1
|
Sang F, Yang X, Hao J, Wang Y, Si X, Li X, Pan L, Ma Z, Shi C. Wool keratin/zeolitic imidazolate framework-8 composite shape memory sponge with synergistic hemostatic performance for rapid hemorrhage control. J Mater Chem B 2023; 11:10234-10251. [PMID: 37869993 DOI: 10.1039/d3tb01660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Uncontrollable hemorrhage and subsequent wound infection pose severe threats to life, especially in the case of deep, non-compressible, massive bleeding. Here, a wool keratin/zeolitic imidazolate framework-8 (WK/ZIF-8) composite shape memory sponge is prepared by incorporating ZIF-8 nanoparticles into wool keratin. The combination of keratin and ZIF-8 particles not only reduces the effect of ZIF-8 particles on cell viability but also bolsters the mechanical properties of the keratin sponge and endows it with antibacterial efficacy. Due to the synergistic effect of the excellent hemostatic performance of keratin and Zn2+ release from ZIF-8 nanoparticles, the porous structure suitable for blood cell adhesion and the shape recovery ability of sponges, the WK/ZIF-8 composite sponge exhibits superior hemostatic performance to commercial medical sponges in SD rat and rabbit hemorrhage models. In addition, in vitro and in vivo antibacterial experiments demonstrate the anti-infection activity of the composite sponge. Overall, the WK/ZIF-8 composite sponge provides a promising approach to rapidly control bleeding and promote wound healing.
Collapse
Affiliation(s)
- Feng Sang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Jiahui Hao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuzhen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Xujian Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Luqi Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Zhaipu Ma
- School of Life Sciences, Hebei University, Baoding, Hebei 071000, China.
| | - Changcan Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
2
|
Wang L, Shang Y, Zhang J, Yuan J, Shen J. Recent advances in keratin for biomedical applications. Adv Colloid Interface Sci 2023; 321:103012. [PMID: 37837703 DOI: 10.1016/j.cis.2023.103012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
The development of keratin-based biomaterials provides an approach to addressing related environmental pollutants and turns waste into wealth. Keratin possesses various merits, such as biocompatibility, biodegradability, hemostasis, non-immunogenicity, antibacterial activity, antioxidation, multi-responsiveness, and abundance in nature. Additionally, keratin biomaterials have been extensively employed in various biomedical applications such as drug delivery, wound healing, and tissue engineering. This review focuses on the properties and biomedical applications of keratin biomaterials. It is anticipated to provide valuable insights for the research and development of keratin biomaterials.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Majeed Z, Farhat H, Ahmad B, Iqbal A, Faiz AUH, Mahnashi MH, Alqarni AO, Alqahtani O, Ali AA, Momenah AM. Process optimization, antioxidant, antibacterial, and drug adjuvant properties of bioactive keratin microparticles derived from porcupine ( Hystrix indica) quills. PeerJ 2023; 11:e15653. [PMID: 37609437 PMCID: PMC10441523 DOI: 10.7717/peerj.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/07/2023] [Indexed: 08/24/2023] Open
Abstract
A structural protein called keratin is often employed in the medical industry to create medication carriers. Process improvement, antioxidant, antibacterial, and adjuvant drug studies of synthetic bioactive keratin microparticles made from lipids and keratin derived from porcupine (Hystrix indica) quills are the main objectives of this study. After coating the keratin microparticles with lipids which were obtained from the same porcupine quills, the bioactive keratin microparticles were produced. The response surface technique was applied to optimize the conditions for extraction of the keratin protein and sizing of the keratin microparticles. An infrared spectroscopy was used to analyze the chemical shifts in compositions of keratin microparticles while the optical microscopy was used to measure the size of the keratin microparticles. The results of this work revealed that a yield 27.36 to 42.25% of the keratin protein could be obtained from porcupine quills. The keratin microparticles were sized between 60.65 and 118.87 µm. Through response surface optimization, mercaptoethanol and urea were shown to be the main variables which positively affected the yield and the size of the keratin protein. The lipid stacking on the keratin microparticles' surface was confirmed by infrared spectroscopy. The 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) assay confirmed the keratin microparticle's antioxidant activity of 29.83%. Compared to lipid alone, the antibacterial properties of the keratin microparticles against Escherichia coli-a gram-negative-and Staphylococcus aureus-a gram-positive-bacteria enhanced by up to 55% following the coating of the microparticles with the lipids. The pharmacological action against these bacterial species was further improved by the lipid-loaded erythromycin that was carried on the surface of keratin microparticles. This work has demonstrated the design and uses of the keratin microparticles obtained from porcupine quills for clinical applications.
Collapse
Affiliation(s)
- Zahid Majeed
- Department of Biotechnology, Faculty of Science, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Hoorulain Farhat
- Department of Zoology, Faculty of Science, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Basharat Ahmad
- Department of Zoology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Atia Iqbal
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | - Abu ul Hassan Faiz
- Department of Zoology, Faculty of Science and Technology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, Najran University, Najran, Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, Najran University, Najran, Saudi Arabia
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil Bisha, Saudi Arabia
| | - Aiman M. Momenah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Ke Y, Wu J, Ye Y, Zhang X, Gu T, Wang Y, Jiang F, Yu J. Feather keratin-montmorillonite nanocomposite hydrogel promotes bone regeneration by stimulating the osteogenic differentiation of endogenous stem cells. Int J Biol Macromol 2023:125330. [PMID: 37307978 DOI: 10.1016/j.ijbiomac.2023.125330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Bone defects caused by bone trauma, infection, surgery, or other systemic diseases remain a severe challenge for the medical field. To address this clinical problem, different hydrogels were exploited to promote bone tissue regrowth and regeneration. Keratins are natural fibrous proteins found in wool, hair, horns, nails, and feather. Due to their unique characteristics of outstanding biocompatibility, great biodegradability, and hydrophilic, keratins have been widely applicated in different fields. In our study, the feather keratin-montmorillonite nanocomposite hydrogels that consist of keratin hydrogels serving as the scaffold support to accommodate endogenous stem cells and montmorillonite is synthesized. The introduction of montmorillonite greatly improves the osteogenic effect of the keratin hydrogels via bone morphogenetic protein 2 (BMP-2)/phosphorylated small mothers against decapentaplegic homolog 1/5/8 (p-SMAD 1/5/8)/runt-related transcription factor 2 (RUNX2) expression. Moreover, the incorporation of montmorillonite into hydrogels can improve the mechanical properties and bioactivity of the hydrogels. The morphology of feather keratin-montmorillonite nanocomposite hydrogels was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of montmorillonite into the keratin hydrogels was confirmed by the energy dispersive spectrum (EDS). We prove that the feather keratin-montmorillonite nanocomposite hydrogels enhance the osteogenic differentiation of BMSCs. Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that feather keratin-montmorillonite nanocomposite hydrogels dramatically stimulated bone regeneration in vivo. Collectively, feather keratin-montmorillonite nanocomposite hydrogels can regulate BMP/SMAD signaling pathway to stimulate osteogenic differentiation of endogenous stem cells and promote bone defect healing, indicating their promising candidate in bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Stomatology, East Hospital Affiliated to Tongji University, Shanghai 200120, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Institute of Periodontology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolan Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of General Dentistry, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Ni R, Cheng M, Meng J, Hu W, Ke Q, Zhao Y. Edible pullulan enhanced water-soluble keratin with improved sizing performance for sustainable textile industry. Int J Biol Macromol 2023; 238:124066. [PMID: 36934822 DOI: 10.1016/j.ijbiomac.2023.124066] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Feather keratin from waste feather has become an attractive target to replace petroleum-based Poly (vinyl alcohol) sizes due to its easy film-forming ability, excellent adhesive property, biodegradability and low cost. However, poor water-solubility and brittleness of pure keratin films have become the bottlenecks and restricted the application of keratin as sizing agents. Therefore, water-soluble keratin was extracted by the reduction-preservation method and enhanced by saccharides in aqueous system to obtain all-green keratin-based slurry. The results showed that the keratin-based slurry exhibited improved sizing performance in the order of sucrose ≤ glucose ≤ pullulan by the moderate Maillard reaction. Among them, the fabricated pullulan-keratin sizes films had 27.86 %, 2684.08 % and 2911.31 % increment in tensile strength, elongation and work of facture compared with pure keratin sizes films. Besides, the addition of pullulan and subsequently moderate Maillard reaction improved the thermo-tenacity of keratin-based sizes, which was expected to tackle with the brittleness of pure keratin size films. In addition, novel pullulan-keratin sizes had good sizing performance and high desizing efficiency to cotton, cotton/polyester and polyester yarns and fabrics. Successful utilization of pullulan-keratin sizes will bring opportunities for high value utilization of waste feather and promote the green and low-carbon development of textile industry.
Collapse
Affiliation(s)
- Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Meiru Cheng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jing Meng
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- School of Fashion Engineering Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Mondal A, Mondal A, Sen K, Debnath P, Mondal NK. Synthesis, characterization and optimization of chicken bile-mediated silver nanoparticles: a mechanistic insight into antibacterial and antibiofilm activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16525-16538. [PMID: 36190628 DOI: 10.1007/s11356-022-23401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The fast-growing urbanization and slow progress in the field of waste management have led to the accumulation of large quantities of animal wastes. The present work focused on the synthesis of low-cost and eco-friendly chicken bile juice-mediated silver nanoparticles (BJ-AgNP). Results reveal that bile juices have enough potentiality towards the synthesis of almost uniform sizes (average size < 50 nm) of BJ-AgNPs which remains stable for more than 6 months. Response surface methodology (RSM) successfully demonstrated the optimised condition of BJ-AgNP synthesis. Factors like concentration of salt and bile extract and temperature are significantly responsible for nanoparticle synthesis. The synthesis of nanoparticle was further characterized using UV-Vis, TEM, FESEM, XRD, FTIR, TGA, and EDS. The synthesised nanoparticle showed excellent bactericidal activity against both Gram positive and Gram negative bacteria with MIC and MBC of 40 and 50 μg/mL for Bacillus subtilis (MTCC-441) and 60 and 60 μg/mL for Eschecheria coli (MTCC-1687) respectively. The synthesised nanoparticle also exhibited as an antibiofilm activity against B. subtilis, with ~89% biofilm inhibition efficacy at 4 X MIC, having optimal bacterial concentration of 106 CFU/mL. Therefore, the present findings clearly demonstrated that an absolute animal waste could be a valuable ingredient in the field of therapeutic nanoscience.
Collapse
Affiliation(s)
- Anupam Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Arghadip Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Kamalesh Sen
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Priyanka Debnath
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India.
| |
Collapse
|
7
|
Qin X, Yang C, Guo Y, Liu J, Bitter JH, Scott EL, Zhang C. Effect of ultrasound on keratin valorization from chicken feather waste: Process optimization and keratin characterization. ULTRASONICS SONOCHEMISTRY 2023; 93:106297. [PMID: 36641870 PMCID: PMC9860336 DOI: 10.1016/j.ultsonch.2023.106297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/01/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Chicken feather (CF) has been deemed as one of the main poultry byproducts with a large amount produced globally. However, the robust chemical nature of chicken feathers has been limiting in its wide-scale utilization and valorization. The study proposed a strategy of keratin regeneration from chicken feather combining ultrasound and Cysteine (Cys)-reduction for keratin regeneration. First, the ultrasonic effect on feather degradation and keratin properties was systematically explored based on Cys-reduction. Results showed that the feather dissolution was significantly improved by increasing both ultrasonic time and power, and the former had a greater impact on keratin yield. However, the treatment time over 4 h led to a decrease of keratin yield, producing more soluble peptides, > 9.7 % of which were < 0.5 kDa. Meanwhile, prolonging time decreased the thermal stability with weight loss at a lower temperature and amino acids content (e.g., Ser, Pro and Gly) of keratin. Conversely, no remarkable damage in chemical structure and thermal stability of regenerated keratin was observed by only increasing ultrasonic power, while the keratin solubility was notably promoted and reached 745.72 mg·g-1 in NaOH (0.1 M) solution (400 W, 4 h). The regenerated keratin under optimal conditions (130 W, 2.7 h, and 15 % of Cys) possessed better solubility while without obvious damage in chemical structure, thermal stability, and amino acids composition. The study illustrated that ultrasound physically improved CF degradation and keratin solubility without nature damage and provided an alternative for keratin regeneration involving no toxic reagent, probably holding promise in the utilization and valorization of feather waste.
Collapse
Affiliation(s)
- Xiaojie Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Xinjiang Taikun Group Co. Ltd, Xinjiang Uygur Autonomous Region, Changji 831100, China
| | - Jiqian Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Johannes H. Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Elinor L. Scott
- Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Sun W, Mu C, Zhang X, Shi H, Yan Q, Luan S. Mussel-inspired polysaccharide-based sponges for hemostasis and bacteria infected wound healing. Carbohydr Polym 2022; 295:119868. [PMID: 35989011 DOI: 10.1016/j.carbpol.2022.119868] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/21/2022]
Abstract
Effective bleeding control and wound protecting from infection play critical roles in the tissue healing process. However, local hemostats are not involved in the whole healing processes to promote the final healing efficiency. Here, a multi-functional mussel-inspired polysaccharide-based sponge with hemostatic, antibacterial and adhesive properties was fabricated via cryopolymerization of oxidized dextran (OD), carboxymethyl chitosan (CC) and polydopamine nanoparticles (PDA-NPs), followed by lyophilization. Combining with the adsorbed thrombin, the sponges yielded a considerably lower amount of blood than the commercially available hemostatic dressings. Benefiting from the high photo-thermal transition efficiency of PDA-NPs, the sponges exhibited excellent antibacterial activity to both gram positive and negative bacteria. Owing to the rapid hemostatic activity and effective infection resistance, the sponges illustrated the significantly acceleratory wound healing efficiency compared with the control group. The thrombin-loaded OD/CC-PDA polysaccharide-based sponge has great potential for future clinical use as wound dressing.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Changjun Mu
- Shandong Weigao Blood Purification Products Co., Ltd., Weihai 264210, PR China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
10
|
Yan RR, Xue D, Su C, Xu Y, Gong JS, Liu YL, Jiang M, Geng Y, Lv GZ, Xu ZH, Shi JS. A keratin/chitosan sponge with excellent hemostatic performance for uncontrolled bleeding. Colloids Surf B Biointerfaces 2022; 218:112770. [PMID: 35988313 DOI: 10.1016/j.colsurfb.2022.112770] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Uncontrolled bleeding leads to a higher fatality rate in the situation of surgery, traffic accidents and warfare. Traditional hemostatic materials such as bandages are not ideal for uncontrolled or incompressible bleeding. Therefore, it is of great significance to develop a new medical biomaterial with excellent rapid hemostatic effect. Keratin is a natural, biocompatible and biodegradable protein which contains amino acid sequences that induce cell adhesion. As a potential biomedical material, keratin has been developed and paid attention in tissue engineering fields such as promoting wound healing and nerve repair. Herein, a keratin/chitosan (K/C) sponge was prepared to achieve rapid hemostasis. The characterizations of K/C sponge were investigated, including SEM, TGA, liquid absorption and porosity, showing that the high porosity up to 90.12 ± 2.17 % resulted in an excellent blood absorption. The cytotoxicity test and implantation experiment proved that the K/C sponge was biocompatible and biodegradable. Moreover, the prepared K/C sponge showed better hemostatic performance than chitosan sponge (CS) and the commercially available gelatin sponge in both rat tail amputation and liver trauma bleeding models. Further experiments showed that K/C sponge plays a hemostatic role through the endogenous coagulation pathway, thus shortening the activated partial thromboplastin time (APTT) effectively. Therefore, this study provided a K/C sponge which can be served as a promising biomedical hemostatic material.
Collapse
Affiliation(s)
- Rong-Rong Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dai Xue
- Department of Stomatology, Wuxi Children's Hospital, Wuxi 214023, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Affiliated Hospital of Jiangnan University, Wuxi 214062 PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan-Ling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Zhong Lv
- Affiliated Hospital of Jiangnan University, Wuxi 214062 PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
12
|
Wang Y, Xu Y, Zhang Z, He Y, Hou Z, Zhao Z, Deng J, Qing R, Wang B, Hao S. Rational Design of High-Performance Keratin-Based Hemostatic Agents. Adv Healthc Mater 2022; 11:e2200290. [PMID: 35613419 DOI: 10.1002/adhm.202200290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/17/2022] [Indexed: 12/17/2022]
Abstract
Keratins are considered ideal candidates as hemostatic agents, but the development lags far behind their potentials due to the poorly understood hemostatic mechanism and structure-function relations, owing to the composition complexity in protein extracts. Here, it is shown that by using a recombinant synthesis approach, individual types of keratins can be expressed and used for mechanism investigation and further high-performance keratin hemostatic agent design. In the comparative evaluation of full-length, rod-domain, and helical segment keratins, the α-helical contents in the sequences are identified to be directly proportional to keratins' hemostatic activities, and Tyr, Phe, and Gln residues at the N-termini of α-helices in keratins are crucial in fibrinopeptide release and fibrin polymerization. A feasible route to significantly enhance the hemostatic efficiency of helical keratins by mutating Cys to Ser in the sequences for enhanced water wettability through soluble expression is then further presented. These results provide a rational strategy to design high-efficiency keratin hemostatic agents with superior performance over clinically used gelatin sponge in multiple animal models.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
- Department of Nuclear Medicine Chongqing University Cancer Hospital Chongqing 400044 China
| | - Yingqian Xu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhibin Zhao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Jia Deng
- College of Environment and Resources Chongqing Technology and Business University Chongqing 400067 China
| | - Rui Qing
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| |
Collapse
|
13
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
14
|
Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, Shi JS. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol 2022; 106:2349-2366. [DOI: 10.1007/s00253-022-11882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
|
15
|
Silva OA, Pellá MG, Popat KC, Kipper MJ, Rubira AF, Martins AF, Follmann HD, Silva R. Rod-shaped keratin nanoparticles extracted from human hair by acid hydrolysis as photothermally triggered berberine delivery system. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Abstract
Keratin is a structural protein of mammalian tissues and birds, representing the principal constituent of hair, nails, skin, wool, hooves, horns, beaks, and feathers, and playing an essential role in protecting the body from external harassment. Due to its intrinsic features such as biocompatibility, biodegradability, responsiveness to specific biological environment, and physical–chemical properties, keratin has been extensively explored in the production of nanocarriers of active principles for different biomedical applications. In the present review paper, we aimed to give a literature overview of keratin-based nanoparticles produced starting from human hair, wool, and chicken feathers. Along with the chemical and structural description of keratin nanoparticles, selected in vitro and in vivo biological data are also discussed to provide a more comprehensive framework of possible fields of application of this protein. Despite the considerable number of papers describing the production and use of keratin nanoparticles as carries of anticancer and antimicrobial drugs or as hemostatic and wound healing materials, still, efforts are needed to implement keratin nanoparticles towards their clinical application.
Collapse
|
17
|
Ali S, Sulaiman S, Khan A, Khan MR, Khan R. Green synthesized silver nanoparticles (AgNPs) from Parrotiopsis jacquemontiana (Decne) Rehder leaf extract and its biological activities. Microsc Res Tech 2021; 85:28-43. [PMID: 34331490 DOI: 10.1002/jemt.23882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
Parrotiopsis jacquemontiana (Decne) Rehder aqueous extract of leaf was used for biosynthesis of AgNPs and characterized through UV-Visible spectroscopy, X-ray diffraction, Fourier-transform-infrared, diffraction light scattering, and scanning electron microscope analysis. Moderate to strong antioxidant activity during in vitro antioxidant assays for scavenging of 2,2-diphenyl-1-picryl hydrazyl (DPPH), hydroxyl (OH), nitric oxide (NO) radicals, iron chelation, and inhibition of β-carotene bleaching was recorded with minimum IC50 value (27.70 ± 2.67 μg/ml) calculated for OH radicals. The AgNPs were evaluated against six multidrug resistant human bacterial strains and minimum inhibitory concentration (MIC) along with minimum bactericidal concentration (MBC) values was determined and all were found remarkably susceptible. The bacterial strain Staphylococcus aureus was the most susceptible with MIC = 5 μg/ml and MBC = 10 μg/ml. Among six fungal strains, Fumigatus esculentum was the most susceptible with MIC and MBC of 10 μg/ml. 3-(4,5-Dimethylthiazol-2 yl)-2,5-diphenyltetrazolium bromide (MTT) screening assay against cancer cell lines (HCCLM3, HEPG2, MDA-MB 231, and MCF-7) revealed the least IC50 values against HCCLM3 (74.20 ± 5.04) and MCF-7 (91.90 ± 1.17). While no cytotoxicity against normal cell lines; LO2 and MCF-10a was recorded. Parrotiopsis jacquemontiana silver nanoparticles (PJAgNPs) significantly (p > .001) prevented the migration of HCCLM3 cells in a dose-dependent style, relative to control. The wound healing potential of AgNPs in rat was found higher (p < .05) for wound contraction rates, hydroxyproline content, hemostatic and re-epithelization and regeneration efficiency in comparison to the reference group.
Collapse
Affiliation(s)
- Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sulaiman Sulaiman
- National Centre for Physics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asghar Khan
- National Centre for Physics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
18
|
Wongnarat C, Srihanam P. Biomaterial microparticles of keratose/collagen blend prepared by a water-in-oil emulsification–diffusion method. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1789904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chuleerat Wongnarat
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Creative and Innovation Chemistry Research Unit, Mahasarakham University, Mahasarakham, Thailand
| | - Prasong Srihanam
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Creative and Innovation Chemistry Research Unit, Mahasarakham University, Mahasarakham, Thailand
| |
Collapse
|
19
|
Ding J, Lai R, Chen W, He M, Zhu G, Huang S, Yin G. Environmentally friendly biological nanofibers based on waste feather keratin by electrospinning with citric acid vapor modification. J Appl Polym Sci 2021. [DOI: 10.1002/app.50348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiao Ding
- College of Chemistry and Chemical Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Ruihao Lai
- College of Chemistry and Chemical Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Wenjie Chen
- College of Chemistry and Chemical Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Ming He
- College of Chemistry and Chemical Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Guodian Zhu
- College of Chemistry and Chemical Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Guoqiang Yin
- College of Chemistry and Chemical Engineering Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
20
|
Cheng Z, Qing R, Hao S, Ding Y, Yin H, Zha G, Chen X, Ji J, Wang B. Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat. Regen Biomater 2021; 8:rbab008. [PMID: 33738122 PMCID: PMC7955710 DOI: 10.1093/rb/rbab008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hydrogel has been used for in suit gastric ulcer therapy by stopping bleeding, separating from ulcer from gastric fluids and providing extracellular matrix scaffold for tissue regeneration, however, this treatment guided with endoscopic catheter in most cases. Here, we developed an oral keratin hydrogel to accelerate the ulcer healing without endoscopic guidance, which can specially adhere to the ulcer because of the high-viscosity gel formation on the wound surface in vivo. Approximately 50% of the ulcer-adhesive keratin hydrogel can resident in ethanol-treated rat stomach within 12 h, while approximately 18% of them maintained in health rat stomach in the same amount of time. Furthermore, Keratin hydrogels accelerated the ethanol-induced gastric ulcer healing by stopping the bleeding, preventing the epithelium cells from gastric acid damage, suppressing inflammation and promoting re-epithelization. The oral administration of keratin hydrogel in gastric ulcer treatment can enhance the patient compliance and reduce the gastroscopy complications. Our research findings reveal a promising biomaterial-based approach for treating gastrointestinal ulcers.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.,Bijie Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, China
| | - Rui Qing
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haimeng Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - GuoDong Zha
- HEMOS (Chongqing) Bioscience Co., Ltd, Chongqing 402760, China
| | - Xiaoliang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Department of Nuclear Medicine, Institution of Chongqing Cancer, Chongqing 400030, China
| | - Jingou Ji
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
21
|
Yi Z, Cui X, Chen G, Chen X, Jiang X, Li X. Biocompatible, Antioxidant Nanoparticles Prepared from Natural Renewable Tea Polyphenols and Human Hair Keratins for Cell Protection and Anti-inflammation. ACS Biomater Sci Eng 2021; 7:1046-1057. [PMID: 33512989 DOI: 10.1021/acsbiomaterials.0c01616] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Excessive reactive oxygen species (ROS) can cause oxidative stress of tissues and adversely influence homeostasis of the body. Epigallocatechin gallate (EGCG) with an antioxidative effect can effectively eliminate the ROS, but an evident weakness associated with it is the relatively poor cytocompatibility. Combining with other biomacromolecules such as human hair keratin (KE) and using nanotechnology to prepare nanoparticles can improve this situation. By covalent bonding, we assembled KE and EGCG into KE-EGCG nanoparticles (NANO) with size of about 50 nm and characterized them by DLS, UV, FTIR, NMR, and XPS. Free radical scavenging experiments show that antioxidant properties of the obtained NANO are superior to that of vitamin C. Cell culture experiments also show that the NANO can effectively protect the proliferation of L929 cells and HUVEC cells. In addition, we also used RAW264.7 cells to establish a H2O2-induced cell injury model and an lipopolysaccharide-induced cellular inflammatory model to evaluate the antioxidant and anti-inflammatory properties of NANO. The results show that the NANO can effectively prevent cells from oxidative damage and reduce inflammatory expression of the cells, indicating that the NANO have a good antioxidative and anti-inflammatory effect on cells which can be applied to many diseases related to oxidative stress.
Collapse
Affiliation(s)
- Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xinxing Cui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu 610041, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
22
|
Preparation and Characterisation of Waste Poultry Feathers Composite Fibreboards. MATERIALS 2020; 13:ma13214964. [PMID: 33158218 PMCID: PMC7663731 DOI: 10.3390/ma13214964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
The growth of poultry meat production is increasing industrial waste quantities every year. Feathers represent a huge part of the waste, and international directives and restrictions prevent landfilling of such biodegradable materials with high burning values. Furthermore, with their unique properties, poultry waste feathers are already a reliable resource for many byproducts, such as keratin extraction, fibres, hydrogel production, etc., all trying to achieve a high-added value. However, mass reduction of waste feathers into useful applications, such as development of alternative building materials, is also an important aspect. To take advantage of feathers’ thermal insulation capabilities, sound damping, and biodegradability, we worked towards mixing waste feathers with wood residues (wood shavings, dust, and mixed residues) for production of composite fibreboards, comparable to the market’s medium density fibreboards. The emphasis was to evaluate waste poultry feathers as the component of natural insulation composites, along with mixed waste wood residues, to improve their mechanical properties. Various composite fibreboards with different shares of wood and feathers were produced and tested for mechanical, thermal, and acoustic properties, and biodegradability, with comparison to typical particle boards on the market. The addition of waste feather fibres into the fibreboards’ structure improved thermal insulation properties, and the biodegradability of fibreboards, but decreased their bending strength. The sound transition acoustic loss results of the presented combination fibreboards with added feathers improved at mid and high frequencies. Finally, production costs are estimated based on small scale laboratory experiments of feather processing (cleaning and drying), with the assumption of cost reduction in cases of large industrial application.
Collapse
|
23
|
Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids Surf B Biointerfaces 2020; 190:110951. [DOI: 10.1016/j.colsurfb.2020.110951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
24
|
Shankar S, Rhim JW. Eco-friendly antimicrobial nanoparticles of keratin-metal ion complex. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110068. [DOI: 10.1016/j.msec.2019.110068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022]
|
25
|
Chen H, Shang X, Yu L, Xiao L, Fan J. Safety evaluation of a low-heat producing zeolite granular hemostatic dressing in a rabbit femoral artery hemorrhage model. J Biomater Appl 2019; 34:988-997. [DOI: 10.1177/0885328219888626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqiang Shang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisha Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liping Xiao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Fan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. Int J Pharm 2019; 566:342-351. [DOI: 10.1016/j.ijpharm.2019.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
|
27
|
|
28
|
Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids Surf B Biointerfaces 2019; 175:436-444. [DOI: 10.1016/j.colsurfb.2018.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022]
|
29
|
Luzi F, Torre L, Kenny JM, Puglia D. Bio- and Fossil-Based Polymeric Blends and Nanocomposites for Packaging: Structure⁻Property Relationship. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E471. [PMID: 30717499 PMCID: PMC6384613 DOI: 10.3390/ma12030471] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 01/19/2023]
Abstract
In the present review, the possibilities for blending of commodities and bio-based and/or biodegradable polymers for packaging purposes has been considered, limiting the analysis to this class of materials without considering blends where both components have a bio-based composition or origin. The production of blends with synthetic polymeric materials is among the strategies to modulate the main characteristics of biodegradable polymeric materials, altering disintegrability rates and decreasing the final cost of different products. Special emphasis has been given to blends functional behavior in the frame of packaging application (compostability, gas/water/light barrier properties, migration, antioxidant performance). In addition, to better analyze the presence of nanosized ingredients on the overall behavior of a nanocomposite system composed of synthetic polymers, combined with biodegradable and/or bio-based plastics, the nature and effect of the inclusion of bio-based nanofillers has been investigated.
Collapse
Affiliation(s)
- Francesca Luzi
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy.
| | - Luigi Torre
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy.
| | - José Maria Kenny
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy.
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, Strada di Pentima 4, 05100 Terni, Italy.
| |
Collapse
|
30
|
He Y, Qu Q, Luo T, Gong Y, Hou Z, Deng J, Xu Y, Wang B, Hao S. Human Hair Keratin Hydrogels Alleviate Rebleeding after Intracerebral Hemorrhage in a Rat Model. ACS Biomater Sci Eng 2019; 5:1113-1122. [DOI: 10.1021/acsbiomaterials.8b01609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qing Qu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yuhua Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yingqian Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
31
|
Zhong QK, Wu ZY, Qin YQ, Hu Z, Li SD, Yang ZM, Li PW. Preparation and Properties of Carboxymethyl Chitosan/Alginate/Tranexamic Acid Composite Films. MEMBRANES 2019; 9:membranes9010011. [PMID: 30626053 PMCID: PMC6359296 DOI: 10.3390/membranes9010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Abstract
In this study, the porous composite films of carboxymethyl chitosan/alginate/tranexamic acid were fabricated, with calcium chloride as the crosslinking agent and glycerin as a plasticizer. The composite films were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The properties of the composite films, including water absorption, air permeability, and cumulative release rate, were tested. In addition, their hemostatic performance was evaluated. The results showed that the appearance of the films with good adhesion was smooth and porous. FTIR showed that chemical crosslinking between carboxymethyl chitosan and sodium alginate was successful. The excellent cumulative release of tranexamic acid in the composite films (60–80%) gives the films a significant procoagulant effect. This has good prospects for the development of medical hemostasis materials.
Collapse
Affiliation(s)
- Qing-Kun Zhong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ze-Yin Wu
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ya-Qi Qin
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhang Hu
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Si-Dong Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zi-Ming Yang
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical agricultural Sciences, Zhanjiang 524001, China.
| | - Pu-Wang Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical agricultural Sciences, Zhanjiang 524001, China.
| |
Collapse
|
32
|
Shah A, Tyagi S, Bharagava RN, Belhaj D, Kumar A, Saxena G, Saratale GD, Mulla SI. Keratin Production and Its Applications: Current and Future Perspective. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Zhang P, Li S, Zhang S, Zhang X, Wan L, Yun Z, Ji S, Gong F, Huang M, Wang L, Zhu X, Tan Y, Wan Y. GRGDS-functionalized chitosan nanoparticles as a potential intravenous hemostat for traumatic hemorrhage control in an animal model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2531-2540. [PMID: 30193814 DOI: 10.1016/j.nano.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/15/2018] [Accepted: 08/08/2018] [Indexed: 01/25/2023]
Abstract
Hemostats, which are used for immediate intervention during internal hemorrhage in order to reduce resulting mortality and morbidity, are relatively rare. Here, we describe novel intravenous nanoparticles (CPG-NPs-2000) with chitosan succinate (CSS) as cores, polyethylene glycol (PEG-2000) as spacers and a glycine-arginine-glycine-aspartic acid-serine (GRGDS) peptide as targeted, active hemostatic motifs. CPG-NPs-2000 displayed significant hemostatic efficacy, compared to the saline control, CSS nanoparticles, and tranexamic acid in liver trauma rat models. Further studies have demonstrated that CPG-NPs-2000 are effectively cleared from organs and blood, within 2 and 48 h, respectively. In addition, administration of CPG-NPs-2000 does not affect clotting function under normal physiological conditions, indicating their potential safety in vivo. CPG-NPs-2000 exhibit excellent thermal stability, good solubility, and redistribution ability, in addition to being low cost. These characteristics indicate that CPG-NPs-2000 may have strong potential as effective intravenous hemostats for treating severe internal bleeding.
Collapse
Affiliation(s)
- Pingyi Zhang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Subo Li
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shikun Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xue Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Luming Wan
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zhimin Yun
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shouping Ji
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Feng Gong
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Leilei Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Yingxia Tan
- Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
34
|
Guo T, Li W, Wang J, Luo T, Lou D, Wang B, Hao S. Recombinant human hair keratin proteins for halting bleeding. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:456-461. [DOI: 10.1080/21691401.2018.1459633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Ju Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Deshuai Lou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
35
|
Cheng Z, Chen X, Zhai D, Gao F, Guo T, Li W, Hao S, Ji J, Wang B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnology 2018; 16:24. [PMID: 29554910 PMCID: PMC5858146 DOI: 10.1186/s12951-018-0353-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/02/2022] Open
Abstract
Background Nanotechnology-based drug delivery systems have been widely used for oral and systemic dosage forms delivery depending on the mucoadhesive interaction, and keratin has been applied for biomedical applications and drug delivery. However, few reports have focused on the keratin-based mucoadhesive drug delivery system and their mechanisms of mucoadhesion. Thus, the mucoadhesion controlled kerateine (reduced keratin, KTN)/keratose (oxidized keratin, KOS) composite nanoparticles were prepared via adjusting the proportion of KTN and KOS to achieve controlled gastric mucoadhesion and drug release based on their different mucoadhesive abilities and pH-sensitive properties. Furthermore, the mechanisms of mucoadhesion for KTN and KOS were also investigated in the present study. Results The composite keratin nanoparticles (KNPs) with different mass ratio of KTN to KOS, including 100/0 (KNP-1), 75/25 (KNP-2), 50/50 (KNP-3), and 25/75 (KNP-4), displayed different drug release rates and gastric mucoadhesion capacities, and then altered the drug pharmacokinetic performances. The stronger mucoadhesive ability of nanoparticle could supply longer gastric retention time, indicating that KTN displayed a stronger mucoadhesion than that of KOS. Furthermore, the mechanisms of mucoadhesion for KTN and KOS at different pH conditions were also investigated. The binding between KTN and porcine gastric mucin (PGM) is dominated by electrostatic attractions and hydrogen bondings at pH 4.5, and disulfide bonds also plays a key role in the interaction at pH 7.4. While, the main mechanisms of KOS and PGM interactions are hydrogen bondings and hydrophobic interactions in pH 7.4 condition and were hydrogen bondings at pH 4.5. Conclusions The resulting knowledge offer an efficient strategy to control the gastric mucoadhesion and drug release of nano drug delivery systems, and the elaboration of mucoadhesive mechanism of keratins will enable the rational design of nanocarriers for specific mucoadhesive drug delivery. Electronic supplementary material The online version of this article (10.1186/s12951-018-0353-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030, China
| | - Dongliang Zhai
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030, China
| | - Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China. .,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China.
| | - Jingou Ji
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China. .,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China. .,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
36
|
Sun Z, Chen X, Ma X, Cui X, Yi Z, Li X. Cellulose/keratin–catechin nanocomposite hydrogel for wound hemostasis. J Mater Chem B 2018; 6:6133-6141. [DOI: 10.1039/c8tb01109e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rapid wound hemostatic was achieved by a composite hydrogel based on human hair keratin–catechin nanoparticles and cellulose.
Collapse
Affiliation(s)
- Zhe Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Xinxing Cui
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- People's Republic of China
| | - Xudong Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- People's Republic of China
| |
Collapse
|
37
|
In situ hydrogels enhancing postoperative functional recovery by reducing iron overload after intracerebral haemorrhage. Int J Pharm 2017; 534:179-189. [DOI: 10.1016/j.ijpharm.2017.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 11/21/2022]
|
38
|
Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:1-8. [PMID: 29208266 DOI: 10.1016/j.msec.2017.07.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
In this work, two forms of keratins, kerateine (KR) and keratose (KO), were fabricated respectively into electrospun nanofibers by combination with polyurethane (PU). The differences of the structure and material properties between KR and KO based fibers were investigated by SEM observation, ATR-FTIR, XRD, contact angle, tensile test, in vitro degradation and cytocompatibility assay. The results indicated that the KR based nanofibers exhibited a higher tensile modulus, lower fracture strain and slower degradation rate, mainly due to the reformation of disulfide crosslinking between the regenerated cysteines in KR after the reductive extraction. The KO based nanofibers demonstrated a stronger hydrophilic property and higher water uptake ability due to the cysteic acid residues resulting from the oxidative extraction. Furthermore, the combination of keratins, regardless of KR or KO, could obviously improve the cytocompatibility of PU, especially in the cell attachment stage.
Collapse
|
39
|
Ma B, Sun Q, Yang J, Wizi J, Hou X, Yang Y. Degradation and regeneration of feather keratin in NMMO solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17711-17718. [PMID: 28601997 DOI: 10.1007/s11356-017-9410-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Chicken feather, a potential source of keratin, is often disposed as waste material. Although some methods, i.e., hydrolysis, reduction, and oxidation, have been developed to isolate keratin for composites, it has been limited due to the rising environmental concerns. In this work, a green solvent N-methylmorpholine N-oxide (NMMO) was used to extract keratin from chicken feather waste. Eighty-nine percent of keratin was extracted using 75% NMMO solution. However, the result from size exclusion HPLC showed that most of the keratin degraded into polypeptide with molecular weight of 2189 and only 25.3% regenerated keratin was obtained with molecular weight of 14,485. Analysis of amino acid composition showed a severe damage to the disulfide bonds in keratin during the extraction procedure. Oxidization had an important effect on the reconstitution of the disulfide bonds, which formed a stable three-dimensional net structure in the regenerated keratins. Besides, Raman spectra, NMR, FT-IR, XRD, and TGA were used to characterize the properties of regenerated keratin and raw chicken feather. In the end, a possible mechanism was proposed based on the results.
Collapse
Affiliation(s)
- Bomou Ma
- Key Laboratory of Eco-Textiles, Ministry of Education, College of textile and clothing, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Qisong Sun
- Key Laboratory of Eco-Textiles, Ministry of Education, College of textile and clothing, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jing Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of textile and clothing, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jakpa Wizi
- Key Laboratory of Eco-Textiles, Ministry of Education, College of textile and clothing, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiuliang Hou
- Key Laboratory of Eco-Textiles, Ministry of Education, College of textile and clothing, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yiqi Yang
- Department of Textiles, Merchandising & Fashion Design, University of Nebraska-Lincoln, 234, HECO Building, Lincoln, NE, 68583-0802, USA.
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 234, HECO Building, Lincoln, NE, 68583-0802, USA.
| |
Collapse
|
40
|
Dos Santos-Silva AM, de Caland LB, de S L Oliveira ALC, de Araújo-Júnior RF, Fernandes-Pedrosa MF, Cornélio AM, da Silva-Júnior AA. Designing structural features of novel benznidazole-loaded cationic nanoparticles for inducing slow drug release and improvement of biological efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:978-987. [PMID: 28576075 DOI: 10.1016/j.msec.2017.04.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/10/2017] [Indexed: 01/05/2023]
Abstract
Several polymers have been investigated for producing cationic nanocarriers due to their ability to cross biological barriers. Polycations such as copolymers of polymethylmethacrylate are highlighted due to their biocompatibility and low toxicity. The purpose of this study was to produce small and narrow-sized cationic nanoparticles able to overcome cell membranes and improve the biological activity of benznidazole (BNZ) in normal and cancer cells. The effect of composition and procedure parameters of the used emulsification-solvent evaporation method were controlled for this purpose. The experimental approach included particle size, polydispersity index, zeta potential, atomic force microscopy (AFM), attenuated total reflectance Fourier transforms infrared spectroscopy (ATR- FTIR), drug loading efficiency, and physical stability assays. Spherical and stable (over six weeks) sub 150nm cationic nanoparticles were optimized, with the encapsulation efficiency >80%. The used drug/copolymer ratio modulated the slow drug release, which was adjusted by the parabolic diffusion mathematical model. In addition, the ability of the cationic nanoparticles improve the BNZ uptake in the normal kidney cells (HEK 293) and the human colorectal cancer cells (HT 29) demonstrate that this novel BNZ-loaded cationic has great potential as a chemotherapeutic application of benznidazole.
Collapse
Affiliation(s)
- Alaine M Dos Santos-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Lilia B de Caland
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | | | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Alianda Maira Cornélio
- Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, - RN, Brazil
| | - Arnóbio A da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
41
|
Napavichayanun S, Aramwit P. Effect of animal products and extracts on wound healing promotion in topical applications: a review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:703-729. [DOI: 10.1080/09205063.2017.1301772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Supamas Napavichayanun
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
42
|
Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces 2017; 149:341-350. [DOI: 10.1016/j.colsurfb.2016.10.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
|