circulating DNA (cirDNA) analysis shows great promise as a screening tool for a wide range of pathologies, numerous stumbling blocks hinder the rapid translation of research to clinical practice. This is related directly to the inherent complexity of the in vivo setting, wherein the influence of complex systems of interconnected cellular responses and putative DNA sources creates a seemingly arbitrary representation of the quantitative and qualitative properties of the cirDNA in the blood of any individual. Therefore, to evaluate the potential of in vitro cell cultures to circumvent the difficulties encountered in in vivo investigations, the purpose of this work was to elucidate the characteristics of the DNA released [cell-free DNA (cfDNA)] by eight different cell lines. This revealed three different forms of cfDNA release patterns and the presence of nucleosomal fragments as well as actively released forms of DNA, which are not only consistently observed in every tested cell line, but also in plasma samples. Correlations between cfDNA release and cellular origin, growth rate, and cancer status were also investigated by screening and comparing bioenergetics flux parameters. These results show statistically significant correlations between cfDNA levels and glycolysis, while no correlations between cfDNA levels and oxidative phosphorylation were observed. Furthermore, several correlations between growth rate, cancer status, and dependency on aerobic glycolysis were observed. Cell cultures can, therefore, successfully serve as closed-circuit models to either replace or be used in conjunction with biofluid samples, which will enable sharper focus on specific cell types or DNA origins.
Collapse
Affiliation(s)
- Janine Aucamp
- Human Metabolomics, North-West University, Hoffman Street, Potchefstroom, 2520, South Africa.
| | - Abel J Bronkhorst
- Human Metabolomics, North-West University, Hoffman Street, Potchefstroom, 2520, South Africa
| | - Dimetrie L Peters
- Human Metabolomics, North-West University, Hoffman Street, Potchefstroom, 2520, South Africa
| | - Hayley C Van Dyk
- Human Metabolomics, North-West University, Hoffman Street, Potchefstroom, 2520, South Africa
| | | | - Piet J Pretorius
- Human Metabolomics, North-West University, Hoffman Street, Potchefstroom, 2520, South Africa
| |
Collapse
|
29
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. A historical and evolutionary perspective on the biological significance of circulating DNA and extracellular vesicles. Cell Mol Life Sci 2016; 73:4355-4381. [PMID: 27652382 PMCID: PMC11108302 DOI: 10.1007/s00018-016-2370-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/20/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The discovery of quantitative and qualitative differences of the circulating DNA (cirDNA) between healthy and diseased individuals inclined researchers to investigate these molecules as potential biomarkers for non-invasive diagnosis and prognosis of various pathologies. However, except for some prenatal tests, cirDNA analyses have not been readily translated to clinical practice due to a lack of knowledge regarding its composition, function, and biological and evolutionary origins. We believe that, to fully grasp the nature of cirDNA and the extracellular vesicles (EVs) and protein complexes with which it is associated, it is necessary to probe the early and badly neglected work that contributed to the discovery and development of these concepts. Accordingly, this review consists of a schematic summary of the major events that developed and integrated the concepts of heredity, genetic information, cirDNA, EVs, and protein complexes. CirDNA enters target cells and provokes a myriad of gene regulatory effects associated with the messaging functions of various natures, disease progression, somatic genome variation, and transgenerational inheritance. This challenges the traditional views on each of the former topics. All of these discoveries can be traced directly back to the iconic works of Darwin, Lamarck, and their followers. The history of cirDNA that has been revisited here is rich in information that should be considered in clinical practice, when designing new experiments, and should be very useful for generating an empirically up-to-date view of cirDNA and EVs. Furthermore, we hope that it will invite many flights of speculation and stimulate further inquiry into its biological and evolutionary origins.
Collapse
Affiliation(s)
- Janine Aucamp
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa.
| | - Abel J Bronkhorst
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
30
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
31
|
Wang TJC, Wu CC, Chai Y, Lam RKK, Hamada N, Kakinuma S, Uchihori Y, Yu PKN, Hei TK. Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions. PLoS One 2015; 10:e0136307. [PMID: 26317641 PMCID: PMC4552651 DOI: 10.1371/journal.pone.0136307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/02/2015] [Indexed: 11/17/2022] Open
Abstract
Purpose Side effects related to radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in directly irradiated cells. However, several studies have reported over the years of radiation-induced non-targeted/ abscopal effects in vivo that challenge this paradigm. There is evidence that Cyclooxygenase-2 (COX2) plays an important role in modulating non-targeted effects, including DNA damages in vitro and mutagenesis in vivo. While most reports on radiation-induced non-targeted response utilize x-rays, there is little information available for heavy ions. Methods and Materials Adult female transgenic gpt delta mice were exposed to an equitoxic dose of either carbon or argon particles using the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) in Japan. The mice were stratified into 4 groups of 5 animals each: Control; animals irradiated under full shielding (Sham-irradiated); animals receiving whole body irradiation (WBIR); and animals receiving partial body irradiation (PBIR) to the lower abdomen with a 1 x 1 cm2 field. The doses used in the carbon ion group (4.5 Gy) and in argon particle group (1.5 Gy) have a relative biological effectiveness equivalent to a 5 Gy dose of x-rays. 24 hours after irradiation, breast tissues in and out of the irradiated field were harvested for analysis. Induction of COX2, 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated histone H2AX (γ-H2AX), and apoptosis-related cysteine protease-3 (Caspase-3) antibodies were examined in the four categories of breast tissues using immunohistochemical techniques. Analysis was performed by measuring the intensity of more than 20 individual microscopic fields and comparing the relative fold difference. Results In the carbon ion group, the relative fold increase in COX2 expression was 1.01 in sham-irradiated group (p > 0.05), 3.07 in PBIR (p < 0.05) and 2.50 in WBIR (p < 0.05), respectively, when compared with controls. The relative fold increase in 8-OHdG expression was 1.29 in sham-irradiated (p > 0.05), 11.31 in PBIR (p < 0.05) and 11.79 in WBIR (p < 0.05), respectively, when compared with controls. A similar increase in γ-H2AX expression was found in that, compared to controls, the increase was 1.41 fold in sham-irradiated (p > 0.05), 8.41 in PBIR (p < 0.05) and 10.59 in WBIR (p < 0.05). Results for the argon particle therapy group showed a similar magnitude of changes in the various biological endpoints examined. There was no statistical significance observed in Caspase-3 expression among the 4 groups. Conclusions Our data show that both carbon and argon ions induced non-targeted, out of field induction of COX2 and DNA damages in breast tissues. These effects may pose new challenges to evaluate the risks associated with radiation exposure and understanding radiation-induced side effects.
Collapse
Affiliation(s)
- Tony J C Wang
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| | - Cheng-Chia Wu
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| | - Yunfei Chai
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| | - Roy K K Lam
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America; Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Nobuyuki Hamada
- National Institute of Radiological Sciences, Chiba, Japan; Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | | | - Yukio Uchihori
- National Institute of Radiological Sciences, Chiba, Japan
| | - Peter K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Tom K Hei
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| |
Collapse
|
32
|
Dolgova EV, Alyamkina EA, Efremov YR, Nikolin VP, Popova NA, Tyrinova TV, Kozel AV, Minkevich AM, Andrushkevich OM, Zavyalov EL, Romaschenko AV, Bayborodin SI, Taranov OS, Omigov VV, Shevela EY, Stupak VV, Mishinov SV, Rogachev VA, Proskurina AS, Mayorov VI, Shurdov MA, Ostanin AA, Chernykh ER, Bogachev SS. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol Ther 2015; 15:1378-94. [PMID: 25117082 PMCID: PMC4130731 DOI: 10.4161/cbt.29854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It has been established previously that up to 40% of mouse CD34+ hematopoietic stem cells are capable of internalizing exogenous dsDNA fragments both in vivo and ex vivo. Importantly, when mice are treated with a combination of cyclophosphamide and dsDNA, the repair of interstrand crosslinks in hematopoietic progenitors is attenuated, and their pluripotency is altered. Here we show for the first time that among various actively proliferating mammalian cell populations there are subpopulations capable of internalizing dsDNA fragments. In the context of cancer, such dsDNA-internalizing cell subpopulations display cancer stem cell-like phenotype. Furthermore, using Krebs-2 ascites cells as a model, we found that upon combined treatment with cyclophosphamide and dsDNA, engrafted material loses its tumor-initiating properties which we attribute to the elimination of tumor-initiating stem cell subpopulation or loss of its tumorigenic potential.
Collapse
Affiliation(s)
- Evgenia V Dolgova
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| | - Ekaterina A Alyamkina
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| | - Yaroslav R Efremov
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia; Novosibirsk State University; Novosibirsk, Russia
| | - Valeriy P Nikolin
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| | - Nelly A Popova
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia; Novosibirsk State University; Novosibirsk, Russia
| | - Tamara V Tyrinova
- Institute of Clinical Immunology; Siberian Branch of the Russian Academy of Medical Sciences; Novosibirsk, Russia
| | | | | | | | - Evgeniy L Zavyalov
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| | - Alexander V Romaschenko
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| | - Sergey I Bayborodin
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia; Novosibirsk State University; Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology VECTOR; Koltsovo, Russia
| | - Vladimir V Omigov
- The State Research Center of Virology and Biotechnology VECTOR; Koltsovo, Russia
| | - Ekaterina Ya Shevela
- Institute of Clinical Immunology; Siberian Branch of the Russian Academy of Medical Sciences; Novosibirsk, Russia
| | - Vyacheslav V Stupak
- Novosibirsk Research Institute of Traumatology and Orthopaedics; Novosibirsk, Russia
| | - Sergey V Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopaedics; Novosibirsk, Russia
| | - Vladimir A Rogachev
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| | | | | | - Alexander A Ostanin
- Institute of Clinical Immunology; Siberian Branch of the Russian Academy of Medical Sciences; Novosibirsk, Russia
| | - Elena R Chernykh
- Institute of Clinical Immunology; Siberian Branch of the Russian Academy of Medical Sciences; Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics; Siberian Branch of the Russian Academy of Sciences; Novosibirsk, Russia
| |
Collapse
|
33
|
Zúñiga-González GM, Gómez-Meda BC, Zamora-Perez AL, Martínez-González MA, Muñoz de Haro IA, Pérez-Navarro AE, Armendáriz-Borunda J, Gallegos-Arreola MP. Micronucleated erythrocytes in newborns of rat dams exposed to ultraviolet-A light during pregnancy; protection by ascorbic acid supplementation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 782:36-41. [DOI: 10.1016/j.mrgentox.2015.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022]
|
34
|
Alyamkina EA, Nikolin VP, Popova NA, Minkevich AM, Kozel AV, Dolgova EV, Efremov YR, Bayborodin SI, Andrushkevich OM, Taranov OS, Omigov VV, Rogachev VA, Proskurina AS, Vereschagin EI, Kiseleva EV, Zhukova MV, Ostanin AA, Chernykh ER, Bogachev SS, Shurdov MA. Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts. Cancer Cell Int 2015; 15:32. [PMID: 25798073 PMCID: PMC4369063 DOI: 10.1186/s12935-015-0180-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Extracellular double-stranded DNA participates in various processes in an organism. Here we report the suppressive effects of fragmented human double-stranded DNA along or in combination with cyclophosphamide on solid and ascites grafts of mouse Krebs-2 tumor cells and DNA preparation on human breast adenocarcinoma cell line MCF-7. METHODS Apoptosis and necrosis were assayed by electrophoretic analysis (DNA nucleosomal fragmentation) and by measurements of LDH levels in ascitic fluid, respectively. DNA internalization into MCF-7 was analyzed by flow cytometry and fluorescence microscopy. RESULTS Direct cytotoxic activity of double-stranded DNA (along or in combination with cyclophosphamide) on a solid transplant was demonstrated. This resulted in delayed solid tumor proliferation and partial tumor lysis due to necrosis of the tumor and adjacent tissues. In the case of ascites form of tumor, extensive apoptosis and secondary necrosis were observed. Similarly, MCF-7 cells showed induction of massive apoptosis (up to 45%) as a result of treatments with double-stranded DNA preparation. CONCLUSIONS Double-stranded DNA (along or in combination with cyclophosphamide) induces massive apoptosis of Krebs-2 ascite cells and MCF-7 cell line (DNA only). In treated mice it reduces the integrity of gut wall cells and contributes to the development of systemic inflammatory reaction.
Collapse
Affiliation(s)
- Ekaterina A Alyamkina
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Valeriy P Nikolin
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Nelly A Popova
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Alexandra M Minkevich
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Artem V Kozel
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Evgenia V Dolgova
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Yaroslav R Efremov
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Sergey I Bayborodin
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Oleg M Andrushkevich
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Oleg S Taranov
- />The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region 630559 Russia
| | - Vladimir V Omigov
- />The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region 630559 Russia
| | - Vladimir A Rogachev
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Anastasia S Proskurina
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | | | - Elena V Kiseleva
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Maria V Zhukova
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Alexandr A Ostanin
- />Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099 Russia
| | - Elena R Chernykh
- />Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099 Russia
| | - Sergey S Bogachev
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | | |
Collapse
|
35
|
Marín A, Martín M, Liñán O, Alvarenga F, López M, Fernández L, Büchser D, Cerezo L. Bystander effects and radiotherapy. Rep Pract Oncol Radiother 2014; 20:12-21. [PMID: 25535579 DOI: 10.1016/j.rpor.2014.08.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/16/2014] [Accepted: 08/06/2014] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.
Collapse
Affiliation(s)
- Alicia Marín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Margarita Martín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Olga Liñán
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Felipe Alvarenga
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Mario López
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Fernández
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - David Büchser
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Cerezo
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
36
|
Tang FR, Loke WK. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int J Radiat Biol 2014; 91:13-27. [DOI: 10.3109/09553002.2014.937510] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
38
|
Widel M, Krzywon A, Gajda K, Skonieczna M, Rzeszowska-Wolny J. Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radic Biol Med 2014; 68:278-87. [PMID: 24373962 DOI: 10.1016/j.freeradbiomed.2013.12.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 01/26/2023]
Abstract
Radiation-induced bystander effects are various types of responses displayed by nonirradiated cells induced by signals transmitted from neighboring irradiated cells. This phenomenon has been well studied after ionizing radiation, but data on bystander effects after UV radiation are limited and so far have been reported mainly after UVA and UVB radiation. The studies described here were aimed at comparing the responses of human dermal fibroblasts exposed directly to UV (A, B, or C wavelength range) and searching for bystander effects induced in unexposed cells using a transwell co-incubation system. Cell survival and apoptosis were used as a measure of radiation effects. Additionally, induction of senescence in UV-exposed and bystander cells was evaluated. Reactive oxygen species (ROS), superoxide radical anions, and nitric oxide inside the cells and secretion of interleukins 6 and 8 (IL-6 and IL-8) into the medium were assayed and evaluated as potential mediators of bystander effects. All three regions of ultraviolet radiation induced bystander effects in unexposed cells, as shown by a diminution of survival and an increase in apoptosis, but the pattern of response to direct exposure and the bystander effects differed depending on the UV spectrum. Although UVA and UVB were more effective than UVC in generation of apoptosis in bystander cells, UVC induced senescence both in irradiated cells and in neighbors. The level of cellular ROS increased significantly shortly after UVA and UVB exposure, suggesting that the bystander effects may be mediated by ROS generated in cells by UV radiation. Interestingly, UVC was more effective at generation of ROS in bystanders than in directly exposed cells and induced a high yield of superoxide in exposed and bystander cells, which, however, was only weakly associated with impairment of mitochondrial membrane potential. Increasing concentration of IL-6 but not IL-8 after exposure to each of the three bands of UV points to its role as a mediator in the bystander effect. Nitric oxide appeared to play a minor role as a mediator of bystander effects in our experiments. The results demonstrating an increase in intracellular oxidation, not only in directly UV-exposed but also in neighboring cells, and generation of proinflammatory cytokines, processes entailing cell damage (decreased viability, apoptosis, senescence), suggest that all bands of UV radiation carry a potential hazard for human health, not only due to direct mechanisms, but also due to bystander effects.
Collapse
Affiliation(s)
- Maria Widel
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics, and Informatics, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Aleksandra Krzywon
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics, and Informatics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Karolina Gajda
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics, and Informatics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics, and Informatics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics, and Informatics, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
39
|
An exposure to the oxidized DNA enhances both instability of genome and survival in cancer cells. PLoS One 2013; 8:e77469. [PMID: 24147001 PMCID: PMC3798467 DOI: 10.1371/journal.pone.0077469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022] Open
Abstract
Background Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases and acts upon the cells. Response to cfDNA depends on concentrations and levels of the damage within cfDNA. Oxidized extracellular DNA acts as a stress signal and elicits an adaptive response. Principal Findings Here we show that oxidized extracellular DNA stimulates the survival of MCF-7 tumor cells. Importantly, in cells exposed to oxidized DNA, the suppression of cell death is accompanied by an increase in the markers of genome instability. Short-term exposure to oxidized DNA results in both single- and double strand DNA breaks. Longer treatments evoke a compensatory response that leads to a decrease in the levels of chromatin fragmentations across cell populations. Exposure to oxidized DNA leads to a decrease in the activity of NRF2 and an increase in the activity of NF-kB and STAT3. A model that describes the role of oxidized DNA released from apoptotic cells in tumor biology is proposed. Conclusions/Significance Survival of cells with an unstable genome may substantially augment progression of malignancy. Further studies of the effects of extracellular DNA on malignant and normal cells are warranted.
Collapse
|
40
|
EL-SAGHIRE HOUSSEIN, MICHAUX ARLETTE, THIERENS HUBERT, BAATOUT SARAH. Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes. Int J Mol Med 2013; 32:1407-14. [DOI: 10.3892/ijmm.2013.1514] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 11/05/2022] Open
|
41
|
Glebova K, Veiko N, Kostyuk S, Izhevskaya V, Baranova A. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett 2013; 356:22-33. [PMID: 24045040 DOI: 10.1016/j.canlet.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/28/2013] [Accepted: 09/08/2013] [Indexed: 12/24/2022]
Abstract
An increase in the levels of oxidation is a universal feature of genomic DNA of irradiated or aged or even malignant cells. In case of apoptotic death of stressed cells, oxidized DNA can be released in circulation (cfDNA). According to the results of the studies performed in vitro by our group and other researchers, the oxidized cfDNA serves as a biomarker for a stress and a stress signal that is transmitted from the "stressed" area i.e. irradiated cells or cells with deficient anti-oxidant defenses to distant (bystander) cells. In recipient cells, oxidized DNA stimulates biosynthesis of ROS that is followed up by an increase in the number of single strand and double strand breaks (SSBs and DSBs), and activation of DNA Damage Response (DDR) pathway. Effects of oxidized DNA are considered similar to that of irradiation. It seems that downstream effects of irradiation, in part, depend on the release of oxidized DNA fragments that mediate the effects in distant cells. The responses of normal and tumor cell to oxidized DNA may differ. It seems that tumor cells are more sensitive to oxidized DNA-dependent DNA damage, while developing pronounced adaptive response. This may suggest that in chemotherapy or irradiation-treated human body, the release of oxidized DNA from dying cancer cells may give a boost to remaining malignant cells by augmenting their survival and stress resistance. Further studies of the effects of oxidized DNA in both in vitro and in vivo systems are warranted.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Natalya Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Svetlana Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vera Izhevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia; Center for the Study of Chronic Metabolic Diseases, School of System Biology, MSN3E1, George Mason University, Fairfax, VA 22030, USA.
| |
Collapse
|
42
|
Li J, He M, Shen B, Yuan D, Shao C. Alpha particle-induced bystander effect is mediated by ROS via a p53-dependent SCO2 pathway in hepatoma cells. Int J Radiat Biol 2013; 89:1028-34. [PMID: 23786650 DOI: 10.3109/09553002.2013.817706] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE The radiation-induced bystander effect (RIBE) has important implications for the efficiency of radiotherapy but the underlying role of cellular metabolism is widely unknown. The roles of synthesis of cytochrome c oxidase 2 (SCO2), a key effector for respiratory chain, and related signaling factors in α-particle-induced bystander damage were currently investigated in a liver cell co-culture system. MATERIALS AND METHODS Human hepatoma cells of HepG2 with wild-type p53 (wtp53) and Hep3B (p53 null) were irradiated with 0.4 Gy of α-particles and co-cultured with non-irradiated normal liver cells HL-7702 for 6 h, then the incidence of micronucleus (MN) in the bystander HL-7702 cells was analyzed. The expressions of total P53, phospho-P53 (p-P53), SCO2, and reactive oxygen species (ROS) in the irradiated hepatoma cells were detected. In some experiments, the hepatoma cells were respectively treated with p53 siRNA, SCO2 siRNA, or dimethyl sulfoxide (DMSO) before irradiation. RESULTS Bystander damage in HL-7702 cells was induced by α-irradiated HepG2 cells but not by α-irradiated Hep3B cells, and this bystander effect was diminished when the irradiated HepG2 cells were pretreated with p53 siRNA, SCO2 siRNA, or DMSO. Meanwhile, the expressions of p-P53 protein and SCO2 mRNA, the activity of SCO2 protein, and intracellular ROS were all increased in the irradiated HepG2 cells but not Hep3B cells and these expressions were eliminated by p53 siRNA treatment. Moreover, the radiation-enhanced expressions of SCO2 and ROS were inhibited by SCO2 siRNA. CONCLUSION α-particle-induced bystander effect was regulated by p53 and its downstream SCO2 in the irradiated hepatoma cells, and ROS generation could be an early event for triggering this bystander response.
Collapse
Affiliation(s)
- Jitao Li
- Institute of Radiation Medicine, Fudan University , Shanghai , P. R. China
| | | | | | | | | |
Collapse
|
43
|
Oxidized DNA induces an adaptive response in human fibroblasts. Mutat Res 2013; 747-748:6-18. [PMID: 23644378 DOI: 10.1016/j.mrfmmm.2013.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/20/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA(OX). The levels of cfDNA(OX) are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by Н2О2in vitro (gDNA(OX)) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA(OX) on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA(OX) evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA(OX) leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of РСNА, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA(OX) and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA(OX) inhibits NF-κB signaling. gDNA(OX) is a model for oxidized cfDNA(OX) that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA released from irradiated cells may be responsible for an abscopal effects and a bystander mediated adaptive response seen in some cancer patients. These results indicate the necessity for the further study of the effects of oxidized DNA in both in vitro and in vivo systems.
Collapse
|
44
|
El-Saghire H, Thierens H, Monsieurs P, Michaux A, Vandevoorde C, Baatout S. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int J Radiat Biol 2013; 89:628-38. [PMID: 23484538 DOI: 10.3109/09553002.2013.782448] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Health risks from exposure to low doses of ionizing radiation (IR) are becoming a concern due to the rapidly growing medical applications of X-rays. Using microarray techniques, this study aims for a better understanding of whole blood response to low and high doses of IR. MATERIALS AND METHODS Aliquots of peripheral blood samples were irradiated with 0, 0.05, and 1 Gy X-rays. RNA was isolated and prepared for microarray gene expression experiments. Bioinformatic approaches, i.e., univariate statistics and Gene Set Enrichment Analysis (GSEA) were used for analyzing the data generated. Seven differentially expressed genes were selected for further confirmation using quantitative real-time PCR (RT-PCR). RESULTS Functional analysis of genes differentially expressed at 0.05 Gy showed the enrichment of chemokine and cytokine signaling. However, responsive genes to 1 Gy were mainly involved in tumor suppressor protein 53 (p53) pathways. In a second approach, GSEA showed a higher statistical ranking of inflammatory and immune-related gene sets that are involved in both responding and/or secretion of growth factors, chemokines, and cytokines. This indicates the activation of the immune response. Whereas, gene sets enriched at 1 Gy were 'classical' radiation pathways like p53 signaling, apoptosis, DNA damage and repair. Comparative RT-PCR studies showed the significant induction of chemokine-related genes (PF4, GNG11 and CCR4) at 0.05 Gy and DNA damage and repair genes at 1 Gy (DDB2, AEN and CDKN1A). CONCLUSIONS This study moves a step forward in understanding the different cellular responses to low and high doses of X-rays. In addition to that, and in a broader context, it addresses the need for more attention to the risk assessment of health effects resulting from the exposure to low doses of IR.
Collapse
Affiliation(s)
- Houssein El-Saghire
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Ermakov AV, Konkova MS, Kostyuk SV, Izevskaya VL, Baranova A, Veiko NN. Oxidized extracellular DNA as a stress signal in human cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:649747. [PMID: 23533696 PMCID: PMC3606786 DOI: 10.1155/2013/649747] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/27/2013] [Indexed: 12/20/2022]
Abstract
The term "cell-free DNA" (cfDNA) was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA). Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS) that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2) that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments.
Collapse
Affiliation(s)
- Aleksei V. Ermakov
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Marina S. Konkova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Svetlana V. Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Vera L. Izevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
- Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030, USA
| | - Natalya N. Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie street 1, Moscow 115478, Russia
| |
Collapse
|
46
|
Kostjuk S, Loseva P, Chvartatskaya O, Ershova E, Smirnova T, Malinovskaya E, Roginko O, Kuzmin V, Izhevskaia V, Baranova A, Ginter E, Veiko N. Extracellular GC-rich DNA activates TLR9- and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs). Expert Opin Biol Ther 2012; 12 Suppl 1:S99-111. [PMID: 22594608 DOI: 10.1517/14712598.2012.690028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The content of GC-rich ribosomal repeats (rDNA) in cell-free DNA (cfDNA) of patients with various diseases is several times higher as compared with genomic DNA (gDNA) and cfDNA of healthy donors. rDNA may act as Toll-like receptor 9 (TLR9) ligands and affect human adipose-derived mesenchymal stem cells (haMSCs). Here we explore effects of human cfDNAs and model rDNA fragments on cultured haMSCs. AREAS COVERED Both cfDNAs and cloned rDNA stimulate expression of TLR9 (qRT-PCR). Treatment with cloned rDNA leads to an increase in the number of TLR9(+) cells (FACS), expression levels for both TLR9 and Myd88, the translocation of nuclear factor-kappa B to the nuclei and up-regulation of TNFα and IL-10 cytokines (ELISA). As shown by an analysis of γH2AX-foci and MTT test, the preconditioning of haMSCs with cloned rDNA fragment increases the resistance of these cells to irradiation at 2Gy, while the treatments with control gDNA did not stimulate either TLR9- or NF-kB-dependent signaling pathways. EXPERT OPINION GC-rich sequences present in cfDNA stimulate endogenous stems cells when body is exposed to adverse conditions. GC-rich fragments of human DNA may be used for preconditioning of therapeutic MSCs aiming at an increase in their survival in the ailing body.
Collapse
Affiliation(s)
- Svetlana Kostjuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Loseva P, Kostyuk S, Malinovskaya E, Clement N, Dechesne CA, Dani C, Smirnova T, Glebova K, Baidakova G, Baranova A, Izhevskaia V, Ginter E, Veiko N. Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells. Expert Opin Biol Ther 2012; 12 Suppl 1:S85-97. [PMID: 22594577 DOI: 10.1517/14712598.2012.688948] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Human blood normally contains circulating cell-free DNA (cirDNA). Cell-free DNA (cfDNA) present in cell culture medium is termed extracellular DNA (ecDNA). Its concentration, GC content and oxidation level depend on physiological state of the organism. cirDNA could probably be one of the aggressive factors encountered by therapeutic stem cells. The authors hypothesize that oxidized cirDNA could influence their survival rate. They aimed to uncover the effects of oxidized ecDNAs, including ecDNA of cultivated primary tumor cells and cirDNA from blood plasma of cancer patients on mesenchymal stem cells (MSCs). AREAS COVERED Increased concentrations of cfDNA stimulate a rapid increase in reactive oxygen species (ROS) synthesis and up-regulate antioxidant response genes (NRF2, KEAP1, SOD1, BRCA1, BCL2) in MSCs. This response is more prominent when cfDNA contains higher proportions of 8-oxo-dG. Within an hour, oxidized DNA induces a decrease in ROS production while NRF2 mRNA levels continue to augment and the NRF2 protein translocates into the nucleus. Additionally, oxidized DNA up-regulates PPRAG2 with no apparent induction of adipogenesis. This kind of response is specific for MSCs. EXPERT OPINION Oxidized cfDNA up-regulates NRF2 and PPARG2 and reduces ROS production in MSCs. These effects should be taken into account when considering therapeutic applications of stem cells.
Collapse
Affiliation(s)
- Polina Loseva
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kostyuk SV, Malinovskaya EM, Ermakov AV, Smirnova TD, Kameneva LV, Chvartatskaya OV, Loseva PA, Ershova ES, Lyubchenko LN, Veiko NN. Fragments of cell-free DNA increase transcription in human mesenchymal stem cells, activate TLR-dependent signal pathway, and suppress apoptosis. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2012. [DOI: 10.1134/s1990750812010052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Vinnikov V, Lloyd D, Finnon P. Bystander apoptosis in human cells mediated by irradiated blood plasma. Mutat Res 2012; 731:107-116. [PMID: 22230196 DOI: 10.1016/j.mrfmmm.2011.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 10/11/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G(0)-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24h at 37°C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2±1.8% in plasma-free cultures, 21.6±1.1% in cultures treated with plasma from unirradiated blood, 20.2±1.4% in cultures with plasma from blood given 2-4Gy and 16.7±3.2% in cultures with plasma from blood given 6-10Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.
Collapse
|
50
|
Kostyuk SV, Ermakov AV, Alekseeva AY, Smirnova TD, Glebova KV, Efremova LV, Baranova A, Veiko NN. Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutat Res 2012; 729:52-60. [PMID: 22001237 DOI: 10.1016/j.mrfmmm.2011.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/30/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
The development of the bystander effect induced by low doses of irradiation in human umbilical vein endothelial cells (HUVECs) depends on extracellular DNA (ecDNA) signaling pathway. We found that the changes in the levels of ROS and NO production by human endothelial cells are components of the radiation induced bystander effect that can be registered at a low dose. We exposed HUVECs to X-ray radiation and studied effects of ecDNA(R) isolated from the culture media conditioned by the short-term incubation of irradiated cells on intact HUVECs. Effects of ecDNA(R) produced by irradiated cells on ROS and NO production in non-irradiated HUVECs are similar to bystander effect. These effects at least partially depend on TLR9 signaling. We compared the production of the nitric oxide and the ROS in human endothelial cells that were (1) irradiated at a low dose; (2) exposed to the ecDNA(R) extracted from the media conditioned by irradiated cells; and (3) exposed to human DNA oxidized in vitro. We found that the cellular responses to all three stimuli described above are essentially similar. We conclude that irradiation-related oxidation of the ecDNA is an important component of the ecDNA-mediated bystander effect.
Collapse
Affiliation(s)
- Svetlana V Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|