1
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2621-7. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
3
|
Rahmani M, Pakkhesal S, Baharomid S, Karimi H, Mosaddeghi-Heris R, Talebi M, Aghaei N, Rahimi-Mamaghani A, Sanaie S, Naseri A. Shining a Light on Selenium: a Meta-analysis of Supplementation in Multiple Sclerosis. Biol Trace Elem Res 2024; 202:4375-4386. [PMID: 38155333 DOI: 10.1007/s12011-023-04026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system. Selenium is a trace element with significant antioxidant activity. This study aimed to seek evidence concerning selenium supplementation in MS. A systematic search was performed on PubMed, Web of Science, Scopus, and Embase databases to identify the studies assessing the consumption rate, efficacy, and safety of selenium and selenium-containing supplementations in MS patients. The meta-analysis was performed using the Comprehensive Meta-Analysis and the risk of bias was evaluated using the Joanna Briggs Institute's critical appraisal tools. A total of 9 studies were included, which consisted of six studies regarding the rate of selenium supplement consumption in MS patients, with a total sample size of 2381 patients. Based on the quantitative synthesis, 14.3% (95% CI, 12.8-16.0%; I2, 3.58%) of MS patients had current selenium supplements usage, and 11.3% (95% CI, 7.6-16.6%; I2, 81.40%) of patients had used selenium supplements previously. Although there is no evidence regarding supplementation with selenium alone, three RCT studies reported the safety of selenium-containing supplementation use in MS with improved inflammation and oxidative stress conditions. The findings of this study show that over 10% of patients with MS used selenium supplements, with no clinical significance supporting the benefits. There is a lack of evidence regarding the safety and efficacy of selenium supplements in MS patients. Due to the limited number of included studies and the lack of comprehensive and specific studies regarding selenium supplements in MS, the results must be interpreted with caution, and future clinical trials are required.
Collapse
Affiliation(s)
- Mehrab Rahmani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Baharomid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Aghaei
- Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alireza Rahimi-Mamaghani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Medicine, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|
4
|
Azzolin VF, Azzolin VF, da Silva Maia R, Mastella MH, Sasso JS, Barbisan F, Bitencourt GR, de Azevedo Mello P, Ribeiro EMA, Ribeiro EE, Nunomura RDCS, Manica da Cruz IB. Safety and efficacy indicators of guarana and Brazil nut extract carried in nanoparticles of coenzyme Q10: Evidence from human blood cells and red earthworm experimental model. Food Chem Toxicol 2024; 191:114828. [PMID: 38914193 DOI: 10.1016/j.fct.2024.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
This study characterized a nanosupplement based on coenzyme Q10 containing guarana (Paullinia cupana) and Brazil nuts oil (Bertholetia excelsa) (G-Nut). Determined cytotoxic and oxi-immunomodulatory effects on human peripheral blood mononuclear cells (PBMCs) and its effect on mortality of red Californian earthworms (Eisenia fetida) and on the immune efficiency of its coelomocytes immune by in vitro exposure to yeast dead microorganism. The cytotoxic and immunomodulatory effects of G-Nut and the GN-Free extract (0.25-3 mg/mL) were determined in PBMC cultures. Apoptotic, oxidative, and inflammatory markers were determined using biochemical, immunological, and molecular protocols. The effects of G-Nut and GN-Free extracts on mortality and immune efficiency were investigated in earthworms. G-Nut and GN-Free did not induce cytotoxic events in PBMCs, triggering the decrease in apoptotic (caspases 3 and 8) gene expression, lipid and protein oxidation levels, or pro-inflammatory cytokine levels. G-Nut and GN-Free did not trigger earthworm mortality and improved coelomocyte immune efficiency by increasing Eisenia neutrophil extracellular DNA traps and brown body formation when exposed to dead yeasts. The G-Nut nanoformulation is safe and can be used as a new form of food supplement by oral or transdermal delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Barbisan
- Biogenomics Laboratory - Federal University of Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Turra BO, Bonotto NCA, Teixeira CF, Chelotti ME, Rodrigues JR, Mastella MH, Azzolin VF, Ribeiro EE, Barbisan F, Cruz IBM. Bisphenol-A induced cyto-genotoxicity on retinal pigment epithelial cells is differentially modulated by a multi-supplement containing guarana, selenium, and L-carnitine. BRAZ J BIOL 2024; 84:e282840. [PMID: 38985071 DOI: 10.1590/1519-6984.282840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 07/11/2024] Open
Abstract
Bisphenol A (BPA) may adversely affect human health by inducing oxidative stress and irreversible damage to cells. Bioactive compounds found in some functional foods, individually or in combination, can attenuate the negative effects of BPA exposure; an example is the multi-supplement containing guarana (Gua), selenium (Se), and L-carnitine (LC) -GSC- which has already demonstrated antioxidant, genoprotective, and immunomodulatory activities. This study aimed to determine the effect of GSC and its constituents on oxidative and genotoxic alterations triggered by BPA exposure in the retinal epithelial cell line. The cells exposed to BPA (0.001, 0.01, 0.1, 1, 3, and 10 µM) to determine the lowest concentration required to induce cyto-genotoxicity. ARPE-19 cells were then concomitantly exposed to the selected BPA concentration, GSC, and its components (Gua, 1.07 mg/mL; Se, 0.178 µg/mL; and LC, 1.43 mg/mL). Flow cytometry, biochemical assays, qRT-PCR, genotoxicity, apoptosis, and cellular proliferation. Based on our results, 10 µM of BPA could induce cyto-genotoxic and oxidative alterations. BPA did not alter the Bcl-2/BAX expression ratio but induced Casp3 and Casp8 overexpression, suggesting that apoptosis was induced mainly via the extrinsic pathway. GSC partially reversed the alterations triggered by BPA in ARPE-19 cells. However, Se had unexpected negative effects on ARPE-19 cells. The multi-supplement GSC may attenuate changes in oxidative and genotoxic markers related to exposure of ARPE-19 cells to BPA. our results revealed that the antioxidant, anti-apoptotic, and genoprotective properties of GSC were not universally shared by its individual, once Se did not exhibit any positive impact.
Collapse
Affiliation(s)
- B O Turra
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - N C A Bonotto
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - C F Teixeira
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - M E Chelotti
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - J R Rodrigues
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - M H Mastella
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Morfologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - V F Azzolin
- Fundação Universidade Aberta da Terceira Idade - FUnATI, Laboratório Gerontec, Manaus, AM, Brasil
| | - E E Ribeiro
- Fundação Universidade Aberta da Terceira Idade - FUnATI, Laboratório Gerontec, Manaus, AM, Brasil
| | - F Barbisan
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Patologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| | - I B M Cruz
- Universidade Federal de Santa Maria - UFSM, Centro de Ciências da Saúde, Departamento de Patologia, Programa de Pós-graduação em Farmacologia, Laboratório de Biogenômica, Santa Maria, RS, Brasil
| |
Collapse
|
6
|
Tryfonos C, Chrysafi M, Vadikolias K, Berberoglou L, Vorvolakos T, Dimoliani S, Tsourouflis G, Kontogiorgis C, Antasouras G, Giaginis C. Nutritional interventional studies in patients with multiple sclerosis: a scoping review of the current clinical evidence. J Neurol 2024; 271:1536-1570. [PMID: 38177875 DOI: 10.1007/s00415-023-12140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/15/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024]
Abstract
A good nutritional status appears to slow down disease progression and ameliorate symptoms' intensity in patients with multiple sclerosis (MS). Up to date, there are several interventional studies, which have explored the potential beneficial effects of specific dietary patterns as well as specific bioactive nutrients against disease progression and symptomatology of MS patients. This is a thorough, scoping review, which aims to critically summarize and scrutinize the currently available clinical evidence of the potential beneficial effects of nutritional interventional studies against MS progression and symptomatology. This review was conducted to systematically map the research done in this area, as well as to identify gaps in knowledge. For this purpose, we thoroughly explored the most accurate scientific web databases, e.g., PubMed, Scopus, Web of Science, and Google Scholar to achieve the most relevant clinical human studies applying effective and characteristic keywords. There are currently several dietary patterns and specific bioactive nutrients that show promising results by slowing down disease progression and by improving MS symptoms. However, there are also certain conflicting results, while most of the existing studies enrolled a small number of MS patients. Nutritional interventions may exert substantial protective effects against MS progression and symptomatology. However, large, long-term, randomized, double-blind, controlled clinical trials with a prospective design are strongly recommended to delineate whether such nutritional intervention may attenuate disease progression, and improve symptomatology in MS patients.
Collapse
Affiliation(s)
- Christina Tryfonos
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Konstantinos Vadikolias
- Department of Neurology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Lefteris Berberoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Campus (Dragana) Building 5, 68100, Alexandroupolis, Greece
| | - Theofanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Sophia Dimoliani
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Gerasimos Tsourouflis
- Second Department of Surgery, Propedeutic, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Campus (Dragana) Building 5, 68100, Alexandroupolis, Greece
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400, Myrina, Greece.
| |
Collapse
|
7
|
Salekzamani S, Baharomid S, Pakkhesal S, Balafkandeh M, Gholipour-Khalili E, Talebi M, Sanaie S, Naseri A. The Effects of Coffee/Caffeine in Patients with Multiple Sclerosis; A Systematic Review. J Evid Based Integr Med 2024; 29:2515690X241293114. [PMID: 39460478 PMCID: PMC11514122 DOI: 10.1177/2515690x241293114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating disease of the central nervous system. Caffeine, as the most widely consumed psychoactive substance, has been suggested to have potential effects on the clinical course and disability levels of MS patients. This study aimed to review the current evidence on the effects of coffee/caffeine in patients with MS. METHODS This study followed the Joanna Briggs Institute (JBI) Manual for Evidence Synthesis and PRISMA 2020 statement. Clinical evidence regarding the effects of caffeine/coffee in MS patients was considered. A systematic search was performed in PubMed, Scopus, Web of Science, and Embase in October 2023, and updated via handsearching in March 2024. JBI's critical appraisal tools were utilized to scrutinize the risk of bias. RESULTS Out of 297 screened records, eight studies were eventually found to meet our inclusion criteria. The sample size of the studies varied between 12 and 1372 and the study designs were retrospective cohort, RCT, single-blind crossover trial, single-arm pilot study (each one study), and cross-sectional (four studies). No significant association between the level of disability and coffee/caffeine intake has been reported, although it was reported to be associated with cognitive improvements. DISCUSSION Evidence indicates an association between coffee/caffeine consumption, and improved cognitive outcomes in patients with MS, while there is no considerable relationship with the disease disability. Considering the limitations of the evidence, such as the small number of studies, and great diversity in study designs, the findings of this study should translate to clinical practice with caution.
Collapse
Affiliation(s)
- Shabnam Salekzamani
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saman Baharomid
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Balafkandeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Zhou J, Zhang W, Cao Z, Lian S, Li J, Nie J, Huang Y, Zhao K, He J, Liu C. Association of Selenium Levels with Neurodegenerative Disease: A Systemic Review and Meta-Analysis. Nutrients 2023; 15:3706. [PMID: 37686737 PMCID: PMC10490073 DOI: 10.3390/nu15173706] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have posed significant challenges to public health, and it is crucial to understand their mechanisms in order to develop effective therapeutic strategies. Recent studies have highlighted the potential role of selenium in ND pathogenesis, as it plays a vital role in maintaining cellular homeostasis and preventing oxidative damage. However, a comprehensive analysis of the association between selenium and NDs is still lacking. METHOD Five public databases, namely PubMed, Web of Science, EMBASE, Cochrane and Clinical Trials, were searched in our research. Random model effects were chosen, and Higgins inconsistency analyses (I2), Cochrane's Q test and Tau2 were calculated to evaluate the heterogeneity. RESULT The association of selenium in ND patients with Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) was studied. A statistically significant relationship was only found for AD patients (SMD = -0.41, 95% CI (-0.64, -0.17), p < 0.001), especially for erythrocytes. However, no significant relationship was observed in the analysis of the other four diseases. CONCLUSION Generally, this meta-analysis indicated that AD patients are strongly associated with lower selenium concentrations compared with healthy people, which may provide a clinical reference in the future. However, more studies are urgently needed for further study and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Zhou
- International School, Jinan University, Guangzhou 510080, China;
| | - Wenfen Zhang
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China;
| | - Zhiwen Cao
- Center for Data Science, New York University, New York, NY 10011, USA;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jieying Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiaying Nie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ying Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ke Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiang He
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
- Disease Control and Prevention Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|