1
|
Nakano T, Akamatsu K, Kohzaki M, Tsuda M, Hirayama R, Sassa A, Yasui M, Shoulkamy M, Hiromoto T, Tamada T, Ide H, Shikazono N. Deciphering repair pathways of clustered DNA damage in human TK6 cells: insights from atomic force microscopy direct visualization. Nucleic Acids Res 2025; 53:gkae1077. [PMID: 39797694 PMCID: PMC11724303 DOI: 10.1093/nar/gkae1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 01/13/2025] Open
Abstract
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs). This study investigated the repair of each type of damage in DNA-repair-deficient human TK6 cells and elucidated the association between each type of clustered DNA damage and the pathway responsible for its repair postirradiation with low linear energy transfer (LET) radiation (X-rays) and high-LET radiation (Fe-ion beams) in cells. We found that base excision repair and, surprisingly, nucleotide excision repair restored simple and complex BDCs. In addition, the number of complex DSBs in wild-type cells increases 1 h postirradiation, which was most likely caused by BDC cleavage initiated with DNA glycosylases. Furthermore, complex DSBs, which are likely associated with lethality, are repaired by homologous recombination with little contribution from nonhomologous-end joining.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Ken Akamatsu
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Isegaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, QST Hospital, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Mahmoud I Shoulkamy
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Zoology, Faculty of Science, Minia University, El-Minia University Campus, Cairo-Aswan Road, Minia 61519, Egypt
| | - Takeshi Hiromoto
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Naoya Shikazono
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| |
Collapse
|
2
|
Karimi Roshan M, Belikov S, Ix M, Protti N, Balducci C, Dodel R, Ross JA, Lundholm L. Fractionated alpha and mixed beam radiation promote stronger pro-inflammatory effects compared to acute exposure and trigger phagocytosis. Front Cell Neurosci 2024; 18:1440559. [PMID: 39717389 PMCID: PMC11663654 DOI: 10.3389/fncel.2024.1440559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/07/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction and methods Aiming to evaluate safety aspects of a recently proposed approach to target Alzheimer's disease, we mimicked a complex boron neutron capture therapy field using a mixed beam consisting of high- and low-linear energy transfer (LET) radiation, 241Am alpha particles (α) and/or X-ray radiation respectively, in human microglial (HMC3) cells. Results Acute exposure to 2 Gy X-rays induced the strongest response in the formation of γH2AX foci 30 min post irradiation, while α- and mixed beam-induced damage (α:X-ray = 3:1) sustained longer. Fractionation of the same total dose (0.4 Gy daily) induced a similar number of γH2AX foci as after acute radiation, however, α- or mixed irradiation caused a higher expression of DNA damage response genes CDKN1A and MDM2 24 h after the last fraction, as well as a stronger decrease in cell viability and clonogenic survival compared to acute exposure. Phosphorylation of STING, followed by phosphorylation of NF-κB subunit p65, was rapidly induced (1 or 3 h, respectively) after the last fraction by all radiation qualities. This led to IL-1β secretion into the medium, strongly elevated expression of pro-inflammatory cytokine genes and enhanced phagocytosis after fractionated exposure to α- and mixed beam-irradiation compared to their acute counterparts 24 h post-irradiation. Nevertheless, all inflammatory changes were returning to basal levels or below 10-14 days post irradiation. Discussion In conclusion, we demonstrate strong transient pro-inflammatory induction by daily high-LET radiation in a microglia model, triggering phagocytosis which may aid in clearing amyloid beta, but importantly, from a safety perspective, without long-term alterations.
Collapse
Affiliation(s)
- Mostafa Karimi Roshan
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergey Belikov
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melissa Ix
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
- Department of Geriatric Medicine, Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - Nicoletta Protti
- Department of Physics, University of Pavia, Pavia, Italy
- Pavia Unit, National Institute of Nuclear Physics INFN, Pavia, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Richard Dodel
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
- Department of Geriatric Medicine, Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - J. Alexander Ross
- Therapy Research in Neurogeriatrics, Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
- Department of Geriatric Medicine, Center for Translational and Behavioral Neuroscience, University Duisburg-Essen, Essen, Germany
| | - Lovisa Lundholm
- Department of Molecular Biosciences, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Shimada K, Tarashev CVD, Bregenhorn S, Gerhold CB, van Loon B, Roth G, Hurst V, Jiricny J, Helliwell SB, Gasser SM. TORC2 inhibition triggers yeast chromosome fragmentation through misregulated Base Excision Repair of clustered oxidation events. Nat Commun 2024; 15:9908. [PMID: 39548071 PMCID: PMC11568337 DOI: 10.1038/s41467-024-54142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Combinational therapies provoking cell death are of major interest in oncology. Combining TORC2 kinase inhibition with the radiomimetic drug Zeocin results in a rapid accumulation of double-strand breaks (DSB) in the budding yeast genome. This lethal Yeast Chromosome Shattering (YCS) requires conserved enzymes of base excision repair. YCS can be attenuated by eliminating three N-glycosylases or endonucleases Apn1/Apn2 and Rad1, which act to convert oxidized bases into abasic sites and single-strand nicks. Adjacent lesions must be repaired in a step-wise fashion to avoid generating DSBs. Artificially increasing nuclear actin by destabilizing cytoplasmic actin filaments or by expressing a nuclear export-deficient actin interferes with this step-wise repair and generates DSBs, while mutants that impair DNA polymerase processivity reduce them. Repair factors that bind actin include Apn1, RFA and the actin-dependent chromatin remodeler INO80C. During YCS, increased INO80C activity could enhance both DNA polymerase processivity and repair factor access to convert clustered lesions into DSBs.
Collapse
Affiliation(s)
- Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
- Dynamics Group AG., Av. de Rumine 5, Lausanne, Switzerland
| | - Stephanie Bregenhorn
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
- BÜHLMANN Laboratories AG, Baselstrasse 55, Schönenbuch, Switzerland
| | - Barbara van Loon
- Norwegian University of Science and Technology; Department of Clinical and Molecular Medicine, Erling Skjalgssonsgatan, Trondheim, Norway
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland
| | - Josef Jiricny
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; and Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes of Biomedical Research, Novartis Intl. AG, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, Lausanne, Switzerland.
| |
Collapse
|
4
|
Ortiz R, Ramos-Méndez J. A clustering tool for generating biological geometries for computational modeling in radiobiology. Phys Med Biol 2024; 69:10.1088/1361-6560/ad7f1d. [PMID: 39317231 PMCID: PMC11563033 DOI: 10.1088/1361-6560/ad7f1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Objective.To develop a computational tool that converts biological images into geometries compatible with computational software dedicated to the Monte Carlo simulation of radiation transport (TOPAS), and subsequent biological tissue responses (CompuCell3D). The depiction of individual biological entities from segmentation images is essential in computational radiobiological modeling for two reasons: image pixels or voxels representing a biological structure, like a cell, should behave as a single entity when simulating biological processes, and the action of radiation in tissues is described by the association of biological endpoints to physical quantities, as radiation dose, scored the entire group of voxels assembling a cell.Approach.The tool is capable of cropping and resizing the images and performing clustering of image voxels to create independent entities (clusters) by assigning a unique identifier to these voxels conforming to the same cluster. The clustering algorithm is based on the adjacency of voxels with image values above an intensity threshold to others already assigned to a cluster. The performance of the tool to generate geometries that reproduced original images was evaluated by the dice similarity coefficient (DSC), and by the number of individual entities in both geometries. A set of tests consisting of segmentation images of cultured neuroblastoma cells, two cell nucleus populations, and the vasculature of a mouse brain were used.Main results.The DSC was 1.0 in all images, indicating that original and generated geometries were identical, and the number of individual entities in both geometries agreed, proving the ability of the tool to cluster voxels effectively following user-defined specifications. The potential of this tool in computational radiobiological modeling, was shown by evaluating the spatial distribution of DNA double-strand-breaks after microbeam irradiation in a segmentation image of a cell culture.Significance.This tool enables the use of realistic biological geometries in computational radiobiological studies.
Collapse
Affiliation(s)
- Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - José Ramos-Méndez
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| |
Collapse
|
5
|
Bright SJ, Manandhar M, Flint DB, Kolachina R, Ben Kacem M, Martinus DK, Turner BX, Qureshi I, McFadden CH, Marinello PC, Shaitelman SF, Sawakuchi GO. ATR inhibition radiosensitizes cells through augmented DNA damage and G2 cell cycle arrest abrogation. JCI Insight 2024; 9:e179599. [PMID: 39235982 PMCID: PMC11466186 DOI: 10.1172/jci.insight.179599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Ataxia telangiectasia and Rad3-related protein (ATR) is a key DNA damage response protein that facilitates DNA damage repair and regulates cell cycle progression. As such, ATR is an important component of the cellular response to radiation, particularly in cancer cells, which show altered DNA damage response and aberrant cell cycle checkpoints. Therefore, ATR's pharmacological inhibition could be an effective radiosensitization strategy to improve radiotherapy. We assessed the ability of an ATR inhibitor, AZD6738, to sensitize cancer cell lines of various histologic types to photon and proton radiotherapy. We found that radiosensitization took place through persistent DNA damage and abrogated G2 cell cycle arrest. We also found that AZD6738 increased the number of micronuclei after exposure to radiotherapy. We found that combining radiation with AZD6738 led to tumor growth delay and prolonged survival relative to radiation alone in a breast cancer model. Combining AZD6738 with photons or protons also led to increased macrophage infiltration at the tumor microenvironment. These results provide a rationale for further investigation of ATR inhibition in combination with radiotherapy and with other agents such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Scott J. Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mandira Manandhar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B. Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rishab Kolachina
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Mariam Ben Kacem
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David K.J. Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Broderick X. Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ilsa Qureshi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Conor H. McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Poliana C. Marinello
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simona F. Shaitelman
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriel O. Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Zhang Y, Wang H, Du Y, Zhang L, Li X, Guo H, Liu J, Zhou L, Xu X, Li J. Biological responses of an elite centipedegrass [ Eremochloa ophiuroides (Munro) Hack.] cultivar (Ganbei) to carbon ion beam irradiation. FRONTIERS IN PLANT SCIENCE 2024; 15:1433121. [PMID: 39359635 PMCID: PMC11445083 DOI: 10.3389/fpls.2024.1433121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Carbon ion beam irradiation (CIBI) is a highly efficient mutagenesis for generating mutations that can be used to expand germplasm resources and create superior new germplasm. The study investigated the effects of different doses of CIBI (50 Gy, 100 Gy, 150 Gy, 200 Gy and 300 Gy) on seed germination and seedling survival, seedling morphological and physiological traits of an elite centipedegrass cultivar Ganbei. The results showed that irradiation greater than 50 Gy cause inhibition of seed germination, and the semi-lethal dose (LD50) is around 90 Gy for CIBI treated seeds of Ganbei. A carbon ion beam-mutagenized centipedegrass population was generated from Ganbei, with irradiation dosages from 50 Gy to 200 Gy. More than ten types of phenotypic variations and novel mutants with heritable tendencies mainly including putative mutants of stolon number, length and diameter, of internode length, of leaf length and width, of leaf chlorophyll content, of stolon growth rate, of aboveground tissue dry weight, of sward height were identified. While the total sugar content of the plants from irradiated seeds showed no obvious change in all treatments as compared to the control, the crude protein content displayed significant reduction at a high-dose treatment of 200 Gy. Genetic polymorphism was detected in mutagenized centipedegrass population using SSR-PCR analysis, suggesting that CIBI caused alteration of larger fragments of the DNA sequence. As a result, a preliminary batch of mutants was screened in this study. In summary, carbon ion beam mutagenesis is an effective way for developing centipedegrass germplasm with wider variation, and treating seeds with CIBI at a dosage of ~100 Gy could be effective in centipedegrass mutation breeding.
Collapse
Affiliation(s)
- Yuan Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| | - Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ling Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| | - Xiaohui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xin Xu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses/Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
8
|
Mortazavi SMJ, Rafiepour P, Mortazavi SA, Sihver L. Exploring the Twin Paradox: From Einstein's Theory to NASA's Twin Astronauts. J Biomed Phys Eng 2024; 14:421-422. [PMID: 39175561 PMCID: PMC11336052 DOI: 10.31661/jbpe.v0i0.2307-1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2024]
Affiliation(s)
- Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (SUMS), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Rafiepour
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | | | - Lembit Sihver
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Prague, Czech Republic
- Technische Universität Wien, Atominstitut, Vienna, Austria
- Department of Physics, East Carolina University, Greenville, NC, USA
| |
Collapse
|
9
|
Toprani SM, Scheibler C, Mordukhovich I, McNeely E, Nagel ZD. Cosmic Ionizing Radiation: A DNA Damaging Agent That May Underly Excess Cancer in Flight Crews. Int J Mol Sci 2024; 25:7670. [PMID: 39062911 PMCID: PMC11277465 DOI: 10.3390/ijms25147670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
In the United States, the Federal Aviation Administration has officially classified flight crews (FC) consisting of commercial pilots, cabin crew, or flight attendants as "radiation workers" since 1994 due to the potential for cosmic ionizing radiation (CIR) exposure at cruising altitudes originating from solar activity and galactic sources. Several epidemiological studies have documented elevated incidence and mortality for several cancers in FC, but it has not yet been possible to establish whether this is attributable to CIR. CIR and its constituents are known to cause a myriad of DNA lesions, which can lead to carcinogenesis unless DNA repair mechanisms remove them. But critical knowledge gaps exist with regard to the dosimetry of CIR, the role of other genotoxic exposures among FC, and whether possible biological mechanisms underlying higher cancer rates observed in FC exist. This review summarizes our understanding of the role of DNA damage and repair responses relevant to exposure to CIR in FC. We aimed to stimulate new research directions and provide information that will be useful for guiding regulatory, public health, and medical decision-making to protect and mitigate the risks for those who travel by air.
Collapse
Affiliation(s)
- Sneh M. Toprani
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| | - Christopher Scheibler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| | - Irina Mordukhovich
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
- Sustainability and Health Initiative (SHINE), Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Eileen McNeely
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
- Sustainability and Health Initiative (SHINE), Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Zachary D. Nagel
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.S.); (I.M.); (E.M.)
| |
Collapse
|
10
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
11
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
12
|
Handwerk L, Schreier HK, Kraft D, Shreder K, Hemmersbach R, Hauslage J, Bonig H, Wiesmüller L, Fournier C, Rall-Scharpf M. Simulating Space Conditions Evokes Different DNA Damage Responses in Immature and Mature Cells of the Human Hematopoietic System. Int J Mol Sci 2023; 24:13761. [PMID: 37762064 PMCID: PMC10531023 DOI: 10.3390/ijms241813761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The impact of space radiation and microgravity on DNA damage responses has been discussed controversially, largely due to the variety of model systems engaged. Here, we performed side-by-side analyses of human hematopoietic stem/progenitor cells (HSPC) and peripheral blood lymphocytes (PBL) cultivated in a 2D clinostat to simulate microgravity before, during and after photon and particle irradiation. We demonstrate that simulated microgravity (SMG) accelerates the early phase of non-homologous end joining (NHEJ)-mediated repair of simple, X-ray-induced DNA double-strand breaks (DSBs) in PBL, while repair kinetics in HSPC remained unaltered. Repair acceleration was lost with increasing LET of ion exposures, which increases the complexity of DSBs, precluding NHEJ and requiring end resection for successful repair. Such cell-type specific effect of SMG on DSB repair was dependent on the NF-кB pathway pre-activated in PBL but not HSPC. Already under unperturbed growth conditions HSPC and PBL suffered from SMG-induced replication stress associated with accumulation of single-stranded DNA and DSBs, respectively. We conclude that in PBL, SMG-induced DSBs promote repair of radiation-induced damage in an adaptive-like response. HSPC feature SMG-induced single-stranded DNA and FANCD2 foci, i.e., markers of persistent replication stress and senescence that may contribute to a premature decline of the immune system in space.
Collapse
Affiliation(s)
- Leonie Handwerk
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, 64291 Darmstadt, Germany
| | | | - Daniela Kraft
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, 64291 Darmstadt, Germany
| | - Kateryna Shreder
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, 64291 Darmstadt, Germany
| | - Ruth Hemmersbach
- Department of Gravitational Biology, German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany; (R.H.)
| | - Jens Hauslage
- Department of Gravitational Biology, German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany; (R.H.)
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Johann Wolfgang Goethe-University Hospital, and German Red Cross Blood Service, Baden-Wuerttemberg–Hessen, 60528 Frankfurt, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, 64291 Darmstadt, Germany
| | | |
Collapse
|
13
|
Muggiolu G, Torfeh E, Simon M, Devès G, Seznec H, Barberet P. Recruitment Kinetics of XRCC1 and RNF8 Following MeV Proton and α-Particle Micro-Irradiation. BIOLOGY 2023; 12:921. [PMID: 37508352 PMCID: PMC10376363 DOI: 10.3390/biology12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Time-lapse fluorescence imaging coupled to micro-irradiation devices provides information on the kinetics of DNA repair protein accumulation, from a few seconds to several minutes after irradiation. Charged-particle microbeams are valuable tools for such studies since they provide a way to selectively irradiate micrometric areas within a cell nucleus, control the dose and the micro-dosimetric quantities by means of advanced detection systems and Monte Carlo simulations and monitor the early cell response by means of beamline microscopy. We used the charged-particle microbeam installed at the AIFIRA facility to perform micro-irradiation experiments and measure the recruitment kinetics of two proteins involved in DNA signaling and repair pathways following exposure to protons and α-particles. We developed and validated image acquisition and processing methods to enable a systematic study of the recruitment kinetics of GFP-XRCC1 and GFP-RNF8. We show that XRCC1 is recruited to DNA damage sites a few seconds after irradiation as a function of the total deposited energy and quite independently of the particle LET. RNF8 is recruited to DNA damage sites a few minutes after irradiation and its recruitment kinetics depends on the particle LET.
Collapse
Affiliation(s)
| | - Eva Torfeh
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Marina Simon
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Guillaume Devès
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | - Hervé Seznec
- University Bordeaux, CNRS, LP2I, UMR 5797, 33170 Gradignan, France
| | | |
Collapse
|
14
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
15
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
16
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
17
|
Souli MP, Nikitaki Z, Puchalska M, Brabcová KP, Spyratou E, Kote P, Efstathopoulos EP, Hada M, Georgakilas AG, Sihver L. Clustered DNA Damage Patterns after Proton Therapy Beam Irradiation Using Plasmid DNA. Int J Mol Sci 2022; 23:ijms232415606. [PMID: 36555249 PMCID: PMC9779025 DOI: 10.3390/ijms232415606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Modeling ionizing radiation interaction with biological matter is a major scientific challenge, especially for protons that are nowadays widely used in cancer treatment. That presupposes a sound understanding of the mechanisms that take place from the early events of the induction of DNA damage. Herein, we present results of irradiation-induced complex DNA damage measurements using plasmid pBR322 along a typical Proton Treatment Plan at the MedAustron proton and carbon beam therapy facility (energy 137-198 MeV and Linear Energy Transfer (LET) range 1-9 keV/μm), by means of Agarose Gel Electrophoresis and DNA fragmentation using Atomic Force Microscopy (AFM). The induction rate Mbp-1 Gy-1 for each type of damage, single strand breaks (SSBs), double-strand breaks (DSBs), base lesions and non-DSB clusters was measured after irradiations in solutions with varying scavenging capacity containing 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) and coumarin-3-carboxylic acid (C3CA) as scavengers. Our combined results reveal the determining role of LET and Reactive Oxygen Species (ROS) in DNA fragmentation. Furthermore, AFM used to measure apparent DNA lengths provided us with insights into the role of increasing LET in the induction of highly complex DNA damage.
Collapse
Affiliation(s)
- Maria P Souli
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Zacharenia Nikitaki
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | | | | | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece
| | - Panagiotis Kote
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Efstathios P Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Nuclear Physics Institute, Czech Academy of Sciences, Na Truhlářce 39/64, 180 86 Prague, Czech Republic
| |
Collapse
|
18
|
Tong JY, Jiang W, Yu XQ, Wang R, Lu GH, Gao DW, Lv ZW, Li D. Effect of low-dose radiation on thyroid function and the gut microbiota. World J Gastroenterol 2022; 28:5557-5572. [PMID: 36304083 PMCID: PMC9594015 DOI: 10.3748/wjg.v28.i38.5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The thyroid-gut axis has a great influence on the maintenance of human health; however, we know very little about the effects of low-dose ionizing radiation (LDR) on thyroid hormone levels and gut microbiota composition.
AIM To investigate the potential effects of low-dose X-ray radiation to male C57BL/6J mice.
METHODS Peripheral blood was collected for enzyme-linked immunosorbent assay (ELISA), and stool samples were taken for 16S ribosomal RNA (rRNA) gene sequencing after irradiation.
RESULTS We found that LDR caused changes in thyroid stimulating hormone (TSH) levels in the irradiated mice, suggesting a dose-dependent response in thyroid function to ionizing radiation. No changes in the diversity and richness of the gut microbiota were observed in the LDR-exposed group in comparison to the controls. The abundance of Moraxellaceae and Enterobacteriaceae decreased in the LDR-exposed groups compared with the controls, and the Lachnospiraceae abundance increased in a dose-dependent manner in the radiated groups. And the abundances of uncultured_bacterium_g_Acinetobacter, uncultured_bacterium_ o_Mollicutes_RF39, uncultured_bacterium_g_Citrobacter, and uncultured_ bacterium_g_Lactococcus decreased in the radiated groups at the genus level, which showed a correlation with radiation exposure and diagnostic efficacy. Analysis of functional metabolic pathways revealed that biological metabolism was predicted to have an effect on functional activities, such as nucleotide metabolism, carbohydrate metabolism, and glycan biosynthesis and metabolism. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway annotation also suggested that changes in the gut microbiota were related to processing functions, including translation, replication and repair.
CONCLUSION LDR can change thyroid function and the gut microbiota, and changes in the abundances of bacteria are correlated with the radiation dose.
Collapse
Affiliation(s)
- Jun-Yu Tong
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen Jiang
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xia-Qing Yu
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ru Wang
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gang-Hua Lu
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ding-Wei Gao
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan Li
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 200072, Guangdong Province, China
| |
Collapse
|
19
|
Nishri Y, Vatarescu M, Luz I, Epstein L, Dumančić M, Del Mare S, Shai A, Schmidt M, Deutsch L, Den RB, Kelson I, Keisari Y, Arazi L, Cooks T, Domankevich V. Diffusing alpha-emitters radiation therapy in combination with temozolomide or bevacizumab in human glioblastoma multiforme xenografts. Front Oncol 2022; 12:888100. [PMID: 36237307 PMCID: PMC9552201 DOI: 10.3389/fonc.2022.888100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is at present an incurable disease with a 5-year survival rate of 5.5%, despite improvements in treatment modalities such as surgery, radiation therapy, chemotherapy [e.g., temozolomide (TMZ)], and targeted therapy [e.g., the antiangiogenic agent bevacizumab (BEV)]. Diffusing alpha-emitters radiation therapy (DaRT) is a new modality that employs radium-224-loaded seeds that disperse alpha-emitting atoms inside the tumor. This treatment was shown to be effective in mice bearing human-derived GBM tumors. Here, the effect of DaRT in combination with standard-of-care therapies such as TMZ or BEV was investigated. In a viability assay, the combination of alpha radiation with TMZ doubled the cytotoxic effect of each of the treatments alone in U87 cultured cells. A colony formation assay demonstrated that the surviving fraction of U87 cells treated by TMZ in combination with alpha irradiation was lower than was achieved by alpha- or x-ray irradiation as monotherapies, or by x-ray combined with TMZ. The treatment of U87-bearing mice with DaRT and TMZ delayed tumor development more than the monotherapies. Unlike other radiation types, alpha radiation did not increase VEGF secretion from U87 cells in culture. BEV treatment introduced several days after DaRT implantation improved tumor control, compared to BEV or DaRT as monotherapies. The combination was also shown to be superior when starting BEV administration prior to DaRT implantation in large tumors relative to the seed size. BEV induced a decrease in CD31 staining under DaRT treatment, increased the diffusive spread of 224Ra progeny atoms in the tumor tissue, and decreased their clearance from the tumor through the blood. Taken together, the combinations of DaRT with standard-of-care chemotherapy or antiangiogenic therapy are promising approaches, which may improve the treatment of GBM patients.
Collapse
Affiliation(s)
- Yossi Nishri
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Maayan Vatarescu
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ishai Luz
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Lior Epstein
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Radiation Protection Department, Soreq Nuclear Research Center, Yavne, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Mirta Dumančić
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sara Del Mare
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Amit Shai
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | | | - Lisa Deutsch
- Biostatistics Department, BioStats Statistical Consulting Ltd., Maccabim, Israel
| | - Robert B. Den
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- Department of Radiation Oncology, Urology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Itzhak Kelson
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Lior Arazi, ; Tomer Cooks, ; Vered Domankevich,
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- *Correspondence: Lior Arazi, ; Tomer Cooks, ; Vered Domankevich,
| | - Vered Domankevich
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
- *Correspondence: Lior Arazi, ; Tomer Cooks, ; Vered Domankevich,
| |
Collapse
|
20
|
Gheorghiu CC, Ionescu A, Zai MI, Iancu D, Burducea I, Velisa G, Vasile BS, Ianculescu AC, Bobeica M, Popa D, Leca V. Nanoscale Control of Structure and Composition for Nanocrystalline Fe Thin Films Grown by Oblique Angle RF Sputtering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6134. [PMID: 36079515 PMCID: PMC9457537 DOI: 10.3390/ma15176134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The use of Fe films as multi-element targets in space radiation experiments with high-intensity ultrashort laser pulses requires a surface structure that can enhance the laser energy absorption on target, as well as a low concentration and uniform distribution of light element contaminants within the films. In this paper, (110) preferred orientation nanocrystalline Fe thin films with controlled morphology and composition were grown on (100)-oriented Si substrates by oblique angle RF magnetron sputtering, at room temperature. The evolution of films key-parameters, crucial for space-like radiation experiments with organic material, such as nanostructure, morphology, topography, and elemental composition with varying RF source power, deposition pressure, and target to substrate distance is thoroughly discussed. A selection of complementary techniques was used in order to better understand this interdependence, namely X-ray Diffraction, Atomic Force Microscopy, Scanning and Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy and Non-Rutherford Backscattering Spectroscopy. The films featured a nanocrystalline, tilted nanocolumn structure, with crystallite size in the (110)-growth direction in the 15-25 nm range, average island size in the 20-50 nm range, and the degree of polycrystallinity determined mainly by the shortest target-to-substrate distance (10 cm) and highest deposition pressure (10-2 mbar Ar). Oxygen concentration (as impurity) into the bulk of the films as low as 1 at. %, with uniform depth distribution, was achieved for the lowest deposition pressures of (1-3) × 10-3 mbar Ar, combined with highest used values for the RF source power of 125-150 W. The results show that the growth process of the Fe thin film is strongly dependent mainly on the deposition pressure, with the film morphology influenced by nucleation and growth kinetics. Due to better control of film topography and uniform distribution of oxygen, such films can be successfully used as free-standing targets for high repetition rate experiments with high power lasers to produce Fe ion beams with a broad energy spectrum.
Collapse
Affiliation(s)
- Cristina C. Gheorghiu
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Aurelia Ionescu
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Maria-Iulia Zai
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Decebal Iancu
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
- Department of Applied Nuclear Physics, “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Ion Burducea
- Department of Applied Nuclear Physics, “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Gihan Velisa
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
- Department of Applied Nuclear Physics, “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Bogdan S. Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Adelina C. Ianculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Mariana Bobeica
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Daniel Popa
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Victor Leca
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| |
Collapse
|
21
|
Averbeck NB, Barent C, Jakob B, Syzonenko T, Durante M, Taucher-Scholz G. The Ubiquitin Ligase RNF138 Cooperates with CtIP to Stimulate Resection of Complex DNA Double-Strand Breaks in Human G1-Phase Cells. Cells 2022; 11:cells11162561. [PMID: 36010636 PMCID: PMC9406464 DOI: 10.3390/cells11162561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) represent the molecular origin of ionizing-radiation inflicted biological effects. An increase in the ionization density causes more complex, clustered DSBs that can be processed by resection also in G1 phase, where repair of resected DSBs is considered erroneous and may contribute to the increased biological effectiveness of heavy ions in radiotherapy. To investigate the resection regulation of complex DSBs, we exposed G1 cells depleted for different candidate factors to heavy ions or α-particle radiation. Immunofluorescence microscopy was used to monitor the resection marker RPA, the DSB marker γH2AX and the cell-cycle markers CENP-F and geminin. The Fucci system allowed to select G1 cells, cell survival was measured by clonogenic assay. We show that in G1 phase the ubiquitin ligase RNF138 functions in resection regulation. RNF138 ubiquitinates the resection factor CtIP in a radiation-dependent manner to allow its DSB recruitment in G1 cells. At complex DSBs, RNF138′s participation becomes more relevant, consistent with the observation that also resection is more frequent at these DSBs. Furthermore, deficiency of RNF138 affects both DSB repair and cell survival upon induction of complex DSBs. We conclude that RNF138 is a regulator of resection that is influenced by DSB complexity and can affect the quality of DSB repair in G1 cells.
Collapse
Affiliation(s)
- Nicole B. Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Correspondence:
| | - Carina Barent
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 11, 64287 Darmstadt, Germany
| | - Tatyana Syzonenko
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Department of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6–8, 64289 Darmstadt, Germany
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 11, 64287 Darmstadt, Germany
| |
Collapse
|
22
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
23
|
Pompos A, Foote RL, Koong AC, Le QT, Mohan R, Paganetti H, Choy H. National Effort to Re-Establish Heavy Ion Cancer Therapy in the United States. Front Oncol 2022; 12:880712. [PMID: 35774126 PMCID: PMC9238353 DOI: 10.3389/fonc.2022.880712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we attempt to make a case for the establishment of a limited number of heavy ion cancer research and treatment facilities in the United States. Based on the basic physics and biology research, conducted largely in Japan and Germany, and early phase clinical trials involving a relatively small number of patients, we believe that heavy ions have a considerably greater potential to enhance the therapeutic ratio for many cancer types compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing technological developments and with research in physical, biological, immunological, and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier ions can be substantially improved.
Collapse
Affiliation(s)
- Arnold Pompos
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Robert L. Foote,
| | - Albert C. Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Hak Choy
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
24
|
Ma L, Kong F, Sun K, Wang T, Guo T. From Classical Radiation to Modern Radiation: Past, Present, and Future of Radiation Mutation Breeding. Front Public Health 2022; 9:768071. [PMID: 34993169 PMCID: PMC8725632 DOI: 10.3389/fpubh.2021.768071] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation mutation breeding has been used for nearly 100 years and has successfully improved crops by increasing genetic variation. Global food production is facing a series of challenges, such as rapid population growth, environmental pollution and climate change. How to feed the world's enormous human population poses great challenges to breeders. Although advanced technologies, such as gene editing, have provided effective ways to breed varieties, by editing a single or multiple specific target genes, enhancing germplasm diversity through mutation is still indispensable in modern and classical radiation breeding because it is more likely to produce random mutations in the whole genome. In this short review, the current status of classical radiation, accelerated particle and space radiation mutation breeding is discussed, and the molecular mechanisms of radiation-induced mutation are demonstrated. This review also looks into the future development of radiation mutation breeding, hoping to deepen our understanding and provide new vitality for the further development of radiation mutation breeding.
Collapse
Affiliation(s)
- Liqiu Ma
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China.,National Innovation Center of Radiation Application, Beijing, China
| | - Fuquan Kong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China.,National Innovation Center of Radiation Application, Beijing, China
| | - Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangdong, China
| | - Ting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangdong, China
| |
Collapse
|
25
|
Formation of clustered DNA damage in vivo upon irradiation with ionizing radiation: Visualization and analysis with atomic force microscopy. Proc Natl Acad Sci U S A 2022; 119:e2119132119. [PMID: 35324325 PMCID: PMC9060515 DOI: 10.1073/pnas.2119132119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA damage causes loss of or alterations in genetic information, resulting in cell death or mutations. Ionizing radiations produce local, multiple DNA damage sites called clustered DNA damage. In this study, a complete protocol was established to analyze the damage complexity of clustered DNA damage, wherein damage-containing genomic DNA fragments were selectively concentrated via pulldown, and clustered DNA damage was visualized by atomic force microscopy. It was found that X-rays and Fe ion beams caused clustered DNA damage. Fe ion beams also produced clustered DNA damage with high complexity. Fe ion beam–induced complex DNA double-strand breaks (DSBs) containing one or more base lesion(s) near the DSB end were refractory to repair, implying their lethal effects. Clustered DNA damage is related to the biological effects of ionizing radiation. However, its precise yield and complexity (i.e., number of lesions per damaged site) in vivo remain unknown. To better understand the consequences of clustered DNA damage, a method was established to evaluate its yield and complexity in irradiated cells by atomic force microscopy. This was achieved by isolating and concentrating damaged DNA fragments from purified genomic DNA. It was found that X-rays and Fe ion beams caused clustered DNA damage in human TK6 cells, whereas Fenton's reagents did it less efficiently, highlighting clustered DNA damage as a signature of ionizing radiation. Moreover, Fe ion beams produced clustered DNA damage with high complexity. Remarkably, Fe ion beam–induced complex DNA double-strand breaks (DSBs) containing one or more base lesion(s) near the DSB end were refractory to repair, implying the lethal effect of complex DSBs.
Collapse
|
26
|
Li Y, Li X, Yang J, Wang S, Tang M, Xia J, Gao Y. Flourish of Proton and Carbon Ion Radiotherapy in China. Front Oncol 2022; 12:819905. [PMID: 35237518 PMCID: PMC8882681 DOI: 10.3389/fonc.2022.819905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proton and heavy ion therapy offer superior relative biological effectiveness (RBE) in the treatment of deep-seated tumors compared with conventional photon radiotherapy due to its Bragg-peak feature of energy deposition in organs. Many proton and carbon ion therapy centers are active all over the world. At present, five particle radiotherapy institutes have been built and are receiving patient in China, mainly including Wanjie Proton Therapy Center (WPTC), Shanghai Proton Heavy Ion Center (SPHIC), Heavy Ion Cancer Treatment Center (HIMM), Chang Gung Memorial Hospital (CGMH), and Ruijin Hospital affiliated with Jiao Tong University. Many cancer patients have benefited from ion therapy, showing unique advantages over surgery and chemotherapy. By the end of 2020, nearly 8,000 patients had been treated with proton, carbon ion or carbon ion combined with proton therapy. So far, there is no systemic review for proton and carbon ion therapy facility and clinical outcome in China. We reviewed the development of proton and heavy ion therapy, as well as providing the representative clinical data and future directions for particle therapy in China. It has important guiding significance for the design and construction of new particle therapy center and patients’ choice of treatment equipment.
Collapse
Affiliation(s)
- Yue Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Yue Li,
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiancheng Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Sicheng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meitang Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawen Xia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Huizhou Research Center of Ion Science, Chinese Academy of Sciences, Huizhou, China
| | - Yunzhe Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Cortés-Sánchez JL, Callant J, Krüger M, Sahana J, Kraus A, Baselet B, Infanger M, Baatout S, Grimm D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021; 10:biomedicines10010025. [PMID: 35052703 PMCID: PMC8773191 DOI: 10.3390/biomedicines10010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, we discuss the current state of knowledge in cancer research under real and simulated microgravity conditions and point out further research directions in this field. Outer space is an extremely hostile environment for human life, with radiation, microgravity, and vacuum posing significant hazards. Although the risk for cancer in astronauts is not clear, microgravity plays a thought-provoking role in the carcinogenesis of normal and cancer cells, causing such effects as multicellular spheroid formation, cytoskeleton rearrangement, alteration of gene expression and protein synthesis, and apoptosis. Furthermore, deleterious effects of radiation on cells seem to be accentuated under microgravity. Ground-based facilities have been used to study microgravity effects in addition to laborious experiments during parabolic flights or on space stations. Some potential 'gravisensors' have already been detected, and further identification of these mechanisms of mechanosensitivity could open up ways for therapeutic influence on cancer growth and apoptosis. These novel findings may help to find new effective cancer treatments and to provide health protection for humans on future long-term spaceflights and exploration of outer space.
Collapse
Affiliation(s)
- José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
| | - Jonas Callant
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
- Department Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
28
|
Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021; 287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The median survival for this disease is approximately 15 months, and despite all the available treatment strategies employed, it remains an incurable disease. Preclinical and clinical research have shown that the resistance process related to DNA damage repair pathways, glioma stem cells, blood-brain barrier selectivity, and dose-limiting toxicity of systemic treatment leads to poor clinical outcomes. In this context, the advent of drug delivery systems associated with localized treatment seems to be a promising and versatile alternative to overcome the failure of the current treatment approaches. In order to bypass therapeutic tumor resistance mechanisms, more effective combinatorial therapies should be identified, such as the use of cytotoxic drugs combined with the inhibition of DNA damage response (DDR)-related targets. Additionally, critical reasoning about the delivery approach and administration route in brain tumors treatment innovation is essential. The outcomes of future experimental studies regarding the association of delivery systems, alternative treatment routes, and DDR targets are expected to lead to the development of refined therapeutic interventions. Novel therapeutic approaches could improve the life's quality of glioblastoma patients and increase their survival rate.
Collapse
Affiliation(s)
- A M Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - J G Henn
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - L Steffens Reinhardt
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - D J Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
29
|
Kaźmierczak-Barańska J, Boguszewska K, Szewczuk M, Karwowski BT. Effects of 5',8'-Cyclo-2'-Deoxypurines on the Base Excision Repair of Clustered DNA Lesions in Nuclear Extracts of the XPC Cell Line. Cells 2021; 10:cells10113254. [PMID: 34831476 PMCID: PMC8618216 DOI: 10.3390/cells10113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Clustered DNA lesions (CDL) containing 5′,8-cyclo-2′-deoxypurines (cdPus) are an example of extensive abnormalities occurring in the DNA helix and may impede cellular repair processes. The changes in the efficiency of nuclear base excision repair (BER) were investigated using (a) two cell lines, one of the normal skin fibroblasts as a reference (BJ) and the second from Xeroderma pigmentosum patients’ skin (XPC), and (b) synthetic oligonucleotides with single- and double-stranded CDL (containing 5′,8-cyclo-2′-deoxyadenosine (cdA) and the abasic (AP) site at various distances between lesions). The nuclear BER has been observed and the effect of both cdA isomers (5′R and 5′S) presence in the DNA was tested. CdPus affected the repair of the second lesion within the CDL. The BER system more efficiently processed damage in the vicinity of the ScdA isomer and changes located in the 3′-end direction for dsCDL and in the 5′-end direction for ssCDL. The presented study is the very first investigation of the repair processes of the CDL containing cdPu considering cells derived from a Xeroderma pigmentosum patient.
Collapse
|
30
|
Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021; 11:749496. [PMID: 34733787 PMCID: PMC8558533 DOI: 10.3389/fonc.2021.749496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, radiation medicine is currently focused on the precise delivery of highly conformal radiation treatments. However, the tremendous developments in targeted therapy are yet to fulfill their full promise and arguably have the potential to dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly profile tumors both at diagnosis and at relapse and the co-incident progress in the field of radiogenomics could potentially pave the way for a more personalized approach to radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials to date have shown an improved clinical outcome when combining targeted agents with radiation therapy, however, most have failed to show benefit, which is arguably due to limited preclinical data. Several key molecular pathways could theoretically enhance therapeutic effect of radiation when rationally targeted either by directly enhancing tumor cell kill or indirectly through the abscopal effect of radiation when combined with novel immunotherapies. The timing of combining molecular targeted therapy with radiation is also important to determine and could greatly affect the outcome depending on which pathway is being inhibited.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nayela N Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ryan Rhome
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
31
|
Downregulation of KIF2C and TEKT2 is associated with male infertility and testicular carcinoma. Aging (Albany NY) 2021; 13:22898-22911. [PMID: 34591790 PMCID: PMC8544317 DOI: 10.18632/aging.203583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Background: Genetic factors are important in spermatogenesis and fertility maintenance, and are potentially significant biomarkers for the early detection of infertility. However, further understanding of these biological processes is required. Methods: In the present study, we sought to identify associated genes by reanalyzing separate studies from Gene Expression Omnibus datasets (GSE45885, GSE45887 and GSE9210) and validation datasets (GSE4797, 145467, 108886, 6872). The differential genes were used the limma package in R language. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by the clusterprofier package. The protein-protein interaction network was constructed by the STRING database. The interaction between mRNA and TF was predicted by miRWalk web. At last, The Cancer Genome Atlas data were used to identify hub gene expression levels in GEPIA web. Results: The results showed that 27 shared genes associated with spermatogenesis. We effectively screen out two genes (KIF2C and TEKT2) and both validated by GSE4797, 145467, 108886 and 6872. Among 27 shared genes, KIF2C and TEKT2 both down-regulated in spermatogenesis. The network of TF-miRNA-target gene was established, we found KIF2C-miRNAs (has-miR-3154, 6075, 6760-5p, 1251-5p, 186-sp)-TFs (EP300, SP1) might work in spermatogenesis. Conclusions: Our study might help to improve our understanding of the mechanisms in spermatogenesis and provide diagnostic biomarkers and therapeutics targets.
Collapse
|
32
|
Liang Y, Li S, Song X, Zhou D, Zhi D, Hao B, Liu Y, Liang J, Wang Z. Swainsonine producing performance of Alternaria oxytropis was improved by heavy-ion mutagenesis technology. FEMS Microbiol Lett 2021; 368:6263639. [PMID: 33942869 DOI: 10.1093/femsle/fnab047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Swainsonine, an indolizidine alkaloid, is a promising anti-tumorigenic compound. Biological production of swainsonine was prospective, but the low swainsonine yield of wild type Alternaria oxytropis limited its production on a large scale. In present work, a stable A. oxytropis mutant UO1 with swanisonine yield of 14.84% higher than the wild-type strain was successfully obtained after heavy-ion irradiation. The A. oxytropis mutant UO1 and original wild-type strain were futher evaluated for SW concentrations under different factors. Results showed that the optimum culture temperature was 25°C. The optimum initial medium pH was 6.5 and the optimum inoculum size was 2 mL per 200 mL. Addition of the biosynthetic precursor L-pipecolic acids and L-lysine appropriately could increase the SW synthesis. These findings provided a theoretical basis and scientific data for the industrial production of swainsonine.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, PR China
| | - Shangwei Li
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, PR China
| | - Xiangdong Song
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, PR China
| | - Deshun Zhou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, PR China
| | - Dejuan Zhi
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, PR China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, PR China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, PR China
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Qilihe District, Lanzhou 730050, PR China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, PR China
| |
Collapse
|
33
|
Chan CC, Hsiao YY. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J Pers Med 2021; 11:jpm11040286. [PMID: 33917956 PMCID: PMC8068342 DOI: 10.3390/jpm11040286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play an essential role in radiation-induced indirect actions. In terms of DNA damage, double strand breaks (DSBs) have the greatest effects on the repair of DNA damage, cell survival and transformation. This study evaluated the biological effects of the presence of ROS and oxygen on DSB induction and mutation frequency. The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of 62 MeV therapeutic proton beams and 3.31 MeV helium ions were calculated using Monte Carlo damage simulation (MCDS) software. Monte Carlo excision repair (MCER) simulations were used to calculate the repair outcomes (mutation frequency). The RBE values of proton beams decreased to 0.75 in the presence of 0.4 M dimethylsulfoxide (DMSO) and then increases to 0.9 in the presence of 2 M DMSO while the RBE values of 3.31 MeV helium ions increased from 2.9 to 5.7 (0–2 M). The mutation frequency of proton beams also decreased from 0.008–0.065 to 0.004–0.034 per cell per Gy by the addition of 2 M DMSO, indicating that ROS affects both DSB induction and repair outcomes. These results show that the combined use of DMSO in normal tissues and an increased dose in tumor regions increases treatment efficiency.
Collapse
Affiliation(s)
- Chun-Chieh Chan
- Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022 (ext. 12010)
| |
Collapse
|
34
|
Klein PM, Parihar VK, Szabo GG, Zöldi M, Angulo MC, Allen BD, Amin AN, Nguyen QA, Katona I, Baulch JE, Limoli CL, Soltesz I. Detrimental impacts of mixed-ion radiation on nervous system function. Neurobiol Dis 2021; 151:105252. [PMID: 33418069 DOI: 10.1016/j.nbd.2021.105252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.
Collapse
Affiliation(s)
- Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America.
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - Miklós Zöldi
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Amal N Amin
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States of America
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America; Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA 94305, United States of America
| |
Collapse
|
35
|
Pariset E, Penninckx S, Kerbaul CD, Guiet E, Macha AL, Cekanaviciute E, Snijders AM, Mao JH, Paris F, Costes SV. 53BP1 Repair Kinetics for Prediction of In Vivo Radiation Susceptibility in 15 Mouse Strains. Radiat Res 2020; 194:485-499. [PMID: 32991727 DOI: 10.1667/rade-20-00122.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 11/03/2022]
Abstract
We present a novel mathematical formalism to predict the kinetics of DNA damage repair after exposure to both low- and high-LET radiation (X rays; 350 MeV/n 40Ar; 600 MeV/n 56Fe). Our method is based on monitoring DNA damage repair protein 53BP1 that forms radiation-induced foci (RIF) at locations of DNA double-strand breaks (DSB) in the nucleus and comparing its expression in primary skin fibroblasts isolated from 15 mice strains. We previously reported strong evidence for clustering of nearby DSB into single repair units as opposed to the classic "contact-first" model where DSB are considered immobile. Here we apply this clustering model to evaluate the number of remaining RIF over time. We also show that the newly introduced kinetic metrics can be used as surrogate biomarkers for in vivo radiation toxicity, with potential applications in radiotherapy and human space exploration. In particular, we observed an association between the characteristic time constant of RIF repair measured in vitro and survival levels of immune cells collected from irradiated mice. Moreover, the speed of DNA damage repair correlated not only with radiation-induced cellular survival in vivo, but also with spontaneous cancer incidence data collected from the Mouse Tumor Biology database, suggesting a relationship between the efficiency of DSB repair after irradiation and cancer risk.
Collapse
Affiliation(s)
- Eloise Pariset
- Universities Space Research Association (USRA), Columbia, Maryland 21046.,Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | - Sébastien Penninckx
- Namur Research Institute for Life Science, University of Namur, 5000 Namur, Belgium.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Elodie Guiet
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - François Paris
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France 44007
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| |
Collapse
|
36
|
Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells. Sci Rep 2020; 10:21357. [PMID: 33288855 PMCID: PMC7721800 DOI: 10.1038/s41598-020-78354-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by photon irradiation are the most deleterious damage for cancer cells and their efficient repair may contribute to radioresistance, particularly in hypoxic conditions. Carbon ions (C-ions) act independently of the oxygen concentration and trigger complex- and clustered-DSBs difficult to repair. Understanding the interrelation between hypoxia, radiation-type, and DNA-repair is therefore essential for overcoming radioresistance. The DSBs signaling and the contribution of the canonical non-homologous end-joining (NHEJ-c) and homologous-recombination (HR) repair pathways were assessed by immunostaining in two cancer-stem-cell (CSCs) and non-CSCs HNSCC cell lines. Detection and signaling of DSBs were lower in response to C-ions than photons. Hypoxia increased the decay-rate of the detected DSBs (γH2AX) in CSCs after photons and the initiation of DSB repair signaling (P-ATM) in CSCs and non-CSCs after both radiations, but not the choice of DSB repair pathway (53BP1). Additionally, hypoxia increased the NHEJ-c (DNA-PK) and the HR pathway (RAD51) activation only after photons. Furthermore, the involvement of the HR seemed to be higher in CSCs after photons and in non-CSCs after C-ions. Taken together, our results show that C-ions may overcome the radioresistance of HNSCC associated with DNA repair, particularly in CSCs, and independently of a hypoxic microenvironment.
Collapse
|
37
|
Nikitaki Z, Pariset E, Sudar D, Costes SV, Georgakilas AG. In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead. Cancers (Basel) 2020; 12:E3288. [PMID: 33172046 PMCID: PMC7694657 DOI: 10.3390/cancers12113288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Complexity of DNA damage is considered currently one if not the primary instigator of biological responses and determinant of short and long-term effects in organisms and their offspring. In this review, we focus on the detection of complex (clustered) DNA damage (CDD) induced for example by ionizing radiation (IR) and in some cases by high oxidative stress. We perform a short historical perspective in the field, emphasizing the microscopy-based techniques and methodologies for the detection of CDD at the cellular level. We extend this analysis on the pertaining methodology of surrogate protein markers of CDD (foci) colocalization and provide a unique synthesis of imaging parameters, software, and different types of microscopy used. Last but not least, we critically discuss the main advances and necessary future direction for the better detection of CDD, with important outcomes in biological and clinical setups.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| | - Eloise Pariset
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA
| | - Damir Sudar
- Life Sciences Department, Quantitative Imaging Systems LLC, Portland, OR 97209, USA;
| | - Sylvain V. Costes
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| |
Collapse
|
38
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
39
|
Comparison of High- and Low-LET Radiation-Induced DNA Double-Strand Break Processing in Living Cells. Int J Mol Sci 2020; 21:ijms21186602. [PMID: 32917044 PMCID: PMC7555951 DOI: 10.3390/ijms21186602] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
High-linear-energy-transfer (LET) radiation is more lethal than similar doses of low-LET radiation types, probably a result of the condensed energy deposition pattern of high-LET radiation. Here, we compare high-LET α-particle to low-LET X-ray irradiation and monitor double-strand break (DSB) processing. Live-cell microscopy was used to monitor DNA double-strand breaks (DSBs), marked by p53-binding protein 1 (53BP1). In addition, the accumulation of the endogenous 53BP1 and replication protein A (RPA) DSB processing proteins was analyzed by immunofluorescence. In contrast to α-particle-induced 53BP1 foci, X-ray-induced foci were resolved quickly and more dynamically as they showed an increase in 53BP1 protein accumulation and size. In addition, the number of individual 53BP1 and RPA foci was higher after X-ray irradiation, while focus intensity was higher after α-particle irradiation. Interestingly, 53BP1 foci induced by α-particles contained multiple RPA foci, suggesting multiple individual resection events, which was not observed after X-ray irradiation. We conclude that high-LET α-particles cause closely interspaced DSBs leading to high local concentrations of repair proteins. Our results point toward a change in DNA damage processing toward DNA end-resection and homologous recombination, possibly due to the depletion of soluble protein in the nucleoplasm. The combination of closely interspaced DSBs and perturbed DNA damage processing could be an explanation for the increased relative biological effectiveness (RBE) of high-LET α-particles compared to X-ray irradiation.
Collapse
|
40
|
Filippi L, Chiaravalloti A, Schillaci O, Bagni O. The potential of PSMA-targeted alpha therapy in the management of prostate cancer. Expert Rev Anticancer Ther 2020; 20:823-829. [PMID: 32820953 DOI: 10.1080/14737140.2020.1814151] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Alpha emitters present several advantages for cancer therapy. The radiopharmaceutical 223Ra-dichloride has been recently introduced for the targeted alpha therapy (TAT) of metastastic castration-resistant prostate cancer (mCRPC). However, since 223Ra-dichloride targets only skeletal lesions, its use in clinical practice is recommended only in subjects without visceral metastases. To overcome this, several efforts have been made to develop radiopharmaceuticals suitable for TAT and specifically directed toward the biomarker prostate specific membrane antigen (PSMA), overexpressed by both skeletal and visceral metastases from mCRPC. AREAS COVERED The radiobiological principles concerning TAT applications are covered, with particular emphasis on its pros and cons, especially in comparison with beta-emitter radionuclide therapy. Furthermore, the role of PSMA as a theranostic target for imaging and therapy is reviewed. Lastly, the pre-clinical and clinical applications of TAT through 225Actinium (225AC) and 213Bismuth (213Bi) are discussed. EXPERT OPINION PSMA-based TAT holds the promise of becoming a powerful tool for the management of mCRPC. Nevertheless, several issues have still to be addressed, especially concerning TAT toxicity. Furthermore, several efforts have to be made for identifying the more adequate alpha-emitter (225Ac vs 213Bi) with a view to the patient's tailored therapeutic approach.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital , Latina, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata , Rome, Italy.,IRCCS Neuromed , Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata , Rome, Italy.,IRCCS Neuromed , Pozzilli, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital , Latina, Italy
| |
Collapse
|
41
|
Kuznetsova EA, Sirota NP, Mitroshina IY, Pikalov VA, Smirnova EN, Rozanova OM, Glukhov SI, Sirota TV, Zaichkina SI. DNA damage in blood leukocytes from mice irradiated with accelerated carbon ions with an energy of 450 MeV/nucleon. Int J Radiat Biol 2020; 96:1245-1253. [DOI: 10.1080/09553002.2020.1807640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elena A. Kuznetsova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Nikolay P. Sirota
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Yu. Mitroshina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir A. Pikalov
- Institute of High Energy Physics of the National Research Center ‘Kurchatov Institute’, Protvino, Russia
| | - Elena N. Smirnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Olga M. Rozanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Sergei I. Glukhov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Tatyana V. Sirota
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Svetlana I. Zaichkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
42
|
Giovanetti A, Tortolici F, Rufini S. Why Do the Cosmic Rays Induce Aging? Front Physiol 2020; 11:955. [PMID: 32903447 PMCID: PMC7434975 DOI: 10.3389/fphys.2020.00955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing duration of space missions involves a progressively higher exposure of astronauts to cosmic rays, whose most hazardous component is made up of High-Atomic number and High-Energy (HZE) ions. HZE ions interact along their tracks with biological molecules inducing changes on living material qualitatively different from that observed after irradiation for therapeutic purposes or following nuclear accidents. HZE ions trigger in cells different responses initialized by DNA damage and mitochondria dysregulation, which cause a prolonged state of sterile inflammation in the tissues. These cellular phenomena may explain why spending time in space was found to cause the onset of a series of diseases normally related to aging. These changes that mimic aging but take place more quickly make space flights also an opportunity to study the mechanisms underlying aging. In this short review, we describe the biological mechanisms underlying cell senescence and aging; the peculiar characteristics of HZE ions, their interaction with living matter and the effects on the organism; the key role of mitochondria in HZE ion-induced health effects and aging-related phenomena.
Collapse
Affiliation(s)
- Anna Giovanetti
- ENEA, Department of Energy and Sustainable Economic, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Rufini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
43
|
Lerch S, Berthold S, Ziemann F, Dreffke K, Subtil FSB, Senger Y, Jensen A, Engenhart-Cabillic R, Dikomey E, Wittig A, Eberle F, Schötz U. HPV-positive HNSCC cell lines show strongly enhanced radiosensitivity after photon but not after carbon ion irradiation. Radiother Oncol 2020; 151:134-140. [PMID: 32717362 DOI: 10.1016/j.radonc.2020.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE HPV positive (pos.) HNSCC cells are significantly more radiosensitive to photon irradiation as compared to HPV negative (neg.) cells. Functionally, this is considered to result from a reduced DSB repair capacity. It was now tested, whether such a difference is also observed when using carbon ion (12C) irradiation. MATERIAL AND METHODS Five HPV pos. and five HPV neg. HNSCC cell lines were irradiated with photons or 12C-ions using 2D or 3D cell culture conditions. Clonogenic survival was determined by colony formation assay and DSB repair by immunofluorescence using co-staining of γH2AX and 53BP1 foci. RESULTS The pronounced difference in radiosensitivity known for these two entities when exposed to photons in 2D cell culture, was reduced when treated under 3D conditions. Irradiation with 12C-ions strongly enhanced cell killing, whereby increase was more pronounced for the HPV neg. when compared to the HPV pos. cell line (RBE = 2.81 vs. 2.14). As a consequence, after 12C-irradiation clonogenic survival was almost identical for the two entities as was demonstrated for all cell lines at a dose of 3 Gy. In line with this, the significant difference in DSB repair capacity between HPV pos. and neg. HNSCC cells, as seen after photon irradiation, was abrogated after 12C-irradiation. CONCLUSION While HPV pos. cells are significantly more radiosensitive to photons than HPV neg. cells, no significant difference was seen after 12C-irradiation. This needs to be considered when planning new clinical protocols for the treatment of HPV neg. and pos. tumors with 12C-ions.
Collapse
Affiliation(s)
- Stefan Lerch
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany
| | - Sophie Berthold
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany
| | - Frank Ziemann
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany
| | - Kristin Dreffke
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany
| | | | | | - Alexandra Jensen
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany
| | | | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany; Laboratory of Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Friedrich-Schiller-University, Germany
| | - Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany
| | - Ulrike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, Germany.
| |
Collapse
|
44
|
Martinez S, Brandl A, Leary D. Monte Carlo Evaluation of Dose Enhancement Due to CuATSM or GNP Uptake in Hypoxic Environments with External Beam Radiation. Int J Nanomedicine 2020; 15:3719-3727. [PMID: 32547024 PMCID: PMC7261688 DOI: 10.2147/ijn.s241756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Most solid tumors contain areas of chronic hypoxia. Gold nanoparticles (GNP) have been extensively explored as enhancers of external beam radiation; however, GNP have lower cellular uptake in hypoxic conditions than under normoxic conditions. Conversely, the chelator diacetyl-bis (N(4)-methylthiosemicarbazonato) copper II (CuATSM) deposits copper in hypoxic regions, allowing for dose enhancement in previously inaccessible regions. Methods External beam sources with different spectra were modeled using a Monte Carlo code (EGSnrc) to evaluate radioenhancement in a layered model with metal solutions. Also considered was a simple concentric layered tumor model containing a hypoxic core with each layer varying in concentrations of either copper or gold according to hypoxic conditions. Low energy external photon beams were then projected onto the tumor to determine the regional dose enhancement dependent on hypoxic conditions. Results Dose enhancement was more pronounced for beam spectra with low energy photons (225 kVp) and was highly dependent on metal concentrations from 0.1 g/kg to 100 g/kg. Increasing the depth of the metallic solution layer from 1 cm to 6 cm decreased dose enhancement. A small increase in the dose enhancement factor (DEF) of 1.01 was predicted in the hypoxic regions of the tumor model with commonly used diagnostic concentrations of CuATSM. At threshold concentrations of toxic subcutaneous injection levels, the DEF increases to 1.02, and in simulation of a high concentration of CuATSM, the DEF increased to 1.07. High concentration treatments are also considered, as well as synergistic combinations of GNP/CuATSM treatments. Conclusion The research presented is novel utilization of CuATSM to target hypoxic regions and act as a radiosensitizer by the nature of its ability to deposit copper metal in reduced tissue. We demonstrate CuATSM at high concentrations with low energy photons can increase dose deposition in hypoxic tumor regions.
Collapse
Affiliation(s)
- Stephen Martinez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alexander Brandl
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
45
|
Corroyer-Dulmont A, Valable S, Falzone N, Frelin-Labalme AM, Tietz O, Toutain J, Soto MS, Divoux D, Chazalviel L, Pérès EA, Sibson NR, Vallis KA, Bernaudin M. VCAM-1 targeted alpha-particle therapy for early brain metastases. Neuro Oncol 2020; 22:357-368. [PMID: 31538194 PMCID: PMC7162423 DOI: 10.1093/neuonc/noz169] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Brain metastases (BM) develop frequently in patients with breast cancer. Despite the use of external beam radiotherapy (EBRT), the average overall survival is short (6 months from diagnosis). The therapeutic challenge is to deliver molecularly targeted therapy at an early stage when relatively few metastatic tumor cells have invaded the brain. Vascular cell adhesion molecule 1 (VCAM-1), overexpressed by nearby endothelial cells during the early stages of BM development, is a promising target. The aim of this study was to investigate the therapeutic value of targeted alpha-particle radiotherapy, combining lead-212 (212Pb) with an anti-VCAM-1 antibody (212Pb-αVCAM-1). METHODS Human breast carcinoma cells that metastasize to the brain, MDA-231-Br-GFP, were injected into the left cardiac ventricle of nude mice. Twenty-one days after injection, 212Pb-αVCAM-1 uptake in early BM was determined in a biodistribution study and systemic/brain toxicity was evaluated. Therapeutic efficacy was assessed using MR imaging and histology. Overall survival after 212Pb-αVCAM-1 treatment was compared with that observed after standard EBRT. RESULTS 212Pb-αVCAM-1 was taken up into early BM with a tumor/healthy brain dose deposition ratio of 6 (5.52e108 and 0.92e108) disintegrations per gram of BM and healthy tissue, respectively. MRI analyses showed a statistically significant reduction in metastatic burden after 212Pb-αVCAM-1 treatment compared with EBRT (P < 0.001), translating to an increase in overall survival of 29% at 40 days post prescription (P < 0.01). No major toxicity was observed. CONCLUSIONS The present investigation demonstrates that 212Pb-αVCAM-1 specifically accumulates at sites of early BM causing tumor growth inhibition.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Samuel Valable
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | | | | | - Ole Tietz
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jérôme Toutain
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Manuel Sarmiento Soto
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Didier Divoux
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Laurent Chazalviel
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Elodie A Pérès
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Katherine A Vallis
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Myriam Bernaudin
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| |
Collapse
|
46
|
McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020; 12:E381. [PMID: 32045996 PMCID: PMC7072278 DOI: 10.3390/cancers12020381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. Methods: We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit (LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able to identify distinct biological signatures associating specific ions with specific biological responses due to radiation exposure in space. For example, we discovered changes in mitochondrial function, ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a summary of how the GeneLab's rich database of omics experiments with animal models can be used to generate novel hypotheses to better understand human health risks from GCR exposures.
Collapse
Affiliation(s)
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Jack Miller
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Willian A. da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Komal S. Rathi
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Deanne Taylor
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA;
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| |
Collapse
|
47
|
Differential Repair Protein Recruitment at Sites of Clustered and Isolated DNA Double-Strand Breaks Produced by High-Energy Heavy Ions. Sci Rep 2020; 10:1443. [PMID: 31996740 PMCID: PMC6989695 DOI: 10.1038/s41598-020-58084-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/06/2020] [Indexed: 01/17/2023] Open
Abstract
DNA double-strand break (DSB) repair is crucial to maintain genomic stability. The fidelity of the repair depends on the complexity of the lesion, with clustered DSBs being more difficult to repair than isolated breaks. Using live cell imaging of heavy ion tracks produced at a high-energy particle accelerator we visualised simultaneously the recruitment of different proteins at individual sites of complex and simple DSBs in human cells. NBS1 and 53BP1 were recruited in a few seconds to complex DSBs, but in 40% of the isolated DSBs the recruitment was delayed approximately 5 min. Using base excision repair (BER) inhibitors we demonstrate that some simple DSBs are generated by enzymatic processing of base damage, while BER did not affect the complex DSBs. The results show that DSB processing and repair kinetics are dependent on the complexity of the breaks and can be different even for the same clastogenic agent.
Collapse
|
48
|
Cornforth MN. Occam's broom and the dirty DSB: cytogenetic perspectives on cellular response to changes in track structure and ionization density. Int J Radiat Biol 2020; 97:1099-1108. [PMID: 31971454 DOI: 10.1080/09553002.2019.1704302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Given equal doses, it is well-known that densely ionizing radiations are more potent in causing a number of biological effects compared to sparsely ionizing radiations, such as x- or gamma rays. According to classical models of radiation action, this results from differences in the spatial distribution of lesions along charged particle tracks. In recent years investigators have been barraged with the alternative narrative that this is instead due to 'qualitative' differences in the types of molecular lesions that each type of radiation produces. The present review discusses, mainly from a cytogenetic perspective, the merits and shortcomings of these seemingly contradictory viewpoints. There may be a kernel of truth to the idea that qualitative differences in the types of molecular lesions produced at the nanometer level affect RBE/LET relationships, but to ignore the fact that such differences result from longer-range spatial distributions of lesions produced along charged particle tracks is an unjustifiably narrow stance tantamount to employing Occam's Broom. Not only are such spatial considerations indispensable in explaining the impact of ionization density upon higher-order biological endpoints, particularly chromosome aberrations, the explanations they provide render arguments based principally on the quality of IR damage largely superfluous.
Collapse
Affiliation(s)
- Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
49
|
Zhu S, Paydar M, Wang F, Li Y, Wang L, Barrette B, Bessho T, Kwok BH, Peng A. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair. eLife 2020; 9:53402. [PMID: 31951198 PMCID: PMC7012618 DOI: 10.7554/elife.53402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.
Collapse
Affiliation(s)
- Songli Zhu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Feifei Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yanqiu Li
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| | - Benoit Barrette
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, United States
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer (IRIC), Département de médecine, Université de Montréal, Montréal, Canada
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Omaha, United States
| |
Collapse
|
50
|
McFadden CH, Rahmanian S, Flint DB, Bright SJ, Yoon DS, O'Brien DJ, Asaithamby A, Abdollahi A, Greilich S, Sawakuchi GO. Isolation of time-dependent DNA damage induced by energetic carbon ions and their fragments using fluorescent nuclear track detectors. Med Phys 2019; 47:272-281. [PMID: 31677156 DOI: 10.1002/mp.13897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE High energetic carbon (C-) ion beams undergo nuclear interactions with tissue, producing secondary nuclear fragments. Thus, at depth, C-ion beams are composed of a mixture of different particles with different linear energy transfer (LET) values. We developed a technique to enable isolation of DNA damage response (DDR) in mixed radiation fields using beam line microscopy coupled with fluorescence nuclear track detectors (FNTDs). METHODS We imaged live cells on a coverslip made of FNTDs right after C-ion, proton or photon irradiation using an in-house built confocal microscope placed in the beam path. We used the FNTD to link track traversals with DNA damage and separated DNA damage induced by primary particles from fragments. RESULTS We were able to spatially link physical parameters of radiation tracks to DDR in live cells to investigate spatiotemporal DDR in multi-ion radiation fields in real time, which was previously not possible. We demonstrated that the response of lesions produced by the high-LET primary particles associates most strongly with cell death in a multi-LET radiation field, and that this association is not seen when analyzing radiation induced foci in aggregate without primary/fragment classification. CONCLUSIONS We report a new method that uses confocal microscopy in combination with FNTDs to provide submicrometer spatial-resolution measurements of radiation tracks in live cells. Our method facilitates expansion of the radiation-induced DDR research because it can be used in any particle beam line including particle therapy beam lines. CATEGORY Biological Physics and Response Prediction.
Collapse
Affiliation(s)
- Conor H McFadden
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shirin Rahmanian
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany
| | - David B Flint
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David S Yoon
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel J O'Brien
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amir Abdollahi
- Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Ion-Beam Therapy Center, Heidelberg University Hospital, 69120, Heidelberg, Germany.,German Cancer Consortium, 69120, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Steffen Greilich
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, 69120, Heidelberg, Germany
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| |
Collapse
|