1
|
T N VV, Mathew AS, Mathew D, Mathew J, E K R. Facile microwave-assisted green synthesis and characterization of flower shaped zinc oxide nanoclusters using Centella asiatica (Linn.) leaf extract and evaluation of its antimicrobial activity and in vivo toxic effects on Artemia nauplii. Prep Biochem Biotechnol 2025:1-14. [PMID: 39921603 DOI: 10.1080/10826068.2025.2460498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Green synthesized nanomaterials play a vital role in nanotechnology was due to its diverse applications. In the current study, flower shaped nanoclusters of zinc oxide nanoparticles (ZnONPs) was fabricated using the leaf extract of Centella asiatica (Linn.) by microwave-assisted method. The physico-chemical characterization of the green synthesized ZnONPs were further conducted by the UV-Vis spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy analysis. The UV-Vis spectrum of the synthesized ZnONPs has showed characteristic absorption maximum at 363 nm. The XRD pattern of the same could confirm to have the crystalline nature of ZnONPs. Additionally, the FT-IR spectra have revealed the presence of characteristic stretching and bending vibrations of the Zn-O bond, along with those of phytochemicals that might have involved in ZnONPs stabilization. By the HR-TEM imaging, agglomeration of the nanoparticles and thereby the formation of flower-like clusters could be observed. Furthermore, the synthesized ZnONPs have remarkable antimicrobial activity against S. aureus and E. coli with inhibition zones of 15 ± 0.4 and 16.5 ± 1.0 mm respectively. The green synthesized ZnONPs showed no significant toxicity toward Artemia nauplii. Hence, the results of the study indicate the promising potential of the synthesized ZnO nanoclusters.
Collapse
Affiliation(s)
- Vipina Vinod T N
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Amy S Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Divya Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Radhakrishnan E K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
2
|
Khalil MA, Alzaidi TM, Alsharbaty MHM, Ali SS, Schagerl M, Elhariry HM, Aboshady TA. Synergistic Antibacterial and Antibiofilm Effects of Clindamycin and Zinc Oxide Nanoparticles Against Pathogenic Oral Bacillus Species. Pathogens 2025; 14:138. [PMID: 40005514 DOI: 10.3390/pathogens14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Oral bacterial pathogens, including Bacillus species, form biofilms that enhance antibiotic resistance, promote bacterial adherence, and maintain structural integrity. The ability of bacteria to form biofilms is directly linked to several oral diseases, including gingivitis, dental caries, periodontitis, periapical periodontitis, and peri-implantitis. These biofilms act as a predisposing factor for such infections. Nanoparticles, known for their strong antibacterial properties, can target specific biofilm-forming microorganisms without disturbing the normal microflora of the oral cavity. This study focuses on the biofilm-forming ability and clindamycin (CM) resistance of Bacillus species found in the oral cavity. It aims to evaluate the antibacterial and antibiofilm properties of zinc oxide nanoparticles (ZnO-NPs) against oral Bacillus species and assess the effectiveness of combining CM with ZnO-NPs in reducing antibiotic resistance. The antibacterial susceptibility of Bacillus isolates was tested using ZnO-NPs and CM, demonstrating synergistic effects that reduced the minimum inhibitory concentrations by up to 8-fold. The fractional inhibitory concentration (FIC) index indicated a significant synergistic effect in most strains, with FIC values ranging from 0.375 to 0.5. It was found that the majority of Bacillus strains exhibited significant biofilm-forming capabilities, which were reduced when treated with the ZnO-NPs and CM combination. The study also evaluated the cytotoxicity of ZnO-NPs on cancer cells (CAL27) and normal fibroblasts (HFB4). CAL27 cells showed stronger cytotoxicity, with an IC50 of 52.15 µg/mL, compared to HFB4 cells, which had an IC50 of 36.3 µg/mL. Genetic analysis revealed the presence of biofilm-associated genes such as sipW and tasA, along with antibiotic resistance genes (ermC), which correlated with the observed biofilm phenotypes. Overall, this study demonstrates the potential of combining ZnO-NPs with CM to overcome antibiotic resistance and biofilm formation in the oral bacterial pathogens, Bacillus species. These findings suggest new approaches for developing more effective dental treatments targeting oral biofilm-associated infections and antibiotic resistance.
Collapse
Affiliation(s)
- Maha A Khalil
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Tahany M Alzaidi
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | | | - Sameh S Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Hesham M Elhariry
- Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Tamer A Aboshady
- Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Khan SK, Dutta J, Ahmad I, Rather MA. Nanotechnology in aquaculture: Transforming the future of food security. Food Chem X 2024; 24:101974. [PMID: 39582638 PMCID: PMC11585796 DOI: 10.1016/j.fochx.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
In the face of growing global challenges in food security and increasing demand for sustainable protein sources, the aquaculture industry is undergoing a transformative shift through the integration of nanotechnology. This review paper explores the profound role of nanotechnology in aquaculture, addressing critical issues such as efficient feed utilization, disease management, and environmental sustainability. Nanomaterials are used to enhance nutritional content and digestibility of aquafeed, optimize fish growth and health, and improve disease prevention. Nanoparticle-based vaccines and drug delivery systems reduce antibiotic reliance, while nano sensors monitor water quality in real-time. Furthermore, nanotechnology has revolutionized infrastructure design, contributing to smart, self-regulating aquaculture systems. Despite its vast potential, challenges such as ethical considerations and long-term safety must be addressed. This paper highlights nanotechnology's transformative role in aquaculture, underscoring its potential to contribute significantly to global food security through enhanced productivity and sustainability.
Collapse
Affiliation(s)
- Saba Khursheed Khan
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| |
Collapse
|
4
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
6
|
Abdelraheem WM, Kamel HS, Gamil AN. Evaluation of anti-biofilm and anti-virulence effect of zinc sulfate on Staphylococcus aureus isolates. Sci Rep 2024; 14:25747. [PMID: 39468094 PMCID: PMC11519333 DOI: 10.1038/s41598-024-75317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Staphylococcus aureus produces a plethora of virulence factors to invade and establish infections in the host system, and biofilms are more resistant to antibiotics than planktonic cells. In this study, we aimed to investigate the anti-virulence and anti-biofilm potentials of zinc sulfate against S. aureus isolates. The synergistic effect of zinc sulfate in combination with antibiotics on S. aureus was characterized using the checkerboard method. The influence of zinc sulfate on biofilm formation and virulence factors production by S. aureus was experimentally assessed. RT-qPCR was used to investigate the effect of zinc sulfate on the expression of biofilm-related genes. Zinc sulfate exhibited good antibacterial activity against S. aureus with a MIC of 128 µg/ml against all tested isolates. Also, the findings indicate a synergistic effect of a combination of zinc sulfate and antibiotics against the tested isolates. Zinc sulfate at 256 µg/ml concentration inhibited biofilm formation for all isolates. The expression of biofilm-related genes was significantly repressed in zinc sulfate-treated bacteria compared to untreated cells. Zinc sulfate could inhibit the hemolytic ability of S. aureus. Moreover, zinc sulfate-treated bacteria exhibited a significant decrease in coagulase and catalase activity relative to control untreated S. aureus. Our results support that zinc sulfate is a potential antimicrobial and anti-virulence agent against S. aureus infections.
Collapse
Affiliation(s)
- Wedad M Abdelraheem
- Medical Microbiology and Immunology department, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Heba S Kamel
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Aya Nabil Gamil
- Medical Microbiology and Immunology department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
7
|
Zhang J, Li J, Zhang Y, Zhao Y, Shen J, Du F, Chen Y, Li M, Wu X, Chen M, Xiao Z, Deng S. Bilayer hydrogel with a protective film and a regenerative hydrogel for effective diabetic wound treatment. Biomater Sci 2024; 12:5036-5051. [PMID: 39189321 DOI: 10.1039/d4bm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Diabetic foot ulcers (DFUs) are one of the most serious complications of diabetes, often leading to necrosis and amputation. DFU is caused by the intricate diabetic microenvironment, including ischemia, hypoxia, hyperinflammation, reduced angiogenesis, and persistent infection. Traditional wound dressings made of single or mixed materials often struggle to meet all the requirements for effective diabetic wound healing. In contrast, multilayer dressings comprising more than single layers have the potential to address these challenges by combining their diverse chemical and physical properties. In this study, we developed a bilayer hydrogel comprising a GelMA-ALG-nano-ZnO protective film and a COL1-PRP regenerative hydrogel for facilitating diabetic wound healing. We demonstrated the protective properties against bacterial infection of the protective film, while highlighting the regenerative potential of the COL1-PRP hydrogel in promoting fibroblast and MUVEC migration, extracellular matrix secretion and deposition, and angiogenesis. Importantly, the bilayer hydrogel exhibited superior efficacy in promoting full-thickness wound healing in a diabetic rat model compared to its single-layer hydrogel counterparts. This multi-layer approach offers a promising strategy for addressing the complexities of diabetic foot treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yang Zhang
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
8
|
Barsola B, Saklani S, Pathania D, Kumari P, Sonu S, Rustagi S, Singh P, Raizada P, Moon TS, Kaushik A, Chaudhary V. Exploring bio-nanomaterials as antibiotic allies to combat antimicrobial resistance. Biofabrication 2024; 16:042007. [PMID: 39102846 DOI: 10.1088/1758-5090/ad6b45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Antimicrobial resistance (AMR) poses an emergent threat to global health due to antibiotic abuse, overuse and misuse, necessitating urgent innovative and sustainable solutions. The utilization of bio-nanomaterials as antibiotic allies is a green, economic, sustainable and renewable strategy to combat this pressing issue. These biomaterials involve green precursors (e.g. biowaste, plant extracts, essential oil, microbes, and agricultural residue) and techniques for their fabrication, which reduce their cyto/environmental toxicity and exhibit economic manufacturing, enabling a waste-to-wealth circular economy module. Their nanoscale dimensions with augmented biocompatibility characterize bio-nanomaterials and offer distinctive advantages in addressing AMR. Their ability to target pathogens, such as bacteria and viruses, at the molecular level, coupled with their diverse functionalities and bio-functionality doping from natural precursors, allows for a multifaceted approach to combat resistance. Furthermore, bio-nanomaterials can be tailored to enhance the efficacy of existing antimicrobial agents or deliver novel therapies, presenting a versatile platform for innovation. Their use in combination with traditional antibiotics can mitigate resistance mechanisms, prolong the effectiveness of existing treatments, and reduce side effects. This review aims to shed light on the potential of bio-nanomaterials in countering AMR, related mechanisms, and their applications in various domains. These roles encompass co-therapy, nanoencapsulation, and antimicrobial stewardship, each offering a distinct avenue for overcoming AMR. Besides, it addresses the challenges associated with bio-nanomaterials, emphasizing the importance of regulatory considerations. These green biomaterials are the near future of One Health Care, which will have economic, non-polluting, non-toxic, anti-resistant, biocompatible, degradable, and repurposable avenues, contributing to sustainable development goals.
Collapse
Affiliation(s)
- Bindiya Barsola
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Diksha Pathania
- Department of Biosciences and technology (MMEC), Maharishi Markandeshwar University, Mullana (Ambala), Haryana 133203, India
| | - Priyanka Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sonu Sonu
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, United States of America
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
- Centre for Research Impact & Outcome, Chitkara University, Punjab 140401, India
| |
Collapse
|
9
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
10
|
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024; 14:863. [PMID: 39062576 PMCID: PMC11274920 DOI: 10.3390/biom14070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, it has become clear that allergic diseases are on the rise in both Western and developing countries. The exact reason for the increase in prevalence has not been conclusively clarified yet. Multidimensional approaches are suspected in which diet and nutrition seem to play a particularly important role. Allergic diseases are characterized by a hyper-reactive immune system to usually harmless allergens, leading to chronic inflammatory diseases comprising respiratory diseases like asthma and allergic rhinitis (AR), allergic skin diseases like atopic dermatitis (AD), and food allergies. There is evidence that diet can have a positive or negative influence on both the development and severity of allergic diseases. In particular, the intake of the essential trace element zinc plays a very important role in modulating the immune response, which was first demonstrated around 60 years ago. The most prevalent type I allergies are mainly based on altered immunoglobulin (Ig)E and T helper (Th)2 cytokine production, leading to type 2 inflammation. This immune status can also be observed during zinc deficiency and can be positively influenced by zinc supplementation. The underlying immunological mechanisms are very complex and multidimensional. Since zinc supplements vary in dose and bioavailability, and clinical trials often differ in design and structure, different results can be observed. Therefore, different results are not surprising. However, the current literature suggests a link between zinc deficiency and the development of allergies, and shows positive effects of zinc supplementation on modulating the immune system and reducing allergic symptoms, which are discussed in more detail in this review.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
11
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
12
|
Caron AJ, Ali IJ, Delgado MJ, Johnson D, Reeks JM, Strzhemechny YM, McGillivray SM. Zinc oxide nanoparticles mediate bacterial toxicity in Mueller-Hinton Broth via Zn 2. Front Microbiol 2024; 15:1394078. [PMID: 38711974 PMCID: PMC11070567 DOI: 10.3389/fmicb.2024.1394078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
As antibiotic resistance increases and antibiotic development dwindles, new antimicrobial agents are needed. Recent advances in nanoscale engineering have increased interest in metal oxide nanoparticles, particularly zinc oxide nanoparticles, as antimicrobial agents. Zinc oxide nanoparticles are promising due to their broad-spectrum antibacterial activity and low production cost. Despite many studies demonstrating the effectiveness of zinc oxide nanoparticles, the antibacterial mechanism is still unknown. Previous work has implicated the role of reactive oxygen species such as hydrogen peroxide, physical damage of the cell envelope, and/or release of toxic Zn2+ ions as possible mechanisms of action. To evaluate the role of these proposed methods, we assessed the susceptibility of S. aureus mutant strains, ΔkatA and ΔmprF, to zinc oxide nanoparticles of approximately 50 nm in size. These assays demonstrated that hydrogen peroxide and electrostatic interactions are not crucial for mediating zinc oxide nanoparticle toxicity. Instead, we found that Zn2+ accumulates in Mueller-Hinton Broth over time and that removal of Zn2+ through chelation reverses this toxicity. Furthermore, we found that the physical separation of zinc oxide nanoparticles and bacterial cells using a semi-permeable membrane still allows for growth inhibition. We concluded that soluble Zn2+ is the primary mechanism by which zinc oxide nanoparticles mediate toxicity in Mueller-Hinton Broth. Future work investigating how factors such as particle morphology (e.g., size, polarity, surface defects) and media contribute to Zn2+ dissolution could allow for the synthesis of zinc oxide nanoparticles that possess chemical and morphological properties best suited for antibacterial efficacy.
Collapse
Affiliation(s)
- Alexander J. Caron
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Iman J. Ali
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Michael J. Delgado
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Dustin Johnson
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - John M. Reeks
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - Yuri M. Strzhemechny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | | |
Collapse
|
13
|
Hussan, Nisa S, Bano SA, Zia M. Chemically synthesized ciprofloxacin-PEG-FeO nanotherapeutic exhibits strong antibacterial and controlled cytotoxic effects. Nanomedicine (Lond) 2024; 19:875-893. [PMID: 38530883 DOI: 10.2217/nnm-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Aim: To develop a biocompatible conjugated ciprofloxacin-PEG-FeO nanodelivery system with increased efficacy of available therapeutics in a controlled manner. Materials & methods: FeO nanoparticles were synthesized by chemical and biological methods and modified as ciprofloxacin-PEG-FeO nanoformulations. After initial antibacterial and cytotoxicity studies, the effective and biocompatible nanoformulations was further fabricated as nanotherapeutics for in vivo studies in mouse models. Results: Chemically synthesized ciprofloxacin-PEG-FeO nanoformulations demonstrated boosted antibacterial activity against clinically isolated bacterial strains. Nanoformulations were also found to be compatible with baby hamster kidney 21 cells and red blood cells. In in vivo studies, nanotherapeutic showed wound-healing effects with eradication of Staphylococcus aureus infection. Conclusion: The investigations indicate that the developed nanotherapeutic can eradicate localized infections and enhance wound healing with controlled cytotoxicity.
Collapse
Affiliation(s)
- Hussan
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Syeda Asma Bano
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid e Azam University Islamabad, Islamabad, 15320, Pakistan
| |
Collapse
|
14
|
Gebreslassie YT, Gebremeskel FG. Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00828. [PMID: 38312482 PMCID: PMC10835232 DOI: 10.1016/j.btre.2024.e00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as novel therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an innovative approach for future therapeutic interventions against cancer and microbial infections.
Collapse
Affiliation(s)
- Yemane Tadesse Gebreslassie
- Department of Chemistry, College of Natural and Computational Science, Adigrat University, P.O. Box 50, Adigrat, Ethiopia
| | - Fisseha Guesh Gebremeskel
- Department of Chemistry, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| |
Collapse
|
15
|
Al-Momani H, Massadeh MI, Almasri M, Al Balawi D, Aolymat I, Hamed S, Albiss BA, Ibrahim L, Balawi HA, Al Haj Mahmoud S. Anti-Bacterial Activity of Green Synthesised Silver and Zinc Oxide Nanoparticles against Propionibacterium acnes. Pharmaceuticals (Basel) 2024; 17:255. [PMID: 38399471 PMCID: PMC10891609 DOI: 10.3390/ph17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Propionibacterium acnes plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying P. acnes strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required. Zinc oxide (ZnO-NPs) and silver (Ag-NPs) nanoparticles can be used against several antibiotic-resistant bacteria. The impact of Ag-NPs and ZnO-NPs against two clinical strains of P. acnes, P1 and P2, and a reference strain, NCTC747, were investigated in this research. A chemical approach for the green synthesis of Ag-NPs and ZnO-NPs from Peganum harmala was employed. The microtiter plate method was used to examine the effects of NPs on bacterial growth, biofilm development, and biofilm eradication. A broth microdilution process was performed in order to determine minimal inhibitory (MIC) concentrations. Ag-NPs and ZnO-NPs had a spherical shape and average dimensions of 10 and 50 nm, respectively. MIC values for all P. acnes strains for Ag-NPs and ZnO-NPs were 125 µg/mL and 250 µg/mL, respectively. Ag-NP and ZnO-NP concentrations of 3.9- 62.5 µg/mL and 15-62.5 µg/mL significantly inhibited the growth and biofilm formation of all P. acnes strains, respectively. ZnO-NP concentrations of 15-62.5 μg/mL significantly inhibited the growth of NCTC747 and P2 strains. The growth of P1 was impacted by concentrations of 31.25 μg/mL and 62.5 μg/mL. Biofilm formation in the NCTC747 strain was diminished by a ZnO-NP concentration of 15 μg/mL. The clinical strains of P. acnes were only affected by ZnO-NP titres of more than 31.25 μg/mL. Established P. acne biofilm biomass was significantly reduced in all strains at a Ag-NP and ZnO-NP concentration of 62.5 µg/mL. The findings demonstrated that Ag-NPs and ZnO-NPs exert an anti-bacterial effect against P. acnes. Further research is required to determine their potential utility as a treatment option for acne.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Muhannad I. Massadeh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Muna Almasri
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Saja Hamed
- Department of Pharmaceutical & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid 22110, Jordan;
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Hadeel Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa’ Applied University, AL-Salt 19117, Jordan;
| |
Collapse
|
16
|
Razavi SZ, Saljoughi E, Mousavi SM, Matin MM. Polycaprolactone/cress seed mucilage based bilayer antibacterial films containing ZnO nanoparticles with superabsorbent property for the treatment of exuding wounds. Int J Biol Macromol 2024; 256:128090. [PMID: 37979764 DOI: 10.1016/j.ijbiomac.2023.128090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
In this research, a novel double-layer film based on polycaprolactone and cress seed mucilage containing zinc oxide nanoparticles (0.5-2 %) was synthesized using solution casting technique, as an interactive multi-functional wound dressing. The bilayer films were characterized by measuring moisture content, contact angle parameter, porosity, water vapor transmission rate (WVTR), color attributes and opacity, swelling, degradation, mechanical properties, cell viability, and antimicrobial activity, as well as using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results indicated that the film containing 1.5 % zinc oxide nanoparticles had the best performance, with high swelling ability (3600 %) and 25 % degradation within 24 h of placement in a wound simulator solution. Its mechanical properties, including tensile strength and elongation at break, were 9 MPa and 5.53 %, respectively. In investigating the antimicrobial activity of the optimal film against Escherichia coli and Staphylococcus aureus, the diameter of the inhibition zone was observed to be 39.33 and 42 mm, respectively. Moreover, increasing the number of ZnO-NPs hindered the growth of NIH/3T3 cells, but the 1.5 % ZnO-NP loaded film showed a high percentage of cell viability in 1 day (90 %) and 3 days (93 %), which is suitable for biomedical applications.
Collapse
Affiliation(s)
- Seyedeh Zeynab Razavi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Joshi AA, Patil RH. Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus. INFECTIOUS MEDICINE 2023; 2:294-307. [PMID: 38205183 PMCID: PMC10774769 DOI: 10.1016/j.imj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024]
Abstract
Staphylococcus aureus is an aerobic Gram-positive spherical bacterium known to cause a broad range of infections worldwide. It is a major cause of infective skin and soft infections and severe and life-threatening conditions, such as pneumonia, bloodstream infections, and endocarditis. The emergence of drug-resistant strains of S aureus, particularly methicillin-resistant S aureus (MRSA), has become a significant concern in the healthcare community. Antibiotic-resistant S aureus is commonly acquired in hospitals and long-term care facilities. It often affects patients with weakened immune systems, those undergoing invasive medical procedures, or those who have been hospitalized for extended periods. In the US, S aureus is known to cause potentially fatal illnesses, such as toxic shock syndrome (TSS) and acute-onset toxic shock syndrome (TSS), which are characterized by fever and hypotension. It develops resistance to antibiotics through several mechanisms, such as the production of enzymes that inactivate antibiotics, target site modification, efflux pumps, and plasmid-mediated resistance. Therefore, preventing the spread of drug-resistant S aureus is needed, and there is an urgent need to explore novel approaches in the development of anti-staphylococcal agents. This article reviews the principal infections caused by S aureus, major virulence factors, mechanisms of resistance development, and nanotechnology-based solutions for the control of drug-resistant S aureus.
Collapse
Affiliation(s)
- Amruta A. Joshi
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| | - Ravindra H. Patil
- Department of Microbiology and Biotechnology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405, India
| |
Collapse
|
18
|
Amin YA, Abdelaziz SG, Said AH. Treatment of postpartum endometritis induced by multidrug-resistant bacterial infection in dairy cattle by green synthesized zinc oxide nanoparticles and in vivo evaluation of its broad spectrum antimicrobial activity in cow uteri. Res Vet Sci 2023; 165:105074. [PMID: 37948844 DOI: 10.1016/j.rvsc.2023.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Postpartum endometritis significantly affects the health and productivity of cattle, causing significant economic loss that is speculated to exceed billions of dollars annually. Treatment of postpartum endometritis, which is linked to various bacterial infections in the uterus after delivery and has an alarmingly high risk of antibiotic treatment failure for unidentified reasons, represents a great challenge. Several studies have demonstrated that various disease complications, such as multidrug-resistant (MDR) bacterial strains, prolonged infection treatment, and increased mortality risk, have emerged as a result of the extensive use of antibiotics to treat uterine infections and other microbial-related diseases. Recent research has led to the development of zinc oxide nanoparticles (ZnO NPs) that exhibit broad-spectrum antibacterial efficacy against bacterial pathogens, including MDR bacteria, without producing mutants that are resistant to zinc oxide (ZnO). In the present work, we biologically synthesized ZnO NPs from a green natural source of Helianthus annuus seeds for the treatment of endometritis caused by MDR bacterial strains in dairy cattle. We examined ZnO's potential as a substitute antimicrobial agent to treat cow endometritis by testing its ability to sustain potent antimicrobial activity against pathogenic bacteria, including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), in cow uteri. Among uterine bacteria, ZnO significantly decreased E. coli and S. aureus, which are known pathogenic bacteria within the uterus and achieved a high cure rate that was associated with the induction of estrous and pregnancy. Taken together, our observations of ZnO's broad range of antibacterial activity in-vivo with an animal model and subsequent evaluations of its therapeutic efficacy in cows with endometritis shed light on its potential to be used as a substitute antimicrobial agent for the treatment of uterine illness.
Collapse
Affiliation(s)
- Yahia A Amin
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt.
| | - Sahar Gamal Abdelaziz
- Microbiology Department, Animal Health Research Institute (AHRI), Agriculture Research Centre (ARC), Qena, Egypt
| | - Alaa H Said
- Electronic and Nano Devices Lab, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
19
|
Abdikakharovich SA, Rauf MA, Khattak S, Shah JA, Al-Keridis LA, Alshammari N, Saeed M, Igorevich SA. Exploring the antibacterial and dermatitis-mitigating properties of chicken egg white-synthesized zinc oxide nano whiskers. Front Cell Infect Microbiol 2023; 13:1295593. [PMID: 38099219 PMCID: PMC10719619 DOI: 10.3389/fcimb.2023.1295593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO-NPs) have garnered considerable interest in biomedical research primarily owing to their prospective therapeutic implications in combatting pathogenic diseases and microbial infections. The primary objective of this study was to examine the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) using chicken egg white (albumin) as a bio-template. Furthermore, this study aimed to explore the potential biomedical applications of ZnO NWs in the context of infectious diseases. Methods The NWs synthesized through biological processes were observed using electron microscopy, which allowed for detailed examination of their characteristics. The results of these investigations indicated that the NWs exhibited a size distribution ranging from approximately 10 to 100 nm. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) mapping analyses successfully corroborated the size, dimensions, and presence of biological constituents during their formation. In this study, XTT assay and confocal imaging were employed to provide evidence of the efficacy of ZnO-NWs in the eradication of bacterial biofilms. The target bacterial strains were Staphylococcus aureus and Escherichia coli. Furthermore, we sought to address pertinent concerns regarding the biocompatibility of the ZnO-NWs. This was achieved through comprehensive evaluation of the absence of cytotoxicity in normal HEK-293T and erythrocytes. Results The findings of this investigation unequivocally confirmed the biocompatibility of the ZnO-NWs. The biosynthesized ZnO-NWs demonstrated a noteworthy capacity to mitigate the dermatitis-induced consequences induced by Staphylococcus aureus in murine models after a therapeutic intervention lasting for one week. Discussion This study presents a comprehensive examination of the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) derived from chicken egg whites. These findings highlight the considerable potential of biosynthesized ZnO-NWs as a viable option for the development of therapeutic agents targeting infectious diseases. The antibacterial efficacy of ZnO-NWs against both susceptible and antibiotic-resistant bacterial strains, as well as their ability to eradicate biofilms, suggests their promising role in combating infectious diseases. Furthermore, the confirmed biocompatibility of ZnO-NWs opens avenues for their safe use in biomedical applications. Overall, this research underscores the therapeutic promise of ZnO-NWs and their potential significance in future biomedical advancements.
Collapse
Affiliation(s)
| | - Mohd A. Rauf
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | | | - Junaid Ali Shah
- Department of Dermatology, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
- College of Life Sciences, Jilin University, Changchun, China
| | | | - Nawaf Alshammari
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Sadykov Aslan Igorevich
- Department of Dermatology, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| |
Collapse
|
20
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
21
|
Yu YC, Hu MH, Zhuang HZ, Phan THM, Jiang YS, Jan JS. Antibacterial Gelatin Composite Hydrogels Comprised of In Situ Formed Zinc Oxide Nanoparticles. Polymers (Basel) 2023; 15:3978. [PMID: 37836027 PMCID: PMC10575203 DOI: 10.3390/polym15193978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
We report the feasibility of using gelatin hydrogel networks as the host for the in situ, environmentally friendly formation of well-dispersed zinc oxide nanoparticles (ZnONPs) and the evaluation of the antibacterial activity of the as-prepared composite hydrogels. The resulting composite hydrogels displayed remarkable biocompatibility and antibacterial activity as compared to those in previous studies, primarily attributed to the uniform distribution of the ZnONPs with sizes smaller than 15 nm within the hydrogel network. In addition, the composite hydrogels exhibited better thermal stability and mechanical properties as well as lower swelling ratios compared to the unloaded counterpart, which could be attributed to the non-covalent interactions between the in situ formed ZnONPs and polypeptide chains. The presence of ZnONPs contributed to the disruption of bacterial cell membranes, the alteration of DNA molecules, and the subsequent release of reactive oxygen species within the bacterial cells. This chain of events culminated in bacterial cell lysis and DNA fragmentation. This research underscores the potential benefits of incorporating antibacterial agents into hydrogels and highlights the significance of preparing antimicrobial agents within gel networks.
Collapse
Affiliation(s)
- Ya-Chu Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Ming-Hsien Hu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Orthopedic Department, Showchwan Memorial Hospital, Changhua 500, Taiwan
| | - Hui-Zhong Zhuang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Thi Ha My Phan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Yi-Sheng Jiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| |
Collapse
|
22
|
Farhana, Ali M, Akbar M, Chaudhary HJ, Munis MFH. Concurrent application of bacterial-mediated and mycosynthesized ZnO nanofungicides to maintain high ascorbic acid and delay postharvest decay of apricot. Microb Pathog 2023; 182:106207. [PMID: 37414303 DOI: 10.1016/j.micpath.2023.106207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Quality of apricot fruit is affected by different biotic stresses during growth, harvesting and storage. Due to fungal attack, huge losses of its quality and quantity are observed. The present research was designed for the diagnoses and management of postharvest rot disease of apricot. Infected apricot fruit were collected, and the causative agent was identified as A. tubingensis. To control this disease, both bacterial-mediated nanoparticles (b-ZnO NPs) and mycosynthesized nanoparticles (f-ZnO NPs) were used. Herein, biomass filtrates of one selected fungus (Trichoderma harzianum) and one bacterium (Bacillus safensis) were used to reduce zinc acetate into ZnO NPs. The physiochemical and morphological characters of both types of NPs were determined. UV-vis spectroscopy displayed absorption peaks of f-ZnO NPs and b-ZnO NPs at 310-380 nm, respectively, indicating successful reduction of Zinc acetate by the metabolites of both fungus and bacteria. Fourier transform infrared (FTIR) determined the presence of organic compounds like amines, aromatics, alkenes and alkyl halides, on both types of NPs, while X-ray diffraction (XRD) confirmed nano-size of f-ZnO NPs (30 nm) and b-ZnO NPs (35 nm). Scanning electron microscopy showed flower-crystalline shape for b-ZnO NPs and spherical-crystalline shape for f-ZnO NPs. Both NPs showed variable antifungal activities at four different concentrations (0.25, 0.50, 0.75 and 1.00 mg/ml). Diseases control and postharvest changes in apricot fruit were analyzed for 15 days. Among all treatments, 0.50 mg/ml concentration of f-ZnO NPs and 0.75 mg/ml concentration of b-ZnO NPs exhibited the strongest antifungal activity. Comparatively, f-ZnO NPs performed slightly better than b-ZnO NPs. Application of both NPs reduced fruit decay and weight, maintained higher ascorbic acid contents, sustained titratable acidity, and preserved firmness of diseased fruit. Our results suggest that microbial synthesized ZnO NPs can efficiently control fruit rot, extend shelf life, and preserve the quality of apricot.
Collapse
Affiliation(s)
- Farhana
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Mahnoor Akbar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | | |
Collapse
|
23
|
Tamurejo-Alonso P, González-Martín ML, Pacha-Olivenza MÁ. Electrodeposited Zinc Coatings for Biomedical Application: Morphology, Corrosion and Biological Behaviour. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5985. [PMID: 37687682 PMCID: PMC10488799 DOI: 10.3390/ma16175985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The improvement of biodegradable metals is currently an active and promising research area for their capabilities in implant manufacturing. However, controlling their degradation rate once their surface is in contact with the physiological media is a challenge. Surface treatments are in the way of addressing the improvement of this control. Zinc is a biocompatible metal present in the human body as well as a metal widely used in coatings to prevent corrosion, due to its well-known metal protective action. These two outstanding characteristics make zinc coating worthy of consideration to improve the degradation behaviour of implants. Electrodeposition is one of the most practical and common technologies to create protective zinc coatings on metals. This article aims to review the effect of the different parameters involved in the electrochemical process on the topography and corrosion characteristics of the zinc coating. However, certainly, it also provides an actual and comprehensive description of the state-of-the-art of the use of electrodeposited zinc for biomedical applications, focusing on their capacity to protect against bacterial colonization and to allow cell adhesion and proliferation.
Collapse
Affiliation(s)
- Purificación Tamurejo-Alonso
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
| | - María Luisa González-Martín
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Department of Applied Physics, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - Miguel Ángel Pacha-Olivenza
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| |
Collapse
|
24
|
Jia J, Zheng M, Zhang C, Li B, Lu C, Bai Y, Tong Q, Hang X, Ge Y, Zeng L, Zhao M, Song F, Zhang H, Zhang L, Hong K, Bi H. Killing of Staphylococcus aureus persisters by a multitarget natural product chrysomycin A. SCIENCE ADVANCES 2023; 9:eadg5995. [PMID: 37540745 PMCID: PMC10403215 DOI: 10.1126/sciadv.adg5995] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Staphylococcus aureus poses a severe public health problem as one of the vital causative agents of healthcare- and community-acquired infections. There is a globally urgent need for new drugs with a novel mode of action (MoA) to combat S. aureus biofilms and persisters that tolerate antibiotic treatment. We demonstrate that a benzonaphthopyranone glycoside, chrysomycin A (ChryA), is a rapid bactericide that is highly active against S. aureus persisters, robustly eradicates biofilms in vitro, and shows a sustainable killing efficacy in vivo. ChryA was suggested to target multiple critical cellular processes. A wide range of genetic and biochemical approaches showed that ChryA directly binds to GlmU and DapD, involved in the biosynthetic pathways for the cell wall peptidoglycan and lysine precursors, respectively, and inhibits the acetyltransferase activities by competition with their mutual substrate acetyl-CoA. Our study provides an effective antimicrobial strategy combining multiple MoAs onto a single small molecule for treatments of S. aureus persistent infections.
Collapse
Affiliation(s)
- Jia Jia
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Mingxin Zheng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Chongwen Zhang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Binglei Li
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuefan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Qian Tong
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Yixin Ge
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Liping Zeng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
25
|
Karnam S, Jindal AB, Agnihotri C, Singh BP, Paul AT. Topical Nanotherapeutics for Treating MRSA-Associated Skin and Soft Tissue Infection (SSTIs). AAPS PharmSciTech 2023; 24:108. [PMID: 37100956 DOI: 10.1208/s12249-023-02563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) imposes a major challenge for the treatment of infectious diseases with existing antibiotics. MRSA associated with superficial skin and soft tissue infections (SSTIs) is one of them, affecting the skin's superficial layers, and it includes impetigo, folliculitis, cellulitis, furuncles, abscesses, surgical site infections, etc. The efficient care of superficial SSTIs caused by MRSA necessitates local administration of antibiotics, because oral antibiotics does not produce the required concentration at the local site. The topical administration of nanocarriers has been emerging in the area of drug delivery due to its advantages over conventional topical formulation. It enhances the solubility and permeation of the antibiotics into deeper layer of the skin. Apart from this, antibiotic resistance is something that needs to be combated on multiple fronts, and antibiotics encapsulated in nanocarriers help to do so by increasing the therapeutic efficacy in a number of different ways. The current review provides an overview of the resistance mechanism in S. aureus as well as various nanocarriers reported for the effective management of MRSA-associated superficial SSTIs.
Collapse
Affiliation(s)
- Sriravali Karnam
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Charu Agnihotri
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India.
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
26
|
Elzahaby DA, Farrag HA, Haikal RR, Alkordi MH, Abdeltawab NF, Ramadan MA. Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation. Microorganisms 2023; 11:microorganisms11040913. [PMID: 37110336 PMCID: PMC10142706 DOI: 10.3390/microorganisms11040913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Nosocomial infections caused by microbial biofilm formation on biomaterial surfaces such as urinary catheters are complicated by antibiotic resistance, representing a common problem in hospitalized patients. Therefore, we aimed to modify silicone catheters to resist microbial adherence and biofilm formation by the tested microorganisms. This study used a simple direct method to graft poly-acrylic acid onto silicone rubber films using gamma irradiation to endow the silicone surface with hydrophilic carboxylic acid functional groups. This modification allowed the silicone to immobilize ZnO nanoparticles (ZnO NPs) as an anti-biofilm. The modified silicone films were characterized by FT-IR, SEM, and TGA. The anti-adherence ability of the modified silicone films was evidenced by the inhibition of biofilm formation by otherwise strong biofilm-producing Gram-positive, Gram-negative, and yeast clinical isolates. The modified ZnO NPs grafted silicone showed good cytocompatibility with the human epithelial cell line. Moreover, studying the molecular basis of the inhibitory effect of the modified silicone surface on biofilm-associated genes in a selected Pseudomonas aeruginosa isolate showed that anti-adherence activity might be due to the significant downregulation of the expression of lasR, lasI, and lecB genes by 2, 2, and 3.3-fold, respectively. In conclusion, the modified silicone catheters were low-cost, offering broad-spectrum anti-biofilm activity with possible future applications in hospital settings.
Collapse
|
27
|
Al-Momani H, Al Balawi D, Hamed S, Albiss BA, Almasri M, AlGhawrie H, Ibrahim L, Al Balawi H, Al Haj Mahmoud S, Pearson J, Ward C. The impact of biosynthesized ZnO nanoparticles from Olea europaea (Common Olive) on Pseudomonas aeruginosa growth and biofilm formation. Sci Rep 2023; 13:5096. [PMID: 36991258 PMCID: PMC10060419 DOI: 10.1038/s41598-023-32366-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThere is a limitation in the range of effectual antibiotics due to the Pseudomonas aeruginosa (PA) infection due to its innate antimicrobial resistance. Researchers have therefore been concentrating their efforts to discover advanced and cost effective antibacterial agents among the ever-increasing PA bacterial resistance strains. It has been discovered that various nanoparticles can be employed as antimicrobial agents. Here, we evaluated the antibacterial properties of the Zinc Oxide nanoparticles (ZnO NPs), which was biosynthesized, being examined on six hospital strains of PA alongside a reference strain (ATCC 27853). A chemical approach was applied to biosynthesize the ZnO NPs from Olea europaea was performed, and confirmed by using X-ray diffraction and Scanning Electron Microscopes. The nanoparticles then applied their antibacterial properties to examine them against six clinically isolated PA strains alongside the reference strain. This process tested for the results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The Growth, biofilm formation and eradication were analyzed. The influence of the differentiating degrees ZnO NPs in regard to Quorom sensing gene expression were further examined. The ZnO NPs exhibited a crystalline size and diameter (Dc) of 40–60 nm and both the MIC and MBC tests revealed positive outcomes of concentrations of 3 and 6 mg/ml for each PA strain, respectively. At sub inhibitory concentration, The ZnO NPs were found to significantly inhibit the growth and biofilm formation of all PA strains and decreases in the biomass and metabolic behavior of PA established biofilms; these decreases varied depending on the dosage. At ZnO NPs concentrations of 900 µg/ml, the expression of majority of quorum sensing genes of all strains were significantly reduced, at ZnO NPs concentrations of 300 µg/ml, few genes were significantly impacted. In conclusion, the treatment of PA and could be other antibiotic resistant bacteria can therefore be approached by using ZnO NPs as it has been uncovered that they withhold advanced antibacterial properties.
Collapse
|
28
|
Pei X, Liu D, Li J, Li L, Ding X, Zhang W, Li Z, Xu G, Li C, Li D. TFEB coordinates autophagy and pyroptosis as hepatotoxicity responses to ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161242. [PMID: 36587696 DOI: 10.1016/j.scitotenv.2022.161242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have drawn serious concerns about their biotoxicity due to their extensive applications in biological medicine, clinical therapeutic, daily chemical production, food and agricultural additives. In our present study, we clarified hepatotoxic mechanism of ZnO NPs through investigating the crosstalk between autophagy and pyroptosis, a remaining enigma in hepatocyte stimulated by ZnO NPs. Based on the effects of autophagy intervention by Rapamycin (Rap) and 3-Methyladenine (3-MA), and the observation of pyroptosis morphology and related indexes, the autophagy and pyroptosis simultaneously initiated by ZnO NPs were interrelated and the autophagy characterized by autophagosome production and increased expression of autophagy proteins was identified as a protective response of ZnO NPs against pyroptosis. According to the analysis of protein expression and fluorescence localization, the NLRP3 inflammasome assemble and the classical Caspase-1/GSDMD-dependent pyroptosis induced by ZnO NPs was modulated by autophagy. In this process, the adjustment of TFEB expression and nuclear translocation by gene knockout and gene overexpression, further altered the tendency of ZnO NPs-induced pyroptosis via the regulation of autophagy and lysosomal biogenesis. The knockout of TFEB gene exacerbated the pyroptosis via autophagy elimination and lysosome inhibition. While the alleviation of NLRP3 generation and pyroptosis activation was observed after treatment of TFEB gene overexpression. Additionally, the siRNA interference confirmed that TRAF-6 was involved in the TFEB-mediated global regulation of autophagy-lysosome-pyroptosis in response to ZnO NPs. Accordingly, pyroptosis induced by ZnO NPs in hepatocyte could be significantly avoided by TFEB-regulated autophagy and lysosome, further providing new insights for the risk assessment and therapeutic strategy.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China
| | - Jianjun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zibin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China.
| |
Collapse
|
29
|
Krzepiłko A, Matyszczuk KM, Święciło A. Effect of Sublethal Concentrations of Zinc Oxide Nanoparticles on Bacillus cereus. Pathogens 2023; 12:pathogens12030485. [PMID: 36986407 PMCID: PMC10053889 DOI: 10.3390/pathogens12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONPs), which are produced on a large scale, pose a potential threat to various environments because they can interact with the microbial populations found in them. Bacteria that are widespread in soil, water, and plant material include the Bacillus cereus group, which plays an important role in biodegradation and the nutrient cycle and is a major factor determining ecological balance. This group includes, among others, the foodborne pathogen B. cereus sensu stricto (herein referred to as B. cereus). The aim of this study was a comprehensive assessment of the effects of commercially available ZnONPs on B. cereus. The MIC (minimum inhibitory concentration) for B. cereus was 1.6 mg/mL, and the MBC (minimum bactericidal concentration) was 1.8 mg/mL. Growth of B. cereus was inhibited by a concentration of ZnONPs lower than or equal to MIC50. Concentrations from 0.2 to 0.8 mg/mL inhibited the growth of these bacteria in liquid media, induced symptoms of oxidative stress, and stimulated an environmental stress response in the form of biofilm and endospore formation. In addition, ZnONPs negatively affected the ability of the bacteria to break down the azo dye Evans Blue but enhanced the antimicrobial properties of phenolic compounds. Sublethal concentrations of ZnONPs generally decreased the activity of B. cereus cells, especially in the presence of phenolics, which indicates their potential toxicological impact, but at the same time they induced universal defence responses in these cells, which in the case of potential pathogens can hinder their removal.
Collapse
Affiliation(s)
- Anna Krzepiłko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Katarzyna Magdalena Matyszczuk
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Agata Święciło
- Department of Environmental Microbiology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 20-069 Lublin, Poland
| |
Collapse
|
30
|
Pino P, Bosco F, Mollea C, Onida B. Antimicrobial Nano-Zinc Oxide Biocomposites for Wound Healing Applications: A Review. Pharmaceutics 2023; 15:pharmaceutics15030970. [PMID: 36986831 PMCID: PMC10053511 DOI: 10.3390/pharmaceutics15030970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic wounds are a major concern for global health, affecting millions of individuals worldwide. As their occurrence is correlated with age and age-related comorbidities, their incidence in the population is set to increase in the forthcoming years. This burden is further worsened by the rise of antimicrobial resistance (AMR), which causes wound infections that are increasingly hard to treat with current antibiotics. Antimicrobial bionanocomposites are an emerging class of materials that combine the biocompatibility and tissue-mimicking properties of biomacromolecules with the antimicrobial activity of metal or metal oxide nanoparticles. Among these nanostructured agents, zinc oxide (ZnO) is one of the most promising for its microbicidal effects and its anti-inflammatory properties, and as a source of essential zinc ions. This review analyses the most recent developments in the field of nano-ZnO–bionanocomposite (nZnO-BNC) materials—mainly in the form of films, but also hydrogel or electrospun bandages—from the different preparation techniques to their properties and antibacterial and wound-healing performances. The effect of nanostructured ZnO on the mechanical, water and gas barrier, swelling, optical, thermal, water affinity, and drug-release properties are examined and linked to the preparation methods. Antimicrobial assays over a wide range of bacterial strains are extensively surveyed, and wound-healing studies are finally considered to provide a comprehensive assessment framework. While early results are promising, a systematic and standardised testing procedure for the comparison of antibacterial properties is still lacking, partly because of a not-yet fully understood antimicrobial mechanism. This work, therefore, allowed, on one hand, the determination of the best strategies for the design, engineering, and application of n-ZnO-BNC, and, on the other hand, the identification of the current challenges and opportunities for future research.
Collapse
|
31
|
Prado-Prone G, Silva-Bermudez P, Rodil SE, Ganjkhani Y, Moradi AR, Méndez FJ, García-Macedo JA, Bazzar M, Almaguer-Flores A. ZnO nanoparticles-modified polycaprolactone-gelatin membranes for guided/bone tissue regeneration, antibacterial and osteogenic differentiation properties. Biomed Phys Eng Express 2023; 9. [PMID: 36821850 DOI: 10.1088/2057-1976/acbe47] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Periodontitis is a highly prevalent infectious disease that causes the progressive destruction of the periodontal supporting tissues. If left untreated, it can lead to tooth loss impairing oral function, aesthetics, and the patient's overall quality of life. Guided and Bone Tissue Regeneration (GTR/BTR) are surgical therapies based on the placement of a membrane that prevents epithelial growth into the defect, allowing the periodontal/bone cells (including stem cells) to regenerate or restore the affected tissues. The success of these therapies is commonly affected by the local bacterial colonization of the membrane area and its fast biodegradation, causing postoperative infections and a premature rupture of the membrane limiting the regeneration process. This study presents the antibacterial and osteogenic differentiation properties of polycaprolactone-gelatin (PCL-G) electrospun membranes modified with ZnO nanoparticles (ZnO-NPs). The membranes´ chemical composition, surface roughness, biodegradation, water wettability, and mechanical properties under simulated physiological conditions, were analyzed by the close relationship with their biological properties. The PCL-G membranes modified with 1, 3, and 6% w/w of ZnO-NPs showed a significant reduction in the planktonic and biofilm formation of four clinically relevant bacteria;A. actinomycetemcomitansserotype b, P. gingivalis,E. coli, andS. epidermidis. Additionally, the membranes presented appropriate mechanical properties and biodegradation rates to be potentially used in clinical treatments. Notably, the membranes modified with the lowest concentration of ZnO-NPs (1% w/w) stimulated the production of osteoblast markers and calcium deposits in human bone marrow-derived mesenchymal stem cells (BM-MSC) and were biocompatible to human osteoblasts cells (hFOB). These results suggest that the PCL-G membranes with 1% w/w of ZnO-NPs are high-potential candidates for GTR/BTR treatments, as they were the most effective in terms of better antibacterial effectiveness at a lower NPs-concentration while creating a favorable cellular microenvironment for bone growth.
Collapse
Affiliation(s)
- Gina Prado-Prone
- Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389, Ciudad de México, Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México; Ciudad Universitaria No. 3000, C.P. 04360, Ciudad de México, Mexico
| | - Yasaman Ganjkhani
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,Institut für Technische Optik, Universitat Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Franklin J Méndez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CICATA-Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología 1036 Z-1 P 2/2, Atlacholoaya 62790, Xochitepec, Mexico
| | - Jorge A García-Macedo
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México; Circuito exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Argelia Almaguer-Flores
- Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| |
Collapse
|
32
|
Combination of 2- tert-Butyl-1,4-Benzoquinone (TBQ) and ZnO Nanoparticles, a New Strategy To Inhibit Biofilm Formation and Virulence Factors of Chromobacterium violaceum. mSphere 2023; 8:e0059722. [PMID: 36645278 PMCID: PMC9942565 DOI: 10.1128/msphere.00597-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drug-resistant bacteria have been raising serious social problems. Bacterial biofilms and different virulence factors are the main reasons for persistent infections. As a conditioned pathogen, Chromobacterium violaceum has evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development, contributing to multidrug resistance. However, there are few therapies to combat drug-resistant bacteria. Quorum sensing (QS) inhibitors (QSIs) are a promising strategy to solve antibiotic resistance. Our previous work suggested that 2-tert-butyl-1,4-benzoquinone (TBQ) is a potent QSI. In this study, the combination of zinc oxide nanoparticles (ZnO-NPs) and TBQ (ZnO-TBQ) was investigated for the treatment of Chromobacterium violaceum ATCC 12472 infection. ZnO-NPs attach to cell walls or biofilms, and the local dissolution of ZnO-NPs can lead to increased Zn2+ concentrations, which could destroy metal homeostasis, corresponding to disturbances in amino acid metabolism and nucleic acid metabolism. ZnO-NPs significantly improved the efficiency of TBQ in inhibiting the QS-related virulence factors and biofilm formation of C. violaceum ATCC 12472. ZnO-TBQ effectively reduces the expression of genes related to QS, which is conducive to limiting the infectivity of C. violaceum ATCC 12472. Caenorhabditis elegans nematodes treated with ZnO-TBQ presented a significant improvement in the survival rate by 46.7%. Overall, the combination of ZnO-NPs and TBQ offers a new strategy to attenuate virulence factors and biofilm formation synergistically in some drug-resistant bacteria. IMPORTANCE The combination of ZnO-NPs and TBQ (ZnO-TBQ) can compete with the inducer N-decanoyl-homoserine lactone (C10-HSL) by binding to CviR and downregulate genes related to the CviI/CviR system to interrupt the QS system of C. violaceum ATCC 12472. The downstream genes responding to cviR were also downregulated so that virulence factors and biofilm formation were inhibited. Furthermore, ZnO-TBQ presents multiple metabolic disturbances in C. violaceum ATCC 12472, which results in the reduced multidrug resistance and pathogenicity of C. violaceum ATCC 12472. In an in vivo assay, C. elegans nematodes treated with ZnO-TBQ presented a significant improvement in the survival rate by 46.7% by limiting the infectivity of C. violaceum ATCC 12472. In addition, ZnO-TBQ inhibited the generation of virulence factors and biofilm formation 2-fold compared to either ZnO-NPs or TBQ alone. The combination of ZnO-NPs with TBQ offers a potent synergistic strategy to reduce multidrug resistance and pathogenicity.
Collapse
|
33
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
34
|
Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A. An overview of green synthesis of zinc oxide nanoparticle by using various natural entities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amina Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Aleena Shoukat
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
35
|
Zinc and Zinc Transporters in Dermatology. Int J Mol Sci 2022; 23:ijms232416165. [PMID: 36555806 PMCID: PMC9785331 DOI: 10.3390/ijms232416165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc is an important trace mineral in the human body and a daily intake of zinc is required to maintain a healthy status. Over the past decades, zinc has been used in formulating topical and systemic therapies for various skin disorders owing to its wound healing and antimicrobial properties. Zinc transporters play a major role in maintaining the integrity of the integumentary system by controlling zinc homeostasis within dermal layers. Mutations and abnormal function of zinc-transporting proteins can lead to disease development, such as spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and acrodermatitis enteropathica (AE) which can be fatal if left untreated. This review discusses the layers of the skin, the importance of zinc and zinc transporters in each layer, and the various skin disorders caused by zinc deficiency, in addition to zinc-containing compounds used for treating different skin disorders and skin protection.
Collapse
|
36
|
Insights into the Biocompatibility and Biological Potential of a Chitosan Nanoencapsulated Textile Dye. Int J Mol Sci 2022; 23:ijms232214234. [PMID: 36430710 PMCID: PMC9693863 DOI: 10.3390/ijms232214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Traditionally synthetic textile dyes are hazardous and toxic compounds devoid of any biological activity. As nanoencapsulation of yellow everzol textile dye with chitosan has been shown to produce biocompatible nanoparticles which were still capable of dyeing textiles, this work aims to further characterize the biocompatibility of yellow everzol nanoparticles (NPs) and to ascertain if the produced nanoencapsulated dyes possess any biological activity against various skin pathogens in vitro assays and in a cell infection model. The results showed that the NPs had no deleterious effects on the HaCat cells' metabolism and cell wall, contrary to the high toxicity of the dye. The biological activity evaluation showed that NPs had a significant antimicrobial activity, with low MICs (0.5-2 mg/mL) and MBCs (1-3 mg/mL) being registered. Additionally, NPs inhibited biofilm formation of all tested microorganisms (inhibitions between 30 and 87%) and biofilm quorum sensing. Lastly, the dye NPs were effective in managing MRSA infection of HaCat cells as they significantly reduced intracellular and extracellular bacterial counts.
Collapse
|
37
|
Ismail A, Raya NR, Orabi A, Ali AM, Abo-zeid Y. Investigating the Antibacterial Activity and Safety of Zinc Oxide Nanoparticles versus a Commercial Alcohol-Based Hand-Sanitizer: Can Zinc Oxide Nanoparticles Be Useful for Hand Sanitation? Antibiotics (Basel) 2022; 11:antibiotics11111606. [PMID: 36421249 PMCID: PMC9686634 DOI: 10.3390/antibiotics11111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Hand hygiene is the key factor to control and prevent the spread of infections, for example, hospital-acquired infections (HAIs). People commonly use alcohol-based hand sanitizers to assure hand hygiene. However, frequent use of alcohol-based hand sanitizers in a pandemic situation (e.g., COVID-19) was associated with serious drawbacks such as skin toxicity including irritation, skin dermatitis, and skin dryness or cracking, along with peeling, redness, or itching with higher possibility of infection. This demands the development of alternative novel products that are effective as alcohol-based hand sanitizers but have no hazardous effects. Zinc oxide nanoparticles (ZnO-NPs) are known to have broad-spectrum antimicrobial activity, be compatible with the biological system and the environment, and have applicable and economic industrial-scale production. Thus, ZnO-NPs might be a good candidate for hand sanitation. To the best of our knowledge, the antibacterial activity of ZnO-NPs in comparison to alcohol-based hand sanitizers has not yet been studied. In the present work, a comparative study of the antibacterial activity of ZnO-NPs vs. Sterillium, a commercial alcohol-based hand sanitizer that is commonly used in Egyptian hospitals, was performed against common microorganisms known to cause HAIs in Egypt, including Acinetobacter baumannii, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus aureus. The safety profiles of ZnO-NPs and Sterillium were also assessed. The obtained results demonstrated the superior antibacterial activity and safety of ZnO-NPs compared to Sterillium. Therefore, ZnO-NPs could be a promising candidate for hand sanitation in comparison to alcohol-based hand sanitizers; however, several studies related to long-term toxicity and stability of ZnO-NPs and investigations into their antimicrobial activity and safety in healthcare settings are still required in the future to ascertain their antimicrobial activity and safety.
Collapse
Affiliation(s)
- Aliaa Ismail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Nermeen R. Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Ahmed Orabi
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Alaa M. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
- Correspondence: ; Tel.: +20-1092792846
| |
Collapse
|
38
|
Kumari M, Sarkar B, Mukherjee K. Nanoscale calcium oxide and its biomedical applications: A comprehensive review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Khairnar B, Dabhane H, Dashpute R, Girase M, Nalawade P, Gaikwad V. Study of biogenic fabrication of Zinc oxide nanoparticles and their applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities. Gels 2022; 8:gels8100650. [PMID: 36286151 PMCID: PMC9601499 DOI: 10.3390/gels8100650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The inevitable bleeding and infections caused by disasters and accidents are the main causes of death owing to extrinsic trauma. Hemostatic agents are often used to quickly suppress bleeding and infection, and they can solve this problem in a short time. Silk fibroin (SF) has poor processibility in water, owing to incomplete solubility therein. In this study, aiming to overcome this disadvantage, a modified silk fibroin (SF-BGE), easily soluble in water, was prepared by introducing butyl glycidyl ether (BGE) into its side chain. Subsequently, a small amount of tannic acid (TA) was introduced to prepare an SF-BGE /TA solution, and ZnO nanoparticles (NPs) were added to the solution to form the coordination bonds between the ZnO and TA, leading to an SF-based nanocomposite hydrogel. A structural characterization of the SF-BGE, SF-BGE/TA, SF-BGE/TA/ZnO, and the coordination bonds between ZnO/TA was observed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the phase change was observed by rheological measurements. The pore formation of the SF-BGE/TA/ZnO hydrogel and dispersibility of ZnO were verified through energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The cytocompatible and hemostatic performances of the SF-BGE/TA/ZnO NPs composite hydrogels were evaluated, and the hydrogels showed superior hemostatic and cytocompatible activities. Therefore, the SF-based nanocomposite hydrogel is considered as a promising material for hemostasis.
Collapse
|
41
|
Abdelghafar A, Yousef N, Askoura M. Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC Microbiol 2022; 22:244. [PMID: 36221053 PMCID: PMC9552502 DOI: 10.1186/s12866-022-02658-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilm-related infections are difficult to be treated because of higher resistance to antimicrobial agents. Current study aims to characterize the influence of zinc oxide nanoparticles (ZnO-NPs) on both S. aureus susceptibility to antibiotics and pathogenesis. METHODS The influence of ZnO-NPs on biofilm formation by S. aureus was characterized by the crystal violet and tube assay. The synergistic effect of ZnO-NPs in combination with antibiotics on S. aureus was characterized using the checkerboard method. The effect of ZnO-NPs on S. aureus cell surface hydrophobicity and blood hemolysis was investigated. RT-qPCR was used to investigate the effect of ZnO-NPs on the expression of biofilm related genes (icaA, icaR and sarA), katA and sigB. The impact of ZnO-NPs on S. aureus pathogenesis was evaluated using mice infection model. RESULTS ZnO-NPs exhibited a good antibiofilm activity against S. aureus. The findings indicate a synergistic antibiofilm effect of combination between ZnO-NPs and tested antibiotics. ZnO-NPs were capable of decreasing S. aureus cell surface hydrophobicity which could account for observed decrease in bacterial biofilm forming capacity. Moreover, ZnO-NPs-treated bacteria exhibited a significant decrease in blood hemolysis relative to control untreated S. aureus. The expression of biofilm related genes was significantly repressed in ZnO-NPs treated bacteria as compared to untreated cells. Finally, the effect of ZnO-NPs on S. aureus pathogenesis was investigated using mice infection model where ZnO-NPs accelerated healing of wounds in mice as compared to control untreated mice. CONCLUSIONS Present data support the efficiency of ZnO-NPs as antibiofilm agent in treatment of S. aureus infections. This study recommends the incorporation of ZnO-NPs as adjuvant with other antibiotics targeting S. aureus based on the promising findings obtained herein in order to control infection with this pathogen.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nehal Yousef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
42
|
Matyszczuk K, Krzepiłko A. Model Study for Interaction of Sublethal Doses of Zinc Oxide Nanoparticles with Environmentally Beneficial Bacteria Bacillus thuringiensis and Bacillus megaterium. Int J Mol Sci 2022; 23:ijms231911820. [PMID: 36233126 PMCID: PMC9570281 DOI: 10.3390/ijms231911820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs), due to their antibacterial effects, are commonly used in various branches of the economy and can affect rhizobacteria that promote plant growth. We describe the effect of ZnO NPs on two model bacteria strains, B. thuringiensis and B. megaterium, that play an important role in the environment. The MIC (minimum inhibitory concentration) value determined after 48 h of incubation with ZnO NPs was more than 1.6 mg/mL for both strains tested, while the MBC (minimum bactericidal concentration) was above 1.8 mg/mL. We tested the effect of ZnO NPs at concentrations below the MIC (0.8 mg/mL, 0.4 mg/mL and 0.2 mg/mL (equal to 50%, 25% and 12,5% MIC, respectively) in order to identify the mechanisms activated by Bacillus species in the presence of these nanoparticles. ZnO NPs in sublethal concentrations inhibited planktonic cell growth, stimulated endospore formation and reduced decolorization of Evans blue. The addition of ZnO NPs caused oxidative stress, measured using nitroblue tetrazolium (NBT), and reduced the activity of catalase. It was confirmed that zinc oxide nanoparticles in sublethal concentrations change metabolic processes in Bacillus bacteria that are important for their effects on the environment. B. thuringiensis after treatment with ZnO NPs decreased indole acetic acid (IAA) production and increased biofilm formation, whereas B. megaterium decreased IAA production but, inversely, increased biofilm formation. Comparison of different Bacillus species in a single experiment made it possible to better understand the mechanisms of toxicity of zinc oxide nanoparticles and the individual reactions of closely related bacterial species.
Collapse
|
43
|
Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173066. [PMID: 36080103 PMCID: PMC9459703 DOI: 10.3390/nano12173066] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.
Collapse
Affiliation(s)
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Felix Tettey
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aakash Gupta
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Shankar Jaisi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Devi Prasad Bhandari
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Ajay Kumar Shah
- Faculty of Health Sciences, School of Health and Allied Sciences, Pokhara University, Lekhnath 33700, Nepal
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence: (N.B.); (N.P.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
- Correspondence: (N.B.); (N.P.)
| |
Collapse
|
44
|
Mthana MS, Mthiyane MN, Ekennia AC, Singh M, Onwudiwe DC. Cytotoxicity and antibacterial effects of silver doped zinc oxide nanoparticles prepared using fruit extract of Capsicum Chinense. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Ntombela ZG, Pullabhotla VSR, Basson AK. Biosafety, Optimization, and Application of Bioflocculant-Synthesized Zinc Oxide Nanoparticles. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
46
|
Microbial Mediated Synthesis of Zinc Oxide Nanoparticles, Characterization and Multifaceted Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractNanoparticles have gained considerable importance compared to bulk counterparts due to their unique properties. Due to their high surface to volume ratio and high reactivity, metallic and metal-oxide nanostructures have shown great potential applications. Among them, zinc oxide nanoparticles (ZnONPs) have gained tremendous attention attributed to their unique properties such as low toxicity, biocompatibility, simplicity, easy fabrication, and environmental friendly. Remarkably, ZnONPs exhibit optical, physical, antimicrobial, anticancer, anti-inflammatory and wound healing properties. These nanoparticles have been applied in various fields such as in biomedicine, biosensors, electronics, food, cosmetic industries, textile, agriculture and environment. The synthesis of ZnONPs can be performed by chemical, physical and biological methods. Although the chemical and physical methods suffer from some disadvantages such as the involvement of high temperature and pressure conditions, high cost and not environmentally friendly, the green synthesis of ZnONPs offers a promising substitute to these conventional methods. On that account, the microbial mediated synthesis of ZnONPs is clean, eco-friendly, nontoxic and biocompatible method. This paper reviews the microbial synthesis of ZnONPs, parameters used for the optimization process and their physicochemical properties. The potential applications of ZnONPs in biomedical, agricultural and environmental fields as well as their toxic aspects on human beings and animals have been reviewed.
Collapse
|
47
|
de Celis M, Belda I, Marquina D, Santos A. Phenotypic and transcriptional study of the antimicrobial activity of silver and zinc oxide nanoparticles on a wastewater biofilm-forming Pseudomonas aeruginosa strain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153915. [PMID: 35219669 DOI: 10.1016/j.scitotenv.2022.153915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The extensive use of nanoparticles (NPs) in industrial processes makes their potential release into the environment an issue of concern. Ag and ZnO NPs are among the most frequently used NPs, potentially reaching concentrations of 1-4 and 64 mg/kg, respectively, in Wastewater Treatment Plants (WWTPs), with unknown effects over microbial populations. Thus, we examined, in depth, the effect of such NPs on a P. aeruginosa strain isolated from a WWTP. We evaluated the growth, ROS production and biofilm formation, in addition to the transcriptomic response in presence of Ag and ZnO NPs at concentrations potentially found in sewage sludge. The transcriptomic and phenotypic patterns of P. aeruginosa in presence of Ag NPs were, in general, similar to the control treatment, with some specific transcriptional impacts affecting processes involved in biofilm formation and iron homeostasis. The biofilms formed under Ag NPs treatment were, on average, thinner and more homogeneous. ZnO NPs also alters the biofilm formation and iron homeostasis in P. aeruginosa, however, the higher and more toxic concentrations utilized caused an increase in cell death and eDNA release. Thus, the biofilm development was characterized by EPS production, via eDNA release. The number of differentially expressed genes in presence of ZnO NPs was higher compared to Ag NPs treatment. Even though the responses of P. aeruginosa to the presence of the studied metallic NPs was at some extent similar, the higher and more toxic concentrations of ZnO NPs produced greater changes concerning cell viability and ROS production, causing disruption in biofilm development.
Collapse
Affiliation(s)
- M de Celis
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - I Belda
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - D Marquina
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - A Santos
- Department of Genetics, Physiology and Microbiology, Microbiology Unit, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain.
| |
Collapse
|
48
|
Awassa J, Cornu D, Ruby C, El-Kirat-Chatel S. Direct contact, dissolution and generation of reactive oxygen species: How to optimize the antibacterial effects of layered double hydroxides. Colloids Surf B Biointerfaces 2022; 217:112623. [PMID: 35714507 DOI: 10.1016/j.colsurfb.2022.112623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Infections by pathogenic bacteria have been threatening several fields as food industries, agriculture, textile industries and healthcare products. Layered double hydroxides materials (LDHs), also called anionic clays, could be utilized as efficient antibacterial materials due to their several interesting properties such as ease of synthesis, tunable chemical composition, biocompatibility and anion exchange capacity. Pristine LDHs as well as LDH-composites including antibacterial molecules and nanoparticles loaded-LDHs were proven to serve as efficient antibacterial agents against various Gram-positive and Gram-negative bacterial strains. The achieved antibacterial effect was explained by the following mechanisms: (1) Direct contact between the materials and bacterial cells driven by electrostatic interactions between positively charged layers and negatively charged cell membranes, (2) Dissolution and gradual release over time of metallic ions or antibacterial molecules, (3) Generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | | |
Collapse
|
49
|
Rahman HS, Othman HH, Abdullah R, Edin HYAS, Al-Haj NA. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet Med Sci 2022; 8:1769-1779. [PMID: 35588498 PMCID: PMC9297768 DOI: 10.1002/vms3.814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nanotechnology is a far‐reaching technology with tremendous applications in various aspects, including general medicine, veterinary medicine, agriculture, aquaculture, and food production. Nanomaterials have exceptional physicochemical characteristics, including increased intestinal absorption, biodistribution, bioavailability, and improved antimicrobial and catalytic properties. Although nanotechnology is gaining ground in animal management, husbandry, and production, its wide use is still hampered by occasional toxicity and side effects. Zinc oxide nanoparticles (ZnO‐NPs) have long been utilized in animal production, aquaculture, and pet animal medicine. However, the use ZnO‐NPs in animals has been associated with reports of toxicity and side effects. ZnO‐NPs may have shown numerous beneficial effects in animals; its use must be regulated with care to avoid unwanted consequences. Thus, this review emphasizes the usage of ZnO‐NPs in animal production and laboratory animals and the potential side effects associated with the use of nanoparticles as a feed supplement and therapeutic compound.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimaniyah, Republic of Iraq
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Nagi A Al-Haj
- Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| |
Collapse
|
50
|
|