1
|
Liu Y, Gao Y, Altalhi T, Liu DJ, Yakobson BI. A Quantum Mechanical MP2 Study of the Electronic Effect of Nonplanarity on the Carbon Pyramidalization of Fullerene C 60. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1576. [PMID: 39404303 PMCID: PMC11477707 DOI: 10.3390/nano14191576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Among C60's diverse functionalities, its potential application in CO2 sequestration has gained increasing interest. However, the processes involved are sensitive to the molecule's electronic structure, aspects of which remain debated and require greater precision. To address this, we performed structural optimization of fullerene C60 using the QM MP2/6-31G* method. The nonplanarity of the optimized icosahedron is characterized by two types of dihedral angles: 138° and 143°. The 120 dihedrals of 138° occur between two hexagons intersecting at C-C bonds of 1.42 Å, while the 60 dihedrals of 143° are observed between hexagons and pentagons at C-C bonds of 1.47 Å. NBO analysis reveals less pyramidal sp1.78 hybridization for carbons at the 1.42 Å bonds and more pyramidal sp2.13 hybridization for the 1.47 Å bonds. Electrostatic potential charges range from -0.04 a.u. to 0.04 a.u. on the carbon atoms. Second-order perturbation analysis indicates that delocalization interactions in the C-C bonds of 1.42 Å (143.70 kcal/mol) and 1.47 Å (34.98 kcal/mol) are 22% and 38% higher, respectively, than those in benzene. MP2/Def2SVP calculations yield a correlation energy of 13.49 kcal/mol per electron for C60, slightly higher than the 11.68 kcal/mol for benzene. However, the results from HOMO-LUMO calculations should be interpreted with caution. This study may assist in the rational design of fullerene C60 derivatives for CO2 reduction systems.
Collapse
Affiliation(s)
- Yuemin Liu
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Yunxiang Gao
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Tariq Altalhi
- Chemistry Department, Taif University, Taif 21974, Saudi Arabia; (T.A.); (B.I.Y.)
| | - Di-Jia Liu
- Chemical Science & Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA;
| | - Boris I. Yakobson
- Chemistry Department, Taif University, Taif 21974, Saudi Arabia; (T.A.); (B.I.Y.)
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
2
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
3
|
Samoilova NA, Krayukhina MA, Klemenkova ZS, Naumkin AV, Buzin MI, Mezhuev YO, Turetsky EA, Andreev SM, Anuchina NM, Popov DA. Hydrophilization and Functionalization of Fullerene C 60 with Maleic Acid Copolymers by Forming a Non-Covalent Complex. Polymers (Basel) 2024; 16:1736. [PMID: 38932086 PMCID: PMC11207209 DOI: 10.3390/polym16121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we report an easy approach for the production of aqueous dispersions of C60 fullerene with good stability. Maleic acid copolymers, poly(styrene-alt-maleic acid) (SM), poly(N-vinyl-2-pyrrolidone-alt-maleic acid) (VM) and poly(ethylene-alt-maleic acid) (EM) were used to stabilize C60 fullerene molecules in an aqueous environment by forming non-covalent complexes. Polymer conjugates were prepared by mixing a solution of fullerene in N-methylpyrrolidone (NMP) with an aqueous solution of the copolymer, followed by exhaustive dialysis against water. The molar ratios of maleic acid residues in the copolymer and C60 were 5/1 for SM and VM and 10/1 for EM. The volume ratio of NMP and water used was 1:1.2-1.6. Water-soluble complexes (composites) dried lyophilically retained solubility in NMP and water but were practically insoluble in non-polar solvents. The optical and physical properties of the preparations were characterized by UV-Vis spectroscopy, FTIR, DLS, TGA and XPS. The average diameter of the composites in water was 120-200 nm, and the ξ-potential ranged from -16 to -20 mV. The bactericidal properties of the obtained nanostructures were studied. Toxic reagents and time-consuming procedures were not used in the preparation of water-soluble C60 nanocomposites stabilized by the proposed copolymers.
Collapse
Affiliation(s)
- Nadezhda A. Samoilova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119334 Moscow, Russia; (N.A.S.); (M.A.K.); (Z.S.K.); (A.V.N.); (M.I.B.)
| | - Maria A. Krayukhina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119334 Moscow, Russia; (N.A.S.); (M.A.K.); (Z.S.K.); (A.V.N.); (M.I.B.)
| | - Zinaida S. Klemenkova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119334 Moscow, Russia; (N.A.S.); (M.A.K.); (Z.S.K.); (A.V.N.); (M.I.B.)
| | - Alexander V. Naumkin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119334 Moscow, Russia; (N.A.S.); (M.A.K.); (Z.S.K.); (A.V.N.); (M.I.B.)
| | - Michail I. Buzin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119334 Moscow, Russia; (N.A.S.); (M.A.K.); (Z.S.K.); (A.V.N.); (M.I.B.)
| | - Yaroslav O. Mezhuev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119334 Moscow, Russia; (N.A.S.); (M.A.K.); (Z.S.K.); (A.V.N.); (M.I.B.)
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Evgeniy A. Turetsky
- NRC Institute of Immunology, FMBA, 24, Kashirskoye shosse, 115478 Moscow, Russia; (E.A.T.); (S.M.A.)
| | - Sergey M. Andreev
- NRC Institute of Immunology, FMBA, 24, Kashirskoye shosse, 115478 Moscow, Russia; (E.A.T.); (S.M.A.)
| | - Nelya M. Anuchina
- A. N. Bakulev National Medical Research Center for Cardiovascular Surgery of the Ministry of Health of the Russian Federation, 135 Rublevskoe Sh., 121552 Moscow, Russia; (N.M.A.); (D.A.P.)
| | - Dmitry A. Popov
- A. N. Bakulev National Medical Research Center for Cardiovascular Surgery of the Ministry of Health of the Russian Federation, 135 Rublevskoe Sh., 121552 Moscow, Russia; (N.M.A.); (D.A.P.)
| |
Collapse
|
4
|
Rogoża NH, Krupa MA, Krupa P, Sieradzan AK. Integrating Explicit and Implicit Fullerene Models into UNRES Force Field for Protein Interaction Studies. Molecules 2024; 29:1919. [PMID: 38731411 PMCID: PMC11085604 DOI: 10.3390/molecules29091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Natalia H. Rogoża
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Bażyńskiego 8, 80-309 Gdańsk, Poland; (N.H.R.); (M.A.K.); (A.K.S.)
| | - Magdalena A. Krupa
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Bażyńskiego 8, 80-309 Gdańsk, Poland; (N.H.R.); (M.A.K.); (A.K.S.)
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Bażyńskiego 8, 80-309 Gdańsk, Poland; (N.H.R.); (M.A.K.); (A.K.S.)
| |
Collapse
|
5
|
Fjodorova N, Novič M, Venko K, Rasulev B, Türker Saçan M, Tugcu G, Sağ Erdem S, Toropova AP, Toropov AA. Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives. Int J Mol Sci 2023; 24:14160. [PMID: 37762462 PMCID: PMC10531479 DOI: 10.3390/ijms241814160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K, 1GOS, 1GS4, 1H82, 1OG5, 1UOM, 2F9Q, 2J0D, 3ERT) obtained from the Protein Data Bank (PDB) and showing high similarity to proteins from aquatic species. Then, the binding activity of 169 FDs to the enzyme acetylcholinesterase (AChE)-as a known target of toxins in fathead minnows and Daphnia magna, causing the inhibition of AChE-was analyzed. Finally, the structural aquatic toxicity alerts obtained from ToxAlert were used to confirm the possible mechanism of action. Machine learning and cheminformatics tools were used to analyze the data. Counter-propagation artificial neural network (CPANN) models were used to determine key binding properties of FDs to proteins associated with aquatic toxicity. Predicting the binding affinity of unknown FDs using quantitative structure-activity relationship (QSAR) models eliminates the need for complex and time-consuming calculations. The results of the study show which structural features of FDs have the greatest impact on aquatic organisms and help prioritize FDs and make manufacturing decisions.
Collapse
Affiliation(s)
- Natalja Fjodorova
- Laboratory for Chemoinformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (M.N.); (K.V.)
| | - Marjana Novič
- Laboratory for Chemoinformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (M.N.); (K.V.)
| | - Katja Venko
- Laboratory for Chemoinformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (M.N.); (K.V.)
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, NDSU Dept 2510, P.O. Box 6050, Fargo, ND 58108, USA;
| | - Melek Türker Saçan
- Ecotoxicology and Chemometrics Lab, Institute of Environmental Sciences, Bogazici University, Hisar Campus, 34342 Istanbul, Turkey;
| | - Gulcin Tugcu
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Atasehir, 34755 Istanbul, Turkey;
| | - Safiye Sağ Erdem
- Department of Chemistry, Marmara University, 34722 Istanbul, Turkey;
| | - Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milano, Italy; (A.P.T.); (A.A.T.)
| | - Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri, Via Mario Negri 2, 20156 Milano, Italy; (A.P.T.); (A.A.T.)
| |
Collapse
|
6
|
Beyaz S, Aslan A, Gok O, Ozercan IH, Agca CA. Fullerene C 60 reduces acute lung injury by suppressing oxidative stress-mediated DMBA-induced apoptosis and autophagy by regulation of cytochrome-C/caspase-3/beclin-1/IL-1α/HO-1/p53 signaling pathways in rats. Free Radic Res 2023; 57:373-383. [PMID: 37585732 DOI: 10.1080/10715762.2023.2247555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The objective of this study was to evaluate the effect of fullerene C60 nanoparticles against 7,12-dimethylbenz[a]anthracene (DMBA)-induced lung tissue damage in rats. 60 Wistar albino (8 weeks old) female rats were assigned into four groups: Control Group (C), Fullerene C60, DMBA, and Fullerene C60+DMBA. The rats in the DMBA and Fullerene C60+DMBA groups were administered DMBA (45 mg/kg bw, oral gavage). The rats in Fullerene C60, and Fullerene C60+DMBA groups were administered with Fullerene C60 (1.7 mg/kg bw, oral gavage). Expression levels of cytochrome-C, caspase-3, beclin-1, IL-1α, HO-1 and p53 proteins in lung tissue were determined by western blotting, lipid peroxidation malondialdehyde (MDA) analyzes, glutathione (GSH), glutathione peroxidase (GSH-Px), catalase activity (CAT) and total protein levels were determined by spectrophotometer. In addition, lung tissues were evaluated by histopathologically. Fullerene C60 reduced the increasing of MDA and IL-1α protein expression levels and attenuated histopathological changes in lung. Moreover, fullerene C60 enhanced the protein expression of cytochrome-C, caspase-3, beclin-1, HO-1, and p53, which were decreased in the DMBA group. Fullerene C60 has strong biological activity that it might be an effective approach for lung damage.
Collapse
Affiliation(s)
- Seda Beyaz
- Department of Biology-Molecular Biology and Genetics, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Department of Biology-Molecular Biology and Genetics, Firat University, Elazig, Turkey
| | | | - Can Ali Agca
- Department of Molecular Biology and Genetics Bingol, Bingol University, Merkez, Turkey
| |
Collapse
|
7
|
Chen X, Zhang Y, Yu W, Zhang W, Tang H, Yuan WE. In situ forming ROS-scavenging hybrid hydrogel loaded with polydopamine-modified fullerene nanocomposites for promoting skin wound healing. J Nanobiotechnology 2023; 21:129. [PMID: 37055835 PMCID: PMC10099971 DOI: 10.1186/s12951-023-01879-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Excessive oxidative stress at the wound sites always leads to a prolonged healing and even causes chronic inflammatory wounds. Therefore, antioxidative dressings with multiple features are desired to improve wound healing performance. Herein, we fabricated a ROS-scavenging hybrid hydrogel by incorporating mussel-inspired fullerene nanocomposites (C60@PDA) into gelatin methacryloyl (GelMA) hydrogel. RESULTS The developed C60@PDA/GelMA hydrogel showed a sustainable free radical scavenging ability, and eliminated ROS to protect cells against external oxidative stress damage. Besides, the hydrogel presented favorable cytocompatibility, hemocompatibility, and antibacterial ability in vitro. Furthermore, in a mouse full-thickness wound defect model, the in situ forming hybrid hydrogel accelerated wound closure by 38.5% and 42.9% on day 3 and day 7 over the control. Histological results demonstrated that hybrid hydrogels effectively enhanced wound healing on re-epithelialization, collagen deposition and angiogenesis. CONCLUSION Collectively, the C60@PDA/GelMA hydrogel could be a promising dressing for promoting cutaneous wound repair.
Collapse
Affiliation(s)
- Xuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yihui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenkai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, PR China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
8
|
Zhao M, Wang C, Ji C, Liu R, Xie J, Wang Y, Gu Z. Ascidian-Inspired Temperature-Switchable Hydrogels with Antioxidant Fullerenols for Protecting Radiation-Induced Oral Mucositis and Maintaining the Homeostasis of Oral Microbiota. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206598. [PMID: 36965142 DOI: 10.1002/smll.202206598] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/04/2023] [Indexed: 06/18/2023]
Abstract
A key characteristic of radiation-induced oral mucositis (RIOM) is oxidative stress mediated by the "reactive oxygen species (ROS) storm" generated from water radiolysis, resulting in severe pathological lesions, accompanied by a disturbance of oral microbiota. Therefore, a sprayable in situ hydrogel loaded with "free radical sponge" fullerenols (FOH) is developed as antioxidant agent for RIOM radioprotection. Inspired by marine organisms, 3,4,5-trihydroxyphenylalanine (TOPA) which is enriched in ascidians is grafted to clinically approved temperature-switchable Pluronic F127 to produce gallic acid (containing the TOPA fragment)-modified Pluronic F127 (MGA) hydrogels to resist the fast loss of FOH via biomimetic adhesion during oral movement and saliva erosion. Based on this, progressive RIOM found in mice is alleviated by treatment of FOH-loaded MGA hydrogels whether pre-irradiation prophylactic administration or post-irradiation therapeutic administration, which contributes to maintaining the homeostasis of oral microbiota. Mechanistically, FOH inhibits cell apoptosis by scavenging radiation-induced excess ROS and up-regulates the inherent enzymatic antioxidants, thereby protecting the proliferation and migration of mucosal epithelial cells. In conclusion, this work not only provides proof-of-principle evidence for the oral radioprotection of FOH by blocking the "ROS storm", but also provides an effective and easy-to-use hydrogel system for mucosal in situ administration.
Collapse
Affiliation(s)
- Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruixue Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiani Xie
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Wu L, Fu F, Wang W, Wang W, Huang Z, Huang Y, Pan X, Wu C. Plasma protein corona forming upon fullerene nanocomplex: Impact on both counterparts. PARTICUOLOGY 2023; 73:26-36. [DOI: 10.1016/j.partic.2022.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
|
10
|
Hui M, Jia X, Li X, Lazcano-Silveira R, Shi M. Anti-Inflammatory and Antioxidant Effects of Liposoluble C60 at the Cellular, Molecular, and Whole-Animal Levels. J Inflamm Res 2023; 16:83-93. [PMID: 36643955 PMCID: PMC9833127 DOI: 10.2147/jir.s386381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Liposoluble carbon-60 (C60) has potential applications in many fields, including cosmetics, medical devices, and medicine, but its specific mechanism of action remains unclear. This study explored whether liposoluble C60 could be delivered to human organs, tissues, and cells through blood, extracellular fluid, and cell culture fluid and whether it exerts anti-inflammatory and antioxidant effects at the molecular, cellular, and whole-animal levels. Methods At the cellular level, we mixed C60 dissolved in grape seed oil with cell culture medium containing 10% serum and investigated its effects on tumor necrosis factor-α (TNF-α) release, migration, phagocytosis, respiratory burst, and apoptosis in freshly isolated human neutrophils. At the molecular level, we mixed a trace amount of C60 dissolved in grape seed oil with aqueous and ethanolic solutions and studied its antioxidant effect. At the animal level, we investigated the inhibitory effect of C60 on the serum inflammatory marker C-reactive protein (CRP) in beagle dogs after oral administration of C60 dissolved in grape seed oil. Results The results showed that the trace amount of C60 dissolved in grape seed oil significantly inhibited TNF-α release, cell migration, phagocytosis, and respiratory burst in freshly isolated human neutrophils. In addition, the trace amount of C60 dissolved in grape seed oil had a significant scavenging effect on superoxide free radicals and 1,1-diphenyl-2-trinitrophenylhydrazine free radicals. Oral administration of C60 dissolved in grape seed oil markedly reduced the level of the serum inflammatory marker CRP in beagle dogs. Conclusion In summary, a trace amount of hydrophobic C60 in hydrophilic media effectively produced anti-inflammatory and antioxidant effects in cells and animals. C60 dissolved in grape seed oil is a novel anti-inflammatory and antioxidant drug candidate.
Collapse
Affiliation(s)
- Mizhou Hui
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Xiaoxiao Jia
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Xinrong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, People’s Republic of China
| | - Rayko Lazcano-Silveira
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Ming Shi
- Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China,Correspondence: Ming Shi, Harbin Institute of Technology, 2 Yikuang Street, Nangang District, Harbin, Heilongjiang, 150001, People’s Republic of China, Tel +86 13654537645, Email
| |
Collapse
|
11
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
12
|
In-situ carbonizing of coal pitch on the surface of silica sphere as quasi-graphitized carbon stationary phase for liquid chromatography. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Sun C, Hu K, Mu D, Wang Z, Yu X. The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities. Microorganisms 2022; 10:microorganisms10102080. [PMID: 36296356 PMCID: PMC9609405 DOI: 10.3390/microorganisms10102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, as an emerging material, nanomaterials have rapidly expanded from laboratories to large-scale industrial productions. Along with people's productive activities, these nanomaterials can enter the natural environment of soil, water and atmosphere through various ways. At present, a large number of reports have proved that nanomaterials have certain toxic effects on bacteria, algae, plants, invertebrates, mammalian cell lines and mammals in these environments, but people still know little about the ecotoxicology of nanomaterials. Most relevant studies focus on the responses of model strains to nanomaterials in pure culture conditions, but these results do not fully represent the response of microbial communities to nanomaterials in natural environments. Over the years, the effect of nanomaterials infiltrated into the natural environment on the microbial communities has become a popular topic in the field of nano-ecological environment research. It was found that under different environmental conditions, nanomaterials have various effects on the microbial communities. The medium; the coexisting pollutants in the environment and the structure, particle size and surface modification of nanomaterials may cause changes in the structure and function of microbial communities. This paper systematically summarizes the impacts of different nanomaterials on microbial communities in various environments, which can provide a reference for us to evaluate the impacts of nanomaterials released into the environment on the microecology and has certain guiding significance for strengthening the emission control of nanomaterials pollutants.
Collapse
Affiliation(s)
- Chunshui Sun
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Ke Hu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Dashuai Mu
- College of Marine Science, Shandong University, Weihai 264209, China
| | - Zhijun Wang
- Institute for Advanced Study, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiuxia Yu
- College of Marine Science, Shandong University, Weihai 264209, China
- Correspondence:
| |
Collapse
|
14
|
Wu M, Chen Y, Cheng Z, Hao Y, Hu BX, Mo C, Li Q, Zhao H, Xiang L, Wu J, Wu J, Lu G. Effects of polyamide microplastic on the transport of graphene oxide in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157042. [PMID: 35777558 DOI: 10.1016/j.scitotenv.2022.157042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of the nano-material and chemical industry, more and more microplastic (MP) and nano-material were discharged into the environment. In this study, a two-dimensional (2D) surface of Extended Darjaguin-Landau-Verwe-Overbeek (XDLVO) is proposed to quantitatively investigate the effect of polyamide (PA) on the transport of graphene oxide (GO) in porous media. The influences of mass fraction of PA, flow rate, GO concentration, ionic type and strength on the migration of GO in saturated porous media are investigated by column experiments and numerical models. The two-dimensional (2D) surfaces of XDLVO interaction energy between GO and GO, GO and QS, GO and PA, are firstly calculated to analyze the transport of GO in saturated porous media. Experimental results suggest the mobility of GO is enhanced when flow velocity and initial concentration of GO are increased. However, the mobility of GO is inhibited when the mass fraction of PA and ionic strength are increased. More important, the inhibitory effect of divalent cations on GO migration is stronger than that of monovalent cations. Simultaneously, XDLVO results suggest that ionic types and strengths are important factors affecting the mobility of GO in porous media, and the critical ionic strength is observed from the continuous variation of the secondary minimum trap of XDLVO interaction energy. Model results show that there is a linear relationship between the logarithm of the secondary minimum trap of XDLVO interaction energy and the parameters related to GO mobility, which suggests XDLVO energy surface has an important application significance in the accurate quantification of GO mobility in porous media. These findings contribute to GO transport affected by microplastic in porous media, thus laying a significant foundation for the environmental risk and contamination remediation.
Collapse
Affiliation(s)
- Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yanna Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Haiming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Kouassi MC, Grisel M, Gore E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids Surf B Biointerfaces 2022; 217:112676. [DOI: 10.1016/j.colsurfb.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
|
16
|
Uchida N, Yanagi M, Hamada H. Fullerene Nanoparticles Using Technol PG for Inexpensive Preparation. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fullerene has attracted much attention for applications in biomaterials because of its high antioxidant activity. In this study, C60 and C70 fullerenes were mixed with a commercially available anionic phospholipid mixture, Technol PG, and sodium cholate, resulting in effective dispersion of the fullerenes to give small-sized fullerene nanoparticles.
Collapse
Affiliation(s)
| | - Masayoshi Yanagi
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
17
|
Fullerene C60 derivatives as antimicrobial photodynamic agents. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2021.100471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Uchida N, Yanagi M, Hamada H. Transdermal Delivery of Anionic Phospholipid Nanoparticles Containing Fullerene. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221078444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work, we prepared a transparent dispersion of fullerene nanoparticles by sonication with anionic phospholipids of 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol (DPPG) with fluorescently NBD-labeled 1,2-dipalmitoyl-sn-glycero-3-phosphorylethanolamine (DPPE). Upon incubation of the fullerene nanoparticles with a rat skin, the nanoparticles successfully penetrated the stratum corneum and reached the epidermis.
Collapse
Affiliation(s)
- Noriyuki Uchida
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masayoshi Yanagi
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Hiroki Hamada
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
19
|
Uchida N, Yanagi M, Hamada H. Nanoformulation of Fullerene Using an Anionic Phospholipid. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211052868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, fullerene was dispersed with anionic phospholipids of 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol (DPPG) and small-sized fullerene nanoparticles were successfully prepared.
Collapse
Affiliation(s)
- Noriyuki Uchida
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | | | - Hiroki Hamada
- Okayama University of Science, Kita-ku, Okayama, Japan
| |
Collapse
|
20
|
Yin XH, Xu YM, Lau ATY. Nanoparticles: Excellent Materials Yet Dangerous When They Become Airborne. TOXICS 2022; 10:50. [PMID: 35202237 PMCID: PMC8874650 DOI: 10.3390/toxics10020050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
Since the rise and rapid development of nanoscale science and technology in the late 1980s, nanomaterials have been widely used in many areas including medicine, electronic products, crafts, textiles, and cosmetics, which have provided a lot of convenience to people's life. However, while nanomaterials have been fully utilized, their negative effects, also known as nano pollution, have become increasingly apparent. The adverse effects of nanomaterials on the environment and organisms are mainly based on the unique size and physicochemical properties of nanoparticles (NPs). NPs, as the basic unit of nanomaterials, generally refer to the ultrafine particles whose spatial scale are defined in the range of 1-100 nm. In this review, we mainly introduce the basic status of the types and applications of NPs, airborne NP pollution, and the relationship between airborne NP pollution and human diseases. There are many sources of airborne NP pollutants, including engineered nanoparticles (ENPs) and non-engineered nanoparticles (NENPs). The NENPs can be further divided into those generated from natural activities and those produced by human activities. A growing number of studies have found that exposure to airborne NP pollutants can cause a variety of illnesses, such as respiratory diseases, cardiovascular diseases, and neurological disorders. To deal with the ever increasing numbers and types of NPs being unleashed to the air, we believe that extensive research is needed to provide a comprehensive understanding of NP pollution hazards and their impact mechanisms. Only in this way can we find the best solution and truly protect the safety and quality of life of human beings.
Collapse
Affiliation(s)
- Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
21
|
Exploring the Bioactive Potentials of C 60-AgNPs Nano-Composites against Malignancies and Microbial Infections. Int J Mol Sci 2022; 23:ijms23020714. [PMID: 35054912 PMCID: PMC8776077 DOI: 10.3390/ijms23020714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm-1, 1023 cm-1, 1400 cm-1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.
Collapse
|
22
|
Bahari Z, Ranjbar MF, Namdar F, Bayatpoor ME, Mohammadi MT. Anti-diabetic effects of fullerene C60 nanoparticle mediated by its anti-oxidant activity in the pancreas in type 1 diabetic rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Zahra Bahari
- Baqiyatallah University of Medical Sciences, Iran; Baqiyatallah University of Medical Sciences, Iran
| | | | | | | | - Mohammad Taghi Mohammadi
- Baqiyatallah University of Medical Sciences, Iran; Baqiyatallah University of Medical Sciences, Iran
| |
Collapse
|
23
|
Synthesis of Fullerenes from a Nonaromatic Chloroform through a Newly Developed Ultrahigh-Temperature Flash Vacuum Pyrolysis Apparatus. NANOMATERIALS 2021; 11:nano11113033. [PMID: 34835796 PMCID: PMC8618344 DOI: 10.3390/nano11113033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
The flash vacuum pyrolysis (FVP) technique is useful for preparing curved polycyclic aromatic compounds (PAHs) and caged nanocarbon molecules, such as the well-known corannulene and fullerene C60. However, the operating temperature of the traditional FVP apparatus is limited to ~1250 °C, which is not sufficient to overcome the high energy barriers of some reactions. Herein, we report an ultrahigh-temperature FVP (UT-FVP) apparatus with a controllable operating temperature of up to 2500 °C to synthesize fullerene C60 from a nonaromatic single carbon reactant, i.e., chloroform, at 1350 °C or above. Fullerene C60 cannot be obtained from CHCl3 using the traditional FVP apparatus because of the limitation of the reaction temperature. The significant improvements in the UT-FVP apparatus, compared to the traditional FVP apparatus, were the replacement of the quartz tube with a graphite tube and the direct heating of the graphite tube by impedance heating instead of indirect heating of the quartz tube using an electric furnace. Because of the higher temperature range, UT-FVP can not only synthesize fullerene C60 from single carbon nonaromatic reactants but sublimate some high-molecular-weight compounds to synthesize larger curved PAHs in the future.
Collapse
|
24
|
Iftekhar S, Nazir F, Abbasi NM, Ahmad Khan A, Ahmed F. Rumex hastatus mediated green synthesis of AgNPs: An efficient nanocatalyst and colorimetric probe for Cu2+. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zhao M, Wang C, Xie J, Ji C, Gu Z. Eco-Friendly and Scalable Synthesis of Fullerenols with High Free Radical Scavenging Ability for Skin Radioprotection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102035. [PMID: 34337863 DOI: 10.1002/smll.202102035] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Radiation dermatitis is a common but torturous side effect during radiotherapy, which greatly decreases the life quality of patients and potentially results in detrimental cessation of tumor treatment. Fullerenol, known as "free radical sponge," is a great choice for skin radioprotection because of its broad-spectrum free radical scavenging performance, good chemical stability, and biosafety. In this work, a facile scalable and eco-friendly synthetic method of fullerenols by catalyst assistant mechanical chemistry strategy is provided. As no organic solvent or high concentration of acid and alkali is introduced to this synthetic system, large-scale (>20 g) production of fullerenols with high yield (>95%) is obtained and no complicated purification is required. Then, the skin radioprotective performance of fullerenols is systematically explored for the first time. In vitro results indicate that fullerenols significantly block the reactive oxygen species-induced damage and enhance the viability of irradiated human keratinocyte cells. In vivo experiments suggest that medical sodium hyaluronate hydrogels loaded with fullerenols are suitable for skin administration and powerfully mitigate radiodermatitis via effectively protecting epidermal stem cells. The work not only provides an efficient gram-scale and eco-friendly synthetic method of fullerenols, but also promotes the development of fullerenols as potential skin radioprotectors.
Collapse
Affiliation(s)
- Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiani Xie
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Chao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| |
Collapse
|
26
|
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1746. [PMID: 34423571 DOI: 10.1002/wnan.1746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Durga Kumari
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
27
|
Paiva-Santos AC, Mascarenhas-Melo F, Coimbra SC, Pawar KD, Peixoto D, Chá-Chá R, Araujo AR, Cabral C, Pinto S, Veiga F. Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opin Drug Deliv 2021; 18:1435-1454. [PMID: 34214003 DOI: 10.1080/17425247.2021.1951218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Acne vulgaris is a chronic inflammatory skin disorder that affects an extremely concerning percentage of teenagers (ca. 85%), gathering serious negative impacts on the social life and psychological well-being of individuals. Conventional topical formulations for acne show low tolerability and side effects, such as skin irritation, leading to a decrease in the user's adherence to therapy. Nanotechnology-based formulations were developed as new strategies for topical acne management, particularly to overcome the difficulties associated with conventional treatments.Areas covered: This paper presents a critical analysis of reviewed nanosized anti-acne technological strategies, strongly supporting controlled active ingredient release, improved skin permeation, and lower skin irritation. An updated regulatory framework, considering the promising applications in nanomedicine, and the toxicity of these nanosystems are also addressed.Expert opinion: Nanosystems evidence several advantages, attending to the possibility of controlled active ingredient release, better skin permeation, and lower skin irritation. However, novel nanotechnological strategies for acne treatment and care can lead to new side effects, but also environmental nano pollution. Little is known about the toxicology of these nanotechnology-based formulations, therefore, as future trends, more studies should be conducted to assure the consumers' health and environmental safety.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sara Cabanas Coimbra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Raquel Chá-Chá
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - André Rts Araujo
- Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, Guarda, Portugal.,Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Célia Cabral
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Selmo Pinto
- INFARMED - Autoridade Nacional Do Medicamento E Produtos De Saúde, I.P., Parque De Saúde De Lisboa, Lisboa, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, Prosperi D, Colombo M. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci 2021; 293:102437. [PMID: 34023566 DOI: 10.1016/j.cis.2021.102437] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The role of cosmetic products is rapidly evolving in our society, with their use increasingly seen as an essential contribution to personal wellness. This suggests the necessity of a detailed elucidation of the use of nanoparticles (NPs) in cosmetics. The aim of the present work is to offer a critical and comprehensive review discussing the impact of exploiting nanomaterials in advanced cosmetic formulations, emphasizing the beneficial effects of their extensive use in next-generation products despite a persisting prejudice around the application of nanotechnology in cosmetics. The discussion here includes an interpretation of the data underlying generic information reported on the product labels of formulations already available in the marketplace, information that often lacks details identifying specific components of the product, especially when nanomaterials are employed. The emphasis of this review is mainly focused on skincare because it is believed to be the cosmetics market sector in which the impact of nanotechnology is being seen most significantly. To date, nanotechnology has been demonstrated to improve the performance of cosmetics in a number of different ways: 1) increasing both the entrapment efficiency and dermal penetration of the active ingredient, 2) controlling drug release, 3) enhancing physical stability, 4) improving moisturizing power, and 5) providing better UV protection. Specific attention is paid to the effect of nanoparticles contained in semisolid formulations on skin penetration issues. In light of the emerging concerns about nanoparticle toxicity, an entire section has been devoted to listing detailed examples of nanocosmetic products for which safety has been investigated.
Collapse
|
29
|
Rios C, Molina B, Salcedo R. Capture of Fullerenes in Cages and Rings by Forming Metal-π Bond Arene Interactions. MATERIALS 2021; 14:ma14123424. [PMID: 34205520 PMCID: PMC8234524 DOI: 10.3390/ma14123424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022]
Abstract
Nowadays, the task of the selectively capture of fullerene molecules from soot is the subject of several studies. The low solubility of fullerenes represents a drawback when the goal is to purify them and to carry out chemical procedures where they participate. There are different molecules that can act as a kind of cocoon, giving shelter to the fullerene cages in such a way that they can be included in a solution or can be extracted from a mix. In this work, a theoretical study of some known and new proposed organic molecules of this kind is presented. In all cases, the interaction occurs with the help of a metallic atom or ion which plays the role of a bridge, providing a place for a metallocene like interaction to occur. The thermodynamic arguments favoring the formation of this adduct species are addressed as well as the nature of the bond by means QTAIM parameters and frontier molecular orbitals analysis.
Collapse
Affiliation(s)
- Citlalli Rios
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, México City 04510, Mexico;
| | - Bertha Molina
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, México City 04510, Mexico;
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, México City 04510, Mexico;
- Correspondence:
| |
Collapse
|
30
|
Ovchenkova EN, Tsaturyan AA, Bichan NG, Lomova TN. N Basicity of Substituted Fullero[60]/[70]pyrrolidines According to DFT/TD-DFT Calculations and Chemical Thermodynamics. J Phys Chem A 2021; 125:5365-5374. [PMID: 34124918 DOI: 10.1021/acs.jpca.1c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The basicity thermodynamic parameters of pyridyl/imidazole-substituted fullero[60]/[70]pyrrolidines with respect to N heteroatoms in dichloromethane, which are necessary both to deepen insight into aromaticity "neque levia" and to create supramolecular chemical structures for application, are obtained and discussed in this work. Because of the presence of a chromophore in the molecules, the acid-base reactions of three C60 derivatives functionalized in different ways and one C70 derivative are studied using spectrophotometric titration with trifluoroacetic acid. The dependence of the pK values determined using the data on Hammett's acidity functions, H0, for a binary nonaqueous solvent on the molecule's chemical structure is shown. Density functional theory (DFT) and time-dependent DFT (TD-DFT) at the B3LYP/6-311G(d,p) level were used for the optimization of the fullerene derivative structures and modeling of their UV-vis spectra. The pKBH+ values of substituted fullero[60]/[70]pyrrolidines are predicted by quantum-chemical calculations.
Collapse
Affiliation(s)
- Ekaterina N Ovchenkova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, Ivanovo 153045, Russia
| | - Arshak A Tsaturyan
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Av. 194/2, Rostov-on-Don 344006, Russia.,Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Nataliya G Bichan
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, Ivanovo 153045, Russia
| | - Tatyana N Lomova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, Ivanovo 153045, Russia
| |
Collapse
|
31
|
Semenov KN, Ivanova DA, Ageev SV, Petrov AV, Podolsky NE, Volochaeva EM, Fedorova EM, Meshcheriakov AA, Zakharov EE, Murin IV, Sharoyko VV. Evaluation of the C 60 biodistribution in mice in a micellar ExtraOx form and in an oil solution. Sci Rep 2021; 11:8362. [PMID: 33863918 PMCID: PMC8052328 DOI: 10.1038/s41598-021-87014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
The article is devoted to the study of the pharmacokinetics of fullerene C60 in oil and micellar forms, analysis of its content in blood, liver, lungs, kidneys, heart, brain, adrenal glands, thymus, testicles, and spleen. The highest accumulation of C60 was found in the liver and adrenal glands. As a result of the studies carried out, it was shown that the bioavailability of C60 in the micellar form is higher than that in an oil solution.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504. .,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, Russia, 197758.
| | - Daria A Ivanova
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022.,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Nikita E Podolsky
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | | | | | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022.,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Egor E Zakharov
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo ulitsa 6-8, Saint Petersburg, Russia, 197022. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii prospect 26, Saint Petersburg, Russia, 198504. .,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya ulitsa, Saint Petersburg, Russia, 197758.
| |
Collapse
|
32
|
Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. J Control Release 2021; 330:945-962. [DOI: 10.1016/j.jconrel.2020.10.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
|
33
|
Pinheiro FG, Moreira-Gomes MD, Machado MN, Almeida TDS, Barboza PDPA, Silva Oliveira LF, Ávila Cavalcante FS, Leal-Cardoso JH, Fortunato RS, Zin WA. Eugenol mitigated acute lung but not spermatic toxicity of C 60 fullerene emulsion in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116188. [PMID: 33302087 DOI: 10.1016/j.envpol.2020.116188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
C60 fullerene (C60) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C60 emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C60 emulsion toxicity. The first group of mice (protocol 1) received intratracheally C60 emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C60 emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C60 emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.
Collapse
Affiliation(s)
- Felipe Gomes Pinheiro
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Maria Diana Moreira-Gomes
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Mariana Nascimento Machado
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tailane Dos Santos Almeida
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - José Henrique Leal-Cardoso
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Rodrigo Soares Fortunato
- Laboratory of Endocrine Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Karahan HE, Ji M, Pinilla JL, Han X, Mohamed A, Wang L, Wang Y, Zhai S, Montoya A, Beyenal H, Chen Y. Biomass-derived nanocarbon materials for biological applications: challenges and prospects. J Mater Chem B 2020; 8:9668-9678. [PMID: 33000843 DOI: 10.1039/d0tb01027h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomass-derived nanocarbons (BNCs) have attracted significant research interests due to their promising economic and environmental benefits. Following their extensive uses in physical and chemical research domains, BNCs are now growing in biological applications. However, their practical biological applications are still in their infancy, requiring critical evaluations and strategic directions, which are provided in this review. The carbonization of biomass sources and major types of BNCs are introduced, encompassing carbon nanodots, nanofibres, nanotubes, and graphenes. Next, essential biological uses of BNCs, antibacterial/antibiofilm materials (nanofibres and nanodots) and bioimaging agents (predominantly nanodots), are summarized. Furthermore, the future potential of BNCs, for designing wound dressing/healing materials, water and air disinfection platforms, and microbial electrochemical systems, is discussed. We reach the conclusion that a crucial challenge is the structural control of BNCs. Furthermore, a key knowledge gap for realizing practical biological applications is the lack of systematic comparisons of BNCs with nanocarbons of synthetic origin in the current literature. Although we did not attempt to perform an exhaustive literature survey, the evaluation of the existing results indicates that BNCs are promising as easily accessible materials for various biomedically and environmentally relevant applications.
Collapse
Affiliation(s)
- H Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wong HC, Wang Q, Speller EM, Li Z, Cabral JT, Low HY. Photoswitchable Solubility of Fullerene-Doped Polymer Thin Films. ACS NANO 2020; 14:11352-11362. [PMID: 32815708 DOI: 10.1021/acsnano.0c03450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling polymer film solubility is of fundamental and practical interest and is typically achieved by synthetically modifying the polymer structure to insert reactive groups. Here, we demonstrate that the addition of fullerenes or its derivatives (C60 or phenyl-C61-butyric acid methyl ester, PCBM) to polymers, followed by ultraviolet (UV) illumination can change the film solubility. Contrary to most synthetic polymers, which dissolve in organic solvents but not in water, the fullerene-doped polymer films (such as polystyrene) can dissolve in water yet remain stable in organic solvents. This photoswitchable solubility effect is not observed in either film constituents individually and is derived from a synergy of photochemistries. First, polymer photooxidation generates macroradicals which cross-link with radical-scavenging PCBM, thereby contributing to the films' insolubility in organic solvents. Second, light exposure enhances polymer photooxidation in the presence of PCBM via the singlet oxygen pathway. This results in polymer backbone scission and formation of photooxidized products which can form hydrogen bonds with water, both contributing to water solubility. Nevertheless, the illuminated doped polymer thin films are mechanically robust, exhibiting significantly increased modulus and density compared to their pristine counterpart, such that they can remain intact even upon sonication in conventional organic solvents. We further demonstrate the application of this solubility-switching effect in dual tone photolithography, via a facile, economical, and environmentally benign solution-processing route made possible by the photoactive nature of polymer-PCBM thin films.
Collapse
Affiliation(s)
- Him Cheng Wong
- SUTD-MIT International Design Centre (IDC), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Qiang Wang
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Emily M Speller
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, 20133 Milan, Italy
| | - Zhe Li
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - João T Cabral
- Department of Chemical Engineering and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hong Yee Low
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
37
|
Dhapte-Pawar V, Kadam S, Saptarsi S, Kenjale PP. Nanocosmeceuticals: facets and aspects. Future Sci OA 2020; 6:FSO613. [PMID: 33312696 PMCID: PMC7720364 DOI: 10.2144/fsoa-2019-0109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
The global cosmetic market prized $532.43 billion USD in 2017 is expected to reach $805.61 billion USD by 2023, with a 7.14% compound annual growth rate. These figures have appealed to the cosmeceutical players for developing new and effective products containing advanced materials. Cosmetics incorporated with pharmaceutical actives, termed as 'cosmeceuticals,' are receiving an overwhelming response from cosmetic industry. Nowadays, the implementation of nanotechnology for enhanced effectiveness of cosmeceuticals is witnessing a huge success. These applications include remedies for hair damage, wrinkles, aging and skin dryness. Currently, there is a need to establish regulations and harmonized guidelines for nanotechnology-based products to assess their efficacy, safety and toxicity profiles. This review summarizes current development, applications, safety and regulations of nanocosmeceuticals.
Collapse
Affiliation(s)
- Vividha Dhapte-Pawar
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth University, Bharati Vidyapeeth Bhavan, Lal Bahadur Shastri Marg, Pune, India
| | - Shai Saptarsi
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Prathmesh P Kenjale
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| |
Collapse
|
38
|
Estaji M, Mokhtari-Dizaji M, Movahedin M, Padash A, Ghaffari Khaligh S. Effect of fullerene nanoemulsion on the repair of wrinkles induced by UVB radiation: A c57bl6 mice model. Skin Res Technol 2020; 27:32-40. [PMID: 32621401 DOI: 10.1111/srt.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The effect of fullerene nanoemulsion on skin wrinkle repair in an animal model was evaluated using ultrasonic images processing. METHODS Wrinkles were created in C57BL6 mice during 35 days of UVB radiation. Then, to investigate the therapeutic effect of fullerene nanoemulsions, mice were divided into three groups of control, UVB radiation, and treatment with fullerene nanoemulsion. Stable fullerene nanoemulsions were prepared using shear equalization. The therapeutic effect of fullerene nanoemulsion was investigated by extracting the skin thickness and mechanical parameters. Histology studies were performed to confirm the reliability of the treatment. RESULTS A significant decrease was observed in the thickness of the epidermis and dermis layers (43% and 36%), Young modulus (27%), and the shear modulus (20%) of the skin on day 28 of the fullerene nanoemulsion treatment. Skin stiffness obtained by tensiometry on day 28 of the treatment showed a 48% reduction in the treatment group compared with the control group. Histological results confirmed the effect of fullerene nanoemulsions on wrinkle repair. CONCLUSION The healing effect of fullerene nanoemulsion in wrinkle repair was confirmed. To study the skin repair, parameters including Young modulus, the shear modulus, and skin layer thickness can be calculated using ultrasonic images processing.
Collapse
Affiliation(s)
- Mohadese Estaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arash Padash
- Department of Medical Nanotechnology, Faculty of Modern Science and Technology, Islamic Azad University, Tehran, Iran
| | - Sahar Ghaffari Khaligh
- Department of Pathology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| |
Collapse
|
39
|
Fatigue-induced Fos immunoreactivity within the lumbar cord and amygdala decreases after С 60 fullerene pretreatment. Sci Rep 2020; 10:9826. [PMID: 32555429 PMCID: PMC7299940 DOI: 10.1038/s41598-020-67034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
The fundamental aspects related to the mechanisms of action of C60 fullerene nanoparticles on the level of the central nervous system in different experimental conditions are still unclear. Electrophysiological investigation and immunohistochemical techniques of c-fos expression were combined to determine which neural elements within the lumbar segments and in the central nucleus of the amygdala (CeA) are activated under skeletal muscle fatigue development with prior application of C60 fullerenes (dissolved in dimethyl sulfoxide and in distilled water, FDS). After high-frequency electrical stimulation of the triceps surae muscle, the main fatigue-related increases in the c-Fos expression level were registered ipsilaterally within lamina 1 and 5 of the lumbar segments and within the contralateral capsular part of the CeA. C60 fullerene pretreatment in animals with subsequent electrical stimulation induced a distinct (2–4 times) decrease in the level of Fos immunoreactivity in the observed structures in comparison with only fatigue-induced rats. It can be supposed that FDS, as antioxidant compound, can decrease the concentration of free radicals in fatigued tissue and reduce the transmission intensity of nociceptive information from muscles to the spinal cord and amygdala, thereby changing the level of c-Fos expression within the lumbar segments and CeA.
Collapse
|
40
|
Li X, Ding G, Song G, Zhuang Y, Wang C, Li R, Liu Q. Aggregation behavior of aqu/nC 60 produced via extended mixing: Influence of sunlight and agitation intensity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110332. [PMID: 32088550 DOI: 10.1016/j.ecoenv.2020.110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of C60, as an important process governing its mobility and toxicity, has been quantitatively investigated. However, effects of sunlight and agitation intensity on the aggregation behavior of aqu/nC60 produced via extended mixing, have not been clarified. Therefore, in the present study, the aggregation behavior of aqu/nC60 produced at 500 and 800 rpm in the absence and presence of sunlight was investigated. Aggregation with increasing concentrations could be accelerated, while changes of Zave and zeta potential were not obvious. Critical coagulation concentrations (CCCs) of aqu/nC60 obtained at 800 rpm in the absence/presence of sunlight and that at 500 rpm under sunlight were 330, 205 and 170 mM NaCl, and 10.0, 2.6 and 3.1 mM CaCl2, respectively. These CCCs indicated that the aqu/nC60 prepared by the extended mixing were more stable than those produced by other methods. Salt-induced aggregation occurred more easily for aqu/nC60 formed under sunlight than that formed in the dark. Extra surface oxidation induced by high agitation intensity remarkably increased the stability of aqu/nC60 in NaCl solutions. In contrast, in CaCl2 solutions, aqu/nC60 formed at high agitation intensity had similar stability or even inadequate stability to that obtained at low agitation intensity due to the charge neutralization and cross-link bridging.
Collapse
Affiliation(s)
- Xueyao Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China.
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Yuting Zhuang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Chunchao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Ruijuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Quanbin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| |
Collapse
|
41
|
Li X, Ding G, Zhang J, Wang Y, Li W, Wang C, Li R, Yang Z. Generation and properties of aqu/nC 60: the combined effects of humic acid, sunlight, and agitation intensity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12527-12538. [PMID: 32002835 DOI: 10.1007/s11356-020-07811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Once released into natural water, the environmental behavior and fate of C60 could inevitably been affected by humic acid (HA), sunlight, and hydrodynamic conditions. However, the combined effects of these factors are not so clear. Therefore, in the present study, effects of HA, sunlight, and agitation intensity on generation and properties of aqu/nC60 were investigated. The results indicated that HA could increase the concentration of aqu/nC60 mainly through the steric hindrance effect. The higher agitation intensity led to higher concentrations of aqu/nC60 and more efficient steric stabilization was formed by HA. Sunlight irradiation promoted the surface oxidization and consequently enhanced the dispersion of C60. The relative order of the influence on the UV/vis concentration was sunlight > agitation intensity > HA. In addition, HA might not always enhance the dispersion of aqu/nC60 due to light screening/ROS scavenging, over-coating, or chain-like bridging mechanism. Therefore, evaluating the environmental behavior and fate of C60 should take these factors into account together.
Collapse
Affiliation(s)
- Xueyao Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China.
| | - Jing Zhang
- College of Environment and Chemical Technology, Dalian University, Dalian, 116622, China.
| | - Yingying Wang
- College of Environment and Chemical Technology, Dalian University, Dalian, 116622, China
| | - Wanran Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Chunchao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Ruijuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Zhanning Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| |
Collapse
|
42
|
Chen RJ, Chen YY, Liao MY, Lee YH, Chen ZY, Yan SJ, Yeh YL, Yang LX, Lee YL, Wu YH, Wang YJ. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies. Int J Mol Sci 2020; 21:E2387. [PMID: 32235610 PMCID: PMC7177614 DOI: 10.3390/ijms21072387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has rapidly promoted the development of a new generation of industrial and commercial products; however, it has also raised some concerns about human health and safety. To evaluate the toxicity of the great diversity of nanomaterials (NMs) in the traditional manner, a tremendous number of safety assessments and a very large number of animals would be required. For this reason, it is necessary to consider the use of alternative testing strategies or methods that reduce, refine, or replace (3Rs) the use of animals for assessing the toxicity of NMs. Autophagy is considered an early indicator of NM interactions with cells and has been recently recognized as an important form of cell death in nanoparticle-induced toxicity. Impairment of autophagy is related to the accelerated pathogenesis of diseases. By using mechanism-based high-throughput screening in vitro, we can predict the NMs that may lead to the generation of disease outcomes in vivo. Thus, a tiered testing strategy is suggested that includes a set of standardized assays in relevant human cell lines followed by critical validation studies carried out in animals or whole organism models such as C. elegans (Caenorhabditis elegans), zebrafish (Danio rerio), and Drosophila (Drosophila melanogaster)for improved screening of NM safety. A thorough understanding of the mechanisms by which NMs perturb biological systems, including autophagy induction, is critical for a more comprehensive elucidation of nanotoxicity. A more profound understanding of toxicity mechanisms will also facilitate the development of prevention and intervention policies against adverse outcomes induced by NMs. The development of a tiered testing strategy for NM hazard assessment not only promotes a more widespread adoption of non-rodent or 3R principles but also makes nanotoxicology testing more ethical, relevant, and cost- and time-efficient.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 900, Taiwan;
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 651, Taiwan;
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Li-Xing Yang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yen-Ling Lee
- Department of Hematology/Oncology, Tainan Hospital of Health and Welfare, Tainan 700, Taiwan;
| | - Yuan-Hua Wu
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
43
|
Glycofullerenes Inhibit Particulate Matter Induced Inflammation and Loss of Barrier Proteins in HaCaT Human Keratinocytes. Biomolecules 2020; 10:biom10040514. [PMID: 32231102 PMCID: PMC7225947 DOI: 10.3390/biom10040514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure to particulate matter (PM) has been linked to pulmonary and cardiovascular dysfunctions, as well as skin diseases, etc. PM impairs the skin barrier functions and is also involved in the initiation or exacerbation of skin inflammation, which is linked to the activation of reactive oxygen species (ROS) pathways. Fullerene is a single C60 molecule which has been reported to act as a good radical scavenger. However, its poor water solubility limits its biological applications. The glyco-modification of fullerenes increases their water solubility and anti-bacterial and anti-virus functions. However, it is still unclear whether it affects their anti-inflammatory function against PM-induced skin diseases. Hence, glycofullerenes were synthesized to investigate their effects on PM-exposed HaCaT human keratinocytes. Our results showed that glycofullerenes could reduce the rate of PM-induced apoptosis and ROS production, as well as decrease the expression of downstream mitogen-activated protein kinase and Akt pathways. Moreover, PM-induced increases in inflammatory-related signals, such as cyclooxygenase-2, heme oxygenase-1, and prostaglandin E2, were also suppressed by glycofullerenes. Notably, our results suggested that PM-induced impairment of skin barrier proteins, such as filaggrin, involucrin, repetin, and loricrin, could be reduced by pre-treatment with glycofullerenes. The results of this study indicate that glycofullerenes could be potential candidates for treatments against PM-induced skin diseases and that they exert their protective effects via ROS scavenging, anti-inflammation, and maintenance of the expression of barrier proteins.
Collapse
|
44
|
Chen M, Yin K, Zhang G, Liu H, Ning B, Dai Y, Wang X, Li H, Hao J. Magnetic and Biocompatible Fullerenol/Fe(III) Microcapsules with Antioxidant Activities. ACS APPLIED BIO MATERIALS 2020; 3:358-368. [PMID: 35019452 DOI: 10.1021/acsabm.9b00857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fullerene C60 (refers to C60 hereafter) has a unique three-dimensional architecture and intriguing physicochemical properties. It has great potential applications in materials chemistry and life science. However, a big obstacle for the widespread application of C60 lies in the limited strategies to make supramolecular structures with diverse morphologies and functions. Herein, we report a strategy to prepare C60-based, magnetic microcapsules which can be used as external antioxidants to effectively attenuate oxidative stress. The microcapsules are composed of fullerenol, a highly water-soluble C60 multiadduct, and iron ions (Fe3+) released from a rusty nail. They can be easily obtained through coordination between the hydrophilic functional groups in fullerenol and Fe3+ with polystyrene microspheres as templates. The fullerenol/Fe3+ microcapsules have good colloidal stability both in water and serum. Their biocompatibility has been confirmed by in vitro tests on HEK293 and Hela cells. Electron spin resonance measurements indicate that the fullerenol/Fe3+ microcapsules can effectively scavenge hydroxyl radicals (OH·-) produced by H2O2, which greatly improves the living environment of the cells. The fullerenol/Fe3+ microcapsules exhibit ferromagnetic properties and can respond to the external magnetic field, enabling magnetic manipulation, and/or separation in practical applications.
Collapse
Affiliation(s)
- Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China.,School of Qilu Transportation, Shandong University, Jinan 250002, China
| | - Keyang Yin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Geping Zhang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Huizhong Liu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Bo Ning
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Youyong Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Xiaojing Wang
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| |
Collapse
|
45
|
Shimizu T, Kishi R, Yamada T, Hata K. Radical scavenging activity of carbon nanotubes: toward appropriate selection of a radical initiator. RSC Adv 2020; 10:29419-29423. [PMID: 35521114 PMCID: PMC9055949 DOI: 10.1039/d0ra03922e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022] Open
Abstract
Radical scavenging activities are attractive properties not only for scientific fields e.g. biomedicine, but for the materials industry. In this study, we report that carbon nanotubes (CNTs) can scavenge radicals from organic peroxides, while radicals from azo-type radical initiators exhibit only a few effects from the presence of CNTs. In addition, experimental results suggest the possibility that captured peroxide radicals generate active radical sites on the CNT surface, from which polymerization can take place. These results indicate the importance of selecting an appropriate radical initiator. Carbon nanotubes scavenge radicals preferentially from peroxides, and polymerization presumably takes place from generated active radical sites on the surface.![]()
Collapse
Affiliation(s)
- Taiyo Shimizu
- CNT-Application Research Center
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central
- Tsukuba
- Japan
| | - Ryoichi Kishi
- CNT-Application Research Center
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central
- Tsukuba
- Japan
| | - Takeo Yamada
- CNT-Application Research Center
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central
- Tsukuba
- Japan
| | - Kenji Hata
- CNT-Application Research Center
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central
- Tsukuba
- Japan
| |
Collapse
|
46
|
Samadian H, Salami MS, Jaymand M, Azarnezhad A, Najafi M, Barabadi H, Ahmadi A. Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108296. [DOI: 10.1016/j.mrrev.2020.108296] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/26/2022]
|
47
|
Zhang X, Ma Y, Fu S, Zhang A. Facile Synthesis of Water-Soluble Fullerene (C 60) Nanoparticles via Mussel-Inspired Chemistry as Efficient Antioxidants. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1647. [PMID: 31756936 PMCID: PMC6955807 DOI: 10.3390/nano9121647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Abstract
Rational design and modification of the all-carbon fullerene cages to meliorate their nature of hydrophobicity is critical for biomedical applications. The outstanding electron affinity of fullerenes enables them to effectively eliminate reactive oxygen species (ROS), the excess of which may lead to health hazards or biological dysfunction. Herein reported is a facile, mild, and green approach to synthesizing the favorable water-soluble C60 nanoparticles capable of ROS-scavenging by combining the mussel-inspired chemistry with the Michael addition reaction. Various characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), transmission electron cryomicroscopy (Cryo-TEM), and dynamic laser scattering (DLS) were carried out to confirm the satisfactory preparation of the hybrid C60-PDA-GSH nanoparticles, which exhibited apparent scavenging capacity of DPPH and hydroxyl radicals in vitro. Additionally, the biocompatible C60-PDA-GSH nanoparticles entered into cells and displayed a universal cytoprotective effect against oxidative press induced by H2O2 in four kinds of human cells at a low concentration of 2 μg/mL. The ease and versatility of the strategy present in this work will not only trigger more fullerene-based materials by the immobilization of diverse functional molecules, but will also extend their possible applications.
Collapse
Affiliation(s)
| | | | | | - Aiqing Zhang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China; (X.Z.); (S.F.)
| |
Collapse
|
48
|
Zhang Q, Wang M, Gu C, Zhang C. Water disinfection processes change the cytotoxicity of C 60 fullerene: Reactions at the nano-bio interface. WATER RESEARCH 2019; 163:114867. [PMID: 31330401 DOI: 10.1016/j.watres.2019.114867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
The environmental transformation of nanoparticles results in significant changes in their structure, properties, and toxicity, which are imperative for assessing their environmental impact and health risks. Little is known about the toxicity alteration of fullerene nanoparticles (C60) after water disinfection processes considering their potential application in antimicrobial control in water treatment ultimately ending in sewage treatment plants. We showed that C60 aggregates (nC60) were converted to more oxidized forms via commonly used water disinfection processes (i.e., phototransformation and photochlorination treatment). The light-irradiated nanoparticles (UV_nC60) exhibited mitigated cytotoxicity relative to nC60, whereas photochlorinated nC60 (UV/Cl_nC60) showed an exacerbated outcome. We revealed a distinct toxic mechanism occurring at the nano-bio interface, for which electrons were shuttled by C60 nanoparticles from membrane-bound NADPH oxidase to extracellular molecular oxygen, resulting in the production of various extracellular reactive oxygen species (ROS). UV/Cl_nC60 showed the highest electron-shuttling activity due to its high carbonyl content, and more than 2.4-fold higher level of extracellular hydroxyl radicals were detected relative to that in untreated cells. Although UV_nC60 possessed a somewhat higher carbonyl content than nC60, it showed a weaker adhesion to the cell membrane, which compromised the electron-transfer process. The intrinsic ROS generation/quenching capabilities and oxidative potentials of the various nanoparticles were also systematically compared. Overall, this report highlights the importance of understanding environmental transformations in risk assessment and uncovers an overlooked mechanism through which nC60/derivatives can modulate the electron transfer process at the nano-bio interface via acting as electron shuttles.
Collapse
Affiliation(s)
- Qiurong Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Meiling Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chuanhui Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
49
|
Ding G, Li X, Zhang J, Zhang N, Li R, Wang Y, Yang Z, Peijnenburg WJGM. The dispersion, stability, and resuspension of C 60 in environmental water matrices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25538-25549. [PMID: 31267391 DOI: 10.1007/s11356-019-05817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Environmental waters cover a range of water quality characteristics which could greatly affect the behavior and fate of C60 in the aquatic environment. In this study, the dispersion and stability of C60 in several environmental water matrices during a 70-day extended mixing period were investigated to better understand its environmental behavior and fate in environmental waters. Relatively stable nanoscale aggregates in water (aqu/nC60) could be formed in wastewater influent, while unstable suspensions were obtained in river water, wastewater effluent, seawater, and estuarine water. During the extended mixing under sunlight, oxygen-containing moieties were produced on the surface of the C60 aggregates, independent of the kind of environmental water matrices. Once the mixed system went under quiescent condition, aggregation and sedimentation of aqu/nC60 occurred. However, an extremely short-time disturbance could easily resuspend the C60 aggregates deposited and increase the concentration of aqu/nC60 in the overlying water column. Therefore, the effects of resuspension should be considered when investigating the environmental behavior and fate of C60.
Collapse
Affiliation(s)
- Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China.
| | - Xueyao Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Jing Zhang
- College of Environment and Chemical Technology, Dalian University, Dalian, 116622, People's Republic of China.
| | - Nannan Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Ruijuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Yingying Wang
- College of Environment and Chemical Technology, Dalian University, Dalian, 116622, People's Republic of China
| | - Zhanning Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian, 116026, People's Republic of China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, The Netherlands
- Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
50
|
Namdar F, Bahrami F, Bahari Z, Ghanbari B, Elahi SA, Mohammadi MT. Evaluation of the Effects of Fullerene C60 Nanoparticles on Oxidative Stress Parameters at Liver and Brain of Normal Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.30699/jambs.27.124.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|