1
|
Kumar S, Sharma V, Thakur N, Singh B. Investigation of physicochemical, morphological and biomedical properties of network hydrogels derived from arabinogalactan of acacia-tragacanth gum. Int J Biol Macromol 2025; 301:140477. [PMID: 39889988 DOI: 10.1016/j.ijbiomac.2025.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/31/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Recently, significant progress has been made in the development of natural polysaccharide-derived functional copolymers for advanced biomedical uses. Herein, the main objective of the present research work was to explore the potential of gum acacia (GA) and tragacanth gum (TG) for developing network hydrogels to use in drug delivery (DD) applications. The copolymers were prepared by grafting of 3-sulfopropylacrlate (SPA) onto gum (GA-TG). FE-SEM, AFM, XRD, XPS, FTIR, 13C NMR and DSC techniques were applied for their characterizations and structural analysis. The physicochemical, morphological and biomedical properties of hydrogels were investigated. The optimized polymer network exhibited a mesh size (ξ) of 13.95 mm and a cross-linking density (ρ) of 6.44 × 10-5 mol/cm3. FE-SEM and AFM revealed heterogeneous morphology and rough topology of copolymer hydrogels. The XRD revealed the amorphous state of the copolymer. FTIR and 13C NMR confirmed the incorporation of poly(SPA) chains onto gums. Diffusion of meropenem drug occurred in a sustained manner with a non-Fickian diffusion mechanism. The release profile of the drug was best described by the First-order kinetic model. The results of polymer-blood interactions revealed their non-haemolytic & non-thrombogenic features. Copolymers exhibited antioxidant nature and illustrated 40.72 ± 2.08 % scavenging ability during DPPH assay. The hydrogel demonstrated a mucoadhesive nature and required 100 ± 10 mN forces to separate from mucous membrane. The meropenem impregnated hydrogel exhibited antibacterial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacteria, respectively. The results of various properties demonstrated the suitability of network hydrogels for DD uses.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Vikrant Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Nistha Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
2
|
Amiri Heydari H, Kazemi Ashtiani M, Mostafaei F, Alipour Choshali M, Shiravandi A, Rajabi S, Daemi H. Functional Efficacy of Tissue-Engineered Small-Diameter Nanofibrous Polyurethane Vascular Grafts Surface-Modified by Methacrylated Sulfated Alginate in the Rat Abdominal Aorta. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67255-67274. [PMID: 39621863 DOI: 10.1021/acsami.4c13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis. Here, we fabricated macroporous and nanofibrous polyurethane (PU) bilayer tissue-engineered vascular grafts (TEVGs) by a salt-leaching method to achieve high porosities up to 30 μm. These grafts have a low porosity on the luminal side and a high porosity on the abluminal side. To enhance their properties, we surface-modified the PU scaffolds using heparin-mimicking methacrylated sulfated alginate (PU-MSA). We then evaluated these tubular scaffolds for their anticoagulation effect, protein adsorption, and cell attachment in vitro. The results revealed that TEVGs modified with sulfated alginate (PU-MSA) exhibited better anticoagulation (25 ± 1 min) and higher VEGF protein adsorption (75 ± 5 ng/mL) compared to other scaffolds. Moving to in vivo testing, we examined the TEVGs in a rat model for either 1 or 5 months. Through ultrasonication and various histological analyses, we assessed the functionality and biocompatibility of the TEVGs. Notably, the PU-MSA scaffold created a microenvironment conducive to cell homing and regeneration in the field of VTE.
Collapse
Affiliation(s)
- Hamid Amiri Heydari
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Farhad Mostafaei
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran 16635-148, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Ayoub Shiravandi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sarah Rajabi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hamed Daemi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
3
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-43. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
4
|
Sanchez Armengol E, Hock N, Saribal S, To D, Summonte S, Veider F, Kali G, Bernkop-Schnürch A, Laffleur F. Unveiling the potential of biomaterials and their synergistic fusion in tissue engineering. Eur J Pharm Sci 2024; 196:106761. [PMID: 38580169 DOI: 10.1016/j.ejps.2024.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Inspired by nature, tissue engineering aims to employ intricate mechanisms for advanced clinical interventions, unlocking inherent biological potential and propelling medical breakthroughs. Therefore, medical, and pharmaceutical fields are growing interest in tissue and organ replacement, repair, and regeneration by this technology. Three primary mechanisms are currently used in tissue engineering: transplantation of cells (I), injection of growth factors (II) and cellular seeding in scaffolds (III). However, to develop scaffolds presenting highest potential, reinforcement with polymeric materials is growing interest. For instance, natural and synthetic polymers can be used. Regardless, chitosan and keratin are two biopolymers presenting great biocompatibility, biodegradability and non-antigenic properties for tissue engineering purposes offering restoration and revitalization. Therefore, combination of chitosan and keratin has been studied and results exhibit highly porous scaffolds providing optimal environment for tissue cultivation. This review aims to give an historical as well as current overview of tissue engineering, presenting mechanisms used and polymers involved in the field.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; ITM Isotope Technologies Munich SE, Walther-von-Dyck Str. 4, 85748, Garching bei Munich, Germany
| | - Sila Saribal
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Simona Summonte
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; ThioMatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020, Innsbruck, Austria
| | - Florina Veider
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Sandoz, Biochemiestraße 10, 6250, Kundl, Austria
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Dai Y, Lu T, Li L, Zhang F, Xu H, Li H, Wang W, Shao M, Lyu F. Electrospun Composite PLLA-PPSB Nanofiber Nerve Conduits for Peripheral Nerve Defects Repair and Regeneration. Adv Healthc Mater 2024; 13:e2303539. [PMID: 38233357 DOI: 10.1002/adhm.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/24/2023] [Indexed: 01/19/2024]
Abstract
Peripheral nerve injury (PNI) is a common clinical problem and regenerating peripheral nerve defects remain a significant challenge. Poly(polyol sebacate) (PPS) polymers are developed as promising materials for biomedical applications due to their biodegradability, biocompatibility, elastomeric properties, and ease of production. However, the application of PPS-based biomaterials in nerve tissue engineering, especially in PNI repair, is limited. In this study, PPS-based composite nanofibers poly(l-lactic acid)-poly(polycaprolactone triol-co-sebacic acid-co-N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid sodium salt) (PLLA-PPSB) are aimed to construct through electrospinning and assess their in vitro biocompatibility with Schwann cells (SCs) and in vivo repair capabilities for peripheral nerve defects. For the first time, the biocompatibility and bioactivity of PPS-based nanomaterial are examined at the molecular, cellular, and animal levels for PNI repair. Electrospun PLLA-PPSB nanofibers display favorable physicochemical properties and biocompatibility, providing an effective interface for the proliferation, glial expression, and adhesion of SCs in vitro. In vivo experiments using a 10-mm rat sciatic nerve defect model show that PLLA-PPSB nanofiber nerve conduits enhance myelin formation, axonal regeneration, angiogenesis, and functional recovery. Transcriptome analysis and biological validation indicate that PLLA-PPSB nanofibers may promote SC proliferation by activating the PI3K/Akt signaling pathway. This suggests the promising potential of PLLA-PPSB nanomaterial for PNI repair.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 210000, China
| | - Linli Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Weizhong Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| |
Collapse
|
7
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
8
|
Wang L, Liang F, Shang Y, Liu X, Yin M, Shen J, Yuan J. Endothelium-Mimicking Bilayer Vascular Grafts with Dual-Releasing of NO/H 2S for Anti-Inflammation and Anticalcification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:318-331. [PMID: 38156407 DOI: 10.1021/acsami.3c15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Vascular complications caused by diabetes impair the activities of endothelial nitric oxide synthase (eNOS) and cystathionine γ-lyase (CSE), resulting in decreased physiological levels of nitric oxide (NO) and hydrogen sulfide (H2S). The low bioavailability of NO and H2S hinders the endothelialization of vascular grafts. In this study, endothelium-mimicking bilayer vascular grafts were designed with spatiotemporally controlled dual releases of NO and H2S for in situ endothelialization and angiogenesis. Keratin-based H2S donor was synthesized and electrospun with poly(l-lactide-co-ε-caprolactone) (PLCL) as the outer layer of the graft to release H2S. Hyaluronic acid, one of the major glycosaminoglycans in endothelial glycocalyx, was complexed with Cu ions as the inner layer to mimic glutathione peroxidase (GPx) and maintain long-term physiological NO flux. The synergistic effects of NO and H2S of bilayer grafts selectively promoted the regeneration and migration of human umbilical vascular endothelial cells (HUVECs), while inhibiting the overproliferation of human umbilical artery smooth muscle cells (HUASMCs). Bilayer grafts could effectively prevent vascular calcification, reduce inflammation, and alleviate endothelial dysfunction. The in vivo study in a rat abdominal aorta replacement model for 1 month showed that the graft had a good patency rate and had potential for vascular remodeling in situ.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
9
|
Wang L, Shang Y, Zhang J, Yuan J, Shen J. Recent advances in keratin for biomedical applications. Adv Colloid Interface Sci 2023; 321:103012. [PMID: 37837703 DOI: 10.1016/j.cis.2023.103012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
The development of keratin-based biomaterials provides an approach to addressing related environmental pollutants and turns waste into wealth. Keratin possesses various merits, such as biocompatibility, biodegradability, hemostasis, non-immunogenicity, antibacterial activity, antioxidation, multi-responsiveness, and abundance in nature. Additionally, keratin biomaterials have been extensively employed in various biomedical applications such as drug delivery, wound healing, and tissue engineering. This review focuses on the properties and biomedical applications of keratin biomaterials. It is anticipated to provide valuable insights for the research and development of keratin biomaterials.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
11
|
Wang C, Tian G, Yu X, Zhang X. Recent Advances in Functional Nanomaterials for Catalytic Generation of Nitric Oxide: A Mini Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207261. [PMID: 36808830 DOI: 10.1002/smll.202207261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
As a gaseous second messenger, nitric oxide (NO) plays an important role in a series of signal pathways. Research on the NO regulation for various disease treatments has aroused wide concern. However, the lack of accurate, controllable, and persistent release of NO has significantly limited the application of NO therapy. Profiting from the booming development of advanced nanotechnology, a mass of nanomaterials with the properties of controllable release have been developed to seek new and effective NO nano-delivery approaches. Nano-delivery systems that generate NO through catalytic reactions exhibit unique superiority in terms of precise and persistent release of NO. Although certain achievements have been made in the catalytically active NO delivery nanomaterials, some basic but critical issues, such as the concept of design, are of low attention. Herein, an overview of the generation of NO through catalytic reactions and the design principles of related nanomaterials are summarized. Then, the nanomaterials that generate NO through catalytic reactions are classified. Finally, the bottlenecks and perspectives are also discussed in depth for the future development of catalytical NO generation nanomaterials.
Collapse
Affiliation(s)
- Chengyan Wang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Gan Tian
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Zhang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| |
Collapse
|
12
|
Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023; 9:gels9020100. [PMID: 36826270 PMCID: PMC9957409 DOI: 10.3390/gels9020100] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Tissue damage and organ failure are major problems that many people face worldwide. Most of them benefit from treatment related to modern technology's tissue regeneration process. Tissue engineering is one of the booming fields widely used to replace damaged tissue. Scaffold is a base material in which cells and growth factors are embedded to construct a substitute tissue. Various materials have been used to develop scaffolds. Bio-based natural materials are biocompatible, safe, and do not release toxic compounds during biodegradation. Therefore, it is highly recommendable to fabricate scaffolds using such materials. To date, there have been no singular materials that fulfill all the features of the scaffold. Hence, combining two or more materials is encouraged to obtain the desired characteristics. To design a reliable scaffold by combining different materials, there is a need to choose a good fabrication technique. In this review article, the bio-based natural materials and fine fabrication techniques that are currently used in developing scaffolds for tissue regeneration applications, along with the number of articles published on each material, are briefly discussed. It is envisaged to gain explicit knowledge of developing scaffolds from bio-based natural materials for tissue regeneration applications.
Collapse
|
13
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
14
|
Sarrami P, Karbasi S, Farahbakhsh Z, Bigham A, Rafienia M. Fabrication and characterization of novel polyhydroxybutyrate-keratin/nanohydroxyapatite electrospun fibers for bone tissue engineering applications. Int J Biol Macromol 2022; 220:1368-1389. [PMID: 36116596 DOI: 10.1016/j.ijbiomac.2022.09.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
The role of scaffolds in bone regeneration is of great importance. Here, the electrospun scaffolds of poly (3-hydroxybutyrate)-keratin (PHB-K)/nanohydroxyapatite (nHA) with different morphologies (long nanorods (HAR) and very short nanorods (HAP)) and weight percentages (up to 10 w/w%) of nHA were fabricated and characterized. The fibers integrity, the porosity of above 80%, and increase in pore size up to 16 μm were observed by adding nHA. The nanofibers crystallinity increased by 13.5 and 22.8% after the addition of HAR and HAP, respectively. The scaffolds contact angle decreased by almost 20° and 40° after adding 2.5 w/w% HAR and HAP, respectively. The tensile strength of the scaffolds increased from 2.99 ± 0.3 MPa for PHB-K to 6.44 ± 0.16 and 9.27 ± 0.04 MPa for the scaffolds containing 2.5 w/w% HAR and HAP, respectively. After immersing the scaffolds into simulated body fluid (SBF), the Ca concentration decreased by 55% for HAR- and 73% for HAP-containing scaffolds, showing the bioactivity of nHA-containing scaffolds. The results of cell attachment, proliferation, and viability of MG-63 cells cultured on the nanocomposites showed the positive effects of nHA. The results indicate that the nanocomposite scaffolds, especially HAP-containing ones, can be suitable for bone tissue engineering applications.
Collapse
Affiliation(s)
- Pooriya Sarrami
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Farahbakhsh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
15
|
Miao C, Du J, Dou J, Wang C, Wang L, Yuan J, Shen J, Yin M. Facile fabrication of copper-incorporating poly(ε-caprolactone)/keratin mats for tissue-engineered vascular grafts with the potential of catalytic nitric oxide generation. J Mater Chem B 2022; 10:6158-6170. [PMID: 35904091 DOI: 10.1039/d2tb01031c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) provide a new alternative for vascular construction. Nitric oxide (NO) is capable of promoting vascular tissue regeneration and reducing restenosis caused by vascular implantation. Therefore, in situ production of NO by catalytic decomposition of the endogenous donor is a promising strategy to fabricate a TEVG. In this study, poly(ε-caprolactone) (PCL) was first electrospun with keratin (Ker) to afford PCL/Ker mats and then incorporated with Cu(II) ions through multiple interactions. This strategy is very simple, green, and facile. Particularly, the incorporated Cu(II) ions were partially reduced to Cu(I) ions due to the reducibility of keratin. The chelated copper ions were expected to catalyze the generation of NO from endogenous S-nitrosothiol (RSNO). As a result, PCL/Ker-Cu mats selectively accelerated the adhesion, migration, and growth of human umbilical vein endothelial cells (HUVECs), while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, these mats exhibited excellent blood compatibility and significant antibacterial activity. Vascular implantation in vivo indicated that the tubular mats could inhibit thrombus formation and retain patency for 3 months after implantation in the rabbit carotid artery. More importantly, vascular remodeling was observed during follow-up, including a complete endothelium and smooth muscle layer. Taken together, the PCL/Ker-Cu mats have great potential application in vascular tissue regeneration.
Collapse
Affiliation(s)
- Cuie Miao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jun Du
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China.
| | - Jie Dou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chenshu Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng Yin
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China.
| |
Collapse
|
16
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
17
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Valorization of Human Hair and Its Derivatives in Tissue Engineering: A Review. Tissue Eng Part C Methods 2022; 28:529-544. [PMID: 35350873 DOI: 10.1089/ten.tec.2021.022333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia.,Centre for Printable Electronics, Institute for Advanced Studies (IAS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Engineering, Faculty of Engineering, Centre for Innovation in Medical Engineering (CIME), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel) 2022; 14:polym14102097. [PMID: 35631979 PMCID: PMC9145843 DOI: 10.3390/polym14102097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Jingzhi Fan
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Keyvan Abedi-Dorcheh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fereshteh Kazemi-Aghdam
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Masoume Sohrabinejad
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Mina Ghorbani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fatemeh Rastegar Adib
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Zahra Ghasemi
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| |
Collapse
|
19
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
20
|
Zhang B, Qin Y, Yang L, Wu Y, Chen N, Li M, Li Y, Wan H, Fu D, Luo R, Yuan L, Wang Y. A Polyphenol-Network-Mediated Coating Modulates Inflammation and Vascular Healing on Vascular Stents. ACS NANO 2022; 16:6585-6597. [PMID: 35301848 DOI: 10.1021/acsnano.2c00642] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Localized drug delivery from drug-eluting stents (DESs) to target sites provides therapeutic efficacy with minimal systemic toxicity. However, DESs failure may cause thrombosis, delay arterial healing, and impede re-endothelialization. Bivalirudin (BVLD) and nitric oxide (NO) promote arterial healing. Nevertheless, it is difficult to combine hydrophilic signal molecules with hydrophobic antiproliferative drugs while maintaining their bioactivity. Here, we fabricated a micro- to nanoscale network assembly consisting of copper ion and epigallocatechin gallate (EGCG) via π-π interactions, metal coordination, and oxidative polymerization. The network incorporated rapamycin and immobilized BVLD by the thiol-ene "click" reaction and provided sustained rapamycin and NO release. Unlike rapamycin-eluting stents, those coated with the EGCG-Cu-rapamycin-BVLD complex favored competitive endothelial cell (EC) growth over that of smooth muscle cells, exhibited long-term antithrombotic efficacy, and attenuated the negative impact of rapamycin on the EC. In vivo stent implantation demonstrated that the coating promoted endothelial regeneration and hindered restenosis. Therefore, the polyphenol-network-mediated surface chemistry can be an effective strategy for the engineering of multifunctional surfaces.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Ye Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Mingyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Lu Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Li P, Jin D, Dou J, Wang L, Wang Y, Jin X, Han X, Kang IK, Yuan J, Shen J, Yin M. Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts. Int J Biol Macromol 2021; 189:516-527. [PMID: 34450147 DOI: 10.1016/j.ijbiomac.2021.08.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Rapid endothelialization and regulation of smooth muscle cell proliferation are crucial for small-diameter vascular grafts to address poor compliance, thromboembolism, and intimal hyperplasia, and achieve revascularization. As a gaseous signaling molecule, nitric oxide (NO) regulates cardiovascular homeostasis, inhibits blood clotting and intimal hyperplasia, and promotes the growth of endothelial cells. Due to the instability and burst release of small molecular NO donors, a novel biomacromolecular donor has generated increasing interest. In the study, a low toxic NO donor of S-nitrosated keratin (KSNO) was first synthesized and then coelectrospun with poly(ε-caprolactone) to afford NO-releasing small-diameter vascular graft. PCL/KSNO graft was capable to generate NO under the catalysis of ascorbic acid (Asc), so the graft selectively elevated adhesion and growth of human umbilical vein endothelial cells (HUVECs), while inhibited the proliferation of human aortic smooth muscle cells (HASMCs) in the presence of Asc. In addition, the graft displayed significant antibacterial properties and good blood compatibility. Animal experiments showed that the biocomposite graft could inhibit thrombus formation and preserve normal blood flow via single rabbit carotid artery replacement for 1 month. More importantly, a complete endothelium was observed on the lumen surface. Taken together, PCL/KSNO small-diameter vascular graft has potential applications in vascular tissue engineering with rapid endothelialization and vascular remolding.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yanfang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 702-701, South Korea
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China.
| |
Collapse
|
22
|
Garcia-Brand AJ, Morales MA, Hozman AS, Ramirez AC, Cruz LJ, Maranon A, Muñoz-Camargo C, Cruz JC, Porras A. Bioactive Poly(lactic acid)-Cocoa Bean Shell Composites for Biomaterial Formulation: Preparation and Preliminary In Vitro Characterization. Polymers (Basel) 2021; 13:polym13213707. [PMID: 34771262 PMCID: PMC8587584 DOI: 10.3390/polym13213707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
The unique lignocellulosic and solvent-extractive chemical constituents of most natural fibers are rich in natural polymers and bioactive molecules that can be exploited for biomaterial formulation. However, although natural fibers’ main constituents have been already incorporated as material reinforcement and improve surface bioactivity of polymeric materials, the use of the whole natural fibers as bioactive fillers remains largely unexplored. Thus, we put forward the formulation of natural fiber filling and functionalization of biomaterials by studying the chemical composition of cocoa bean shells (CBS) and proposing the fabrication and characterization of polylactic acid (PLA) and CBS-based composite by solvent-casting. As was expected from previous studies of agro-industrial wastes, the main components of CBS were to cellulose (42.23 wt.%), lignin (22.68 wt.%), hemicellulose (14.73 wt.%), and solvent extractives (14.42 wt.%). Structural analysis (FTIR) confirms the absence of covalent bonding between materials. Thermal degradation profiles (DSC and TGA) showed similar mass losses and thermal-reaction profiles for lignocellulosic-fibers-based composites. The mechanical behavior of the PLA/CBS composite shows a stiffer material behavior than the pristine material. The cell viability of Vero cells in the presence of the composites was above 94%, and the hemolytic tendency was below 5%, while platelet aggregation increased up to 40%. Antioxidant activity was confirmed with comparable 2,2-diphe-277 nyl-1-picryl-hydrazyl-hydrate (DPPH) free-radical scavenging than Vitamin C even for PLA/CBS composite. Therefore, the present study elucidates the significant promise of CBS for bioactive functionalization in biomaterial-engineering, as the tested composite exhibited high biocompatibility and strong antioxidant activity and might induce angiogenic factors’ release. Moreover, we present an eco-friendly alternative to taking advantage of chocolate-industry by-products.
Collapse
Affiliation(s)
- Andres J. Garcia-Brand
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (C.M.-C.); (J.C.C.)
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
- Correspondence: (A.J.G.-B.); (A.P.); Tel.: +57-1339-4949 (ext. 1775) (A.P.)
| | - Maria A. Morales
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Ana Sofia Hozman
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Andres C. Ramirez
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Luis J. Cruz
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
| | - Alejandro Maranon
- Structural Integrity Research Group, Department of Mechanical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (C.M.-C.); (J.C.C.)
| | - Alicia Porras
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, School of Engineering, Universidad de los Andes, CR 1 No. 18A-12, Bogota 111711, Colombia; (M.A.M.); (A.S.H.); (A.C.R.); (L.J.C.)
- Correspondence: (A.J.G.-B.); (A.P.); Tel.: +57-1339-4949 (ext. 1775) (A.P.)
| |
Collapse
|
23
|
Stepwise immobilization of keratin-dopamine conjugates and gold nanoparticles on PET sheets for potential vascular graft with the catalytic generation of nitric oxide. Colloids Surf B Biointerfaces 2021; 205:111855. [PMID: 34087777 DOI: 10.1016/j.colsurfb.2021.111855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles(AuNPs) are capable to catalyze the nitric oxide (NO) generation from endogenous and exogenous donors, thereby promoting re-endothelialization and inhibiting intimal hyperplasia and thrombosis. Herein, keratin-dopamine conjugates were synthesized and then immobilized on the surface of the pre-aminolyzed poly(ethylene terephthalate) (PET) via self-polymerization of dopamine residue, following by the formation of AuNPs in situ without extra reductant. The modified PET sheets(PET-AuNPs) could promote the growth of HUVECs while inhibit the proliferation of HUASMCs due to their catalytic generation of NO from GSNO. In addition, these sheets exhibited antibacterial properties and good blood compatibility without hemolysis. Taken together, this strategy for designing prosthetic vascular grafts to treat cardiovascular diseases has great potential.
Collapse
|
24
|
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 2020; 15:661-684. [PMID: 33363624 PMCID: PMC7750807 DOI: 10.1016/j.ajps.2019.11.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Wound healing is an unmet therapeutic challenge among medical society since wound assessment and management is a complex procedure including several factors playing major role in healing process. Wounds can mainly be categorized as acute or chronic. It is well referred that the acute wound displays normal wound physiology while healing, in most cases, is seemed to progress through the normal phases of wound healing. On the other hand, a chronic wound is physiologically impaired. The main problem in wound management is that the majority of wounds are colonized with microbes, whereas this does not mean that all wounds will be infected. In this review, we address the problems that clinicians face to manage while treat acute and chronic wounds. Moreover, we demonstrate the pathophysiology, etiology, prognosis and microbiology of wounds. We further introduce the state of art in pharmaceutical technology field as part of wound management aiming to assist health professionals to overcome the current implications on wound assessment. In addition, authors review researches which included the use of gels and dermal films as wound healing agents. It can be said that natural and synthetic drugs or carriers provide promising solutions in order to meet the wound management standards. However, are the current strategies as desirable as medical society wish?
Collapse
Affiliation(s)
- Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Ioannis D. Karantas
- Hippokration General Hospital, 2nd Clinic of Internal Medicine, Thessaloniki 54124, Greece
| | - Zeynep Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul TR-34668, Turkey
| | - Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
25
|
Kumar SSD, Abrahamse H. Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. Int J Mol Sci 2020; 21:E6752. [PMID: 32942542 PMCID: PMC7555266 DOI: 10.3390/ijms21186752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advancement in nanotechnology has provided a wide range of benefits in the biological sciences, especially in the field of tissue engineering and wound healing. Nanotechnology provides an easy process for designing nanocarrier-based biomaterials for the purpose and specific needs of tissue engineering applications. Naturally available medicinal compounds have unique clinical benefits, which can be incorporated into nanobiomaterials and enhance their applications in tissue engineering. The choice of using natural compounds in tissue engineering improves treatment modalities and can deal with side effects associated with synthetic drugs. In this review article, we focus on advances in the use of nanobiomaterials to deliver naturally available medicinal compounds for tissue engineering application, including the types of biomaterials, the potential role of nanocarriers, and the various effects of naturally available medicinal compounds incorporated scaffolds in tissue engineering.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
26
|
Conjugated Linoleic Acid Grafting Improved Hemocompatibility of the Polycaprolactone Electrospun Membrane. INT J POLYM SCI 2020. [DOI: 10.1155/2020/8127570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycaprolactone (PCL) is a versatile biomaterial with a wide range of medical applications, but its use in blood-contacting devices is hampered due to insufficient hemocompatibility. In this work, electrospun polycaprolactone (PCL) membranes were chemically grafted with conjugated linoleic acid (CLA) to prevent induced blood coagulation. The density of grafted CLA and its effects on the morphology and wettability of the membranes were examined. The study also investigated how the membrane interacted with human whole blood and platelets to determine its antithrombotic properties. As the results suggested, the grafting caused a negligible effect on the physical properties of the membrane but greatly improved its compatibility with blood, showing that the approach can be investigated further for blood-contacting applications.
Collapse
|
27
|
Suarato G, Contardi M, Perotto G, Heredia-Guerrero JA, Fiorentini F, Ceseracciu L, Pignatelli C, Debellis D, Bertorelli R, Athanassiou A. From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111151. [PMID: 32806258 DOI: 10.1016/j.msec.2020.111151] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Keratin extracted from wool fibers has recently gained attention as an abundant source of renewable, biocompatible material for tissue engineering and drug delivery applications. However, keratin extraction and processing generally require a copious use of chemicals, not only bearing consequences for the environment but also possibly compromising the envisioned biological outcome. In this study, we present, for the first time, keratin-PVP biocomposite fibers obtained via an all-water co-electrospinning process and explored their properties modulation as a result of different thermal crosslinking treatments. The protein-based fibers featured homogenous morphologies and average diameters in the range of 170-290 nm. The thermomechanical stability and response to a wet environment can be tuned by acting on the curing time; this can be achieved without affecting the 3D fibrous network nor the intrinsic hydrophilic behavior of the material. More interestingly, our protein-based membranes treated at 170 °C for 18 h successfully sustained the attachment and growth of primary human dermal fibroblasts, a cellular model which can recapitulate more faithfully the physiological human tissue conditions. Our proposed approach can be viewed as pivotal in designing tunable protein-based scaffolds for the next generation of skin tissue growth devices.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy; Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy.
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Jose' A Heredia-Guerrero
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy; IHSM La Mayora, Departamento de Mejora Genética y Biotecnología, Consejo Superior de Investigaciones Científicas, E-29750 Algarrobo-Costa, Málaga, Spain
| | - Fabrizio Fiorentini
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Cataldo Pignatelli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | | |
Collapse
|
28
|
Dou J, Wu Q, Li Y, Du J, Wan X, Han X, Yuan J, Meng X, Shen J. Keratin-Poly(2-methacryloxyethyl phosphatidylcholine) Conjugate-Based Micelles as a Tumor Micro-Environment-Responsive Drug-Delivery System with Long Blood Circulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3540-3549. [PMID: 32192339 DOI: 10.1021/acs.langmuir.0c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loaded micelles with long circulation time in blood and stimuli-responsiveness under the tumor micro-environment can significantly enhance therapeutic efficacy. In this report, human hair keratin was extracted with a reduction method and then conjugated with zwitterionic poly(2-methacryloxyethyl phosphatidylcholine, MPC) via thiol chain transfer polymerization (thiol CTP). Subsequently, keratin-polyMPC conjugates (KPC) were prepared into micelles and loaded with doxorubicin (DOX) by self-assembly. These micelles exhibited pH, glutathione (GSH), and enzyme triple-responsiveness as well as charge reversibility under the tumor micro-environment. In addition, these micelles showed high toxicity against A549 cells while low toxicity to normal cells. In vivo anticancer efficacy results revealed that these micelles showed better therapeutic efficiency than free DOX. Furthermore, these carriers exhibited prolonged circulation time, good stability, and no hemolysis in blood. Based on the results, these drug delivery systems of micelles were proper candidates as drug carriers.
Collapse
Affiliation(s)
- Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiong Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|