1
|
Sara JDS, Pillai JJ, Lerman LO, Lerman A, Welker K. Cardiovascular risk factors are associated with cerebrovascular reactivity in young adults. Int J Cardiol 2025; 424:133021. [PMID: 39894316 DOI: 10.1016/j.ijcard.2025.133021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Endothelial dysfunction represents the earliest detectable stage of atherosclerosis, is associated with an increased risk of cardiovascular events, and predicts cardiovascular disease (CVD) more effectively than traditional cardiovascular risk factors. Cerebrovascular reactivity (CVR) provides an index of endothelial function in the brain. Poor CVR is associated with stroke, cerebral small vessel disease, dementia, and even coronary artery disease. Traditional CVD risk factors are associated with low CVR in patients with known CVD and in older cohorts. However, the relationship between cardiovascular risk profile and reduced CVR in young adults who do not yet have CVD is uncertain. We hypothesized that in young adults undergoing routine clinical fMRI examinations for non-vascular disease low CVR measures would be associated with increased cardiovascular risk factors. METHODS This cross-sectional study included adults with epilepsy undergoing a 3-Tesla fMRI scan of the brain for mapping of eloquent cortex with a "breath-hold task" to facilitate pre-operative planning for epilepsy-related surgery. Individuals with intracranial masses and those with baseline CVD were excluded. The task consisted of 5½, 20-s blocks of normal breathing interspersed with 20-s blocks of continuous breath holding. In breath hold fMRI scans, a voxel-wise comparison of brain T2 signal to an expected hemodynamic response curve is used to generate maps of voxel-wise t-statistics, indicating the probability that blood flow within a specific voxel had increased in response to changes in blood carbon dioxide levels. Using an axial slice 8 mm superior to the corpus callosum, a mean cerebral t-statistic was calculated for the slice as a comparative global measure of CVR in each patient. We retrospectively reviewed the charts of all individuals to characterize their clinical profile at the time of the fMRI. Based on the distribution of mean t-statistic values the sample was divided into two groups: high t-statistic ("normal reactivity") and low t-statistic value ("abnormal reactivity"). The distribution of cardiovascular risk factors was then compared across groups. RESULTS Between January 2014 and December 2023, 76 individuals underwent brain fMRI employing a "breath hold task" with suitable image quality for the current analysis (mean ± SD age, 35.46 ± 12.09 yrs.; 31.6 % female). Mean ± SD global CVR T-statistic was 3.97 ± 1.62. Low CVR was defined as a mean T-statistic ≤4.2 (n = 44, 57.9 %). Individuals with abnormal CVR were older (age: 45.1 ± 10.3 vs. 27.0 ± 3.4 yrs., p < 0.001), had a higher frequency of hypertension (31.8 % vs. 14.3 %, p = 0.0069) and hyperlipidemia (18.2 % vs. 3.1 %, p = 0.0449), and had higher systolic (123.5 ± 13.2 vs. 116.9 ± 12.2 mmHg, p = 0.0282) and diastolic blood pressures (77.9 ± 11.8 vs. 72.2 ± 8.9, p = 0.0141). Age, systolic blood pressure and hyperlipidemia were significantly associated with abnormal CVR in univariable and multivariable analyses (age, increase by 10 years OR: 2.00, 95 % CI 1.40-2.78, p = 0.0078; hyperlipidemia OR: 8.54, 95 % CI 1.07-184.9, p = 0.0049, and systolic blood pressure (OR for an increase in 10 mmHg: 1.57, 95 % CI 1.10-2.10, p = 0.0084). CONCLUSION Traditional cardiovascular risk factors, specifically age, systolic blood pressure and hyperlipidemia, are significantly associated with abnormal CVR in young adults without baseline CVD or cerebrovascular disease undergoing fMRI for reasons related to a diagnosis of epilepsy.
Collapse
Affiliation(s)
- Jaskanwal D S Sara
- Department of Cardiovascular Medicine, Mayo College of Medicine, Rochester, MN, USA
| | - Jay J Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo College of Medicine, Rochester, MN, USA.
| | - Kirk Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Tang X, Wang L, Feng Q, Hu H, Zhu Y, Liao Z, Ding Z, Xu X. Resting-state functional magnetic resonance imaging study on cerebrovascular reactivity changes in the precuneus of Alzheimer's disease and mild cognitive impairment patients. Sci Rep 2025; 15:363. [PMID: 39747269 PMCID: PMC11696737 DOI: 10.1038/s41598-024-82769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment and cognitive decline, ultimately culminating in dementia. This study aims to evaluate cerebrovascular reactivity (CVR) and functional connectivity (FC) in patients with AD and mild cognitive impairment (MCI) using resting-state functional magnetic resonance imaging (rs-fMRI), bypassing the requirement for hypercapnia. The study cohort comprised 53 AD patients, 38 MCI patients, and 39 normal control (NC) subjects. CVR is derived by extracting signals within specific frequency bands of rs-fMRI. This study compares the differences in CVR and FC among the three groups, using the brain regions with CVR differences as region of interest (ROI) for FC analysis. The correlation between CVR and FC and cognitive scale score was discussed. Compared with NC subjects, AD patients exhibited a decrease in CVR in the PCUN.L, whereas MCI patients showed an increase in CVR in the PCUN.R. With PCUN.L as ROI, FC in PCUN.R decreased in AD patients, and FC in SFGmed.R and other brain regions increased in MCI patients compared with NC subjects. The results of the correlation analysis indicate that CVR in all patients, as well as FC with the PCUN.L as the ROI to the PCUN.R and SFGmed.R, show positive correlations with MMSE and MoCA scores. These results suggest that there are significant differences between CVR and FC with CVR differential brain regions as ROI among the AD, MCI, and NC groups, which may help to explain the hemodynamic mechanism. CVR obtained with rs-fMRI may be a potential biomarker for assessing cognitive impairment.
Collapse
Affiliation(s)
- Xue Tang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Luoyu Wang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
| | - Hanjun Hu
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
- The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidi Zhu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
3
|
Zerweck L, Roder C, Blazhenets G, Martus P, Thurow J, Haas P, Estler A, Gohla G, Ruff C, Selo N, Würtemberger U, Khan N, Klose U, Ernemann U, Meyer PT, Hauser TK. MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA): An MRI-Based Scoring System for the Severity of Moyamoya Angiopathy. Diagnostics (Basel) 2024; 14:1437. [PMID: 39001327 PMCID: PMC11241620 DOI: 10.3390/diagnostics14131437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Before revascularization, moyamoya patients require hemodynamic evaluation. In this study, we evaluated the scoring system Prior Infarcts, Reactivity and Angiography in Moyamoya Disease (PIRAMID). We also devised a new scoring system, MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA), and compared the scoring systems with respect to the capability to predict impaired [15O]water PET cerebral perfusion reserve capacity (CPR). We evaluated 69 MRI, 69 DSA and 38 [15O]water PET data sets. The PIRAMID system was validated by ROC curve analysis with neurological symptomatology as a dependent variable. The components of the MARS-MMA system and their weightings were determined by binary logistic regression analysis. The comparison of PIRAMID and MARS-MMA was performed by ROC curve analysis. The PIRAMID score correlated well with the symptomatology (AUC = 0.784). The MARS-MMA system, including impaired breath-hold-fMRI, the presence of the Ivy sign and arterial wall contrast enhancement, correlated slightly better with CPR impairment than the PIRAMID system (AUC = 0.859 vs. 0.827, Akaike information criterion 140 vs. 146). For simplified clinical use, we determined three MARS-MMA grades without loss of diagnostic performance (AUC = 0.855). The entirely MRI-based MARS-MMA scoring system might be a promising tool to predict the risk of stroke.
Collapse
Affiliation(s)
- Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Constantin Roder
- Department of Neurosurgery, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center, Medical Faculty, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Johannes Thurow
- Department of Nuclear Medicine, Medical Center, Medical Faculty, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Patrick Haas
- Department of Neurosurgery, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Arne Estler
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Georg Gohla
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Nadja Selo
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Urs Würtemberger
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Nadia Khan
- Department of Neurosurgery, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Moyamoya Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center, Medical Faculty, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
4
|
Xu B, Vu C, Borzage M, González-Zacarías C, Shen J, Wood J. Improved cerebrovascular reactivity mapping using coherence weighted general linear model in the frequency domain. Neuroimage 2023; 284:120448. [PMID: 37952392 PMCID: PMC10822713 DOI: 10.1016/j.neuroimage.2023.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is a prognostic indicator of cerebrovascular health. Estimating CVR from endogenous end-tidal carbon dioxide (CO2) fluctuation and MRI signal recorded under resting state can be difficult due to the poor signal-to-noise ratio (SNR) of signals. Thus, we aimed to improve the method of estimating CVR from end-tidal CO2 and MRI signals. We proposed a coherence weighted general linear model (CW-GLM) to estimate CVR from the Fourier coefficients weighted by the signal coherence in frequency domain, which confers two advantages. First, it requires no signal alignment in time domain, which simplifies experimental methods. Second, it limits the GLM analysis within the frequency band where CO2 and MRI signals are highly correlated, which automatically suppresses noise and nuisance signals. We compared the performance of our method with time-domain GLM (TD-GLM) and frequency-domain GLM (FD-GLM) in both synthetic and in-vivo data; wherein we calculated CVR from signals recorded under both resting state and sinusoidal stimulus. In synthetic data, CW-GLM has a remarkable performance on CVR estimation from narrow band signals with a mean-absolute error of 0.7 % (gray matter) and 1.2 % (white matter), which was lower than all the other methods. Meanwhile, CW-GLM maintains a comparable performance on CVR estimation from resting signals, with a mean-absolute error of 4.1 % (gray matter) and 8 % (white matter). The superior performance was maintained across the 36 in-vivo measurements, with CW-GLM exhibiting limits of agreement of -16.7 % - 9.5 % between CVR calculated from the resting and sinusoidal CO2 paradigms which was 12 % - 209 % better than current time-domain methods. Evaluating of the cross-coherence spectrum revealed highest signal coherence within the frequency band from 0.01 Hz to 0.05 Hz, which overlaps with previously recommended frequency band (0.02 Hz to 0.04 Hz) for CVR analysis. Our data demonstrates that CW-GLM can work as a self-adaptive band-pass filter to improve CVR robustness, while also avoiding the need for signal temporal alignment.
Collapse
Affiliation(s)
- Botian Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Matthew Borzage
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Clio González-Zacarías
- Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - Jian Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - John Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Liu P, Hu B, Kartchner L, Joshi P, Xu C, Jiang D. Dependence of resting-state-based cerebrovascular reactivity (CVR) mapping on spatial resolution. FRONTIERS IN NEUROIMAGING 2023; 2:1205459. [PMID: 37554643 PMCID: PMC10406303 DOI: 10.3389/fnimg.2023.1205459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Cerebrovascular reactivity (CVR) is typically assessed with a carbon dioxide (CO2) stimulus combined with BOLD fMRI. Recently, resting-state (RS) BOLD fMRI has been shown capable of generating CVR maps, providing a potential for broader CVR applications in neuroimaging studies. However, prior RS-CVR studies have primarily been performed at a spatial resolution of 3-4 mm voxel sizes. It remains unknown whether RS-CVR can also be obtained at high-resolution without major degradation in image quality. In this study, we investigated RS-CVR mapping based on resting-state BOLD MRI across a range of spatial resolutions in a group of healthy subjects, in an effort to examine the feasibility of RS-CVR measurement at high resolution. Comparing the results of RS-CVR with the maps obtained by the conventional CO2-inhalation method, our results suggested that good CVR map quality can be obtained at a voxel size as small as 2 mm isotropic. Our results also showed that, RS-CVR maps revealed resolution-dependent sensitivity. However, even at a high resolution of 2 mm isotropic voxel size, the voxel-wise sensitivity is still greater than that of typical task-evoked fMRI. Scan duration affected the sensitivity of RS-CVR mapping, but had no significant effect on its accuracy. These findings suggest that RS-CVR mapping can be applied at a similar resolution as state-of-the-art fMRI studies, which will broaden the use of CVR mapping in basic science and clinical applications including retrospective analysis of previously collected fMRI data.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Beini Hu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lincoln Kartchner
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Parimal Joshi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cuimei Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Hou X, Guo P, Wang P, Liu P, Lin DDM, Fan H, Li Y, Wei Z, Lin Z, Jiang D, Jin J, Kelly C, Pillai JJ, Huang J, Pinho MC, Thomas BP, Welch BG, Park DC, Patel VM, Hillis AE, Lu H. Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI. NPJ Digit Med 2023; 6:116. [PMID: 37344684 PMCID: PMC10284915 DOI: 10.1038/s41746-023-00859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the sensitivity for personalized prognosis. Resting-state functional magnetic resonance imaging (rs-fMRI), a powerful tool previously used for mapping neural activity, is available in most hospitals. Here we show that rs-fMRI can be used to map cerebral hemodynamic function and delineate impairment. By exploiting time variations in breathing pattern during rs-fMRI, deep learning enables reproducible mapping of cerebrovascular reactivity (CVR) and bolus arrival time (BAT) of the human brain using resting-state CO2 fluctuations as a natural "contrast media". The deep-learning network is trained with CVR and BAT maps obtained with a reference method of CO2-inhalation MRI, which includes data from young and older healthy subjects and patients with Moyamoya disease and brain tumors. We demonstrate the performance of deep-learning cerebrovascular mapping in the detection of vascular abnormalities, evaluation of revascularization effects, and vascular alterations in normal aging. In addition, cerebrovascular maps obtained with the proposed method exhibit excellent reproducibility in both healthy volunteers and stroke patients. Deep-learning resting-state vascular imaging has the potential to become a useful tool in clinical cerebrovascular imaging.
Collapse
Affiliation(s)
- Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pengfei Guo
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Puyang Wang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peiying Liu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Doris D M Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongli Fan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Jin
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Catherine Kelly
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco C Pinho
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Binu P Thomas
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Babu G Welch
- Department of Neurologic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Vishal M Patel
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
7
|
Pinto J, Blockley NP, Harkin JW, Bulte DP. Modelling spatiotemporal dynamics of cerebral blood flow using multiple-timepoint arterial spin labelling MRI. Front Physiol 2023; 14:1142359. [PMID: 37304817 PMCID: PMC10250662 DOI: 10.3389/fphys.2023.1142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Cerebral blood flow (CBF) is an important physiological parameter that can be quantified non-invasively using arterial spin labelling (ASL) imaging. Although most ASL studies are based on single-timepoint strategies, multi-timepoint approaches (multiple-PLD) in combination with appropriate model fitting strategies may be beneficial not only to improve CBF quantification but also to retrieve other physiological information of interest. Methods: In this work, we tested several kinetic models for the fitting of multiple-PLD pCASL data in a group of 10 healthy subjects. In particular, we extended the standard kinetic model by incorporating dispersion effects and the macrovascular contribution and assessed their individual and combined effect on CBF quantification. These assessments were performed using two pseudo-continuous ASL (pCASL) datasets acquired in the same subjects but during two conditions mimicking different CBF dynamics: normocapnia and hypercapnia (achieved through a CO2 stimulus). Results: All kinetic models quantified and highlighted the different CBF spatiotemporal dynamics between the two conditions. Hypercapnia led to an increase in CBF whilst decreasing arterial transit time (ATT) and arterial blood volume (aBV). When comparing the different kinetic models, the incorporation of dispersion effects yielded a significant decrease in CBF (∼10-22%) and ATT (∼17-26%), whilst aBV (∼44-74%) increased, and this was observed in both conditions. The extended model that includes dispersion effects and the macrovascular component has been shown to provide the best fit to both datasets. Conclusion: Our results support the use of extended models that include the macrovascular component and dispersion effects when modelling multiple-PLD pCASL data.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. Blockley
- David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Zerweck L, Hauser TK, Roder C, Blazhenets G, Khan N, Ernemann U, Meyer PT, Klose U. Evaluation of the cerebrovascular reactivity in patients with Moyamoya Angiopathy by use of breath-hold fMRI: investigation of voxel-wise hemodynamic delay correction in comparison to [ 15O]water PET. Neuroradiology 2023; 65:539-550. [PMID: 36434312 PMCID: PMC9905170 DOI: 10.1007/s00234-022-03088-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Patients with Moyamoya Angiopathy (MMA) require hemodynamic assessment to evaluate the risk of stroke. Hemodynamic evaluation by use of breath-hold-triggered fMRI (bh-fMRI) was proposed as a readily available alternative to the diagnostic standard [15O]water PET. Recent studies suggest voxel-wise hemodynamic delay correction in hypercapnia-triggered fMRI. The aim of this study was to evaluate the effect of delay correction of bh-fMRI in patients with MMA and to compare the results with [15O]water PET. METHODS bh-fMRI data sets of 22 patients with MMA were evaluated without and with voxel-wise delay correction within different shift ranges and compared to the corresponding [15O]water PET data sets. The effects were evaluated combined and in subgroups of data sets with most severely impaired CVR (apparent steal phenomenon), data sets with territorial time delay, and data sets with neither steal phenomenon nor delay between vascular territories. RESULTS The study revealed a high mean cross-correlation (r = 0.79, p < 0.001) between bh-fMRI and [15O]water PET. The correlation was strongly dependent on the choice of the shift range. Overall, no shift range revealed a significantly improved correlation between bh-fMRI and [15O]water PET compared to the correlation without delay correction. Delay correction within shift ranges with positive high high cutoff revealed a lower agreement between bh-fMRI and PET overall and in all subgroups. CONCLUSION Voxel-wise delay correction, in particular with shift ranges with high cutoff, should be used critically as it can lead to false-negative results in regions with impaired CVR and a lower correlation to the diagnostic standard [15O]water PET.
Collapse
Affiliation(s)
- Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Till-Karsten Hauser
- grid.411544.10000 0001 0196 8249Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Constantin Roder
- grid.411544.10000 0001 0196 8249Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Ganna Blazhenets
- grid.5963.9Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadia Khan
- grid.411544.10000 0001 0196 8249Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany ,grid.412341.10000 0001 0726 4330Moyamoya Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ulrike Ernemann
- grid.411544.10000 0001 0196 8249Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| | - Philipp T. Meyer
- grid.5963.9Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Klose
- grid.411544.10000 0001 0196 8249Department of Diagnostic and Interventional Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany
| |
Collapse
|
9
|
Gan L, Yin X, Huang J, Jia B. Transcranial Doppler analysis based on computer and artificial intelligence for acute cerebrovascular disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1695-1715. [PMID: 36899504 DOI: 10.3934/mbe.2023077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cerebrovascular disease refers to damage to brain tissue caused by impaired intracranial blood circulation. It usually presents clinically as an acute nonfatal event and is characterized by high morbidity, disability, and mortality. Transcranial Doppler (TCD) ultrasonography is a non-invasive method for the diagnosis of cerebrovascular disease that uses the Doppler effect to detect the hemodynamic and physiological parameters of the major intracranial basilar arteries. It can provide important hemodynamic information that cannot be measured by other diagnostic imaging techniques for cerebrovascular disease. And the result parameters of TCD ultrasonography such as blood flow velocity and beat index can reflect the type of cerebrovascular disease and serve as a basis to assist physicians in the treatment of cerebrovascular diseases. Artificial intelligence (AI) is a branch of computer science which is used in a wide range of applications in agriculture, communications, medicine, finance, and other fields. In recent years, there are much research devoted to the application of AI to TCD. The review and summary of related technologies is an important work to promote the development of this field, which can provide an intuitive technical summary for future researchers. In this paper, we first review the development, principles, and applications of TCD ultrasonography and other related knowledge, and briefly introduce the development of AI in the field of medicine and emergency medicine. Finally, we summarize in detail the applications and advantages of AI technology in TCD ultrasonography including the establishment of an examination system combining brain computer interface (BCI) and TCD ultrasonography, the classification and noise cancellation of TCD ultrasonography signals using AI algorithms, and the use of intelligent robots to assist physicians in TCD ultrasonography and discuss the prospects for the development of AI in TCD ultrasonography.
Collapse
Affiliation(s)
- Lingli Gan
- Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| | - Xiaoling Yin
- Department of Neurosurgery, Chongqing General Hospital, Chongqing 401147, China
| | - Jiating Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Bin Jia
- Department of Neurosurgery, Chongqing General Hospital, Chongqing 401147, China
| |
Collapse
|
10
|
Yeh MY, Chen HS, Hou P, Kumar VA, Johnson JM, Noll KR, Prabhu SS, Ferguson SD, Schomer DF, Peng HH, Liu HL. Cerebrovascular Reactivity Mapping Using Resting-State Functional MRI in Patients With Gliomas. J Magn Reson Imaging 2022; 56:1863-1871. [PMID: 35396789 PMCID: PMC11846080 DOI: 10.1002/jmri.28194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recently, a data-driven regression analysis method was developed to utilize the resting-state (rs) blood oxygenation level-dependent signal for cerebrovascular reactivity (CVR) mapping (rs-CVR), which was previously optimized by comparing with the CO2 inhalation-based method in health subjects and patients with neurovascular diseases. PURPOSE To investigate the agreement of rs-CVR and the CVR mapping with breath-hold MRI (bh-CVR) in patients with gliomas. STUDY TYPE Retrospective. POPULATION Twenty-five patients (12 males, 13 females; mean age ± SD, 48 ± 13 years) with gliomas. FIELD STRENGTH/SEQUENCE Dynamic T2*-weighted gradient-echo echo-planar imaging during a breath-hold paradigm and during the rs on a 3-T scanner. ASSESSMENT rs-CVR with various frequency ranges and resting-state fluctuation amplitude (RSFA) were assessed. The agreement between each rs-based CVR measurement and bh-CVR was determined by voxel-wise correlation and Dice coefficient in the whole brain, gray matter, and the lesion region of interest (ROI). STATISTICAL TESTS Voxel-wise Pearson correlation, Dice coefficient, Fisher Z-transformation, repeated-measure analysis of variance and post hoc test with Bonferroni correction, and nonparametric repeated-measure Friedman test and post hoc test with Bonferroni correction were used. Significance was set at P < 0.05. RESULTS Compared with bh-CVR, the highest correlations were found at the frequency bands of 0.04-0.08 Hz and 0.02-0.04 Hz for rs-CVR in both whole brain and the lesion ROI. RSFA had significantly lower correlations than did rs-CVR of 0.02-0.04 Hz and a wider frequency range (0-0.1164 Hz). Significantly higher correlations and Dice coefficient were found in normal tissues than in the lesion ROI for all three methods. DATA CONCLUSION The optimal frequency ranges for rs-CVR are determined by comparing with bh-CVR in patients with gliomas. The rs-CVR method outperformed the RSFA. Significantly higher correlation and Dice coefficient between rs- and bh-CVR were found in normal tissue than in the lesion. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Mei-Yu Yeh
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu Taiwan
| | - Henry S. Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ping Hou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vinodh A. Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kyle R. Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sujit S. Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sherise D. Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Donald F. Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
11
|
Tsvetanov KA, Spindler LRB, Stamatakis EA, Newcombe VFJ, Lupson VC, Chatfield DA, Manktelow AE, Outtrim JG, Elmer A, Kingston N, Bradley JR, Bullmore ET, Rowe JB, Menon DK. Hospitalisation for COVID-19 predicts long lasting cerebrovascular impairment: A prospective observational cohort study. Neuroimage Clin 2022; 36:103253. [PMID: 36451358 PMCID: PMC9639388 DOI: 10.1016/j.nicl.2022.103253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.
Collapse
Affiliation(s)
- Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
| | - Lennart R B Spindler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Virginia F J Newcombe
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Victoria C Lupson
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Doris A Chatfield
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Anne E Manktelow
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Joanne G Outtrim
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom
| | - Anne Elmer
- Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John R Bradley
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Edward T Bullmore
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University Cambridge, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; Cambridge Clinical Research Centre, NIHR Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
12
|
Jiang B, Mackay MT, Stence N, Domi T, Dlamini N, Lo W, Wintermark M. Neuroimaging in Pediatric Stroke. Semin Pediatr Neurol 2022; 43:100989. [PMID: 36344022 DOI: 10.1016/j.spen.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Pediatric stroke is unfortunately not a rare condition. It is associated with severe disability and mortality because of the complexity of potential clinical manifestations, and the resulting delay in seeking care and in diagnosis. Neuroimaging plays an important role in the multidisciplinary response for pediatric stroke patients. The rapid development of adult endovascular thrombectomy has created a new momentum in health professionals caring for pediatric stroke patients. Neuroimaging is critical to make decisions of identifying appropriate candidates for thrombectomy. This review article will review current neuroimaging techniques, imaging work-up strategies and special considerations in pediatric stroke. For resources limited areas, recommendation of substitute imaging approaches will be provided. Finally, promising new techniques and hypothesis-driven research protocols will be discussed.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Radiology, Neuroradiology Section, Stanford University, Stanford, CA.
| | - Mark T Mackay
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Nicholas Stence
- Department of Radiology, pediatric Neuroradiology Section, University of Colorado School of Medicine, Aurora, CO
| | - Trish Domi
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Nomazulu Dlamini
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Warren Lo
- Department of Pediatrics and Neurology, The Ohio State University & Nationwide Children's Hospital, Columbus, OH.
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Center, Houston, TX.
| |
Collapse
|
13
|
Xu R, Xie ME, Khalifeh J, Feghali J, Yang W, Kim J, Liew J, Tamargo RJ, Huang J. Timing of Revascularization in Ischemic Moyamoya Disease: Association of Early Versus Delayed Surgery with Perioperative and Long-Term Outcomes. World Neurosurg 2022; 166:e721-e730. [PMID: 35931338 DOI: 10.1016/j.wneu.2022.07.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Patients with nmoyamoya disease (MMD) who present primarily with ischemic stroke are known to have greater rates of perioperative strokes as compared with those who present with nonstroke symptoms. The optimal timing for revascularization for these patients remains unclear. METHODS From 1994 to 2015, 91 patients with MMD presented with signs and symptoms of an acute ischemic stroke with diffusion restriction correlate on magnetic resonance imaging, and these patients were subdivided into those who underwent early revascularization (<90 days from last stroke), versus those who underwent delayed revascularization (≥90 days after last stroke), based on evidence that most neurological recovery after stroke occurs during the first three months. Perioperative and long-term outcomes were compared between the 2 surgical cohorts. RESULTS In total, 27 patients underwent early revascularization, and 64 patients underwent delayed revascularization. Patients who underwent early revascularization had a statistically greater rate of perioperative stroke (P = 0.04) and perioperative mortality (P = 0.03), and overall complication rate (P = 0.049). At last follow-up of 5.2 ± 4.3 years, patients who underwent delayed revascularization had a lower mortality rate (P = 0.01) and a lower overall postoperative stroke incidence (P = 0.002). As a function of time, patients with MMD undergoing delayed revascularization had a statistically higher length of stroke-free survival (P = 0.005). CONCLUSIONS Patients with MMD who present with ischemic stroke are more likely to have perioperative strokes, overall perioperative complications, worse long-term mortality rates, and lower rates of stroke-free survival if revascularization surgery occurred within 90 days of last stroke.
Collapse
Affiliation(s)
- Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael E Xie
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jawad Khalifeh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James Feghali
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jason Liew
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafael J Tamargo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
Yang D, Qin R, Chu L, Xu H, Ni L, Ma J, Shao P, Huang L, Zhang B, Zhang M, Xu Y. Abnormal Cerebrovascular Reactivity and Functional Connectivity Caused by White Matter Hyperintensity Contribute to Cognitive Decline. Front Neurosci 2022; 16:807585. [PMID: 35310084 PMCID: PMC8930816 DOI: 10.3389/fnins.2022.807585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aims This study aimed to investigate the relationships of impaired cerebrovascular reactivity (CVR) and abnormal functional connectivity (FC) with white matter hyperintensity (WMH)-related cognitive decline. Methods A total of 233 WMH subjects were recruited and categorized into WMH-I (n = 106), WMH-II (n = 72), and WMH-III (n = 55) groups according to Fazekas visual rating scale. All participants underwent neuropsychological tests and multimodal MRI scans, including 3D-T1, and resting-state functional magnetic resonance imaging (rs-fMRI). The alterations of CVR maps and FC were further explored. Results Subjects with a higher WMH burden displayed a lower CVR in the left medial occipital gyrus (MOG). The FC analysis using MOG as a seed revealed that the FC of the left insula, left inferior parietal lobule, and thalamus changed abnormally as WMH aggravated. After adjusting for age, gender, and education years, the serial mediation analysis revealed that periventricular white matter hyperintensity contributes indirectly to poorer Mini-Mental State Examination (MMSE) scores (indirect effect: β = −0.1248, 95% CI: −0.4689, −0188), poorer Montreal Cognitive Assessment (MoCA) (indirect effect: β = −0.1436, 95% CI: −0.4584, −0.0292) scores, and longer trail making tests A (TMT-A) (indirect effect: β = 0.1837, 95% CI: 0.0069, 0.8273) times, specifically due to the lower CVR of the left MOG and the higher FC of the left insula-MOG. Conclusion The CVR decline of the left MOG and the abnormal FC of the left insula-MOG attributed to WMH progression were responsible for the poor general cognition (MMSE and MoCA) and information processing speed (TMT-A). The left MOG may act as a connection, which is involved in the processing of cognitive biases by connecting with the left insula-cortical regions in WMH individuals.
Collapse
Affiliation(s)
- Dan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hengheng Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ling Ni
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Junyi Ma
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lili Huang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
- *Correspondence: Meijuan Zhang,
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neurology Clinic Medical Center, Nanjing, China
- Yun Xu,
| |
Collapse
|
15
|
Ni L, Sun W, Yang D, Huang L, Shao P, Wang C, Xu Y. The Cerebrovascular Reactivity-Adjusted Spontaneous Brain Activity Abnormalities in White Matter Hyperintensities Related Cognitive Impairment: A Resting-State Functional MRI Study. J Alzheimers Dis 2022; 86:691-701. [PMID: 35124642 DOI: 10.3233/jad-215216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The BOLD signal is regulated by neuronal activity and vascular physiology. The evolution pattern of brain activities after modulating the vascular factors in white matter hyperintensities (WMHs) related cognitive impairment (CI) was unknown. OBJECTIVE To explore the "pure" low-frequency fluctuation (ALFF) alterations after adjusting the cerebrovascular reactivity (CVR) factor. METHODS In this study, 111 WMHs subjects including 55 with CI (WMH-CI) and 56 without CI (WMH-no-CI), and 72 normal controls (NCs) underwent resting-state fMRI. The CVR and ALFF maps were derived using BOLD data. A voxel-wise Pearson analysis was performed to detect the relationship between CVR and ALFF maps. The ANCOVA analysis with and without CVR as a covariate was conducted to explore the effect of CVR on ALFF analysis. Correlation between the ALFF alterations and cognitive performance was conducted in WMH-CI subjects. The receiver operating characteristic curve was constructed to assess the diagnostic performance of ALFF indexes to determine the occurrence of CI. RESULTS There was a significant widespread correlation between the CVR and ALFF maps. The ALFF alterations between the WMH groups and NC group with CVR as covariate were more than those without CVR as covariate. WMH-CI subjects showed further ALFF alterations when compared with WMH-no-CI subjects. The abnormal ALFF values were significantly associated with poor performance. The combination of inferior frontal gyrus and middle frontal gyrus to PCC provided an incremental contribution to the occurrence of CI. CONCLUSION More areas with abnormal ALFF values which were specific to the WMHs related cognitive dysfunction were detected when considering the impact of CVR.
Collapse
Affiliation(s)
- Ling Ni
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenshan Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Dan Yang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lili Huang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chong Wang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Hemodynamic evaluation of patients with Moyamoya Angiopathy: comparison of resting-state fMRI to breath-hold fMRI and [ 15O]water PET. Neuroradiology 2021; 64:553-563. [PMID: 34570251 PMCID: PMC8850258 DOI: 10.1007/s00234-021-02814-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
Purpose Patients with Moyamoya Angiopathy (MMA) require hemodynamic evaluation to assess the risk of stroke. Assessment of cerebral blood flow with [15O]water PET and acetazolamide challenge is the diagnostic standard for the evaluation of the cerebral perfusion reserve (CPR). Estimation of the cerebrovascular reactivity (CVR) by use of breath-hold-triggered fMRI (bh-fMRI) as an index of CPR has been proposed as a reliable and more readily available approach. Recent findings suggest the use of resting-state fMRI (rs-fMRI) which requires minimum patient compliance. The aim of this study was to compare rs-fMRI to bh-fMRI and [15O]water PET in patients with MMA. Methods Patients with MMA underwent rs-fMRI and bh-fMRI in the same MRI session. Maps of the CVR gained by both modalities were compared retrospectively by calculating the correlation between the mean CVR of 12 volumes of interest. Additionally, the rs-maps of a subgroup of patients were compared to CPR-maps gained by [15O]water PET. Results The comparison of the rs-maps and the bh-maps of 24 patients revealed a good correlation (Pearson’s r = 0.71 ± 0.13; preoperative patients: Pearson’s r = 0.71 ± 0.17; postoperative patients: Pearson’s r = 0.71 ± 0.11). The comparison of 7 rs-fMRI data sets to the corresponding [15O]water PET data sets also revealed a high level of agreement (Pearson’s r = 0.80 ± 0.19). Conclusion The present analysis indicates that rs-fMRI might be a promising non-invasive method with almost no patient cooperation needed to evaluate the CVR. Further prospective studies are required.
Collapse
|
17
|
Juttukonda MR, Davis LT, Lants SK, Waddle SL, Lee CA, Patel NJ, Jordan LC, Donahue MJ. A Prospective, Longitudinal Magnetic Resonance Imaging Evaluation of Cerebrovascular Reactivity and Infarct Development in Patients With Intracranial Stenosis. J Magn Reson Imaging 2021; 54:912-922. [PMID: 33763922 PMCID: PMC8675276 DOI: 10.1002/jmri.27605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Patients with symptomatic atherosclerotic and non-atherosclerotic (i.e., moyamoya) intracranial steno-occlusive disease experience high 2-year infarct rates. PURPOSE To investigate whether cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) measures may provide biomarkers of 1-to-2-year infarct risk. STUDY TYPE Prospective, longitudinal study. SUBJECTS Adult participants (age = 18-85 years) with symptomatic intracranial atherosclerotic disease (N = 26) or non-atherosclerotic (i.e., moyamoya; N = 43) and stenosis ≥50% of a major intracranial artery were initially scanned within 45 days of stroke. Follow-up imaging (target = 1.5 years) was acquired for new infarct assessment. FIELD STRENGTH/SEQUENCE 3.0 Tesla with normocapnic arterial spin labeling (ASL) and blood oxygenation level-dependent (BOLD) imaging acquired during an interleaved hypercapnic (3 minutes) and normocapnic (3 minutes) respiratory stimulus. ASSESSMENT CBF, maximum CVR, and time-to-maximum CVR (i.e., CVRDELAY ) were calculated. Laterality indices (difference between infarcted and contralesional hemispheres divided by sum of absolute values) of metrics at enrollment were contrasted between participants with vs. without new infarcts on follow-up. STATISTICAL TESTS Laterality indices were compared using non-parametric Wilcoxon tests (significance: two-sided P < 0.05) and effect sizes as Cohen's d. Continuous variables are presented as mean ± SD. RESULTS New infarcts were observed on follow-up in 15.0% of participants. The laterality index of the CVRDELAY was elevated (P = 0.01) in participants with atherosclerosis with new infarcts (index = 0.13) compared to participants without new infarcts (index = 0.05). DATA CONCLUSION Elevated CVRDELAY may indicate brain parenchyma at increased risk for new infarcts in patients with symptomatic intracranial atherosclerotic disease treated with standard-of-care medical management. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital (Charlestown, MA, USA),Radiology, Harvard Medical School (Boston, MA, USA),Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA)
| | - Larry T. Davis
- Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA)
| | - Sarah K. Lants
- Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA)
| | - Spencer L. Waddle
- Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA)
| | - Chelsea A. Lee
- Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA)
| | - Niral J. Patel
- Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA)
| | - Lori C. Jordan
- Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA),Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center (Nashville, TN, USA),Neurology, Vanderbilt University Medical Center (Nashville, TN, USA)
| | - Manus J. Donahue
- Radiology and Radiological Sciences, Vanderbilt University Medical Center (Nashville, TN, USA),Neurology, Vanderbilt University Medical Center (Nashville, TN, USA),Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center (Nashville, TN, USA)
| |
Collapse
|
18
|
Zhang X, Xiao W, Zhang Q, Xia D, Gao P, Su J, Yang H, Gao X, Ni W, Lei Y, Gu Y. Progression in Moyamoya Disease: Clinical Feature, Neuroimaging Evaluation and Treatment. Curr Neuropharmacol 2021; 20:292-308. [PMID: 34279201 PMCID: PMC9413783 DOI: 10.2174/1570159x19666210716114016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/08/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disease characterized by progressive stenosis of the arteries of the circle of Willis, with the formation of collateral vascular network at the base of the brain. Its clinical manifestations are complicated. Numerous studies have attempted to clarify the clinical features of MMD, including its epidemiology, genetic characteristics, and pathophysiology. With the development of neuroimaging techniques, various neuroimaging modalities with different advantages have deepened the understanding of MMD in terms of structural, functional, spatial, and temporal dimensions. At present, the main treatment for MMD focuses on neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as pharmacological treatment, surgical revascularization, and cognitive rehabilitation. In this review, we discuss recent progress in understanding the clinical features, in the neuroimaging evaluation and treatment of MMD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Weiping Xiao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Qing Zhang
- Department of Nursing, Huashan Hospital North, Fudan University, China
| | - Ding Xia
- Department of Radiology, Huashan Hospital North, Fudan University, China
| | - Peng Gao
- Department of Radiology, Huashan Hospital North, Fudan University, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China
| |
Collapse
|
19
|
Zhong S, Sun K, Zuo X, Chen A. Monitoring and Prognostic Analysis of Severe Cerebrovascular Diseases Based on Multi-Scale Dynamic Brain Imaging. Front Neurosci 2021; 15:684469. [PMID: 34276294 PMCID: PMC8277932 DOI: 10.3389/fnins.2021.684469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Severe cerebrovascular disease is an acute cerebrovascular event that causes severe neurological damage in patients, and is often accompanied by severe dysfunction of multiple systems such as breathing and circulation. Patients with severe cerebrovascular disease are in critical condition, have many complications, and are prone to deterioration of neurological function. Therefore, they need closer monitoring and treatment. The treatment strategy in the acute phase directly determines the prognosis of the patient. The case of this article selected 90 patients with severe cerebrovascular disease who were hospitalized in four wards of the Department of Neurology and the Department of Critical Care Medicine in a university hospital. The included cases were in accordance with the guidelines for the prevention and treatment of cerebrovascular diseases. Patients with cerebral infarction are given routine treatments such as improving cerebral circulation, protecting nutrient brain cells, dehydration, and anti-platelet; patients with cerebral hemorrhage are treated within the corresponding safe time window. We use Statistical Product and Service Solutions (SPSS) Statistics21 software to perform statistical analysis on the results. Based on the study of the feature extraction process of convolutional neural network, according to the hierarchical principle of convolutional neural network, a backbone neural network MF (Multi-Features)—Dense Net that can realize the fusion, and extraction of multi-scale features is designed. The network combines the characteristics of densely connected network and feature pyramid network structure, and combines strong feature extraction ability, high robustness and relatively small parameter amount. An end-to-end monitoring algorithm for severe cerebrovascular diseases based on MF-Dense Net is proposed. In the experiment, the algorithm showed high monitoring accuracy, and at the same time reached the speed of real-time monitoring on the experimental platform. An improved spatial pyramid pooling structure is designed to strengthen the network’s ability to merge and extract local features at the same level and at multiple scales, which can further improve the accuracy of algorithm monitoring by paying a small amount of additional computational cost. At the same time, a method is designed to strengthen the use of low-level features by improving the network structure, which improves the algorithm’s monitoring performance on small-scale severe cerebrovascular diseases. For patients with severe cerebrovascular disease in general, APACHEII1, APACHEII2, APACHEII3 and the trend of APACHEII score change are divided into high-risk group and low-risk group. The overall severe cerebrovascular disease, severe cerebral hemorrhage and severe cerebral infarction are analyzed, respectively. The differences are statistically significant.
Collapse
Affiliation(s)
- Suting Zhong
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Neurosurgery, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, China
| | - Xiaobing Zuo
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Aihong Chen
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Stickland RC, Zvolanek KM, Moia S, Ayyagari A, Caballero-Gaudes C, Bright MG. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function. Neuroimage 2021; 239:118306. [PMID: 34175427 PMCID: PMC8552969 DOI: 10.1016/j.neuroimage.2021.118306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to a CO2 pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing (hemodynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and aid in understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural activity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting-state data segments, and in data segments which added a 2–3 minute breathing task to the start of a resting-state segment. Two different breathing tasks were used to induce fluctuations in arterial CO2 pressure: a breath-hold task to induce hypercapnia (CO2 increase) and a cued deep breathing task to induce hypocapnia (CO2 decrease). Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response to CO2 by systematically shifting the CO2 regressor in time to optimize the model fit. This optimization inherently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing task, compared to a resting-state scan only, increases the number of voxels in the brain that have a significant relationship between CO2 and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise CVR and hemodynamic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an incidental finding of Moyamoya disease, and explore the possibilities and challenges of using this protocol in younger populations. This hybrid protocol has direct applications for CVR mapping in both research and clinical settings and wider applications for fMRI denoising and interpretation.
Collapse
Affiliation(s)
- Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Kristina M Zvolanek
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain; University of the Basque Country EHU/UPV, Donostia, Gipuzkoa, Spain
| | - Apoorva Ayyagari
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
21
|
Chen JJ, Gauthier CJ. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Front Physiol 2021; 12:657362. [PMID: 33841190 PMCID: PMC8027080 DOI: 10.3389/fphys.2021.657362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.
Collapse
Affiliation(s)
- J Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
22
|
Kavroulakis E, Simos NJ, Maris TG, Zaganas I, Panagiotakis S, Papadaki E. Evidence of Age-Related Hemodynamic and Functional Connectivity Impairment: A Resting State fMRI Study. Front Neurol 2021; 12:633500. [PMID: 33833727 PMCID: PMC8021915 DOI: 10.3389/fneur.2021.633500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To assess age-related changes in intrinsic functional brain connectivity and hemodynamics during adulthood in the context of the retrogenesis hypothesis, which states that the rate of age-related changes is higher in late-myelinating (prefrontal, lateral-posterior temporal) cerebrocortical areas as compared to early myelinating (parietal, occipital) regions. In addition, to examine the dependence of age-related changes upon concurrent subclinical depression symptoms which are common even in healthy aging. Methods: Sixty-four healthy adults (28 men) aged 23-79 years (mean 45.0, SD = 18.8 years) were examined. Resting-state functional MRI (rs-fMRI) time series were used to compute voxel-wise intrinsic connectivity contrast (ICC) maps reflecting the strength of functional connectivity between each voxel and the rest of the brain. We further used Time Shift Analysis (TSA) to estimate voxel-wise hemodynamic lead or lag for each of 22 ROIs from the automated anatomical atlas (AAL). Results: Adjusted for depression symptoms, gender and education level, reduced ICC with age was found primarily in frontal, temporal regions, and putamen, whereas the opposite trend was noted in inferior occipital cortices (p < 0.002). With the same covariates, increased hemodynamic lead with advancing age was found in superior frontal cortex and thalamus, with the opposite trend in inferior occipital cortex (p < 0.002). There was also evidence of reduced coupling between voxel-wise intrinsic connectivity and hemodynamics in the inferior parietal cortex. Conclusion: Age-related intrinsic connectivity reductions and hemodynamic changes were demonstrated in several regions-most of them part of DMN and salience networks-while impaired neurovascular coupling was, also, found in parietal regions. Age-related reductions in intrinsic connectivity were greater in anterior as compared to posterior cortices, in line with implications derived from the retrogenesis hypothesis. These effects were affected by self-reported depression symptoms, which also increased with age.
Collapse
Affiliation(s)
- Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Nicholas J Simos
- Department of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Ioannis Zaganas
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Simeon Panagiotakis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
23
|
Liu P, Liu G, Pinho MC, Lin Z, Thomas BP, Rundle M, Park DC, Huang J, Welch BG, Lu H. Cerebrovascular Reactivity Mapping Using Resting-State BOLD Functional MRI in Healthy Adults and Patients with Moyamoya Disease. Radiology 2021; 299:419-425. [PMID: 33687287 DOI: 10.1148/radiol.2021203568] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Cerebrovascular reserve, the potential capacity of brain tissue to receive more blood flow when needed, is a desirable marker in evaluating ischemic risk. However, current measurement methods require acetazolamide injection or hypercapnia challenge, prompting a clinical need for resting-state (RS) blood oxygen level-dependent (BOLD) functional MRI data to measure cerebrovascular reactivity (CVR). Purpose To optimize and evaluate an RS CVR MRI technique and demonstrate its relationship to neurosurgical treatment. Materials and Methods In this HIPAA-compliant study, RS BOLD functional MRI data collected in 170 healthy controls between December 2008 and September 2010 were retrospectively evaluated to identify the optimal frequency range of temporal filtering on the basis of spatial correlation with the reference standard CVR map obtained with CO2 inhalation. Next, the optimized RS method was applied in a new, prospective cohort of 50 participants with Moyamoya disease who underwent imaging between June 2014 and August 2019. Finally, CVR values were compared between brain hemispheres with and brain hemispheres without revascularization surgery by using Mann-Whitney U test. Results A total of 170 healthy controls (mean age ± standard deviation, 51 years ± 20; 105 women) and 100 brain hemispheres of 50 participants with Moyamoya disease (mean age, 41 years ± 12; 43 women) were evaluated. RS CVR maps based on a temporal filtering frequency of [0, 0.1164 Hz] yielded the highest spatial correlation (r = 0.74) with the CO2 inhalation CVR results. In patients with Moyamoya disease, 77 middle cerebral arteries (MCAs) had stenosis. RS CVR in the MCA territory was lower in the group that did not undergo surgery (n = 30) than in the group that underwent surgery (n = 47) (mean, 0.407 relative units [ru] ± 0.208 vs 0.532 ru ± 0.182, respectively; P = .006), which is corroborated with the CO2 inhalation CVR data (mean, 0.242 ru ± 0.273 vs 0.437 ru ± 0.200; P = .003). Conclusion Cerebrovascular reactivity mapping performed by using resting-state blood oxygen level-dependent functional MRI provided a task-free method to measure cerebrovascular reserve and depicted treatment effect of revascularization surgery in patients with Moyamoya disease comparable to that with the reference standard of CO2 inhalation MRI. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wolf and Ware in this issue.
Collapse
Affiliation(s)
- Peiying Liu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Gongkai Liu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Marco C Pinho
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Zixuan Lin
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Binu P Thomas
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Melissa Rundle
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Denise C Park
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Judy Huang
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Babu G Welch
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| | - Hanzhang Lu
- From the Departments of Radiology (P.L., G.L., Z.L., H.L.) and Neurosurgery (J.H.), Johns Hopkins University School of Medicine, 600 N Wolfe St, Park 324, Baltimore, MD 21287; Department of Radiology (M.C.P., B.G.W.), Advanced Imaging Research Center (M.C.P., B.P.T.), and Department of Neurologic Surgery (B.G.W.), UT Southwestern Medical Center, Dallas, Tex; and Center for Vital Longevity, University of Texas at Dallas, Dallas, Tex (M.R., D.C.P.)
| |
Collapse
|
24
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Li Y, Li R, Liu M, Nie Z, Muir ER, Duong TQ. MRI study of cerebral blood flow, vascular reactivity, and vascular coupling in systemic hypertension. Brain Res 2020; 1753:147224. [PMID: 33358732 DOI: 10.1016/j.brainres.2020.147224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
Chronic hypertension alters cerebrovascular function, which can lead to neurovascular pathologies and increased susceptibility to neurological disorders. The purpose of this study was to utilize in vivo MRI methods with corroborating immunohistology to evaluate neurovascular dysfunction due to progressive chronic hypertension. The spontaneously hypertensive rat (SHR) model at different stages of hypertension was studied to evaluate: i) basal cerebral blood flow (CBF), ii) cerebrovascular reactivity (CVR) assessed by CBF and blood-oxygenation level dependent (BOLD) signal changes to hypercapnia, iii) neurovascular coupling from CBF and BOLD changes to forepaw stimulation, and iv) damage of neurovascular unit (NVU) components (microvascular, astrocyte and neuron densities). Comparisons were made with age-matched normotensive Wistar Kyoto (WKY) rats. In 10-week SHR (mild hypertension), basal CBF was higher (p < 0.05), CVR trended higher, and neurovascular coupling response was higher (p < 0.05), compared to normotensive rats. In 40-week SHR (severe hypertension), basal CBF, CVR, and neurovascular coupling response were reversed to similar or below normotensive rats, and were significantly different from 10-week SHR (p < 0.05). Immunohistological analysis found significantly reduced microvascular density, increased astrocytes, and reduced neuronal density in SHR at 40 weeks (p < 0.05) but not at 10 weeks (p > 0.05) in comparison to age-matched controls. In conclusion, we observed a bi-phasic basal CBF, CVR and neurovascular coupling response from early to late hypertension using in vivo MRI, with significant changes prior to changes in the NVU components from histology. MRI provides clinically relevant data that might be useful to characterize neurovascular pathogenesis on the brain in hypertension.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyu Nie
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Eric R Muir
- Department of Radiology, Renaissance School of Medicine, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Tim Q Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
27
|
Ni L, Zhang B, Yang D, Qin R, Xu H, Ma J, Shao P, Xu Y. Lower Cerebrovascular Reactivity Contributed to White Matter Hyperintensity-Related Cognitive Impairment: A Resting-State Functional MRI Study. J Magn Reson Imaging 2020; 53:703-711. [PMID: 32996183 DOI: 10.1002/jmri.27376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Impaired cerebrovascular reactivity (CVR) plays an important role in the pathophysiology of white matter hyperintensities (WMHs). The pathogenesis of CVR in the development of WMH-related cognitive impairment (CI) remains poorly understood. PURPOSE To detect the CVR status in WMH subjects with/without CI by using a resting-state blood oxygenation level-dependent (BOLD) approach and to explore the mediating relationships among CVR, WMH, and cognitive level. STUDY TYPE Prospective. SUBJECTS Subjects with moderate to severe WMH (with CI [WMH-CI], n = 68; without CI [WMH-no-CI, n = 63) as well as normal controls (NCs, n = 87). FIELD STRENGTH/SEQUENCE 3.0T with gradient-recalled echoplanar imaging and 3D fluid-attenuated inversion recovery. ASSESSMENT The CVR, WMH volume, and cognitive level were assessed. The CVR map was derived using BOLD signal obtained from resting-state functional MRI data. STATISTICAL TESTS CVR maps were compared among the three groups. Partial correlation analyses were performed to correlate impaired CVR with WMH volume and cognitive test scores. Mediation analysis was conducted to determine whether WMH acted as a mediating factor between CVR and cognitive function. RESULTS Compared with the NC group, both WMH groups showed reduced CVR in the left hemisphere (P < 0.05). The WMH-CI group showed further decreased CVR in the left frontal area, when compared with the WMH-no-CI group (P < 0.05). In the WMH-CI group, the lower CVR in left frontal area was a strong indicator of poor performance on general cognition (r = 0.311), executive function (r = 0.362), and information processing speed (r = 0.399) (all P < 0.05). Periventricular WMH (PWMH) volume mediated these correlations, the β and 95% bootstrap confidence intervals were (0.5097, [0.1498,1.1385]), (-0.4081, [-1.0256,-0.1363]), and (-0.5576, [-1.4666,-0.1538]), respectively. DATA CONCLUSION WMH-CI subjects showed a greater reduction of CVR derived from a resting-state BOLD approach in the left frontal area than WMH-no-CI subjects. Cognition was highly dependent on the integrity of cerebrovascular reactivity and mediated by PWMH burden. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ling Ni
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dan Yang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hengheng Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junyi Ma
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Taneja K, Liu P, Xu C, Turner M, Zhao Y, Abdelkarim D, Thomas BP, Rypma B, Lu H. Quantitative Cerebrovascular Reactivity in Normal Aging: Comparison Between Phase-Contrast and Arterial Spin Labeling MRI. Front Neurol 2020; 11:758. [PMID: 32849217 PMCID: PMC7411174 DOI: 10.3389/fneur.2020.00758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose: Cerebrovascular reactivity (CVR) is an index of the dilatory function of cerebral blood vessels and has shown great promise in the diagnosis of risk factors in cerebrovascular disease. Aging is one such risk factor; thus, it is important to characterize age-related differences in CVR. CVR can be measured by BOLD MRI but few studies have measured quantitative cerebral blood flow (CBF)-based CVR in the context of aging. This study aims to determine the age effect on CVR using two quantitative CBF techniques, phase-contrast (PC), and arterial spin labeling (ASL) MRI. Methods: In 49 participants (32 younger and 17 older), CVR was measured with PC, ASL, and BOLD MRI. These CVR methods were compared across young and older groups to determine their dependence on age. PC and ASL CVR were also studied for inter-correlation and mean differences. Gray and white matter CVR values were also studied. Results: PC CVR was higher in younger participants than older participants (by 17%, p = 0.046). However, there were no age differences in ASL or BOLD CVR. ASL CVR was significantly correlated with PC CVR (p = 0.042) and BOLD CVR (p = 0.016), but its values were underestimated compared to PC CVR (p = 0.045). ASL CVR map revealed no difference between gray matter and white matter tissue types, whereas gray matter was significantly higher than white matter in the BOLD CVR map. Conclusion: This study compared two quantitative CVR techniques in the context of brain aging and revealed that PC CVR is a more sensitive method for detection of age differences, despite the absence of spatial information. The ASL method showed a significant correlation with PC and BOLD, but it tends to underestimate CVR due to confounding factors associated with this technique. Importantly, our data suggest that there is not a difference in CBF-based CVR between the gray and white matter, in contrast to previous observation using BOLD MRI.
Collapse
Affiliation(s)
- Kamil Taneja
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peiying Liu
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuimei Xu
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Monroe Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanzhang Lu
- The Russel H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Liu P, Xu C, Lin Z, Sur S, Li Y, Yasar S, Rosenberg P, Albert M, Lu H. Cerebrovascular reactivity mapping using intermittent breath modulation. Neuroimage 2020; 215:116787. [PMID: 32278094 DOI: 10.1016/j.neuroimage.2020.116787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cerebrovascular reactivity (CVR), an index of brain vessel's dilatory capacity, is typically measured using hypercapnic gas inhalation or breath-holding as a vasoactive challenge. However, these methods require considerable subject cooperation and could be challenging in clinical studies. More recently, there have been attempts to use resting-state BOLD data to map CVR by utilizing spontaneous changes in breathing pattern. However, in subjects who have small fluctuations in their spontaneous breathing pattern, the CVR results could be noisy and unreliable. In this study, we aim to develop a new method for CVR mapping that does not require gas-inhalation yet provides substantially higher sensitivity than resting-state CVR mapping. This new method is largely based on resting-state scan, but introduces intermittent modulation of breathing pattern in the subject to enhance fluctuations in their end-tidal CO2 (EtCO2) level. Here we examined the comfort level, sensitivity, and accuracy of this method in two studies. First, in 8 healthy young subjects, we developed the intermittent breath-modulation method using two different modulation frequencies, 6 s per breath and 12 s per breath, respectively, and compared the results to three existing CVR methods, specifically hypercapnic gas inhalation, breath-holding, and resting-state. Our results showed that the comfort level of the 6-s breath-modulation method was significantly higher than breath-holding (p = 0.007) and CO2-inhalation (p = 0.015) methods, while not different from the resting-state, i.e. free breathing method (p = 0.52). When comparing the sensitivity of CVR methods, the breath-modulation methods revealed higher Z-statistics compared to the resting-state scan (p < 0.008) and was comparable to breath-holding results. Next, we tested the feasibility of breath-modulation CVR mapping (6 s per breath) in 21 cognitively normal elderly participants and compared quantitative CVR values to that obtained with the CO2-inhalation method. Whole-brain CVR was found to be 0.150 ± 0.055 and 0.154 ± 0.032 %ΔBOLD/mmHg for the breath-modulation and CO2-inhalation method, respectively, with a significant correlation between them (y = 0.97x, p = 0.007). CVR mapping with intermittent breath modulation may be a useful method that combines the advantages of resting-state and CO2-inhalation based approaches.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Cuimei Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandeepa Sur
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
30
|
Xiao ZP, Jin K, Wan JQ, Lin Y, Pan YH, Jin YC, Zhang XH. Measurement of cerebrovascular reserve by multimodal imaging for cerebral arterial occlusion or stenosis patients: protocol of a prospective, randomized, controlled clinical study. Trials 2020; 21:49. [PMID: 31915058 PMCID: PMC6950822 DOI: 10.1186/s13063-019-3967-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/01/2022] Open
Abstract
Background Cerebrovascular reactivity (CVR) is the change in cerebral blood flow in response to a vaso-active stimulus, and may assist the treatment strategy of ischemic stroke. However, previous studies reported that a therapeutic strategy for stroke mainly depends on the degree of vascular stenosis with steady-state vascular parameters (e.g., cerebral blood flow and CVR). Hence, measurement of CVR by multimodal imaging techniques may improve the treatment of ischemic stroke. Methods/design This is a prospective, randomized, controlled clinical trial that aimed to examine the capability of multimodal imaging techniques for the evaluation of CVR to improve treatment of patients with ischemic stroke. A total of 66 eligible patients will be recruited from Renji Hospital, Shanghai Jiaotong University School of Medicine. The patients will be categorized based on CVR into two subgroups as follows: CVR > 10% group and CVR < 10% group. The patients will be randomly assigned to medical management, percutaneous transluminal angioplasty and stenting, and intracranial and extra-cranial bypass groups in a 1:1:1 ratio. The primary endpoint is all adverse events and ipsilateral stroke recurrence at 6, 12, and 24 months after management. The secondary outcomes include the CVR, the National Institute of Health stroke scale and the Modified Rankin Scale at 6, 12, and 24 months. Discussion Measurement of cerebrovascular reserve by multimodal image is recommended by most recent studies to guide the treatment of ischemic stroke, and thus its efficacy and evaluation accuracy need to be established in randomized controlled settings. This prospective, parallel, randomized, controlled registry study, together with other ongoing studies, should present more evidence for optimal individualized accurate treatment of ischemic stroke. Trial registration Chinese Clinical Trial Registry, ID: ChiCTR-IOR-16009635; Registered on 16 October 2016. All items are from the World Health Organization Trial Registration Data Set and registration in the Chinese Clinical Trial Registry: ChiCTR-IOR-16009635.
Collapse
Affiliation(s)
- Zhi-Peng Xiao
- Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai JiaoTong University, Shanghai, 200127, People's Republic of China
| | - Ke Jin
- Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai JiaoTong University, Shanghai, 200127, People's Republic of China
| | - Jie-Qing Wan
- Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai JiaoTong University, Shanghai, 200127, People's Republic of China
| | - Yong Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai JiaoTong University, Shanghai, 200127, People's Republic of China
| | - Yao-Hua Pan
- Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai JiaoTong University, Shanghai, 200127, People's Republic of China
| | - Yi-Chao Jin
- Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai JiaoTong University, Shanghai, 200127, People's Republic of China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine of Shanghai JiaoTong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
31
|
The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO 2 in healthy subjects. Neuroimage 2019; 207:116365. [PMID: 31734432 PMCID: PMC8080082 DOI: 10.1016/j.neuroimage.2019.116365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Cerebrovascular reactivity (CVR) mapping using CO2-inhalation can provide important insight into vascular health. At present, blood-oxygenation-level-dependent (BOLD) MRI acquisition is the most commonly used CVR method due to its high sensitivity, high spatial resolution, and relatively straightforward processing. However, large variations in CVR across subjects and across different sessions of the same subject are often observed, which can cloud the ability of this promising measure in detecting diseases or monitoring treatment responses. The present work aims to identify the physiological components underlying the observed variability in CVR data. When studying the association between CVR value and the subject’s CO2 levels in a total of N = 253 healthy participants, we found that CVR was lower in individuals with a higher basal end-tidal CO2, EtCO2 (slope = −0.0036 ± 0.0008%/mmHg2, p < 0.001), or with a greater EtCO2 change (ΔEtCO2) with hypercapnic condition (slope = −0.0072 ± 0.0018%/mmHg2, p < 0.001). In a within-subject setting, when studying the CVR difference between two repeated scans (with repositioning) in relation to the corresponding differences in basal EtCO2 and ΔEtCO2 (n = 11), it was found that CVR values were lower if the basal EtCO2 or ΔEtCO2 during that particular scan session was greater. The present work suggests that basal physiological state and the level of hypercapnic stimulus intensity should be considered in application studies of CVR in order to reduce inter-subject and intra-subject variations in the data. Potential approaches to use these findings to reduce noise and augment sensitivity are proposed.
Collapse
|