1
|
Izzotti A. Oxidative Drugs and microRNA: New Opportunities for Cancer Prevention. Cancers (Basel) 2022; 15:cancers15010132. [PMID: 36612131 PMCID: PMC9817950 DOI: 10.3390/cancers15010132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the impressive progress of therapies in recent years, cancer still remains the second leading cause of death in developed countries [...].
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
3
|
An Embryonic Zebrafish Model to Screen Disruption of Gut-Vascular Barrier upon Exposure to Ambient Ultrafine Particles. TOXICS 2020; 8:toxics8040107. [PMID: 33228016 PMCID: PMC7711522 DOI: 10.3390/toxics8040107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022]
Abstract
Epidemiological studies have linked exposure to ambient particulate matter (PM) with gastrointestinal (GI) diseases. Ambient ultrafine particles (UFP) are the redox-active sub-fraction of PM2.5, harboring elemental and polycyclic aromatic hydrocarbons from urban environmental sources including diesel and gasoline exhausts. The gut-vascular barrier (GVB) regulates paracellular trafficking and systemic dissemination of ingested microbes and toxins. Here, we posit that acute UFP ingestion disrupts the integrity of the intestinal barrier by modulating intestinal Notch activation. Using zebrafish embryos, we performed micro-gavage with the fluorescein isothiocynate (FITC)-conjugated dextran (FD10, 10 kDa) to assess the disruption of GVB integrity upon UFP exposure. Following micro-gavage, FD10 retained in the embryonic GI system, migrated through the cloaca. Conversely, co-gavaging UFP increased transmigration of FD10 across the intestinal barrier, and FD10 fluorescence occurred in the venous capillary plexus. Ingestion of UFP further impaired the mid-intestine morphology. We performed micro-angiogram of FD10 to corroborate acute UFP-mediated disruption of GVB. Transient genetic and pharmacologic manipulations of global Notch activity suggested Notch regulation of the GVB. Overall, our integration of a genetically tractable embryonic zebrafish and micro-gavage technique provided epigenetic insights underlying ambient UFP ingestion disrupts the GVB.
Collapse
|
4
|
Izzotti A, Balansky R, Micale RT, Pulliero A, La Maestra S, De Flora S. Modulation of smoke-induced DNA and microRNA alterations in mouse lung by licofelone, a triple COX-1, COX-2 and 5-LOX inhibitor. Carcinogenesis 2020; 41:91-99. [PMID: 31562745 PMCID: PMC7456342 DOI: 10.1093/carcin/bgz158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/29/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation plays a crucial role in the carcinogenesis process and, in particular, in smoking-related carcinogenesis. Therefore, anti-inflammatory agents provide an interesting perspective in the prevention of smoking-associated cancers. Among nonsteroidal anti-inflammatory drugs (NSAIDs), licofelone is a triple inhibitor of both cyclooxygenases (COX-1 and COX-2) and of 5-lipooxygenase (5-LOX) that has shown some encouraging results in cancer prevention models. We previously showed that the dietary administration of licofelone, starting after weanling, to Swiss H mice exposed for 4 months to mainstream cigarette smoke since birth attenuated preneoplastic lesions of inflammatory nature in both lung and urinary tract, and had some effects on the yield of lung tumors at 7.5 months of age. The present study aimed at evaluating the early modulation by licofelone of pulmonary DNA and RNA alterations either in smoke-free or smoke-exposed H mice after 10 weeks of exposure. Licofelone protected the mice from the smoke-induced loss of body weight and significantly attenuated smoke-induced nucleotide alterations by decreasing the levels of bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine in mouse lung. Moreover, the drug counteracted dysregulation by smoke of several pulmonary microRNAs involved in stress response, inflammation, apoptosis, and oncogene suppression. However, even in smoke-free mice administration of the drug had significant effects on a broad panel of microRNAs and, as assessed in a subset of mice used in a parallel cancer chemoprevention study, licofelone even enhanced the smoke-induced systemic genotoxic damage after 4 months of exposure. Therefore, caution should be paid when administering licofelone to smokers for long periods.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Izzotti A. MicroRNAs as Mediators between Genotype and Phenotype from Basic Science to On-Field Applications. Microrna 2020; 9:2-7. [PMID: 32081106 DOI: 10.2174/221153660901191202101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine University of Genoa Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
6
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
New ML, White CM, McGonigle P, McArthur DG, Dwyer-Nield LD, Merrick DT, Keith RL, Tennis MA. Prostacyclin and EMT Pathway Markers for Monitoring Response to Lung Cancer Chemoprevention. Cancer Prev Res (Phila) 2018; 11:643-654. [PMID: 30045935 PMCID: PMC6170683 DOI: 10.1158/1940-6207.capr-18-0052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/02/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide and global burden could be reduced through targeted application of chemoprevention. The development of squamous lung carcinoma has been linked with persistent, high-grade bronchial dysplasia. Bronchial histology improved in former smokers in a chemoprevention trial with the prostacyclin analogue iloprost. Prostacyclin acts through peroxisome proliferator-activated receptor gamma (PPARγ) to reverse epithelial to mesenchymal transition and promote anticancer signaling. We hypothesized that the prostacyclin signaling pathway and EMT could provide response markers for prostacyclin chemoprevention of lung cancer. Human bronchial epithelial cells were treated with cigarette smoke condensate (CSC) or iloprost for 2 weeks, CSC for 16 weeks, or CSC for 4 weeks followed by 4 weeks of CSC and/or iloprost, and RNA was extracted. Wild-type or prostacyclin synthase transgenic mice were exposed to 1 week of cigarette smoke or one injection of urethane, and RNA was extracted from the lungs. We measured potential markers of prostacyclin and iloprost efficacy in these models. We identified a panel of markers altered by tobacco carcinogens and inversely affected by prostacyclin, including PPARγ, 15PGDH, CES1, COX-2, ECADHERIN, SNAIL, VIMENTIN, CRB3, MIR34c, and MIR221 These data introduce a panel of potential markers for monitoring interception of bronchial dysplasia progression during chemoprevention with prostacyclin. Chemoprevention is a promising approach to reduce lung cancer mortality in a high-risk population. Identifying markers for targeted use is critical for success in future clinical trials of prostacyclin for lung cancer chemoprevention. Cancer Prev Res; 11(10); 643-54. ©2018 AACR.
Collapse
Affiliation(s)
- Melissa L New
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Collin M White
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Polly McGonigle
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | | | - Lori D Dwyer-Nield
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel T Merrick
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Robert L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
- Eastern Colorado Veterans Affairs Medical Center, Aurora, Colorado
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
8
|
Izzotti A, La Maestra S, Micale RT, Pulliero A, Geretto M, Balansky R, De Flora S. Modulation of genomic and epigenetic end-points by celecoxib. Oncotarget 2018; 9:33656-33681. [PMID: 30263093 PMCID: PMC6154745 DOI: 10.18632/oncotarget.26062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/16/2018] [Indexed: 01/20/2023] Open
Abstract
Celecoxib, a nonsteroidal anti-inflammatory drug that selectively targets cyclooxygenase-2, is a promising cancer chemopreventive agent. However, safety concerns have been raised in clinical trials evaluating its ability to prevent colorectal adenomas. The rationale for the herein reported studies was to analyze genomic and epigenetic end-points aimed at investigating both the chemopreventive properties of celecoxib towards cigarette smoke-associated molecular alterations and its possible adverse effects. We carried out three consecutive studies in mice treated with either smoke and/or celecoxib. Study 1 investigated early DNA alterations (DNA adducts, oxidative DNA damage, and systemic genotoxic damage) and epigenetic alterations (expression of 1,135 microRNAs) in lung and blood of Swiss H mice; Study 2 evaluated the formation of DNA adducts in lung, liver, and heart; and Study 3 evaluated the expression of microRNAs in 10 organs and 3 body fluids of ICR (CD-1) mice. Surprisingly, the oral administration of celecoxib to smoke-free mice resulted in the formation of DNA adducts in both lung and heart and in dysregulation of microRNAs in mouse organs and body fluids. On the other hand, celecoxib attenuated smoke-related DNA damage and dysregulation of microRNA expression. In conclusion, celecoxib showed pleiotropic properties and multiple mechanisms by counteracting the molecular damage produced by smoke in a variety of organs and body fluids. However, administration of celecoxib to non-smoking mice resulted in evident molecular alterations, also including DNA and RNA alterations in the heart, which may bear relevance in the pathogenesis of the cardiovascular adverse effects of this drug.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | - Marta Geretto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Roumen Balansky
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.,National Center of Oncology, 1756 Sofia, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
9
|
Baek KI, Packard RRS, Hsu JJ, Saffari A, Ma Z, Luu AP, Pietersen A, Yen H, Ren B, Ding Y, Sioutas C, Li R, Hsiai TK. Ultrafine Particle Exposure Reveals the Importance of FOXO1/Notch Activation Complex for Vascular Regeneration. Antioxid Redox Signal 2018; 28:1209-1223. [PMID: 29037123 PMCID: PMC5912723 DOI: 10.1089/ars.2017.7166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Redox active ultrafine particles (UFP, d < 0.2 μm) promote vascular oxidative stress and atherosclerosis. Notch signaling is intimately involved in vascular homeostasis, in which forkhead box O1 (FOXO1) acts as a co-activator of the Notch activation complex. We elucidated the importance of FOXO1/Notch transcriptional activation complex to restore vascular regeneration after UFP exposure. RESULTS In a zebrafish model of tail injury and repair, transgenic Tg(fli1:GFP) embryos developed vascular regeneration at 3 days post amputation (dpa), whereas UFP exposure impaired regeneration (p < 0.05, n = 20 for control, n = 28 for UFP). UFP dose dependently reduced Notch reporter activity and Notch signaling-related genes (Dll4, JAG1, JAG2, Notch1b, Hey2, Hes1; p < 0.05, n = 3). In the transgenic Tg(tp1:GFP; flk1:mCherry) embryos, UFP attenuated endothelial Notch activity at the amputation site (p < 0.05 vs. wild type [WT], n = 20). A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) inhibitor or dominant negative (DN)-Notch1b messenger RNA (mRNA) disrupted the vascular network, whereas notch intracellular cytoplasmic domain (NICD) mRNA restored the vascular network (p < 0.05 vs. WT, n = 20). UFP reduced FOXO1 expression, but not Master-mind like 1 (MAML1) or NICD (p < 0.05, n = 3). Immunoprecipitation and immunofluorescence demonstrated that UFP attenuated FOXO1-mediated NICD pull-down and FOXO1/NICD co-localization, respectively (p < 0.05, n = 3). Although FOXO1 morpholino oligonucleotides (MOs) attenuated Notch activity, FOXO1 mRNA reversed UFP-mediated reduction in Notch activity to restore vascular regeneration and blood flow (p < 0.05 vs. WT, n = 5). Innovation and Conclusion: Our findings indicate the importance of the FOXO1/Notch activation complex to restore vascular regeneration after exposure to the redox active UFP. Antioxid. Redox Signal. 28, 1209-1223.
Collapse
Affiliation(s)
- Kyung In Baek
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - René R Sevag Packard
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Jeffrey J Hsu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Arian Saffari
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Zhao Ma
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Anh Phuong Luu
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Andrew Pietersen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Hilary Yen
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California
| | - Bin Ren
- 4 Division of Hematology and Oncology, Medical College of Wisconsin , Milwaukee, Wisconsin.,5 Blood Research Institute , Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Yichen Ding
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Constantinos Sioutas
- 3 Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California
| | - Rongsong Li
- 2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Tzung K Hsiai
- 1 Department of Bioengineering, University of California , Los Angeles, Los Angeles, California.,2 Division of Cardiology, Department of Medicine, University of California , Los Angeles, Los Angeles, California.,6 Research Services, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles , California
| |
Collapse
|
10
|
Balansky R, Ganchev G, Iltcheva M, Dimitrova E, Micale RT, La Maestra S, De Flora S. Carcinogenic response and other histopathological alterations in mice exposed to cigarette smoke for varying time periods after birth. Carcinogenesis 2018; 39:580-587. [PMID: 29370344 DOI: 10.1093/carcin/bgy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
In spite of the outstanding role of tobacco smoking in human carcinogenesis, it is difficult to reproduce its effects in experimental animals. Based on the knowledge that a variety of mechanisms account for a higher susceptibility to carcinogens early in life, we have developed a murine model in which mainstream cigarette smoke becomes convincingly carcinogenic. The standard model involves exposure to smoke for 4 months, starting after birth, followed by an additional 3-4 months in filtered air. We evaluated herein the time- and dose-dependent response, at 7.5 months of life, of Swiss H mice that had been exposed to smoke for either 1, 2 or 4 months after birth. A one-month exposure, corresponding to a period of intense alveolarization, was sufficient to induce most inflammatory, degenerative and preneoplastic pulmonary lesions, including emphysema and alveolar epithelial hyperplasia, blood vessel proliferation and hemangiomas, reflecting an early proangiogenic role of smoking, and microadenomas bearing ki-67-positive proliferating cells as well as urinary bladder epithelial hyperplasia. Two months of exposure were needed to induce pulmonary adenomas and urinary bladder papillomas in males only, which highlights a protective role of estrogens in urinary bladder carcinogenesis. Four months, which in humans would correspond to the postnatal period, puberty, adolescence and early adulthood, were needed to induce other lesions, including tubular epithelial hyperplasia of kidney, bronchial epithelial hyperplasia and especially pulmonary malignant tumors. These findings highlight the concept that preneoplastic and neoplastic lesions occurring in adulthood can be induced by exposure to smoke early in life.
Collapse
Affiliation(s)
| | | | | | | | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
- National Center of Oncology, Sofia, Bulgaria
| |
Collapse
|
11
|
Blood and lung microRNAs as biomarkers of pulmonary tumorigenesis in cigarette smoke-exposed mice. Oncotarget 2018; 7:84758-84774. [PMID: 27713172 PMCID: PMC5341294 DOI: 10.18632/oncotarget.12475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Cigarette smoke (CS) is known to dysregulate microRNA expression profiles in the lungs of mice, rats, and humans, thereby modulating several pathways involved in lung carcinogenesis and other CS-related diseases. We designed a study aimed at evaluating (a) the expression of 1135 microRNAs in the lung of Swiss H mice exposed to mainstream CS during the first 4 months of life and thereafter kept in filtered air for an additional 3.5 months, (b) the relationship between lung microRNA profiles and histopathological alterations in the lung, (c) intergender differences in microRNA expression, and (d) the comparison with microRNA profiles in blood serum. CS caused multiple histopathological alterations in the lung, which were almost absent in sham-exposed mice. An extensive microRNA dysregulation was detected in the lung of CS-exposed mice. Modulation of microRNA profiles was specifically related to the histopathological picture, no effect being detected in lung fragments with non-neoplastic lung diseases (emphysema or alveolar epithelial hyperplasia), whereas a close association occurred with the presence and multiplicity of preneoplastic lesions (microadenomas) and benign lung tumors (adenomas). Three microRNAs regulating estrogen and HER2-dependent mechanisms were modulated in the lung of adenoma-bearing female mice. Blood microRNAs were also modulated in mice affected by early neoplastic lesions. However, there was a poor association between lung microRNAs and circulating microRNAs, which can be ascribed to an impaired release of mature microRNAs from the damaged lung. Studies in progress are evaluating the feasibility of analyzing blood microRNAs as a molecular tool for lung cancer secondary prevention.
Collapse
|
12
|
Bruzgielewicz A, Osuch-Wojcikiewicz E, Niemczyk K, Sieniawska-Buccella O, Siwak M, Walczak A, Nowak A, Majsterek I. Altered Expression of miRNAs Is Related to Larynx Cancer TNM Stage and Patients' Smoking Status. DNA Cell Biol 2017; 36:581-588. [PMID: 28430523 DOI: 10.1089/dna.2016.3464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It has been reported that microRNAs (miRNAs) are responsible for acquiring all the hallmarks of cancer cells, as well as have a significant impact on the clinical management of cancers at every stage, including prognosis, remission, relapse, and metastasis. In this study, we investigated the association of miR-29a-3p, miR-202-3p, miR-3713, miR-4768-3p, and miR-548aa expression with clinicopathologic features in patients suffering from laryngeal cancer (LC) and determined the potential role of studied miRNAs in the progression of LC. The study group consisted of 48 patients with untreated primary tumors of head and neck cancer localized in the larynx. Expression of the selected miRNAs was verified by the qRT-PCR technique. We showed that the expression of miR-29a as well as miR-548aa was positively correlated with tumor stage and lymph node metastasis, whereas the expression of miR-4768-3p was negatively correlated with lymph node metastasis. Furthermore, we investigated that exposure to cigarette smoke altered miRNA expression profile in LC. The expression level of miR-202-3p was significantly increased in smoking patients compared with nonsmokers, whereas the miR-4768-3p, miR-548aa, and miR-3713 were markedly decreased. Our research contributed toward better elucidating the mechanisms underlying the progression of LC as well as the use of miRNAs inhibitors as novel agents against progression and metastasis of LC.
Collapse
Affiliation(s)
| | | | - Kazimierz Niemczyk
- 1 Department of Otolaryngology, Medical University of Warsaw , Warsaw, Poland
| | | | - Mateusz Siwak
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Anna Walczak
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Alicja Nowak
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Ireneusz Majsterek
- 2 Department of Clinical Chemistry and Biochemistry, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
13
|
Cohen A, Burgos-Aceves MA, Smith Y. A potential role for estrogen in cigarette smoke-induced microRNA alterations and lung cancer. Transl Lung Cancer Res 2016; 5:322-30. [PMID: 27413713 DOI: 10.21037/tlcr.2016.06.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers.
Collapse
Affiliation(s)
- Amit Cohen
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Mario Alberto Burgos-Aceves
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Yoav Smith
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| |
Collapse
|
14
|
Tennis MA, New ML, McArthur DG, Merrick DT, Dwyer-Nield LD, Keith RL. Prostacyclin reverses the cigarette smoke-induced decrease in pulmonary Frizzled 9 expression through miR-31. Sci Rep 2016; 6:28519. [PMID: 27339092 PMCID: PMC4919780 DOI: 10.1038/srep28519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023] Open
Abstract
Half of lung cancers are diagnosed in former smokers, leading to a significant treatment burden in this population. Chemoprevention in former smokers using the prostacyclin analogue iloprost reduces endobronchial dysplasia, a premalignant lung lesion. Iloprost requires the presence of the WNT receptor Frizzled 9 (Fzd9) for inhibition of transformed growth in vitro. To investigate the relationship between iloprost, cigarette smoke, and Fzd9 expression, we used human samples, mouse models, and in vitro studies. Fzd9 expression was low in human lung tumors and in progressive dysplasias. In mouse models and in vitro studies, tobacco smoke carcinogens reduced expression of Fzd9 while prostacyclin maintained or increased expression. Expression of miR-31 repressed Fzd9 expression, which was abrogated by prostacyclin. We propose a model where cigarette smoke exposure increases miR-31 expression, which leads to decreased Fzd9 expression and prevents response to iloprost. When smoke is removed miR-31 is reduced, prostacyclin can increase Fzd9 expression, and progression of dysplasia is inhibited. Fzd9 and miR-31 are candidate biomarkers for precision application of iloprost and monitoring of treatment progress. As we continue to investigate the mechanisms of prostacyclin chemoprevention and identify biomarkers for its use, we will facilitate clinical trials and speed implementation of this valuable prevention approach.
Collapse
Affiliation(s)
- M. A. Tennis
- University of Colorado Denver, Aurora, Colorado, USA
| | - M. L. New
- University of Colorado Denver, Aurora, Colorado, USA
| | - D. G. McArthur
- Denver Veterans Administration Medical Center, Denver, Colorado, USA
| | - D. T. Merrick
- University of Colorado Denver, Aurora, Colorado, USA
| | | | - R. L. Keith
- University of Colorado Denver, Aurora, Colorado, USA
- Denver Veterans Administration Medical Center, Denver, Colorado, USA
| |
Collapse
|
15
|
Cui Y, Sun Q, Liu Z. Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells. J Cell Mol Med 2016; 20:782-93. [PMID: 26988063 PMCID: PMC4831366 DOI: 10.1111/jcmm.12822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/29/2016] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a major challenge to public health. Ambient fine particulate matter (PM) is the key component for air pollution, and associated with significant mortality. The majority of the mortality following PM exposure is related to cardiovascular diseases. However, the mechanisms for the adverse effects of PM exposure on cardiovascular system remain largely unknown and under active investigation. Endothelial dysfunction or injury is considered one of the major factors that contribute to the development of cardiovascular diseases such as atherosclerosis and coronary heart disease. Endothelial progenitor cells (EPCs) play a critical role in maintaining the structural and functional integrity of vasculature. Particulate matter exposure significantly suppressed the number and function of EPCs in animals and humans. However, the mechanisms for the detrimental effects of PM on EPCs remain to be fully defined. One of the important mechanisms might be related to increased level of reactive oxygen species (ROS) and inflammation. Bone marrow (BM) is a major source of EPCs. Thus, the number and function of EPCs could be intimately associated with the population and functional status of stem cells (SCs) in the BM. Bone marrow stem cells and other SCs have the potential for cardiovascular regeneration and repair. The present review is focused on summarizing the detrimental effects of PM exposure on EPCs and SCs, and potential mechanisms including ROS formation as well as clinical implications.
Collapse
Affiliation(s)
- Yuqi Cui
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Qinghua Sun
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zhenguo Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
16
|
Izzotti A, Pulliero A. Molecular damage and lung tumors in cigarette smoke-exposed mice. Ann N Y Acad Sci 2015; 1340:75-83. [PMID: 25712567 DOI: 10.1111/nyas.12697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cigarette smoke (CS) induces lung cancer through a multistep process that is now being depicted by molecular analyses. During the early phase (weeks), DNA damage occurs in nuclear and mitochondrial DNA, triggering adaptive responses activated by transient microRNA downregulation in the expression of defensive genes and proteins. During the intermediate phase (months), damaged cells are removed by apoptosis and the resulting cell loss is counteracted by a recruitment of stem cells that are highly sensitive to genotoxic damage. In parallel, microRNA downregulation becomes irreversible because of an accumulation of molecular damage in DICER. During the late phase (years), apoptosis efficacy is decreased by fragile histidine triad loss, while irreversible microRNA downregulation triggers the expression of mutated oncogenes, resulting in adenoma appearance. Furthermore, deletions occur in microRNA-encoding genes, causing carcinoma formation and uncontrolled growth. All reported pathogenic steps are required to obtain a fully developed lung cancer. This complex pathogenesis develops over a long period of time; therefore, it is difficult to induce cancer in short-living animals exposed to CS, whereas in humans there is a long latency from the start of smoke exposure to the onset of cancer.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy; IRCCS AOU San Martino IST, Genoa, Italy
| | | |
Collapse
|
17
|
Cui Y, Jia F, He J, Xie X, Li Z, Fu M, Hao H, Liu Y, Liu DZ, Cowan PJ, Zhu H, Sun Q, Liu Z. Ambient Fine Particulate Matter Suppresses In Vivo Proliferation of Bone Marrow Stem Cells through Reactive Oxygen Species Formation. PLoS One 2015; 10:e0127309. [PMID: 26058063 PMCID: PMC4461321 DOI: 10.1371/journal.pone.0127309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Some environmental insults, such as fine particulate matter (PM) exposure, significantly impair the function of stem cells. However, it is unknown if PM exposure could affect the population of bone marrow stem cells (BMSCs). The present study was to investigate the effects of PM on BMSCs population and related mechanism(s). MAIN METHEODS PM was intranasally distilled into male C57BL/6 mice for one month. Flow cytometry with antibodies for BMSCs, Annexin V and BrdU ware used to determine the number of BMSCs and the levels of their apoptosis and proliferation in vivo. Phosphorylated Akt (P-Akt) level was determined in the BM cells with western blotting. Intracellular reactive oxygen species (ROS) formation was quantified using flow cytometry analysis. To determine the role of PM-induced ROS in BMSCs population, proliferation, and apotosis, experiments were repeated using N-acetylcysteine (NAC)-treated wild type mice or a triple transgenic mouse line with overexpression of antioxidant network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase-1 with decreased in vivo ROS production. KEY FINDINGS PM treatment significantly reduced BMSCs population in association with increased ROS formation, decreased P-Akt level, and inhibition of proliferation of BMSCs without induction of apoptosis. NAC treatment or AON overexpression with reduced ROS formation effectively prevented PM-induced reduction of BMSCs population and proliferation with partial recovery of P-Akt level. SIGNIFICANCE PM exposure significantly decreased the population of BMSCs due to diminished proliferation via ROS-mediated mechanism (could be partially via inhibition of Akt signaling).
Collapse
Affiliation(s)
- Yuqi Cui
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, 324 Jing 5 road, Jinan, Shandong 250021, P.R. China
| | - Fengpeng Jia
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- Department of Cardiovascular Medicine, the First Affiliated Hospital,Chongqing Medical University, Chongqing 400016, China
| | - Jianfeng He
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Xiaoyun Xie
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Zhihong Li
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Minghuan Fu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Hong Hao
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ying Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Dylan Z. Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Peter J. Cowan
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Melbourne, Australia
| | - Hua Zhu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Qinghua Sun
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Zhenguo Liu
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
18
|
Deregulation of serum microRNA expression is associated with cigarette smoking and lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:364316. [PMID: 25386559 PMCID: PMC4217347 DOI: 10.1155/2014/364316] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related death and cigarette smoking is the main risk factor for lung cancer. Circulating microRNAs (miRNAs) are considered potential biomarkers of various cancers, including lung cancer. However, it is unclear whether changes in circulating miRNAs are associated with smoking and smoking-related lung cancer. In this study, we determined the serum miRNA profiles of 10 nonsmokers, 10 smokers, and 10 lung-cancer patients with miRCURY LNA microRNA arrays. The differentially expressed miRNAs were then confirmed in a larger sample. We found that let-7i-3p and miR-154-5p were significantly downregulated in the sera of smokers and lung-cancer patients, so the serum levels of let-7i-3p and miR-154-5p are associated with smoking and smoking-related lung cancer. The areas under receiver operating characteristic curves for let-7i-3p and miR-154-5p were approximately 0.892 and 0.957, respectively. In conclusion, our results indicate that changes in serum miRNAs are associated with cigarette smoking and lung cancer and that let-7i-3p and miR-154-5p are potential biomarkers of smoking-related lung cancer.
Collapse
|
19
|
Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta Rev Cancer 2014; 1846:405-24. [PMID: 25152445 DOI: 10.1016/j.bbcan.2014.08.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/22/2023]
Abstract
The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen E Wright
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
20
|
Balansky R, Izzotti A, D'Agostini F, Longobardi M, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Assay of lapatinib in murine models of cigarette smoke carcinogenesis. Carcinogenesis 2014; 35:2300-7. [PMID: 25053627 DOI: 10.1093/carcin/bgu154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lapatinib, a dual tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), is prescribed for the treatment of patients with metastatic breast cancer overexpressing HER-2. Involvement of this drug in pulmonary carcinogenesis has been poorly investigated. We used murine models suitable to evaluate cigarette smoke-related molecular and histopathological alterations. A total of 481 Swiss H mice were used. The mice were exposed to mainstream cigarette smoke (MCS) during the first four months of life. After 10 weeks, MCS caused an elevation of bulky DNA adducts, oxidative DNA damage and an extensive downregulation of microRNAs in lung. After four months, an increase in micronucleus frequency was observed in peripheral blood erythrocytes. After 7.5 months, histopathological alterations were detected in the lung, also including benign tumors and malignant tumors, and in the urinary tract. A subchronic toxicity study assessed the non-toxic doses of lapatinib, administered daily with the diet after weaning. After 10 weeks, lapatinib significantly attenuated the MCS-related nucleotide changes and upregulated several low-intensity microRNAs in lung. The drug poorly affected the MCS systemic genotoxicity and had modest protective effects on MCS-induced preneoplastic lesions in lung and kidney, when administered under conditions that temporarily mimicked interventions either in current smokers or ex-smokers. On the other hand, it caused some toxicity to the liver. Thus, on the whole, lapatinib appears to have a low impact in the smoke-related lung carcinogenesis models used, especially in terms of tumorigenic response.
Collapse
Affiliation(s)
- Roumen Balansky
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy, National Center of Oncology, Sofia-1756, Bulgaria
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy, IRCCS AOU San Martino - IST, 16132 Genoa, Italy and
| | - Francesco D'Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Mariagrazia Longobardi
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Rosanna T Micale
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | - Anna Camoirano
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy
| | | | | | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20892, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa, Italy,
| |
Collapse
|
21
|
Izzotti A, Balansky R, D'Agostini F, Longobardi M, Cartiglia C, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice. Cancer Med 2014; 3:719-30. [PMID: 24683044 PMCID: PMC4101764 DOI: 10.1002/cam4.234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gupta P, Kim B, Kim SH, Srivastava SK. Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res 2014; 58:1685-707. [PMID: 24510468 DOI: 10.1002/mnfr.201300684] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/14/2022]
Abstract
Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables, such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITCs) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anticancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of preclinical studies, few ITCs have advanced to the clinical phase. Available data from preclinical as well as available clinical studies suggest ITCs to be one of the promising anticancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | | | | |
Collapse
|
23
|
Jiang C, Hu X, Alattar M, Zhao H. miRNA expression profiles associated with diagnosis and prognosis in lung cancer. Expert Rev Anticancer Ther 2014; 14:453-61. [PMID: 24506710 DOI: 10.1586/14737140.2013.870037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
miRNAs, which are small single-stranded RNA molecules composed of 18-23 nts, act as oncogenes or tumor suppressor genes playing important roles in the processes of tumor formation, infiltration and metastasis. Lung cancer currently has the highest morbidity and mortality among all malignant tumors; yet, lack of early specific diagnostic markers and effective treatments hinders its proper management. In lung cancer, about 40-45 abnormal expression patterns of miRNAs have been discovered and are involved in lung cancer development. miRNAs have functions together with oncogenes and tumor suppressor genes of lung cancer. miRNAs-based tests can be used for early clinical diagnosis and prediction of clinical outcomes of lung cancer. Studying the role of miRNAs in lung cancer development and its relationship with diagnostic and prognostic parameters might help to improve the sensitivity of diagnosis and the efficacy of lung cancer treatment.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, Tianjin, People's Republic of China
| | | | | | | |
Collapse
|
24
|
De Flora S, Izzotti A, D'Agostini F, La Maestra S, Micale RT, Ceccaroli C, Steele VE, Balansky R. Rationale and approaches to the prevention of smoking-related diseases: overview of recent studies on chemoprevention of smoking-induced tumors in rodent models. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:105-120. [PMID: 24875440 DOI: 10.1080/10590501.2014.907459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tobacco smoke plays a dominant role in the epidemiology of lung cancer, cancer at other sites, and a variety of other chronic diseases. It is the leading cause of death in developed countries, and the global burden of cancer is escalating in less developed regions. For a rational implementation of strategies exploitable for the prevention smoking-related diseases, it is crucial to elucidate both the mechanisms of action of cigarette smoke and the protective mechanisms of the host organism. The imperative primary prevention goal is to avoid any type of exposure to smoke. Epidemiological studies have shown that a decrease in the consumption of cigarettes can be successful in attenuating the epidemic of lung cancer in several countries. Chemoprevention by means of dietary and/or pharmacological agents provides a complementary strategy aimed at decreasing the risk of developing smoking-associated diseases in addicted current smokers, who are unable to quit smoking, and especially in involuntary smokers and ex-smokers. The availability of new animal models that are suitable to detect the carcinogenicity of cigarette smoke and to assess the underlying molecular mechanisms provides new tools for evaluating both safety and efficacy of putative chemopreventive agents.
Collapse
Affiliation(s)
- Silvio De Flora
- a Department of Health Sciences , University of Genoa , Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Martínez-Pacheco M, Hidalgo-Miranda A, Romero-Córdoba S, Valverde M, Rojas E. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects. Gene 2013; 533:508-14. [PMID: 24080485 DOI: 10.1016/j.gene.2013.09.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022]
Abstract
Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer.
Collapse
Affiliation(s)
- M Martínez-Pacheco
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, C.U., 04510 México, México
| | | | | | | | | |
Collapse
|
26
|
Balansky R, Ganchev G, Iltcheva M, Kratchanova M, Denev P, Kratchanov C, Polasa K, D'Agostini F, Steele VE, De Flora S. Inhibition of lung tumor development by berry extracts in mice exposed to cigarette smoke. Int J Cancer 2012; 131:1991-7. [PMID: 22328465 DOI: 10.1002/ijc.27486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/16/2023]
Abstract
Cigarette smoke (CS) and dietary factors play a major role in cancer epidemiology. At the same time, however, the diet is the richest source of anticancer agents. Berries possess a broad array of health protective properties and were found to attenuate the yield of tumors induced by individual carcinogens in the rodent digestive tract and mammary gland but failed to prevent lung tumors induced by typical CS components in mice. We exposed whole-body Swiss ICR mice to mainstream CS, starting at birth and continuing daily for 4 months. Aqueous extracts of black chokeberry and strawberry were given as the only source of drinking water, starting after weaning and continuing for 7 months, thus mimicking an intervention in current smokers. In the absence of berries, CS caused a loss of body weight, induced early cytogenetical damage in circulating erythrocytes and histopathological alterations in lung (emphysema, blood vessel proliferation, alveolar epithelial hyperplasia and adenomas), liver (parenchymal degeneration) and urinary bladder (epithelial hyperplasia). Both berry extracts inhibited the CS-related body weight loss, cytogenetical damage, liver degeneration, pulmonary emphysema and lung adenomas. Protective effects were more pronounced in female mice, which may be ascribed to modulation by berry components of the metabolism of estrogens implicated in lung carcinogenesis. Interestingly, both the carcinogen and the chemopreventive agents tested are complex mixtures that contain a multitude of components working through composite mechanisms.
Collapse
|
27
|
Banerjee A, Luettich K. MicroRNAs as potential biomarkers of smoking-related diseases. Biomark Med 2012; 6:671-84. [DOI: 10.2217/bmm.12.50] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) comprise a family of small, endogenous, noncoding functional RNA molecules that have emerged as key post-transcriptional regulators of gene expression. They inhibit the translation of proteins from mRNA or promote its degradation. Aberrant miRNA expression has been linked to various human diseases and measurement can differentiate between normal and diseased tissue. Expression is tissue-specific and any changes in miRNA expression within a tissue type can be correlated with disease status. Altered miRNA expression has been reported in the smoking-related diseases cancer, chronic obstructive pulmonary disease and cardiovascular disease. Additionally, miRNAs are thought to have vital roles in inflammatory cell differentiation and regulation. miRNAs might, therefore, be useful biomarkers for early detection of disease-related molecular and genetic changes. In this review, we summarize the available scientific evidence for the potential of miRNAs as biomarkers of smoking-related diseases. Studies should be carried out to identify the miRNAs most relevant to specific diseases.
Collapse
Affiliation(s)
- Anisha Banerjee
- British American Tobacco, Group Research & Development, Southampton, Hampshire SO15 8TL, UK
| | - Karsta Luettich
- British American Tobacco, Group Research & Development, Southampton, Hampshire SO15 8TL, UK
| |
Collapse
|
28
|
Izzotti A, Cartiglia C, Steele VE, De Flora S. MicroRNAs as targets for dietary and pharmacological inhibitors of mutagenesis and carcinogenesis. Mutat Res 2012; 751:287-303. [PMID: 22683846 PMCID: PMC4716614 DOI: 10.1016/j.mrrev.2012.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have been implicated in many biological processes, cancer, and other diseases. In addition, miRNAs are dysregulated following exposure to toxic and genotoxic agents. Here we review studies evaluating modulation of miRNAs by dietary and pharmacological agents, which could potentially be exploited for inhibition of mutagenesis and carcinogenesis. This review covers natural agents, including vitamins, oligoelements, polyphenols, isoflavones, indoles, isothiocyanates, phospholipids, saponins, anthraquinones and polyunsaturated fatty acids, and synthetic agents, including thiols, nuclear receptor agonists, histone deacetylase inhibitors, antiinflammatory drugs, and selective estrogen receptor modulators. As many as 145 miRNAs, involved in the control of a variety of carcinogenesis mechanisms, were modulated by these agents, either individually or in combination. Most studies used cancer cells in vitro with the goal of modifying their phenotype by changing miRNA expression profiles. In vivo studies evaluated regulation of miRNAs by chemopreventive agents in organs of mice and rats, either untreated or exposed to carcinogens, with the objective of evaluating their safety and efficacy. The tissue specificity of miRNAs could be exploited for the chemoprevention of site-specific cancers, and the study of polymorphic miRNAs is expected to predict the individual response to chemopreventive agents as a tool for developing new prevention strategies.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, 16132, Italy
| | | | | | - Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, 16132, Italy.
| |
Collapse
|
29
|
De Flora S, Balansky R, D'Agostini F, Cartiglia C, Longobardi M, Steele VE, Izzotti A. Smoke-induced microRNA and related proteome alterations. Modulation by chemopreventive agents. Int J Cancer 2012; 131:2763-73. [PMID: 22945459 DOI: 10.1002/ijc.27814] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/09/2012] [Indexed: 11/12/2022]
Abstract
Dysregulation of microRNAs (miRNAs) has important consequences on gene and protein expression since a single miRNA targets a number of genes simultaneously. This article provides a review of published data and ongoing studies regarding the effects of cigarette smoke (CS), either mainstream (MCS) or environmental (ECS), on the expression of miRNAs and related proteins. The results generated in mice, rats, and humans provided evidence that exposure to CS results in an intense dysregulation of miRNA expression in the respiratory tract, which is mainly oriented in the sense of downregulation. In parallel, there was an upregulation of proteins targeted by the downregulated miRNAs. These trends reflect an attempt to defend the respiratory tract by means of antioxidant mechanisms, detoxification of carcinogens, DNA repair, anti-inflammatory pathways, apoptosis, etc. However, a long-lasting exposure to CS causes irreversible miRNA alterations that activate carcinogenic mechanisms, such as modulation of oncogenes and oncosuppressor genes, cell proliferation, recruitment of undifferentiated stem cells, inflammation, inhibition of intercellular communications, angiogenesis, invasion, and metastasis. The miRNA alterations induced by CS in the lung of mice and rats are similar to those observed in the human respiratory tract. Since a number of miRNAs that are modulated by CS and/or chemopreventive agents are subjected to single nucleotide polymorphisms in humans, they can be evaluated according to toxicogenomic/pharmacogenomics approaches. A variety of cancer chemopreventive agents tested in our laboratory modulated both baseline and CS-related miRNA and proteome alterations, thus contributing to evaluate both safety and efficacy of dietary and pharmacological agents.
Collapse
Affiliation(s)
- Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mizuno S, Bogaard HJ, Gomez-Arroyo J, Alhussaini A, Kraskauskas D, Cool CD, Voelkel NF. MicroRNA-199a-5p is associated with hypoxia-inducible factor-1α expression in lungs from patients with COPD. Chest 2012; 142:663-672. [PMID: 22383663 PMCID: PMC3435138 DOI: 10.1378/chest.11-2746] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/01/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNAs that silence target gene expression posttranscriptionally, and their impact on gene expression has been reported in various diseases. It has been reported that the expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced and that of p53 is increased in lungs from patients with COPD. However, the role of miRNAs associated with these genes in lungs from patients with COPD is unknown. METHODS Lung tissue samples from 55 patients were included in this study. Total RNA, miRNA, and protein were extracted from lung tissues and used for reverse transcriptase polymerase chain reaction and Western blot analysis. Cell culture experiments were performed using cultured human pulmonary microvascular endothelial cells (HPMVECs). RESULTS miR-34a and miR-199a-5p expressions were increased, and the phosphorylation of AKT was decreased in the lung tissue samples of patients with COPD. The miR-199a-5p expression was correlated with HIF-1α protein expression in the lungs of patients with COPD. Transfection of HPMVECs with the miR-199a-5p precursor gene decreased HIF-1α protein expression, and transfection with the miR-34a precursor gene increased miR-199a-5p expression. CONCLUSIONS These data suggest that miR-34a and miR-199a-5p contribute to the pathogenesis of COPD, and these miRNAs may also affect the HIF-1α-dependent lung structure maintenance program.
Collapse
Affiliation(s)
- Shiro Mizuno
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA; Division of Respiratory Disease, Kanazawa Medical University, Ishikawa, Japan
| | - Harm J Bogaard
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA; VU University Medical Center, Amsterdam, The Netherlands
| | - Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Aysar Alhussaini
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Donatas Kraskauskas
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Health Science Center, Lung Tissue Repository Consortium Repository, Aurora, CO
| | - Norbert F Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA.
| |
Collapse
|
31
|
Parasramka MA, Dashwood WM, Wang R, Abdelli A, Bailey GS, Williams DE, Ho E, Dashwood RH. MicroRNA profiling of carcinogen-induced rat colon tumors and the influence of dietary spinach. Mol Nutr Food Res 2012; 56:1259-69. [PMID: 22641368 PMCID: PMC3762592 DOI: 10.1002/mnfr.201200117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/22/2012] [Accepted: 04/03/2012] [Indexed: 12/13/2022]
Abstract
SCOPE MicroRNA (miRNA) profiles are altered in chronic conditions such as cardiovascular disease, diabetes, neurological disorders, and cancer. A systems biology approach was used to examine, for the first time, miRNAs altered in rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine carcinogen from cooked meat. METHODS AND RESULTS Among the most highly dysregulated miRNAs were those belonging to the let-7 family. Subsequent computational modeling and target validation identified c-Myc and miRNA-binding proteins Lin28A/Lin28B (Lin28) as key players, along with Sox2, Nanog, and Oct-3/4. These targets of altered miRNAs in colon cancers have been implicated in tumor recurrence and reduced patient survival, in addition to their role as pluripotency factors. In parallel with these findings, the tumor-suppressive effects of dietary spinach given postinitiation correlated with elevated levels of let-7 family members and partial normalization of c-myc, Sox2, Nanog, Oct-3/4, HmgA2, Dnmt3b, and P53 expression. CONCLUSION We conclude that the let-7/c-Myc/Lin28 axis is dysregulated in heterocyclic amine-induced colon carcinogenesis, and that the tumor suppressive effects of dietary spinach are associated with partial normalization of this pathway.
Collapse
Affiliation(s)
| | | | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Amir Abdelli
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - George S. Bailey
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - David E. Williams
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Roderick H. Dashwood
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
32
|
Cigarette-Smoke-Induced Dysregulation of MicroRNA Expression and Its Role in Lung Carcinogenesis. Pulm Med 2011; 2012:791234. [PMID: 22191027 PMCID: PMC3236311 DOI: 10.1155/2012/791234] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/19/2011] [Indexed: 12/04/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs), particularly their downregulation, has been widely shown to be associated with the development of lung cancer. Downregulation of miRNAs leads to the overactivation of their oncogene targets, while upregulation of some miRNAs leads to inhibition of important tumor suppressors. Research has implicated cigarette smoke in miRNA dysregulation, leading to carcinogenesis. Cigarette smoke may lead to genetic or epigenetic damage to miRNAs, many of which map to fragile sites and some of which contain single nucleotide polymorphisms. Cigarette smoke may also cause dysregulation by affecting regulatory mechanisms controlling miRNA expression. Researchers have shown a correlation between smoke-exposure-induced dysregulation of miRNAs and age. Furthermore, dysregulation seems to be associated with intensity and duration of smoke exposure and duration of cessation. Longer exposure at a threshold level is needed for irreversibility of changes in expression. Better understanding of miRNA dysregulation may allow for improved biomonitoring and treatment regimens for lung cancer.
Collapse
|
33
|
Rajendran P, Williams DE, Ho E, Dashwood RH. Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 2011; 46:181-99. [PMID: 21599534 DOI: 10.3109/10409238.2011.557713] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a "direct acting" compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin-yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future.
Collapse
Affiliation(s)
- Praveen Rajendran
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|