1
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
2
|
Favrais G, Bokobza C, Saliba E, Chalon S, Gressens P. Alteration of the Oligodendrocyte Lineage Varies According to the Systemic Inflammatory Stimulus in Animal Models That Mimic the Encephalopathy of Prematurity. Front Physiol 2022; 13:881674. [PMID: 35928559 PMCID: PMC9343871 DOI: 10.3389/fphys.2022.881674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Preterm birth before the gestational age of 32 weeks is associated with the occurrence of specific white matter damage (WMD) that can compromise the neurological outcome. These white matter abnormalities are embedded in more global brain damage defining the encephalopathy of prematurity (EoP). A global reduction in white matter volume that corresponds to chronic diffuse WMD is the most frequent form in contemporary cohorts of very preterm infants. This WMD partly results from alterations of the oligodendrocyte (OL) lineage during the vulnerability window preceding the beginning of brain myelination. The occurrence of prenatal, perinatal and postnatal events in addition to preterm birth is related to the intensity of WMD. Systemic inflammation is widely recognised as a risk factor of WMD in humans and in animal models. This review reports the OL lineage alterations associated with the WMD observed in infants suffering from EoP and emphasizes the role of systemic inflammation in inducing these alterations. This issue is addressed through data on human tissue and imaging, and through neonatal animal models that use systemic inflammation to induce WMD. Interestingly, the OL lineage damage varies according to the inflammatory stimulus, i.e., the liposaccharide portion of the E.Coli membrane (LPS) or the proinflammatory cytokine Interleukin-1β (IL-1β). This discrepancy reveals multiple cellular pathways inducible by inflammation that result in EoP. Variable long-term consequences on the white matter morphology and functioning may be speculated upon according to the intensity of the inflammatory challenge. This hypothesis emerges from this review and requires further exploration.
Collapse
Affiliation(s)
- Geraldine Favrais
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
- Neonatology Unit, CHRU de Tours, Tours, France
- *Correspondence: Geraldine Favrais,
| | - Cindy Bokobza
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
| | - Elie Saliba
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France
| | | |
Collapse
|
3
|
Effect of Neuroprotective Magnesium Sulfate Treatment on Brain Transcription Response to Hypoxia Ischemia in Neonate Mice. Int J Mol Sci 2021; 22:ijms22084253. [PMID: 33923910 PMCID: PMC8074012 DOI: 10.3390/ijms22084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
MgSO4 is widely used in the prevention of preterm neurological disabilities but its modes of action remain poorly established. We used a co-hybridization approach using the transcriptome in 5-day old mice treated with a single dose of MgSO4 (600 mg/kg), and/or exposed to hypoxia-ischemia (HI). The transcription of hundreds of genes was altered in all the groups. MgSO4 mainly produced repressions culminating 6 h after injection. Bio-statistical analysis revealed the repression of synaptogenesis and axonal development. The putative targets of MgSO4 were Mnk1 and Frm1. A behavioral study of adults did not detect lasting effects of neonatal MgSO4 and precluded NMDA-receptor-mediated side effects. The effects of MgSO4 plus HI exceeded the sum of the effects of separate treatments. MgSO4 prior to HI reduced inflammation and the innate immune response probably as a result of cytokine inhibition (Ccl2, Ifng, interleukins). Conversely, MgSO4 had little effect on HI-induced transcription by RNA-polymerase II. De novo MgSO4-HI affected mitochondrial function through the repression of genes of oxidative phosphorylation and many NAD-dehydrogenases. It also likely reduced protein translation by the repression of many ribosomal proteins, essentially located in synapses. All these effects appeared under the putative regulatory MgSO4 induction of the mTORC2 Rictor coding gene. Lasting effects through Sirt1 and Frm1 could account for this epigenetic footprint.
Collapse
|
4
|
Prasad JD, Gunn KC, Davidson JO, Galinsky R, Graham SE, Berry MJ, Bennet L, Gunn AJ, Dean JM. Anti-Inflammatory Therapies for Treatment of Inflammation-Related Preterm Brain Injury. Int J Mol Sci 2021; 22:4008. [PMID: 33924540 PMCID: PMC8069827 DOI: 10.3390/ijms22084008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of preterm brain injury, there are no established neuroprotective strategies to prevent or alleviate mild-to-moderate inflammation-related brain injury. Perinatal infection and inflammation have been shown to trigger acute neuroinflammation, including proinflammatory cytokine release and gliosis, which are associated with acute and chronic disturbances in brain cell survival and maturation. These findings suggest the hypothesis that the inhibition of peripheral immune responses following infection or nonspecific inflammation may be a therapeutic strategy to reduce the associated brain injury and neurobehavioral deficits. This review provides an overview of the neonatal immunity, neuroinflammation, and mechanisms of inflammation-related brain injury in preterm infants and explores the safety and efficacy of anti-inflammatory agents as potentially neurotherapeutics.
Collapse
Affiliation(s)
- Jaya D. Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Katherine C. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Joanne O. Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Scott E. Graham
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Mary J. Berry
- Department of Pediatrics and Health Care, University of Otago, Dunedin 9016, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1010, New Zealand; (J.D.P.); (K.C.G.); (J.O.D.); (L.B.); (A.J.G.)
| |
Collapse
|
5
|
Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules 2021; 11:biom11010099. [PMID: 33451166 PMCID: PMC7828679 DOI: 10.3390/biom11010099] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injuries, including encephalopathy related to fetal growth restriction, encephalopathy of prematurity, neonatal encephalopathy of the term neonate, and neonatal stroke, are a major cause of neurodevelopmental disorders. They trigger cellular and molecular cascades that lead in many cases to permanent motor, cognitive, and/or behavioral deficits. Damage includes neuronal degeneration, selective loss of subclasses of interneurons, blocked maturation of oligodendrocyte progenitor cells leading to dysmyelination, axonopathy and very likely synaptopathy, leading to impaired connectivity. The nature and severity of changes vary according to the type and severity of insult and maturation stage of the brain. Microglial activation has been demonstrated almost ubiquitously in perinatal brain injuries and these responses are key cell orchestrators of brain pathology but also attempts at repair. These divergent roles are facilitated by a diverse suite of transcriptional profiles and through a complex dialogue with other brain cell types. Adding to the complexity of understanding microglia and how to modulate them to protect the brain is that these cells have their own developmental stages, enabling them to be key participants in brain building. Of note, not only do microglia help build the brain and respond to brain injury, but they are a key cell in the transduction of systemic inflammation into neuroinflammation. Systemic inflammatory exposure is a key risk factor for poor neurodevelopmental outcomes in preterm born infants. Based on these observations, microglia appear as a key cell target for neuroprotection in perinatal brain injuries. Numerous strategies have been developed experimentally to modulate microglia and attenuate brain injury based on these strong supporting data and we will summarize these.
Collapse
|
6
|
Bove M, Tucci P, Dimonte S, Trabace L, Schiavone S, Morgese MG. Postnatal Antioxidant and Anti-inflammatory Treatments Prevent Early Ketamine-Induced Cortical Dysfunctions in Adult Mice. Front Neurosci 2020; 14:590088. [PMID: 33250707 PMCID: PMC7672215 DOI: 10.3389/fnins.2020.590088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Early brain insult, interfering with its maturation, may result in psychotic-like disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to long-term psychiatric consequences due to neurodevelopmental abnormalities. Here, we investigated the effects of early pharmacological modulation of the redox and inflammatory states, through celastrol, and indomethacin administration, on reactive oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6, IL-6, and interleukin-1 beta, IL-1β), in the prefrontal cortex of adult mice exposed to a neurotoxic insult, i.e. ketamine administration, in postnatal life. Early celastrol or indomethacin prevented ketamine-induced elevations in cortical ROS production. MDA levels in ketamine-treated mice, also administered with celastrol, were comparable with the control ones. Indomethacin also prevented the increase in lipid peroxidation following early ketamine administration. Whereas no significant differences were detected in SOD1, GSH, and CAT levels between ketamine and saline-administered mice, celastrol elevated the cortical amount of these antioxidant enzymes and the same effect was induced by indomethacin per se. Both celastrol and indomethacin prevented ketamine-induced enhancement in TNF-α and IL-1β levels, however, they had no effects on increased IL-6 amount resulting from ketamine exposure in postnatal life. In conclusion, our data suggest that an early increase in cortical ROS scavenging and reduction of lipid peroxidation, via the enhancement of antioxidant defense, together with inhibition of neuroinflammation, may represent a therapeutic opportunity against psychotic-like disturbances resulting, later in life, from the effects of a neurotoxic insult on the developing brain.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | |
Collapse
|
7
|
Saliba SW, Bonifacino T, Serchov T, Bonanno G, de Oliveira ACP, Fiebich BL. Neuroprotective Effect of AM404 Against NMDA-Induced Hippocampal Excitotoxicity. Front Cell Neurosci 2019; 13:566. [PMID: 31920563 PMCID: PMC6932953 DOI: 10.3389/fncel.2019.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 11/13/2022] Open
Abstract
Different studies have demonstrated that inflammation and alterations in glutamate neurotransmission are two events contributing to the pathophysiology of neurodegenerative or neurological disorders. There are evidences that N-arachidonoylphenolamine (AM404), a cannabinoid system modulator and paracetamol metabolite, modulates inflammation and exerts neuroprotective effects on Huntington's (HD) and Parkinson's diseases (PD), and ischemia. However, the effects of AM404 on the production of inflammatory mediators and excitotoxicity in brain tissue stimulated with N-methyl-D-aspartic acid (NMDA) are not elucidated. In this present study, we investigated the effects of AM404 on the production of inflammatory mediators and neuronal cell death induced by NMDA in organotypic hippocampal slices cultures (OHSC) using qPCR, western blot (WB), and immunohistochemistry. Moreover, to comprehend the mechanism of excitotoxicity, we evaluated the effects of AM404 on glutamate release in hippocampal synaptosomes and the NMDA-induced calcium responses in acute hippocampal slices. Our results showed that AM404 led to a significant decrease in cell death induced by NMDA, through a mechanism possibly involving the reduction of glutamate release and the calcium ions responses. Furthermore, it decreased the expression of the interleukin (IL)-1β. This study provides new significant insights about the anti-inflammatory and neuroprotection effects of AM404 on NMDA-induced excitotoxicity. To understand the effects of AM404 in these processes might contribute to the therapeutic potential of AM404 in diseases with involvement of neuroinflammation and neurodegeneration and might lead to a possible future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiziana Bonifacino
- Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Tsvetan Serchov
- Laboratory of Stereotaxy and Interventional Neuroscience, Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Giambattista Bonanno
- Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Martinello KA, Meehan C, Avdic-Belltheus A, Lingam I, Ragab S, Hristova M, Tann CJ, Peebles D, Hagberg H, Wolfs TGAM, Klein N, Tachtsidis I, Golay X, Kramer BW, Fleiss B, Gressens P, Robertson NJ. Acute LPS sensitization and continuous infusion exacerbates hypoxic brain injury in a piglet model of neonatal encephalopathy. Sci Rep 2019; 9:10184. [PMID: 31308390 PMCID: PMC6629658 DOI: 10.1038/s41598-019-46488-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Co-existing infection/inflammation and birth asphyxia potentiate the risk of developing neonatal encephalopathy (NE) and adverse outcome. In a newborn piglet model we assessed the effect of E. coli lipopolysaccharide (LPS) infusion started 4 h prior to and continued for 48 h after hypoxia on brain cell death and systemic haematological changes compared to LPS and hypoxia alone. LPS sensitized hypoxia resulted in an increase in mortality and in brain cell death (TUNEL positive cells) throughout the whole brain, and in the internal capsule, periventricular white matter and sensorimotor cortex. LPS alone did not increase brain cell death at 48 h, despite evidence of neuroinflammation, including the greatest increases in microglial proliferation, reactive astrocytosis and cleavage of caspase-3. LPS exposure caused splenic hypertrophy and platelet count suppression. The combination of LPS and hypoxia resulted in the highest and most sustained systemic white cell count increase. These findings highlight the significant contribution of acute inflammation sensitization prior to an asphyxial insult on NE illness severity.
Collapse
Affiliation(s)
- Kathryn A Martinello
- Institute for Women's Health, University College London, London, United Kingdom
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Christopher Meehan
- Institute for Women's Health, University College London, London, United Kingdom
| | | | - Ingran Lingam
- Institute for Women's Health, University College London, London, United Kingdom
| | - Sara Ragab
- Institute for Women's Health, University College London, London, United Kingdom
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, United Kingdom
| | - Cally J Tann
- Institute for Women's Health, University College London, London, United Kingdom
- Maternal, Adolescent, Reproductive and Child Health Centre, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Donald Peebles
- Institute for Women's Health, University College London, London, United Kingdom
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain, Department of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Tim G A M Wolfs
- Department of Paediatrics, University of Maastricht, Maastricht, Netherlands
| | - Nigel Klein
- Infection, Inflammation and Rheumatology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Xavier Golay
- Institute of Neurology, University College London, London, United Kingdom
| | - Boris W Kramer
- Department of Paediatrics, University of Maastricht, Maastricht, Netherlands
| | - Bobbi Fleiss
- Centre for the Developing Brain, Department of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre Gressens
- Centre for the Developing Brain, Department of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom.
- Division of Neonatology, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
9
|
Pancaro C, Boulanger-Bertolus J, Segal S, Watson CJ, St Charles I, Mashour GA, Marchand JE. Maternal Noninfectious Fever Enhances Cell Proliferation and Microglial Activation in the Neonatal Rat Dentate Gyrus. Anesth Analg 2019; 128:1190-1198. [PMID: 31094787 DOI: 10.1213/ane.0000000000004051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fever and increased maternal interleukin-6 (IL-6) plasma levels in labor are associated with an increased risk of adverse events in offspring, including neonatal seizures, cerebral palsy, and low intelligence scores at school age. However, the neural changes in the neonate that might mediate the adverse effects of maternal noninfectious fever are not fully characterized. This study was designed to test the hypothesis that induced maternal noninfectious fever alters neonatal neural progenitor cell proliferation and enhances microglial activation in the rat dentate gyrus of the hippocampus. METHODS Systemic vehicle or IL-6 was given 3 times to near-term pregnant rats (n = 7/group) every 90 minutes, and maternal core temperature was recorded. Neonatal brains were processed and analyzed for dentate gyrus cell proliferation (using Ki-67, n = 10/group, and glial fibrillary acidic protein, n = 6/group) and resident microglia activation (using ionized calcium-binding adaptor protein-1 [Iba-1], n = 6/group). In separate studies, the authors assessed microglia proliferation using Ki-67/Iba-1 costaining (n = 5/group). RESULTS Compared to controls, exposure to IL-6 resulted in significant maternal temperature increase [mean temperature difference 0.558°C (95% CI, 0.417-0.698; P < .0001)]. Following maternal IL-6, Ki-67 cell proliferation in the dentate gyrus was 55 % higher in neonates whose mother received IL-6 (38.8 ± 9.2) compared with those that received vehicle (25.1 ± 7.8); mean difference 13.7 (95% CI, 5.68-21.71); (P = .0021). Glial fibrillary acidic protein cell proliferation was 40% higher in the neonatal dentate gyrus whose mother received IL-6 when compared to controls (713 ± 85.52 vs 500 ± 115); mean difference 212 (95% CI, 82.2-343.4); (P = .004). Resident microglial activation was 90% higher in the dentate gyrus of neonates whose mother received IL-6 when compared to controls (71.8 ± 9.3 vs 37.8 ± 5.95); mean Iba-1 in stained cells was significantly different between IL-6 and vehicle groups 34 (95% CI, 23.94-44.05); (P < .0001). Proliferating microglia, determined by the colocalization of Ki-67 and Iba-1, were not different in the vehicle (8.8 % ± 3.19 %) and the IL-6 (5.6% ± 2.3%) groups (mean difference 3.2% (95% CI, -0.8-7.25) (P = .1063). CONCLUSIONS IL-6 is sufficient to induce maternal systemic temperature increases in near-term pregnant rats as well as neuronal, glial, and neuroinflammatory changes in the dentate gyrus of the neonatal hippocampus. These alterations might disrupt fetal neurodevelopment during a vulnerable period.
Collapse
Affiliation(s)
- Carlo Pancaro
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - Julie Boulanger-Bertolus
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - Scott Segal
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Chris J Watson
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - Irene St Charles
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - George A Mashour
- From the Department of Anesthesiology, University of Michigan Health System, Ann Arbor, Michigan
| | - James E Marchand
- Department of Anesthesiology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
10
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Endothelial Microsomal Prostaglandin E Synthetase-1 Upregulates Vascularity and Endothelial Interleukin-1β in Deteriorative Progression of Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2018; 19:ijms19113647. [PMID: 30463256 PMCID: PMC6274996 DOI: 10.3390/ijms19113647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Microsomal prostaglandin E synthetase-1 (mPGES-1) is an inducible terminal enzyme for the production of prostaglandin E₂ (PGE₂). In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, mPGES-1 is induced in vascular endothelial cells (VECs) around inflammatory foci and facilitates inflammation, demyelination, and paralysis. Therefore, we investigated the role of CD31-positive VECs in mPGES-1-mediated EAE aggravation using immunohistochemical analysis and imaging of wild-type (wt) and mPGES-1-deficient (mPGES-1-/-) mice. We demonstrated that EAE induction facilitated vascularity in inflammatory lesions in the spinal cord, and this was significantly higher in wt mice than in mPGES-1-/- mice. In addition, endothelial interleukin-1β (IL-1β) production was significantly higher in wt mice than in mPGES-1-/- mice. Moreover, endothelial PGE₂ receptors (E-prostanoid (EP) receptors EP1⁻4) were expressed after EAE induction, and IL-1β was induced in EP receptor-positive VECs. Furthermore, IL-1 receptor 1 expression on VECs was increased upon EAE induction. Thus, increased vascularity is one mechanism involved in EAE aggravation induced by mPGES-1. Furthermore, mPGES-1 facilitated the autocrine function of VECs upon EP receptor induction and IL-1β production, modulating mPGES-1 induction in EAE.
Collapse
|
12
|
Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X. PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 2018; 100:183-200.e8. [PMID: 30269986 DOI: 10.1016/j.neuron.2018.08.030] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitability by promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Collapse
Affiliation(s)
- Lihui Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Jun Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuzi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Yang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Humingzhu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Yuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
13
|
Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4⁺ T Cells through IL-1β Autocrine Function in Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2017; 18:ijms18122758. [PMID: 29257087 PMCID: PMC5751357 DOI: 10.3390/ijms18122758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E2 (PGE2). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES-1-deficient (mPGES-1−/−) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4+) T cells was extensive, and that PGE2 receptors EP1–4 were more induced in activated CD4+ T cells of wt mice than in those of mPGES-1−/− mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4+ T cells in wt mice and by 44% and 27% of CD4+ T cells in mPGES-1−/− mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4+ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4+ T cells by upregulating the autocrine function of IL-1β in activated CD4+ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.
Collapse
|
14
|
Segal S, Pancaro C, Bonney I, Marchand JE. Noninfectious Fever in the Near-Term Pregnant Rat Induces Fetal Brain Inflammation. Anesth Analg 2017; 125:2134-2140. [DOI: 10.1213/ane.0000000000002479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Shiow LR, Favrais G, Schirmer L, Schang AL, Cipriani S, Andres C, Wright JN, Nobuta H, Fleiss B, Gressens P, Rowitch DH. Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia 2017; 65:2024-2037. [PMID: 28856805 DOI: 10.1002/glia.23212] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Inflammation is a major risk factor for neonatal white matter injury (NWMI), which is associated with later development of cerebral palsy. Although recent studies have demonstrated maturation arrest of oligodendrocyte progenitor cells (OPCs) in NWMI, the identity of inflammatory mediators with direct effects on OPCs has been unclear. Here, we investigated downstream effects of pro-inflammatory IL-1β to induce cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) production in white matter. First, we assessed COX2 expression in human fetal brain and term neonatal brain affected by hypoxic-ischemic encephalopathy (HIE). In the developing human brain, COX2 was expressed in radial glia, microglia, and endothelial cells. In human term neonatal HIE cases with subcortical WMI, COX2 was strongly induced in reactive astrocytes with "A2" reactivity. Next, we show that OPCs express the EP1 receptor for PGE2, and PGE2 acts directly on OPCs to block maturation in vitro. Pharmacologic blockade with EP1-specific inhibitors (ONO-8711, SC-51089), or genetic deficiency of EP1 attenuated effects of PGE2. In an IL-1β-induced model of NWMI, astrocytes also exhibit "A2" reactivity and induce COX2. Furthermore, in vivo inhibition of COX2 with Nimesulide rescues hypomyelination and behavioral impairment. These findings suggest that neonatal white matter astrocytes can develop "A2" reactivity that contributes to OPC maturation arrest in NWMI through induction of COX2-PGE2 signaling, a pathway that can be targeted for neonatal neuroprotection.
Collapse
Affiliation(s)
- Lawrence R Shiow
- Department of Pediatrics and Division of Neonatology.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California
| | - Geraldine Favrais
- INSERM U930, Universite Francois Rabelais, Tours, France.,Neonatal intensive care unit, CHRU de Tours, Universite Francois Rabelais, Tours, France.,PROTECT, INSERM, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Lucas Schirmer
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anne-Laure Schang
- PROTECT, INSERM, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France.,PremUP, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Sara Cipriani
- PROTECT, INSERM, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France.,PremUP, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France
| | | | - Jaclyn N Wright
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California
| | - Hiroko Nobuta
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California
| | - Bobbi Fleiss
- PROTECT, INSERM, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France.,PremUP, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France.,Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas Hospital, London, United Kingdom
| | - Pierre Gressens
- PROTECT, INSERM, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France.,PremUP, Universite Paris Diderot, Sorbonne Paris Cite, Paris, France.,Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas Hospital, London, United Kingdom
| | - David H Rowitch
- Department of Pediatrics and Division of Neonatology.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California.,Department of Paediatrics, and Wellcome Trust-MRC Stem Cell Institute, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
16
|
Carloni S, Favrais G, Saliba E, Albertini MC, Chalon S, Longini M, Gressens P, Buonocore G, Balduini W. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J Pineal Res 2016; 61:370-80. [PMID: 27441728 DOI: 10.1111/jpi.12354] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023]
Abstract
Maternal infection/inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We investigated the modulating effect of prenatal melatonin on the neonatal brain inflammation process resulting from maternal intraperitoneal (i.p.) lipopolysaccharide (LPS) injections. LPS (300 μg/kg) was administered to pregnant rats at gestational days 19 and 20. Melatonin (5 mg/kg) was administered i.p. at the same time as LPS. Melatonin counteracted the LPS sensitization to a second ibotenate-induced excitotoxic insult performed on postnatal day (PND) 4. As melatonin succeeded in reducing microglial activation in neonatal brain at PND1, pathways previously implicated in brain inflammation regulation, such as endoplasmic reticulum (ER) stress, autophagy and silent information regulator 1 (SIRT1), a melatonin target, were assessed at the same time-point in our experimental groups. Results showed that maternal LPS administrations resulted in an increase in CHOP and Hsp70 protein expression and eIF2α phosphorylation, indicative of activation of the unfolded protein response consequent to ER stress, and a slighter decrease in the autophagy process, determined by reduced lipidated LC3 and increased p62 expression. LPS-induced inflammation also reduced brain SIRT1 expression and affected the expression of miR-34a, miR146a, and miR-126. All these effects were blocked by melatonin. Cleaved-caspase-3 apoptosis pathway did not seem to be implicated in the noxious effect of LPS on the PND1 brain. We conclude that melatonin is effective in reducing maternal LPS-induced neonatal inflammation and related brain injury. Its role as a prophylactic/therapeutic drug deserves to be investigated by clinical studies.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Géraldine Favrais
- Department of Neonatal and Pediatric Intensive Care, CHRU de Tours, Tours, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Elie Saliba
- Department of Neonatal and Pediatric Intensive Care, CHRU de Tours, Tours, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
| | | | - Sylvie Chalon
- INSERM U930, Université François Rabelais de Tours, Tours, France
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
17
|
Kapitanović Vidak H, Catela Ivković T, Vidak Z, Kapitanović S. COX-1 and COX-2 polymorphisms in susceptibility to cerebral palsy in very preterm infants. Mol Neurobiol 2016; 54:930-938. [PMID: 26781425 DOI: 10.1007/s12035-016-9713-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022]
Abstract
Cerebral palsy (CP) is a nonprogressive motor disorder caused by white matter damage in the developing brain. Recent epidemiological and clinical data suggest intrauterine infection/inflammation as the most common cause of preterm delivery and neonatal complications, including CP. Cyclooxygenases are key enzymes in the conversion of arachidonic acid to prostaglandins. The COX family consists of two isoforms, COX-1 and COX-2. In the brain, COX-2 is constitutively expressed at high levels on pyramidal neurons, while COX-1 is predominantly expressed by microglia and can be upregulated in pathological conditions, such as infection, ischemia and traumatic brain injury. Single nucleotide polymorphisms in the COX-1 and COX-2 gene could have profound effects on COX-1 and COX-2 expression and, directly or indirectly, influence the pathogenesis, development and severity of CP. In this study we investigated the association between single nucleotide polymorphisms of the COX-1 and COX-2 gene and susceptibility to cerebral palsy in very preterm infants. The results of our study showed the association between COX-1 high expression genotype (-842 AA) and COX-1 high expression allele -842A and risk of CP in infants with cystic periventricular leucomalacia (cPVL). Our results support an important role of COX-1 enzyme on microglial activation during neuroinflammation resulting in huge neuroinflammatory response and the proinflammatory mediator overproduction, with the serious white matter damage and CP development as a consequence.
Collapse
Affiliation(s)
- Helena Kapitanović Vidak
- Special Hospital for Children with Neurodevelopmental and Motor Difficulties, Goljak 2, Zagreb, Croatia.
| | - Tina Catela Ivković
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| | - Zoran Vidak
- Department of Obstetrics and Gynecology, Division of Neonatology, Clinical Hospital Merkur, Ivana Zajca 19, Zagreb, Croatia
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, Zagreb, Croatia
| |
Collapse
|
18
|
Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P. The role of inflammation in perinatal brain injury. Nat Rev Neurol 2015; 11:192-208. [PMID: 25686754 PMCID: PMC4664161 DOI: 10.1038/nrneurol.2015.13] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being a critical contributor to both normal development and injury outcome in the immature brain. The focus of this Review is to highlight important differences in innate and adaptive immunity in immature versus adult brain, which support the notion that the consequences of inflammation will be entirely different depending on context and stage of CNS development. Perinatal brain injury can result from neonatal encephalopathy and perinatal arterial ischaemic stroke, usually at term, but also in preterm infants. Inflammation occurs before, during and after brain injury at term, and modulates vulnerability to and development of brain injury. Preterm birth, on the other hand, is often a result of exposure to inflammation at a very early developmental phase, which affects the brain not only during fetal life, but also over a protracted period of postnatal life in a neonatal intensive care setting, influencing critical phases of myelination and cortical plasticity. Neuroinflammation during the perinatal period can increase the risk of neurological and neuropsychiatric disease throughout childhood and adulthood, and is, therefore, of concern to the broader group of physicians who care for these individuals.
Collapse
Affiliation(s)
- Henrik Hagberg
- 1] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK. [2] Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Donna M Ferriero
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan J Vannucci
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Steven W Levison
- Department of Neurology and Neuroscience, Rutgers University, RBHS-New Jersey Medical School, Cancer Center, H-1226 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Zinaida S Vexler
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
19
|
Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol 2015; 57 Suppl 3:17-28. [PMID: 25800488 DOI: 10.1111/dmcn.12723] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Perinatal insults are a leading cause of infant mortality and amongst survivors are frequently associated with neurocognitive impairment, cerebral palsy (CP), and seizure disorders. The events leading to perinatal brain injury are multifactorial. This review describes how one subinjurious factor affecting the brain sensitizes it to a second injurious factor, causing an exacerbated injurious cascade. We will review the clinical and experimental evidence, including observations of high rates of maternal and fetal infections in term-born infants with neonatal encephalopathy and cerebral palsy. In addition, we will discuss preclinical evidence for the sensitizing effects of inflammation on injuries, such as hypoxia-ischaemia, our current understanding of the mechanisms underpinning the sensitization process, and the possibility for neuroprotection.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Inserm, U1141, Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Department of Child Neurology, APHP, Robert Debré Hospital, Paris, France; PremUP, Paris, France; Division of Imaging Sciences, Department of Perinatal Imaging and Health, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fleiss B, Chhor V, Rajudin N, Lebon S, Hagberg H, Gressens P, Thornton C. The Anti-Inflammatory Effects of the Small Molecule Pifithrin-µ on BV2 Microglia. Dev Neurosci 2015; 37:363-75. [PMID: 25721106 PMCID: PMC5079065 DOI: 10.1159/000370031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Neonatal encephalopathy (NE) is a leading cause of childhood death and disability in term infants. Treatment options for perinatal brain injury are limited and developing therapies that target multiple pathways within the pathophysiology of NE are of great interest. Pifithrin-µ (PFT-µ) is a drug with striking neuroprotective abilities in a preclinical model of hypoxia-ischemia (HI)-induced NE wherein cell death is a substantial cause of injury. Work from neurons and tumor cells reports that PFT-µ is able to inhibit p53 binding to the mitochondria, heat shock protein (HSP)-70 substrate binding and activation of the NF-kB pathway. The purpose of this study is to understand whether the neuroprotective effects of PFT-µ also include direct effects on microglia. We utilized the microglial cell line, BV2, and we studied the dose-dependent effect of PFT-µ on M1-like and M2-like phenotype using qRT-PCR and Western blotting, including the requirement for the presence of p53 or HSP-70 in these effects. We also assessed phagocytosis and the effects of PFT-µ on genes within metabolic pathways related to phenotype. We noted that PFT-µ robustly reduced the M1-like (lipopolysaccharide, LPS-induced) BV2 response, spared the LPS-induced phagocytic ability of BV2 and had no effect on the genes related to metabolism and that effects on phenotype were partially dependent on the presence of HSP-70 but not p53. This study demonstrates that the neuroprotective effects of PFT-µ in HI-induced NE may include an anti-inflammatory effect on microglia and adds to the evidence that this drug might be of clinical interest for the treatment of NE.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Potential neuroprotective strategies for perinatal infection and inflammation. Int J Dev Neurosci 2015; 45:44-54. [DOI: 10.1016/j.ijdevneu.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 01/17/2023] Open
|
22
|
Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, Fleiss B, Titomanlio L, Gressens P. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci 2015; 9:40. [PMID: 25741233 PMCID: PMC4330788 DOI: 10.3389/fnins.2015.00040] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data.
Collapse
Affiliation(s)
- Raffaella Moretti
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Julien Pansiot
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Donatella Bettati
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Nathalie Strazielle
- Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292 - Lyon University Lyon, France ; Brain-i Lyon, France
| | | | - Giuseppe Damante
- S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Bobbi Fleiss
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| | - Luigi Titomanlio
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Pediatric Emergency Department, APHP, Robert Debré Hospital Paris, France
| | - Pierre Gressens
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| |
Collapse
|
23
|
Gleditsch DD, Shornick LP, Van Steenwinckel J, Gressens P, Weisert RP, Koenig JM. Maternal inflammation modulates infant immune response patterns to viral lung challenge in a murine model. Pediatr Res 2014; 76:33-40. [PMID: 24727945 DOI: 10.1038/pr.2014.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/17/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Chorioamnionitis, an inflammatory gestational disorder, commonly precedes preterm delivery. Preterm infants may be at particular risk for inflammation-related morbidity related to infection, although the pathogenic mechanisms are unclear. We hypothesized that maternal inflammation modulates immune programming to drive postnatal inflammatory processes. METHODS We used a novel combined murine model to treat late gestation dams with low-dose lipopolysaccharide (LPS) and to secondarily challenge exposed neonates or weanlings with Sendai virus (SeV) lung infection. Multiple organs were analyzed to characterize age-specific postnatal immune and inflammatory responses. RESULTS Maternal LPS treatment enhanced innate immune populations in the lungs, livers, and/or spleens of exposed neonates or weanlings. Secondary lung SeV infection variably affected neutrophil, macrophage, and dendritic cell proportions in multiple organs of exposed pups. Neonatal lung infection induced brain interleukin (IL)-4 expression, although this response was muted in LPS-exposed pups. Adaptive immune cells, including lung, lymph node, and thymic lymphocytes and lung CD4 cells expressing FoxP3, interferon (IFN)-γ, or IL-17, were variably prominent in LPS-exposed pups. CONCLUSION Maternal inflammation modifies postnatal immunity and augments systemic inflammatory responses to viral lung infection in an age-specific manner. We speculate that inflammatory modulation of the developing immune system contributes to chronic morbidity and mortality in preterm infants.
Collapse
Affiliation(s)
| | - Laurie P Shornick
- 1] Department of Biology, Saint Louis University, St Louis, Missouri [2] Department of Molecular Microbiology & Immunology, Saint Louis University, St Louis, Missouri
| | - Juliette Van Steenwinckel
- 1] Inserm, U1141, Paris, France [2] University of Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France
| | - Pierre Gressens
- 1] Inserm, U1141, Paris, France [2] University of Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France [3] Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | - Ryan P Weisert
- Department of Pediatrics, Saint Louis University, St Louis, Missouri
| | - Joyce M Koenig
- 1] Department of Pediatrics, Saint Louis University, St Louis, Missouri [2] Department of Molecular Microbiology & Immunology, Saint Louis University, St Louis, Missouri
| |
Collapse
|
24
|
Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M. Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 2014; 62:1659-70. [PMID: 24909143 DOI: 10.1002/glia.22706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022]
Abstract
Perinatal inflammation causes immediate changes of the blood-brain barrier (BBB) and thus may have different consequences in adult life including an impact on neurological diseases such as demyelinating disorders. In order to determine if such a perinatal insult affects the course of demyelination in adulthood as "second hit," we simulated perinatal bacterial inflammation by systemic administration of lipopolysaccharide (LPS) to either pregnant mice or newborn animals. Demyelination was later induced in adult animals by cuprizone [bis(cyclohexylidenehydrazide)], which causes oligodendrocyte death with subsequent demyelination accompanied by strong microgliosis and astrogliosis. A single LPS injection at embryonic day 13.5 did not have an impact on demyelination in adulthood. In contrast, serial postnatal LPS injections (P0-P8) caused an early delay of myelin removal in the corpus callosum, which was paralleled by reduced numbers of activated microglia. During remyelination, postnatal LPS treatment enhanced early remyelination with a concomitant increase of mature oligodendrocytes. Furthermore, the postnatal LPS challenge impacts the phenotype of microglia since an elevated mRNA expression of microglia related genes such as TREM 2, CD11b, TNF-α, TGF-β1, HGF, FGF-2, and IGF-1 was found in these preconditioned mice during early demyelination. These data demonstrate that postnatal inflammation has long-lasting effects on microglia functions and modifies the course of demyelination and remyelination in adulthood.
Collapse
Affiliation(s)
- Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Favrais G, Tourneux P, Lopez E, Durrmeyer X, Gascoin G, Ramful D, Zana-Taieb E, Baud O. Impact of common treatments given in the perinatal period on the developing brain. Neonatology 2014; 106:163-72. [PMID: 25012048 DOI: 10.1159/000363492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Over the last decades, considerable progress has been made in the perinatal management of high-risk preterm neonates, changing the landscape of pathological conditions associated with neurological impairments. Major focal destructive lesions are now less common, and the predominant neuropathological lesion is diffuse white-matter damage in the most immature infants. Similarly, over the last few years, we have observed a trend towards a decrease in neurological impairment in the absence of treatments specifically aimed at neuroprotection. OBJECTIVES We examined whether recent changes in treatment strategies in perinatal care during the perinatal period could have had an indirect beneficial impact on the occurrence of brain lesions and their consequences. METHODS Thus, we reviewed the effects of the most common treatments administered during the perinatal period to the mother or to very preterm infants on brain damage and neurocognitive follow-up. RESULTS Antenatal steroids and exogenous surfactant are the two main treatments capable of leading to neuroprotection in very preterm infants. Randomized controlled trials are currently investigating the effects of inhaled nitric oxide and erythropoietin, while antenatal magnesium sulphate and caffeine are also likely to provide some neuroprotection, but this needs to be further investigated. Finally, other common treatments against pain, haemodynamic failure and patent ductus arteriosus have conflicting or no effects on the developing brain. CONCLUSION While specific neuroprotective drugs are still awaited, recent advances in perinatal care have been associated with an unexpected but significant decrease in the incidence of both severe brain lesions and neurological impairment.
Collapse
|
26
|
Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. J Neurosci 2013; 33:12041-51. [PMID: 23864690 DOI: 10.1523/jneurosci.0673-13.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Susceptibility and progression of brain injury in the newborn is closely associated with an exacerbated innate immune response, but the underlying mechanisms are often unclear. Toll-like receptors (TLRs) are important innate immune sensors that may influence the vulnerability of the developing brain. In the current study, we provide novel data to show that activation of the viral innate immune receptor TLR-3 sensitizes the neonatal brain to subsequent hypoxic-ischemic (HI) damage. Poly inosinic:poly cytidylic acid (Poly I:C), a synthetic ligand for TLR-3, was administered to neonatal mice 14 h before cerebral HI. Activation of TLR-3 before HI increased infarct volume from 3.0 ± 0.5 to 15.4 ± 2.1 mm³ and augmented loss of myelin basic protein from 13.4 ± 6.0 to 70.6 ± 5.3%. The sensitizing effect of Poly I:C was specific for the TLR-3 pathway because mice deficient in the TLR-3 adaptor protein Toll/IL-1R domain-containing adaptor molecule-1 (TRIF) did not develop larger brain damage. The increased vulnerability was associated with a TRIF-dependent heightened inflammatory response, including proinflammatory cytokines, chemokines, and the apoptosis-associated mediator Fas, whereas there was a decrease in reparative M2-like CD11b⁺ microglia and phosphorylation of Akt. Because TLR-3 is activated via double-stranded RNA during most viral infections, the present study provides evidence that viral infections during pregnancy or in the neonate could have great impact on subsequent HI brain injury.
Collapse
|
27
|
Abstract
OBJECTIVE To investigate the link between infection-related risk factors for cerebral palsy subtypes in children born at term. METHODS A case-control study was performed in a population-based series of children with cerebral palsy born at term (n=309) matched with a control group (n=618). The cases were divided into cerebral palsy subtypes: spastic hemiplegia, spastic diplegia, spastic tetraplegia, and dyskinetic cerebral palsy. All forms of spastic cerebral palsy were also analyzed together. All records were examined for maternal and neonatal signs of infection. Univariate and adjusted analyses were performed. RESULTS Infection-related risk factors were shown to be independent risk factors for spastic cerebral palsy in the adjusted analyses. This was especially pronounced in the subgroup with spastic hemiplegia in which bacterial growth in urine during pregnancy (n=11 [7.5%], odds ratio [OR] 4.7, 95% confidence interval [CI] 1.5-15.2), any infectious disease during pregnancy (n=57 [39.0%], OR 2.9, 95% CI 1.7-4.8), severe infection during pregnancy (n=12 [8.2%], OR 15.4, 95% CI 3.0-78.1), antibiotic therapy once during pregnancy (n=33 [22.6%], OR 6.3, 95% CI 3.0-15.2) as well as several times during pregnancy (n=9 [6.2%], OR 15.6, 95% CI 1.8-134.2) constituted strong independent risk factors. However, only neonatal infection (n=11 [9.1%], OR 14.7, 95% CI 1.7-126.5) was independently significantly associated with an increased risk of spastic diplegia and tetraplegia. CONCLUSIONS Infection-related factors are strong independent risk factors for the subgroup with spastic hemiplegia in children with cerebral palsy born at term. The finding is less pronounced in the subgroups with spastic diplegia or tetraplegia. LEVEL OF EVIDENCE II.
Collapse
|
28
|
Degos V, Peineau S, Nijboer C, Kaindl AM, Sigaut S, Favrais G, Plaisant F, Teissier N, Gouadon E, Lombet A, Saliba E, Collingridge GL, Maze M, Nicoletti F, Heijnen C, Mantz J, Kavelaars A, Gressens P. G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. Ann Neurol 2013; 73:667-78. [PMID: 23494575 DOI: 10.1002/ana.23868] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 01/03/2013] [Accepted: 02/05/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The concept of inflammation-induced sensitization is emerging in the field of perinatal brain injury, stroke, Alzheimer disease, and multiple sclerosis. However, mechanisms underpinning this process remain unidentified. METHODS We combined in vivo systemic lipopolysaccharide-induced or interleukin (IL)-1β-induced sensitization of neonatal and adult rodent cortical neurons to excitotoxic neurodegeneration with in vitro IL-1β sensitization of human and rodent neurons to excitotoxic neurodegeneration. Within these inflammation-induced sensitization models, we assessed metabotropic glutamate receptors (mGluR) signaling and regulation. RESULTS We demonstrate for the first time that group I mGluRs mediate inflammation-induced sensitization to neuronal excitotoxicity in neonatal and adult neurons across species. Inflammation-induced G protein-coupled receptor kinase 2 (GRK2) downregulation and genetic deletion of GRK2 mimicked the sensitizing effect of inflammation on excitotoxic neurodegeneration. Thus, we identify GRK2 as a potential molecular link between inflammation and mGluR-mediated sensitization. INTERPRETATION Collectively, our findings indicate that inflammation-induced sensitization is universal across species and ages and that group I mGluRs and GRK2 represent new avenues for neuroprotection in perinatal and adult neurological disorders.
Collapse
|
29
|
Robertson NJ, Faulkner S, Fleiss B, Bainbridge A, Andorka C, Price D, Powell E, Lecky-Thompson L, Thei L, Chandrasekaran M, Hristova M, Cady EB, Gressens P, Golay X, Raivich G. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 2012. [PMID: 23183236 DOI: 10.1093/brain/aws285] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite treatment with therapeutic hypothermia, almost 50% of infants with neonatal encephalopathy still have adverse outcomes. Additional treatments are required to maximize neuroprotection. Melatonin is a naturally occurring hormone involved in physiological processes that also has neuroprotective actions against hypoxic-ischaemic brain injury in animal models. The objective of this study was to assess neuroprotective effects of combining melatonin with therapeutic hypothermia after transient hypoxia-ischaemia in a piglet model of perinatal asphyxia using clinically relevant magnetic resonance spectroscopy biomarkers supported by immunohistochemistry. After a quantified global hypoxic-ischaemic insult, 17 newborn piglets were randomized to the following: (i) therapeutic hypothermia (33.5°C from 2 to 26 h after resuscitation, n = 8) and (ii) therapeutic hypothermia plus intravenous melatonin (5 mg/kg/h over 6 h started at 10 min after resuscitation and repeated at 24 h, n = 9). Cortical white matter and deep grey matter voxel proton and whole brain (31)P magnetic resonance spectroscopy were acquired before and during hypoxia-ischaemia, at 24 and 48 h after resuscitation. There was no difference in baseline variables, insult severity or any physiological or biochemical measure, including mean arterial blood pressure and inotrope use during the 48 h after hypoxia-ischaemia. Plasma levels of melatonin were 10 000 times higher in the hypothermia plus melatonin than hypothermia alone group. Melatonin-augmented hypothermia significantly reduced the hypoxic-ischaemic-induced increase in the area under the curve for proton magnetic resonance spectroscopy lactate/N-acetyl aspartate and lactate/total creatine ratios in the deep grey matter. Melatonin-augmented hypothermia increased levels of whole brain (31)P magnetic resonance spectroscopy nucleotide triphosphate/exchangeable phosphate pool. Correlating with improved cerebral energy metabolism, TUNEL-positive nuclei were reduced in the hypothermia plus melatonin group compared with hypothermia alone in the thalamus, internal capsule, putamen and caudate, and there was reduced cleaved caspase 3 in the thalamus. Although total numbers of microglia were not decreased in grey or white matter, expression of the prototypical cytotoxic microglial activation marker CD86 was decreased in the cortex at 48 h after hypoxia-ischaemia. The safety and improved neuroprotection with a combination of melatonin with cooling support phase II clinical trials in infants with moderate and severe neonatal encephalopathy.
Collapse
Affiliation(s)
- Nicola J Robertson
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1E 6AU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cerebral palsy is caused by injury or developmental disturbances to the immature brain and leads to substantial motor, cognitive, and learning deficits. In addition to developmental disruption associated with the initial insult to the immature brain, injury processes can persist for many months or years. We suggest that these tertiary mechanisms of damage might include persistent inflammation and epigenetic changes. We propose that these processes are implicit in prevention of endogenous repair and regeneration and predispose patients to development of future cognitive dysfunction and sensitisation to further injury. We suggest that treatment of tertiary mechanisms of damage might be possible by various means, including preventing the repressive effects of microglia and astrocyte over-activation, recapitulating developmentally permissive epigenetic conditions, and using cell therapies to stimulate repair and regeneration Recognition of tertiary mechanisms of damage might be the first step in a complex translational task to tailor safe and effective therapies that can be used to treat the already developmentally disrupted brain long after an insult.
Collapse
|
31
|
Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2012; 71:444-57. [PMID: 22334391 DOI: 10.1002/ana.22620] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/05/2011] [Accepted: 07/15/2011] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being of both physiological and pathological importance in the immature brain. The rationale of this review is to present an update on this topic with focus on long-term consequences of inflammation during childhood and in adults. The immature brain can be exposed to inflammation in connection with viral or bacterial infection during pregnancy or as a result of sterile central nervous system (CNS) insults. Through efficient anti-inflammatory and reparative processes, inflammation may resolve without any harmful effects on the brain. Alternatively, inflammation contributes to injury or enhances CNS vulnerability. Acute inflammation can also be shifted to a chronic inflammatory state and/or adversely affect brain development. Hypothetically, microglia are the main immunocompetent cells in the immature CNS, and depending on the stimulus, molecular context, and timing, these cells will acquire various phenotypes, which will be critical regarding the CNS consequences of inflammation. Inflammation has long-term consequences and could speculatively modify the risk of a variety of neurological disorders, including cerebral palsy, autism spectrum disorders, schizophrenia, multiple sclerosis, cognitive impairment, and Parkinson disease. So far, the picture is incomplete, and data mostly experimental. Further studies are required to strengthen the associations in humans and to determine whether novel therapeutic interventions during the perinatal period can influence the occurrence of neurological disease later in life.
Collapse
Affiliation(s)
- Henrik Hagberg
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sweden.
| | | | | |
Collapse
|
32
|
Favrais G, van de Looij Y, Fleiss B, Ramanantsoa N, Bonnin P, Stoltenburg-Didinger G, Lacaud A, Saliba E, Dammann O, Gallego J, Sizonenko S, Hagberg H, Lelièvre V, Gressens P. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol 2011; 70:550-65. [PMID: 21796662 DOI: 10.1002/ana.22489] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Perinatal inflammation is a major risk factor for neurological deficits in preterm infants. Several experimental studies have shown that systemic inflammation can alter the programming of the developing brain. However, these studies do not offer detailed pathophysiological mechanisms, and they rely on relatively severe infectious or inflammatory stimuli that most likely do not reflect the levels of systemic inflammation observed in many human preterm infants. The goal of the present study was to test the hypothesis that moderate systemic inflammation is sufficient to alter white matter development. METHODS Newborn mice received twice-daily intraperitoneal injections of interleukin-1β (IL-1β) over 5 days and were studied for myelination, oligodendrogenesis, and behavior and with magnetic resonance imaging (MRI). RESULTS Mice exposed to IL-1β had a long-lasting myelination defect that was characterized by an increased number of nonmyelinated axons. They also displayed a reduction of the diameter of the myelinated axons. In addition, IL-1β induced a significant reduction of the density of myelinating oligodendrocytes accompanied by an increased density of oligodendrocyte progenitors, suggesting a partial blockade in the oligodendrocyte maturation process. Accordingly, IL-1β disrupted the coordinated expression of several transcription factors known to control oligodendrocyte maturation. These cellular and molecular abnormalities were correlated with a reduced white matter fractional anisotropy on diffusion tensor imaging and with memory deficits. INTERPRETATION Moderate perinatal systemic inflammation alters the developmental program of the white matter. This insult induces a long-lasting myelination deficit accompanied by cognitive defects and MRI abnormalities, further supporting the clinical relevance of the present data.
Collapse
Affiliation(s)
- Géraldine Favrais
- INSERM U676, Denis Diderot Faculty of Medicine, University of Paris 7, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Systemic stimulation of TLR2 impairs neonatal mouse brain development. PLoS One 2011; 6:e19583. [PMID: 21573120 PMCID: PMC3089625 DOI: 10.1371/journal.pone.0019583] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 04/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development. METHODOLOGY/PRINCIPAL FINDINGS Mice were injected intraperitoneally (i.p.) once a day from postnatal day (PND) 3 to PND11 with endotoxin-free saline, a TLR2 agonist Pam(3)CSK(4) (5 mg/kg) or Lipopolysaccharide (LPS, 0.3 mg/kg). Pups were sacrificed at PND12 or PND53 and brain, spleen and liver were collected and weighed. Brain sections were stained for brain injury markers. Long-term effects on memory function were assessed using the Trace Fear Conditioning test at PND50. After 9 days of Pam(3)CSK(4) administration, we found a decreased volume of cerebral gray matter, white matter in the forebrain and cerebellar molecular layer that was accompanied by an increase in spleen and liver weight at PND12. Such effects were not observed in Pam3CSK4-treated TLR 2-deficient mice. Pam3CSK4-treated mice also displayed decreased hippocampus neuronal density, and increased cerebral microglia density, while there was no effect on caspase-3 or general cell proliferation at PND12. Significantly elevated levels of IL-1β, IL-6, KC, and MCP-1 were detected after the first Pam3CSK4 injection in brain homogenates of PND3 mice. Pam(3)CSK(4) administration did not affect long-term memory function nor the volume of gray or white matter. CONCLUSIONS/SIGNIFICANCE Repeated systemic exposure to the TLR2 agonist Pam(3)CSK(4) can have a short-term negative impact on the neonatal mouse brain.
Collapse
|
34
|
Hellström NA, Lindberg OR, Ståhlberg A, Swanpalmer J, Pekny M, Blomgren K, Kuhn HG. Unique gene expression patterns indicate microglial contribution to neural stem cell recovery following irradiation. Mol Cell Neurosci 2011; 46:710-9. [DOI: 10.1016/j.mcn.2011.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 01/07/2011] [Accepted: 02/01/2011] [Indexed: 12/15/2022] Open
|
35
|
Dudás J, Bitsche M, Schartinger V, Falkeis C, Sprinzl GM, Riechelmann H. Fibroblasts produce brain-derived neurotrophic factor and induce mesenchymal transition of oral tumor cells. Oral Oncol 2010; 47:98-103. [PMID: 21147546 PMCID: PMC3042593 DOI: 10.1016/j.oraloncology.2010.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 12/28/2022]
Abstract
Fibroblasts (Fibs) contribution to neoplastic progression, tumor growth, angiogenesis, and metastasis has been recently reported by several research groups. In this study it was investigated if fibroblasts are the source of brain-derived neurotrophic factor (BDNF), which plays a crucial role in the progression of oral squamous cell carcinoma. In a novel in vitro system oral Fibs were cultured with SCC-25 lingual squamous cell carcinoma cells for 7days. Factors related with this interaction were investigated by quantitative PCR and western blot. In the co-culture, fibroblasts were converted to carcinoma-associated fibroblasts (CAFs), which in return initiated epithelial-mesenchymal transition (EMT) of SCC-25 cells. The induced CAFs produced increased levels of BDNF, which interacted with the increased-expressed neurothrophin receptor B (TrkB) on EMT-converted SCC-25 cells. Possible regulatory factors of BDNF expression (tumor necrosis factor-α and interleukin-1-β) were detected both in CAFs and EMT-tumor cells. In CAFs: IL-1β-, in SCC-25 cells TNF-α-gene-expression was significantly increased in co-culture conditions. Activated fibroblasts (CAFs) and mesenchymal transitioned tumor cells might use the BDNF-TrkB axis and its regulation to harmonize their interaction in the process of tumor progression.
Collapse
Affiliation(s)
- József Dudás
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
36
|
Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 2010; 24:776-83. [PMID: 19903519 DOI: 10.1016/j.bbi.2009.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 02/06/2023] Open
Abstract
Although the role of microglial activation in neural injury remains controversial, there is increasing evidence for a detrimental effect in the immature brain, which may occur in response to release of neurotoxic substances including pro-inflammatory cytokines. However, the signaling mechanisms involved in microglial-induced neuronal cell death are unclear. Microglia isolated from the brains of wild-type (WT) or MyD88 knockout (KO) mice were exposed to PBS or the TLR4-ligand LPS (100 ng/mL) for 2, 6, 14, or 24 h, and the microglia-conditioned medium (MCM) collected. Detection of multiple inflammatory molecules in MCM was performed using a mouse 22-plex cytokine microbead array kit. Primary neuronal cultures were supplemented with the 14 or 24 h MCM, and the degree of neuronal apoptosis examined after exposure for 24 h. Results showed a rapid and sustained elevation in multiple inflammatory mediators in the MCM of WT microglia exposed to LPS, which was largely inhibited in MyD88 KO microglia. There was a significant increase in apoptotic death measured at 24 h in cultured neurons exposed to CM from either 14 or 24 h LPS-stimulated WT microglia (p<.05 vs. WT control). By contrast, there was no increase in apoptotic death in cultured neurons exposed to CM from 14 or 24 h LPS-stimulated MyD88 KO microglia (p=.15 vs. MyD88 KO control). These data suggest that MyD88-dependent activation of microglia by LPS causes release of factors directly toxic to neurons.
Collapse
|
37
|
Adén U, Favrais G, Plaisant F, Winerdal M, Felderhoff-Mueser U, Lampa J, Lelièvre V, Gressens P. Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFalpha pathway and protection by etanercept. Brain Behav Immun 2010; 24:747-58. [PMID: 19861157 DOI: 10.1016/j.bbi.2009.10.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022] Open
Abstract
Systemic inflammation sensitizes the perinatal brain to an ischemic/excitotoxic insult but the mechanisms are poorly understood. We hypothesized that the mechanisms involve an imbalance between pro- and anti-inflammatory factors. A well characterized mouse model where a systemic injection of IL-1beta during the first five postnatal days (inflammatory insult) is combined with an intracerebral injection of the glutamatergic analogue ibotenate (excitotoxic insult) at postnatal day 5 was used. Following the inflammatory insult alone, there was a transient induction of IL-1beta and TNFalpha, compared with controls measured by quantitative PCR, ELISA, and Western blot. Following the combined inflammatory and excitotoxic insult, there was an induction of IL-1beta, TNFalpha, and IL-6 but not of IL-10 and TNFR1, indicating an altered pro-/anti-inflammatory balance after IL-1beta sensitized lesion. We then tested the hypothesis that the TNFalpha pathway plays a key role in the sensitization and insult using TNFalpha blockade (etanercept) and TNFalpha(-/-) mice. Etanercept given before the insult did not affect brain damage, but genetic deletion of TNFalpha or TNFalpha blockade by etanercept given after the combined inflammatory and excitotoxic insult reduced brain damage by 50%. We suggest this protective effect was centrally mediated, since systemic TNFalpha administration in the presence of an intact blood-brain barrier did not aggravate the damage and etanercept almost abolished cerebral TNFalpha production. In summary, sensitization was, at least partly, mediated by an imbalance between pro- and anti-inflammatory cytokines. Cerebral TNFalpha played a key role in mediating brain damage after the combined inflammatory and excitatory insult.
Collapse
|
38
|
Inflammation processes in perinatal brain damage. J Neural Transm (Vienna) 2010; 117:1009-17. [PMID: 20473533 DOI: 10.1007/s00702-010-0411-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/18/2010] [Indexed: 12/15/2022]
Abstract
Once viewed as an isolated, immune-privileged organ, the central nervous system has undergone a conceptual change. Neuroinflammation has moved into the focus of research work regarding pathomechanisms underlying perinatal brain damage. In this review, we provide an overview of current concepts regarding perinatal brain damage and the role of inflammation in the disease pathomechanism.
Collapse
|
39
|
Neuroprotective effects vary across nonsteroidal antiinflammatory drugs in a mouse model of developing excitotoxic brain injury. Neuroscience 2010; 167:716-23. [PMID: 20188153 DOI: 10.1016/j.neuroscience.2010.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/26/2010] [Accepted: 02/18/2010] [Indexed: 11/23/2022]
Abstract
Glutamate excitotoxicity is among the main cellular mechanisms leading to perinatal insults in human newborns. We used intracerebral injection of the glutamatergic glutamate N-methyl-D-aspartate-receptor agonist ibotenate to produce excitotoxic lesions mimicking the acquired white matter lesions seen in human preterm infants. We evaluated whether nonsteroidal antiinflammatory drugs (NSAIDs) protected against glutamate excitotoxicity. Aspirin (0.01-100 microg/d), indomethacin (0.1-10 microg/d), paracetamol (10-100 microg/d), or NS-398 (12.5 microg/d) was given daily before ibotenate (P1 to P5) or after ibotenate (P5 to P9). Lesion size was measured on Cresyl Violet-stained brain sections collected on P10. None of the drugs tested alone or in combination increased lesion size. Pretreatment with low- or high-dose aspirin and post-treatment with paracetamol or NS-398 protected against white matter lesions, whereas cortical lesions were decreased by pretreatment with low- or high-dose aspirin or post-treatment with NS-398. The corticosteroid betamethasone (0.18 microg/d) was neuroprotective when given before or after ibotenate and this effect was reversed by concomitant aspirin therapy (10 microg/d). In conclusion, perinatal NSAID administration may have beneficial effects on brain injury if appropriately timed.
Collapse
|
40
|
Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, Eriksson K, Hagberg H, Mallard C. Lipopolysaccharide Sensitizes Neonatal Hypoxic-Ischemic Brain Injury in a MyD88-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2009; 183:7471-7. [DOI: 10.4049/jimmunol.0900762] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Degos V, Teissier N, Gressens P, Puybasset L, Mantz J. [Inflammation and acute brain injuries in intensive care]. ACTA ACUST UNITED AC 2008; 27:1008-15. [PMID: 19010639 DOI: 10.1016/j.annfar.2008.07.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022]
Abstract
Patients with acute brain injuries or susceptibility to post-surgery stroke are a major therapeutic challenge for intensive care and anaesthesiology medicine. The control of systemic stress involved in brain damage is necessary to reduce the frequency and severity of secondary brain lesions. Inflammation is known to be directly involved in acute brain lesions. The brain is a major participant in inflammation control through activation or inhibition effects. The exact mechanisms involved in deleterious effects following acute brain injuries due to inflammation are still unknown. This non-exhaustive study will expose the principal processes involved in inflammatory brain disease and explain the consequences of peripheral inflammation for the brain. Neuroprotection strategies in acute neuroinflammation will be reported with a focus on anaesthetic agents and the inflammation cascade.
Collapse
Affiliation(s)
- V Degos
- Unité Inserm U676, hôpital Robert-Debré, 48, boulevard Serrurier, 75019 Paris, France.
| | | | | | | | | |
Collapse
|
42
|
Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 2008; 28:9451-62. [PMID: 18799677 DOI: 10.1523/jneurosci.2674-08.2008] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Systemic inflammatory events, such as infection, increase the risk of stroke and are associated with worse outcome, but the mediators of this clinically important effect are unknown. Our aim here was to elucidate mechanisms contributing to the detrimental effects of systemic inflammation on mild ischemic brain injury in mice. Systemic inflammation was induced in mice by peripheral interleukin-1beta (IL-1beta) challenge and focal cerebral ischemia by transient middle cerebral artery occlusion (MCAo). Systemic inflammation caused an alteration in the kinetics of blood-brain barrier (BBB) disruption through conversion of a transient to a sustained disruption of the tight junction protein, claudin-5, and also markedly exacerbated disruption to the cerebrovascular basal lamina protein, collagen-IV. These alterations were associated with a systemic inflammation-induced increase in neurovascular gelatinolytic activity that was mediated by a fivefold increase in neutrophil-derived matrix metalloproteinase-9 (MMP-9) in the brains of IL-1beta-challenged mice after MCAo. Specific inhibition of MMP-9 abrogated the effects of systemic inflammation on the sustained but not the acute disruption of claudin-5, which was associated with phosphorylation of cerebrovascular myosin light chain. MMP-9 inhibition also attenuated the deleterious impact of systemic inflammation on brain damage, edema, neurological deficit, and incidence of hemorrhagic transformation. These data indicate that a transformation from transient to sustained BBB disruption caused by enhanced neutrophil-derived neurovascular MMP-9 activity is a critical mechanism underlying the exacerbation of ischemic brain injury by systemic inflammation. These mechanisms may contribute to the poor clinical outcome in stroke patients presenting with antecedent infection.
Collapse
|
43
|
McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 2008; 158:1049-61. [PMID: 18789376 DOI: 10.1016/j.neuroscience.2008.08.019] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/16/2022]
Abstract
Extensive evidence implicates inflammation in multiple phases of stroke etiology and pathology. In particular, there is growing awareness that inflammatory events outside the brain have an important impact on stroke susceptibility and outcome. Numerous conditions, including infection and chronic non-infectious diseases, that are established risk factors for stroke are associated with an elevated systemic inflammatory profile. Recent clinical and pre-clinical studies support the concept that the systemic inflammatory status prior to and at the time of stroke is a key determinant of acute outcome and long-term prognosis. Here, we provide an overview of the impact of systemic inflammation on stroke susceptibility and outcome. We discuss potential mechanisms underlying the impact on ischemic brain injury and highlight the implications for stroke prevention, therapy and modeling.
Collapse
Affiliation(s)
- B W McColl
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
44
|
Degos V, Loron G, Mantz J, Gressens P. Neuroprotective Strategies for the Neonatal Brain. Anesth Analg 2008; 106:1670-80. [DOI: 10.1213/ane.0b013e3181733f6f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Keller M, Griesmaier E, Auer M, Schlager G, Urbanek M, Simbruner G, Gressens P, Sárközy G. Dextromethorphan is protective against sensitized N-methyl-d-aspartate receptor-mediated excitotoxic brain damage in the developing mouse brain. Eur J Neurosci 2008; 27:874-83. [DOI: 10.1111/j.1460-9568.2008.06062.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Favrais G, Couvineau A, Laburthe M, Gressens P, Lelievre V. Involvement of VIP and PACAP in neonatal brain lesions generated by a combined excitotoxic/inflammatory challenge. Peptides 2007; 28:1727-37. [PMID: 17683829 DOI: 10.1016/j.peptides.2007.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 02/08/2023]
Abstract
Several reports have highlighted the potential roles for the VIP-related neuropeptides in regeneration/neuroprotection after brain or nerve injuries. We previously reported that peripheral inflammation worsened ibotenate-induced cystic white matter lesions. Because VIP is also known as an immunomodulator, we wonder if VIP could also limit the deleterious effects of local inflammation. Therefore, we first tested the effects of peripheral IL-1beta on VIP and PACAP central production. Second, we observed that cox-2 activation by IL-1beta was essential to generate changes in ligand/receptor gene expression. We further tested whether the intraperitoneal injection of IL-1beta, known to aggravate the ibotenate-induced lesions, could modify the expression pattern of VIP-related genes. Finally, we concluded using histological analysis that VIP[ala(11,22,28)], a synthetic VPAC(1) agonist completely reversed the aggravating effects of IL-1beta on ibotenate-induced lesions of the periventricular white matter. Conversely, VIP-neurotensin hybrid, a nonselective VIP receptor antagonist, worsened the lesions. All together, our results suggest that an activation of VIP/VPAC(1) signaling cascade in the vicinity of the injury site could circumvent the synergizing degenerative effects of ibotenate and pro-inflammatory cytokines. Therefore, development of therapeutic tools inducing/sustaining the activation of VIP/VPAC(1) signaling cascade may lead to future preventive treatments for inflammatory conditions during pregnancy.
Collapse
Affiliation(s)
- Geraldine Favrais
- Inserm U676, hôpital Robert-Debré, 48, boulevard Sérurier, 75019 Paris, France
| | | | | | | | | |
Collapse
|
47
|
Wolfberg AJ, Dammann O, Gressens P. Anti-inflammatory and immunomodulatory strategies to protect the perinatal brain. Semin Fetal Neonatal Med 2007; 12:296-302. [PMID: 17418653 DOI: 10.1016/j.siny.2007.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Infection and inflammation contribute to perinatal brain damage, particularly to the white matter. Although combating perinatal inflammation can be dangerous, because inflammation might have beneficial effects for mother and fetus, it is worthwhile reviewing potential anti-inflammatory neuroprotective compounds, along with their potential adverse effects. Further research on the possible neuroprotective roles of existing medications and substances is necessary.
Collapse
Affiliation(s)
- Adam J Wolfberg
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Tufts New England Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
48
|
Saliba E, Favrais G, Gressens P. Neuroprotection of the newborn: from bench to cribside. Semin Fetal Neonatal Med 2007; 12:239-40. [PMID: 17368121 DOI: 10.1016/j.siny.2007.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|