1
|
Murray SJ, Wellby MP, Barrell GK, Russell KN, Deane AR, Wynyard JR, Gray SJ, Palmer DN, Mitchell NL. Efficacy of dual intracerebroventricular and intravitreal CLN5 gene therapy in sheep prompts the first clinical trial to treat CLN5 Batten disease. Front Pharmacol 2023; 14:1212235. [PMID: 37942487 PMCID: PMC10628725 DOI: 10.3389/fphar.2023.1212235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
Mutations in the CLN5 gene cause the fatal, pediatric, neurodegenerative disease CLN5 neuronal ceroid lipofuscinosis. Affected children suffer progressive neuronal loss, visual failure and premature death. Presently there is no treatment. This study evaluated dual intracerebroventricular (ICV) and intravitreal (IVT) administration of a self-complementary adeno-associated viral vector encoding ovine CLN5 (scAAV9/oCLN5) into CLN5 affected sheep (CLN5-/-) at various disease stages. CLN5 disease progression was slowed in pre-symptomatic sheep who received a moderate dose of scAAV9/oCLN5, whilst a higher ICV dose treatment in early and advanced symptomatic animals delayed or halted disease progression. Intracranial (brain) volume loss was attenuated in all treatment cohorts, and visual function was also sustained in both the early and advanced symptomatic treated sheep over the 24-month duration of the study. Robust CLN5 protein expression was detected throughout the brain and spinal cord, and improvements in central nervous system and retinal disease correlates were observed. These findings hold translational promise for extending and improving the quality of life in both pre-symptomatic and symptomatic CLN5 patients, and prompted the initiation of the first in-human Phase I/II clinical trial testing ICV/IVT administration of scAAV9 encoding human CLN5 (https://clinicaltrials.gov/; NCT05228145).
Collapse
Affiliation(s)
- Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Martin P. Wellby
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Graham K. Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Katharina N. Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Ashley R. Deane
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - John R. Wynyard
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Signoria I, van der Pol WL, Groen EJN. Innovating spinal muscular atrophy models in the therapeutic era. Dis Model Mech 2023; 16:dmm050352. [PMID: 37787662 PMCID: PMC10565113 DOI: 10.1242/dmm.050352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, monogenetic, neuromuscular disease. A thorough understanding of its genetic cause and the availability of robust models has led to the development and approval of three gene-targeting therapies. This is a unique and exciting development for the field of neuromuscular diseases, many of which remain untreatable. The development of therapies for SMA not only opens the door to future therapeutic possibilities for other genetic neuromuscular diseases, but also informs us about the limitations of such treatments. For example, treatment response varies widely and, for many patients, significant disability remains. Currently available SMA models best recapitulate the severe types of SMA, and these models are genetically and phenotypically more homogeneous than patients. Furthermore, treating patients is leading to a shift in phenotypes with increased variability in SMA clinical presentation. Therefore, there is a need to generate model systems that better reflect these developments. Here, we will first discuss current animal models of SMA and their limitations. Next, we will discuss the characteristics required to future-proof models to assist the field in the development of additional, novel therapies for SMA.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Ewout J. N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
3
|
Mitchell NL, Murray SJ, Wellby MP, Barrell GK, Russell KN, Deane AR, Wynyard JR, Palmer MJ, Pulickan A, Prendergast PM, Casy W, Gray SJ, Palmer DN. Long-term safety and dose escalation of intracerebroventricular CLN5 gene therapy in sheep supports clinical translation for CLN5 Batten disease. Front Genet 2023; 14:1212228. [PMID: 37614821 PMCID: PMC10442658 DOI: 10.3389/fgene.2023.1212228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
CLN5 neuronal ceroid lipofuscinosis (NCL, Batten disease) is a rare, inherited fatal neurodegenerative disorder caused by mutations in the CLN5 gene. The disease is characterised by progressive neuronal loss, blindness, and premature death. There is no cure. This study evaluated the efficacy of intracerebroventricular (ICV) delivery of an adeno-associated viral vector encoding ovine CLN5 (scAAV9/oCLN5) in a naturally occurring sheep model of CLN5 disease. CLN5 affected (CLN5-/-) sheep received low, moderate, or high doses of scAAV9/oCLN5 at three disease stages. The treatment delayed disease progression, extended survival and slowed stereotypical brain atrophy in most animals. Of note, one high dose treated animal only developed mild disease symptomology and survived to 60.1 months of age, triple the natural life expectancy of an untreated CLN5-/- sheep. Eyesight was not preserved at any administration age or dosage. Histopathologic examination revealed that greater transduction efficiency was achieved through higher ICV doses, and this resulted in greater amelioration of disease pathology. Together with other pre-clinical data from CLN5-/- sheep, the safety and efficacy data from these investigational new drug (IND)-enabling studies supported the initiation of the first in-human CLN5 gene therapy clinical study using the ICV delivery route for the treatment of CLN5 NCL. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT05228145.
Collapse
Affiliation(s)
- Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Martin P. Wellby
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Graham K. Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Katharina N. Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Ashley R. Deane
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - John R. Wynyard
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Madeleine J. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Anila Pulickan
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | | | - Widler Casy
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
4
|
Swier VJ, White KA, Johnson TB, Wang X, Han J, Pearce DA, Singh R, Drack AV, Pfeifer W, Rogers CS, Brudvig JJ, Weimer JM. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis Model Mech 2023; 16:dmm050038. [PMID: 37305926 PMCID: PMC10434985 DOI: 10.1242/dmm.050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Jimin Han
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David A. Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruchira Singh
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Institute for Vision Research, Iowa City, IA 52242, USA
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
5
|
Mitchell NL, Russell KN, Barrell GK, Tammen I, Palmer DN. Characterization of neuropathology in ovine CLN5 and CLN6 neuronal ceroid lipofuscinoses (Batten disease). Dev Neurobiol 2023; 83:127-142. [PMID: 37246363 DOI: 10.1002/dneu.22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/26/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Sheep with naturally occurring CLN5 and CLN6 forms of neuronal ceroid lipofuscinoses (Batten disease) share the key clinical features of the human disease and represent an ideal model system in which the clinical efficacy of gene therapies is developed and test. However, it was first important to characterize the neuropathological changes that occur with disease progression in affected sheep. This study compared neurodegeneration, neuroinflammation, and lysosomal storage accumulation in CLN5 affected Borderdale, CLN6 affected South Hampshire, and Merino sheep brains from birth to end-stage disease at ≤24 months of age. Despite very different gene products, mutations, and subcellular localizations, the pathogenic cascade was remarkably similar for all three disease models. Glial activation was present at birth in affected sheep and preceded neuronal loss, with both spreading from the visual and parieto-occipital cortices most prominently associated with clinical symptoms to the entire cortical mantle by end-stage disease. In contrast, the subcortical regions were less involved, yet lysosomal storage followed a near-linear increase across the diseased sheep brain with age. Correlation of these neuropathological changes with published clinical data identified three potential therapeutic windows in affected sheep-presymptomatic (3 months), early symptomatic (6 months), and a later symptomatic disease stage (9 months of age)-beyond which the extensive depletion of neurons was likely to diminish any chance of therapeutic benefit. This comprehensive natural history of the neuropathological changes in ovine CLN5 and CLN6 disease will be integral in determining what impact treatment has at each of these disease stages.
Collapse
Affiliation(s)
- Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Katharina N Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Imke Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
6
|
Nittari G, Tomassoni D, Roy P, Martinelli I, Tayebati SK, Amenta F. Batten disease through different in vivo and in vitro models: A review. J Neurosci Res 2023; 101:298-315. [PMID: 36434776 DOI: 10.1002/jnr.25147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Batten disease consists of a family of primarily autosomal recessive, progressive neuropediatric disorders, also known as neuronal ceroid lipofuscinoses (NCLs). These pathologies are characterized by seizures and visual, cognitive and motor decline, and premature death. The pathophysiology of this rare disease is still unclear despite the years of trials and financial aids. This paper has reviewed advantages and limits of in vivo and in vitro models of Batten disease from murine and larger animal models to primitive unicellular models, until the most recently developed patient-derived induced pluripotent stem cells. For each model advantages, limits and applications were analyzed. The first prototypes investigated were murine models that due to their limits were replaced by larger animals. In vitro models gradually replaced animal models for practical, cost, and ethical reasons. Using induced pluripotent stem cells to study neurodegeneration is a new way of studying the disease, since they can be distinguished into differentiating elements like neurons, which are susceptible to neurodegeneration. In vivo and in vitro models have contributed to clarifying to some extent the pathophysiology of the disease. The collection and sharing of suitable human bio samples likely through biobanks can contribute to a better understanding, prevention, and to identify possible treatment strategies of Batten disease.
Collapse
Affiliation(s)
- Giulio Nittari
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ilenia Martinelli
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| |
Collapse
|
7
|
Murray SJ, Almuqbel MM, Felton SA, Palmer NJ, Myall DJ, Shoorangiz R, Ella A, Keller M, Palmer DN, Melzer TR, Mitchell NL. Progressive MRI brain volume changes in ovine models of CLN5 and CLN6 neuronal ceroid lipofuscinosis. Brain Commun 2023; 5:fcac339. [PMID: 36632184 PMCID: PMC9830986 DOI: 10.1093/braincomms/fcac339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (Batten disease) are a group of inherited lysosomal storage disorders characterized by progressive neurodegeneration leading to motor and cognitive dysfunction, seizure activity and blindness. The disease can be caused by mutations in 1 of 13 ceroid lipofuscinosis neuronal (CLN) genes. Naturally occurring sheep models of the CLN5 and CLN6 neuronal ceroid lipofuscinoses recapitulate the clinical disease progression and post-mortem pathology of the human disease. We used longitudinal MRI to assess global and regional brain volume changes in CLN5 and CLN6 affected sheep compared to age-matched controls over 18 months. In both models, grey matter volume progressively decreased over time, while cerebrospinal fluid volume increased in affected sheep compared with controls. Total grey matter volume showed a strong positive correlation with clinical scores, while cerebrospinal fluid volume was negatively correlated with clinical scores. Cortical regions in affected animals showed significant atrophy at baseline (5 months of age) and progressively declined over the disease course. Subcortical regions were relatively spared with the exception of the caudate nucleus in CLN5 affected animals that degenerated rapidly at end-stage disease. Our results, which indicate selective vulnerability and provide a timeline of degeneration of specific brain regions in two sheep models of neuronal ceroid lipofuscinoses, will provide a clinically relevant benchmark for assessing therapeutic efficacy in subsequent trials of gene therapy for CLN5 and CLN6 disease.
Collapse
Affiliation(s)
- Samantha J Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Mustafa M Almuqbel
- Pacific Radiology Group, Christchurch 8014, New Zealand,New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | | | | | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - Reza Shoorangiz
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | | | - Matthieu Keller
- UMR Physiologie de la Reproduction & des Comportements, INRAE/CNRS/University of Tours, F-37380 Nouzilly, France
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | | | - Nadia L Mitchell
- Correspondence to: Nadia Mitchell Faculty of Agricultural and Life Sciences, PO Box 85084, Lincoln University Lincoln 7647, Canterbury, New Zealand E-mail:
| |
Collapse
|
8
|
Eaton SL, Murdoch F, Rzechorzek NM, Thompson G, Hartley C, Blacklock BT, Proudfoot C, Lillico SG, Tennant P, Ritchie A, Nixon J, Brennan PM, Guido S, Mitchell NL, Palmer DN, Whitelaw CBA, Cooper JD, Wishart TM. Modelling Neurological Diseases in Large Animals: Criteria for Model Selection and Clinical Assessment. Cells 2022; 11:cells11172641. [PMID: 36078049 PMCID: PMC9454934 DOI: 10.3390/cells11172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Issue: The impact of neurological disorders is recognised globally, with one in six people affected in their lifetime and few treatments to slow or halt disease progression. This is due in part to the increasing ageing population, and is confounded by the high failure rate of translation from rodent-derived therapeutics to clinically effective human neurological interventions. Improved translation is demonstrated using higher order mammals with more complex/comparable neuroanatomy. These animals effectually span this translational disparity and increase confidence in factors including routes of administration/dosing and ability to scale, such that potential therapeutics will have successful outcomes when moving to patients. Coupled with advancements in genetic engineering to produce genetically tailored models, livestock are increasingly being used to bridge this translational gap. Approach: In order to aid in standardising characterisation of such models, we provide comprehensive neurological assessment protocols designed to inform on neuroanatomical dysfunction and/or lesion(s) for large animal species. We also describe the applicability of these exams in different large animals to help provide a better understanding of the practicalities of cross species neurological disease modelling. Recommendation: We would encourage the use of these assessments as a reference framework to help standardise neurological clinical scoring of large animal models.
Collapse
Affiliation(s)
- Samantha L. Eaton
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| | - Fraser Murdoch
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Nina M. Rzechorzek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, 50 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Claudia Hartley
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Benjamin Thomas Blacklock
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Chris Proudfoot
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Simon G. Lillico
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Peter Tennant
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Adrian Ritchie
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - James Nixon
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stefano Guido
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Bioresearch & Veterinary Services, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - C. Bruce A. Whitelaw
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics, and Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Thomas M. Wishart
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| |
Collapse
|
9
|
Bartsch U, Storch S. Experimental Therapeutic Approaches for the Treatment of Retinal Pathology in Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:866983. [PMID: 35509995 PMCID: PMC9058077 DOI: 10.3389/fneur.2022.866983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of childhood-onset neurodegenerative lysosomal storage disorders mainly affecting the brain and the retina. In the NCLs, disease-causing mutations in 13 different ceroid lipofuscinoses genes (CLN) have been identified. The clinical symptoms include seizures, progressive neurological decline, deterioration of motor and language skills, and dementia resulting in premature death. In addition, the deterioration and loss of vision caused by progressive retinal degeneration is another major hallmark of NCLs. To date, there is no curative therapy for the treatment of retinal degeneration and vision loss in patients with NCL. In this review, the key findings of different experimental approaches in NCL animal models aimed at attenuating progressive retinal degeneration and the decline in retinal function are discussed. Different approaches, including experimental enzyme replacement therapy, gene therapy, cell-based therapy, and immunomodulation therapy were evaluated and showed encouraging therapeutic benefits. Recent experimental ocular gene therapies in NCL animal models with soluble lysosomal enzyme deficiencies and transmembrane protein deficiencies have shown the strong potential of gene-based approaches to treat retinal dystrophies in NCLs. In CLN3 and CLN6 mouse models, an adeno-associated virus (AAV) vector-mediated delivery of CLN3 and CLN6 to bipolar cells has been shown to attenuate the retinal dysfunction. Therapeutic benefits of ocular enzyme replacement therapies were evaluated in CLN2 and CLN10 animal models. Since brain-targeted gene or enzyme replacement therapies will most likely not attenuate retinal neurodegeneration, there is an unmet need for treatment options additionally targeting the retina in patients with NCL. The long-term benefits of these therapeutic interventions aimed at attenuating retinal degeneration and vision loss in patients with NCL remain to be investigated in future clinical studies.
Collapse
Affiliation(s)
- Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Storch
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Stephan Storch
| |
Collapse
|
10
|
Meiman EJ, Kick GR, Jensen CA, Coates JR, Katz ML. Characterization of neurological disease progression in a canine model of CLN5 neuronal ceroid lipofuscinosis. Dev Neurobiol 2022; 82:326-344. [PMID: 35427439 PMCID: PMC9119968 DOI: 10.1002/dneu.22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Golden Retriever dogs with a frameshift variant in CLN5 (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane‐like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.
Collapse
Affiliation(s)
- Elizabeth J. Meiman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| |
Collapse
|
11
|
Barry LA, Kay GW, Mitchell NL, Murray SJ, Jay NP, Palmer DN. Aggregation chimeras provide evidence of in vivo intercellular correction in ovine CLN6 neuronal ceroid lipofuscinosis (Batten disease). PLoS One 2022; 17:e0261544. [PMID: 35404973 PMCID: PMC9000108 DOI: 10.1371/journal.pone.0261544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are fatal, mainly childhood, inherited neurodegenerative lysosomal storage diseases. Sheep affected with a CLN6 form display progressive regionally defined glial activation and subsequent neurodegeneration, indicating that neuroinflammation may be causative of pathogenesis. In this study, aggregation chimeras were generated from homozygous unaffected normal and CLN6 affected sheep embryos, resulting in seven chimeric animals with varied proportions of normal to affected cells. These sheep were classified as affected-like, recovering-like or normal-like, based on their cell-genotype ratios and their clinical and neuropathological profiles. Neuropathological examination of the affected-like animals revealed intense glial activation, prominent storage body accumulation and severe neurodegeneration within all cortical brain regions, along with vision loss and decreasing intracranial volumes and cortical thicknesses consistent with ovine CLN6 disease. In contrast, intercellular communication affecting pathology was evident at both the gross and histological level in the normal-like and recovering-like chimeras, resulting in a lack of glial activation and rare storage body accumulation in only a few cells. Initial intracranial volumes of the recovering-like chimeras were below normal but progressively recovered to about normal by two years of age. All had normal cortical thicknesses, and none went blind. Extended neurogenesis was evident in the brains of all the chimeras. This study indicates that although CLN6 is a membrane bound protein, the consequent defect is not cell intrinsic. The lack of glial activation and inflammatory responses in the normal-like and recovering-like chimeras indicate that newly generated cells are borne into a microenvironment conducive to maturation and survival.
Collapse
Affiliation(s)
- Lucy Anne Barry
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Graham William Kay
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Nadia Lesley Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Department of Radiology, University of Otago, Christchurch, Canterbury, New Zealand
| | - Samantha Jane Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Nigel P. Jay
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - David Norris Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- Department of Radiology, University of Otago, Christchurch, Canterbury, New Zealand
- * E-mail:
| |
Collapse
|
12
|
Murray SJ, Mitchell NL. Natural history of retinal degeneration in ovine models of CLN5 and CLN6 neuronal ceroid lipofuscinoses. Sci Rep 2022; 12:3670. [PMID: 35256654 PMCID: PMC8901734 DOI: 10.1038/s41598-022-07612-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of inherited neurodegenerative diseases with a common set of symptoms including cognitive and motor decline and vision loss. Naturally occurring sheep models of CLN5 and CLN6 disease display the key clinical features of NCL, including a progressive loss of vision. We assessed retinal histology, astrogliosis, and lysosomal storage accumulation in CLN5 affected (CLN5-/-) and CLN6 affected (CLN6-/-) sheep eyes and age-matched controls at 3, 6, 12, and 18 months of age to determine the onset and progression of retinal pathology in NCL sheep. The retina of CLN5-/- sheep shows progressive atrophy of the outer retinal layers, widespread gliosis, and accumulation of lysosomal storage in retinal ganglion cells late in disease. In contrast, CLN6-/- retina shows significant atrophy of all retinal layers, progressive gliosis, and earlier accumulation of lysosomal storage. This study has highlighted the differential vulnerability of retinal layers and the time course of retinal atrophy in two distinct models of NCL disease. This data will be valuable in determining potential targets for ocular therapies and the optimal timing of these therapies for protection from retinal dysfunction and degeneration in NCL.
Collapse
Affiliation(s)
- S J Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln, Canterbury, 7647, New Zealand
| | - N L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln, Canterbury, 7647, New Zealand.
| |
Collapse
|
13
|
Murray SJ, Mitchell NL. The Translational Benefits of Sheep as Large Animal Models of Human Neurological Disorders. Front Vet Sci 2022; 9:831838. [PMID: 35242840 PMCID: PMC8886239 DOI: 10.3389/fvets.2022.831838] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
The past two decades have seen a considerable rise in the use of sheep to model human neurological disorders. While each animal model has its merits, sheep have many advantages over small animal models when it comes to studies on the brain. In particular, sheep have brains more comparable in size and structure to the human brain. They also have much longer life spans and are docile animals, making them useful for a wide range of in vivo studies. Sheep are amenable to regular blood and cerebrospinal fluid sampling which aids in biomarker discovery and monitoring of treatment efficacy. Several neurological diseases have been found to occur naturally in sheep, however sheep can also be genetically engineered or experimentally manipulated to recapitulate disease or injury. Many of these types of sheep models are currently being used for pre-clinical therapeutic trials, particularly gene therapy, with studies from several models culminating in potential treatments moving into clinical trials. This review will provide an overview of the benefits of using sheep to model neurological conditions, and highlight naturally occurring and experimentally induced sheep models that have demonstrated translational validity.
Collapse
Affiliation(s)
- Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|
14
|
Kick GR, Meiman EJ, Sabol JC, Whiting REH, Ota-Kuroki J, Castaner LJ, Jensen CA, Katz ML. Visual system pathology in a canine model of CLN5 neuronal ceroid lipofuscinosis. Exp Eye Res 2021; 210:108686. [PMID: 34216614 PMCID: PMC8429270 DOI: 10.1016/j.exer.2021.108686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
CLN5 neuronal ceroid lipofuscinosis is a hereditary neurodegenerative disease characterized by progressive neurological decline, vision loss and seizures. Visual impairment in children with CLN5 disease is attributed to a progressive decline in retinal function accompanied by retinal degeneration as well as impaired central nervous system function associated with global brain atrophy. We studied visual system pathology in five Golden Retriever littermates homozygous for the CLN5 disease allele previously identified in the breed. The dogs exhibited signs of pronounced visual impairment by 21-22 months of age. Electroretinogram recordings showed a progressive decline in retinal function primarily affecting cone neural pathways. Altered visual evoked potential recordings indicated that disease progression affected visual signal processing in the brain. Aside from several small retinal detachment lesions, no gross retinal abnormalities were observed with in vivo ocular imaging and histologically the retinas did not exhibit apparent abnormalities by 23 months of age. However, there was extensive accumulation of autofluorescent membrane-bound lysosomal storage bodies in almost all retinal layers, as well as in the occipital cortex, by 20 months of age. In the retina, storage was particularly pronounced in retinal ganglion cells, the retinal pigment epithelium and in photoreceptor cells just interior to the outer limiting membrane. The visual system pathology of CLN5-affected Golden Retrievers is similar to that seen early in the human disease. It was not possible to follow the dogs to an advanced stage of disease progression due to the severity of behavioral and motor disease signs by 23 months of age. The findings reported here indicate that canine CLN5 disease will be a useful model of visual system disease in CLN5 neuronal ceroid lipofuscinosis. The baseline data obtained in this investigation will be useful in future therapeutic intervention studies. The findings indicate that there is a fairly broad time frame after disease onset within which treatments could be effective in preserving vision.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | | | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Cheryl A Jensen
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
15
|
Jolly RD, Dittmer KE, Jones BR, Worth AJ, Thompson KG, Johnstone AC, Palmer DN, Van de Water NS, Hemsley KM, Garrick DJ, Winchester BG, Walkley SU. Animal medical genetics: a historical perspective on more than 50 years of research into genetic disorders of animals at Massey University. N Z Vet J 2021; 69:255-266. [PMID: 33969809 DOI: 10.1080/00480169.2021.1928564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Over the last 50 years, there have been major advances in knowledge and technology regarding genetic diseases, and the subsequent ability to control them in a cost-effective manner. This review traces these advances through research into genetic diseases of animals at Massey University (Palmerston North, NZ), and briefly discusses the disorders investigated during that time, with additional detail for disorders of major importance such as bovine α-mannosidosis, ovine ceroid-lipofuscinosis, canine mucopolysaccharidosis IIIA and feline hyperchylomicronaemia. The overall research has made a significant contribution to veterinary medicine, has provided new biological knowledge and advanced our understanding of similar disorders in human patients, including testing various specific therapies prior to human clinical trials.
Collapse
Affiliation(s)
- R D Jolly
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K E Dittmer
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - B R Jones
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A J Worth
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K G Thompson
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A C Johnstone
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - D N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - N S Van de Water
- Department of Diagnostic Genetics, Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - K M Hemsley
- Childhood Dementia Research Group, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - D J Garrick
- School of Agriculture & Environment, Al Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | - B G Winchester
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - S U Walkley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.,Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Murray SJ, Russell KN, Melzer TR, Gray SJ, Heap SJ, Palmer DN, Mitchell NL. Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease. Exp Eye Res 2021; 207:108600. [PMID: 33930398 DOI: 10.1016/j.exer.2021.108600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of inherited neurodegenerative diseases primarily affecting children. A common feature across most NCLs is the progressive loss of vision. We performed intravitreal injections of self-complementary AAV9 vectors packaged with either ovine CLN5 or CLN6 into one eye of 3-month-old CLN5-/- or CLN6-/- animals, respectively. Electroretinography (ERG) was performed every month following treatment, and retinal histology was assessed post-mortem in the treated compared to untreated eye. In CLN5-/- animals, ERG amplitudes were normalised in the treated eye whilst the untreated eye declined in a similar manner to CLN5 affected controls. In CLN6-/- animals, ERG amplitudes in both eyes declined over time although the treated eye showed a slower decline. Post-mortem examination revealed significant attenuation of retinal atrophy and lysosomal storage body accumulation in the treated eye compared with the untreated eye in CLN5-/- animals. This proof-of-concept study provides the first observation of efficacious intravitreal gene therapy in a large animal model of NCL. In particular, the single administration of AAV9-mediated intravitreal gene therapy can successfully ameliorate retinal deficits in CLN5-/- sheep. Combining ocular gene therapy with brain-directed therapy presents a promising treatment strategy to be used in future sheep trials aiming to halt neurological and retinal disease in CLN5 Batten disease.
Collapse
Affiliation(s)
- Samantha J Murray
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Katharina N Russell
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch and the New Zealand Brain Research Institute, Christchurch, 8011, New Zealand
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stephen J Heap
- McMaster & Heap Veterinary Practice, Christchurch, 8025, New Zealand
| | - David N Palmer
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand; Department of Radiology, University of Otago, Christchurch, 8140, New Zealand
| | - Nadia L Mitchell
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand; Department of Radiology, University of Otago, Christchurch, 8140, New Zealand.
| |
Collapse
|
17
|
Basak I, Wicky HE, McDonald KO, Xu JB, Palmer JE, Best HL, Lefrancois S, Lee SY, Schoderboeck L, Hughes SM. A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis. Cell Mol Life Sci 2021; 78:4735-4763. [PMID: 33792748 PMCID: PMC8195759 DOI: 10.1007/s00018-021-03813-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
Neuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is an incurable childhood brain disease. The thirteen forms of NCL are caused by mutations in thirteen CLN genes. Mutations in one CLN gene, CLN5, cause variant late-infantile NCL, with an age of onset between 4 and 7 years. The CLN5 protein is ubiquitously expressed in the majority of tissues studied and in the brain, CLN5 shows both neuronal and glial cell expression. Mutations in CLN5 are associated with the accumulation of autofluorescent storage material in lysosomes, the recycling units of the cell, in the brain and peripheral tissues. CLN5 resides in the lysosome and its function is still elusive. Initial studies suggested CLN5 was a transmembrane protein, which was later revealed to be processed into a soluble form. Multiple glycosylation sites have been reported, which may dictate its localisation and function. CLN5 interacts with several CLN proteins, and other lysosomal proteins, making it an important candidate to understand lysosomal biology. The existing knowledge on CLN5 biology stems from studies using several model organisms, including mice, sheep, cattle, dogs, social amoeba and cell cultures. Each model organism has its advantages and limitations, making it crucial to adopt a combinatorial approach, using both human cells and model organisms, to understand CLN5 pathologies and design drug therapies. In this comprehensive review, we have summarised and critiqued existing literature on CLN5 and have discussed the missing pieces of the puzzle that need to be addressed to develop an efficient therapy for CLN5 Batten disease.
Collapse
Affiliation(s)
- I Basak
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - H E Wicky
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - K O McDonald
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - J B Xu
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - J E Palmer
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - H L Best
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Wales, CF10 3AX, United Kingdom
| | - S Lefrancois
- Centre INRS-Institut Armand-Frappier, INRS, Laval, H7V 1B7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, H3A 2B2, Canada
| | - S Y Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - L Schoderboeck
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - S M Hughes
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
18
|
Katz ML, Buckley RM, Biegen V, O'Brien DP, Johnson GC, Warren WC, Lyons LA. Neuronal Ceroid Lipofuscinosis in a Domestic Cat Associated with a DNA Sequence Variant That Creates a Premature Stop Codon in CLN6. G3 (BETHESDA, MD.) 2020; 10:2741-2751. [PMID: 32518081 PMCID: PMC7407459 DOI: 10.1534/g3.120.401407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/06/2020] [Indexed: 01/04/2023]
Abstract
A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory and Department of Ophthalmology,
| | | | | | | | | | - Wesley C Warren
- Life Sciences Center, University of Missouri, Columbia, MO and
| | | |
Collapse
|
19
|
Liu W, Kleine-Holthaus SM, Herranz-Martin S, Aristorena M, Mole SE, Smith AJ, Ali RR, Rahim AA. Experimental gene therapies for the NCLs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165772. [PMID: 32220628 DOI: 10.1016/j.bbadis.2020.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.
Collapse
Affiliation(s)
- Wenfei Liu
- UCL School of Pharmacy, University College London, UK
| | | | - Saul Herranz-Martin
- UCL School of Pharmacy, University College London, UK; Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular,Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK.
| |
Collapse
|
20
|
Nelvagal HR, Cooper JD. An update on the progress of preclinical models for guiding therapeutic management of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1703672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hemanth Ramesh Nelvagal
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Jonathan D Cooper
- Department of Pediatrics, Division of genetics and genomics, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| |
Collapse
|
21
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
23
|
Ella A, Barrière DA, Adriaensen H, Palmer DN, Melzer TR, Mitchell NL, Keller M. The development of brain magnetic resonance approaches in large animal models for preclinical research. Anim Front 2019; 9:44-51. [PMID: 32002261 PMCID: PMC6951960 DOI: 10.1093/af/vfz024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arsène Ella
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France.,MRC Cognition and Brain Science Unit, University of Cambridge, UK
| | - David A Barrière
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France.,Neurospin, CEA, France
| | - Hans Adriaensen
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, New Zealand
| | - Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand.,Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Matthieu Keller
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France
| |
Collapse
|
24
|
Mitchell NL, Russell KN, Wellby MP, Wicky HE, Schoderboeck L, Barrell GK, Melzer TR, Gray SJ, Hughes SM, Palmer DN. Longitudinal In Vivo Monitoring of the CNS Demonstrates the Efficacy of Gene Therapy in a Sheep Model of CLN5 Batten Disease. Mol Ther 2018; 26:2366-2378. [PMID: 30078766 PMCID: PMC6171082 DOI: 10.1016/j.ymthe.2018.07.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 02/03/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are neurodegenerative lysosomal storage diseases predominantly affecting children. Single administration of brain-directed lentiviral or recombinant single-stranded adeno-associated virus 9 (ssAAV9) vectors expressing ovine CLN5 into six pre-clinically affected sheep with a naturally occurring CLN5 NCL resulted in long-term disease attenuation. Treatment efficacy was demonstrated by non-invasive longitudinal in vivo monitoring developed to align with assessments used in human medicine. The treated sheep retained neurological and cognitive function, and one ssAAV9-treated animal has been retained and is now 57 months old, almost triple the lifespan of untreated CLN5-affected sheep. The onset of visual deficits was much delayed. Computed tomography and MRI showed that brain structures and volumes remained stable. Because gene therapy in humans is more likely to begin after clinical diagnosis, self-complementary AAV9-CLN5 was injected into the brain ventricles of four 7-month-old affected sheep already showing early clinical signs in a second trial. This also halted disease progression beyond their natural lifespan. These findings demonstrate the efficacy of CLN5 gene therapy, using three different vector platforms, in a large animal model and, thus, the prognosis for human translation.
Collapse
Affiliation(s)
- Nadia L Mitchell
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; Department of Radiology, University of Otago, Christchurch 8140, New Zealand
| | - Katharina N Russell
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Martin P Wellby
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Hollie E Wicky
- Department of Biochemistry, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Lucia Schoderboeck
- Department of Biochemistry, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Graham K Barrell
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand
| | - Steven J Gray
- Gene Therapy Center and Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie M Hughes
- Department of Biochemistry, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - David N Palmer
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; Department of Radiology, University of Otago, Christchurch 8140, New Zealand.
| |
Collapse
|
25
|
Russell KN, Mitchell NL, Anderson NG, Bunt CR, Wellby MP, Melzer TR, Barrell GK, Palmer DN. Computed tomography provides enhanced techniques for longitudinal monitoring of progressive intracranial volume loss associated with regional neurodegeneration in ovine neuronal ceroid lipofuscinoses. Brain Behav 2018; 8:e01096. [PMID: 30136763 PMCID: PMC6160654 DOI: 10.1002/brb3.1096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are a group of fatal neurodegenerative lysosomal storage diseases of children caused by various mutations in a range of genes. Forms associated with mutations in two of these, CLN5 and CLN6, are being investigated in well-established sheep models. Brain atrophy leading to psychomotor degeneration is among the defining features, as is regional progressive ossification of the inner cranium. Ongoing viral-mediated gene therapy trials in these sheep are yielding encouraging results. In vivo assessment of brain atrophy is integral to the longitudinal monitoring of individual animals and provides robust data for translation to treatments for humans. METHODS Computed tomography (CT)-based three-dimensional reconstruction of the intracranial volume (ICV) over time reflects the progression of cortical brain atrophy, verifying the use of ICV measurements as a surrogate measure for brain size in ovine NCL. RESULTS ICVs of NCL-affected sheep increase for the first few months, but then decline progressively between 5 and 13 months in CLN5-/- sheep and 11-15 months in CLN6-/- sheep. Cerebral ventricular volumes are also increased in affected animals. To facilitate ICV measures, the radiodensities of ovine brain tissue and cerebrospinal fluid were identified. Ovine brain tissue exhibited a Hounsfield unit (HU) range of (24; 56) and cerebrospinal fluid a HU range of (-12; 23). CONCLUSIONS Computed tomography scanning and reconstruction verify that brain atrophy ovine CLN5 NCL originates in the occipital lobes with subsequent propagation throughout the whole cortex and these regional differences are reflected in the ICV loss.
Collapse
Affiliation(s)
- Katharina N Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.,Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Nigel G Anderson
- Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Craig R Bunt
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Martin P Wellby
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.,Department of Radiology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
26
|
Katz ML, Rustad E, Robinson GO, Whiting REH, Student JT, Coates JR, Narfstrom K. Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions. Neurobiol Dis 2017; 108:277-287. [PMID: 28860089 DOI: 10.1016/j.nbd.2017.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Eline Rustad
- Blue Star Animal Hospital, Göteborg 417 07, Sweden
| | - Grace O Robinson
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rebecca E H Whiting
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jeffrey T Student
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristina Narfstrom
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
27
|
Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1360182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hemanth R. Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| |
Collapse
|
28
|
El Fiky ZA, Hassan GM, Nassar MI. Genetic polymorphism of growth differentiation factor 9 (GDF9) gene related to fecundity in two Egyptian sheep breeds. J Assist Reprod Genet 2017; 34:1683-1690. [PMID: 28762037 DOI: 10.1007/s10815-017-1007-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE This study explores polymorphisms in the growth differentiation factor 9 (GDF9) gene (exon 1) with respect to fertility in Egyptian sheep. METHODS Blood samples were collected, and genomic DNA was extracted from 24 Saidi and 13 Ossimi ewes. A 710 bp portion of the GDF9 gene, was amplified using specific primers, and the sequence was analyzed to clarify the phylogenetic relationship of Egyptian breed sheep. In addition, the PCR-RFLP method using Pst1 or Msp1 restriction enzymes was used to mask polymorphisms of partial exon 1 of GDF9 gene to establish molecular markers for twinning. RESULTS The lambing rate percentage and litter size showed significant difference between ewes, which produce single and twin lamb for each breed individually, whereas the coefficient of variation of the Saidi breed is greater than that of the Ossimi breed. The results suggested that the GDF9 gene shared a similarity in sequence compared to six accession numbers of Ovis aries found in GenBank. Molecular phylogenetic analyses were performed based on nucleotide sequences in order to examine the position of the Egyptian breeds among many other sheep breeds. The results indicate that accession number AF078545 of O. aries is closely related with Saidi and Ossimi ewes that produce single or twin lamb using the unweighted pair group method with arithmetic mean (UPGMA) analysis. Results showed that Msp1 enzyme digestion revealed polymorphic restriction pattern consisting of one band with 710 bp for ewes producing single lamb and two bands with 710 and 600 bp for ewes producing twin lamb in Saidi sheep breed. CONCLUSION Sequence analysis and diversity of polymorphisms in the GDF9 gene (exon 1) have a novel base substitution (A-T) for detection of FecG mutations that serve as a molecular marker for twinning.
Collapse
Affiliation(s)
- Zaki A El Fiky
- Genetics Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Gamal M Hassan
- Genetics Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Mohamed I Nassar
- Agricultural Research Center, Animal Production Research Institute, Giza, 12618, Egypt
| |
Collapse
|
29
|
An EEG Investigation of Sleep Homeostasis in Healthy and CLN5 Batten Disease Affected Sheep. J Neurosci 2017; 36:8238-49. [PMID: 27488642 DOI: 10.1523/jneurosci.4295-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sheep have large brains with human-like anatomy, making them a useful species for studying brain function. Sleep homeostasis has not been studied in sheep. Here, we establish correlates of sleep homeostasis in sheep through a sleep deprivation experiment. We then use these correlates to elucidate the nature of sleep deficits in a naturally occurring ovine model of neuronal ceroid lipofuscinosis (NCL, Batten disease) caused by a mutation in CLN5 In humans, mutations in this gene lead to cortical atrophy and blindness, as well as sleep abnormalities. We recorded electroencephalograms (EEGs) from unaffected and early stage CLN5(-/-) (homozygous, affected) sheep over 3 consecutive days, the second day being the sleep deprivation day. In unaffected sheep, sleep deprivation led to increased EEG delta (0.5-4 Hz) power during non-rapid eye movement (NREM) sleep, increased time spent in the NREM sleep state, and increased NREM sleep bout length. CLN5(-/-) sheep showed comparable increases in time spent in NREM sleep and NREM sleep bout duration, verifying the presence of increased sleep pressure in both groups. Importantly, CLN5(-/-) sheep did not show the increase in NREM sleep delta power seen in unaffected sheep. This divergent delta power response is consistent with the known cortical degeneration in CLN5(-/-) sheep. We conclude that, whereas sleep homeostasis is present in CLN5(-/-) sheep, underlying CLN5(-/-) disease processes prevent its full expression, even at early stages. Such deficits may contribute to early abnormalities seen in sheep and patients and warrant further study. SIGNIFICANCE STATEMENT Sleep abnormalities pervade most neurological diseases, including the neuronal ceroid lipofuscinoses (NCLs). Here, we show that, in an ovine model of a variant late-infantile NCL, there is abnormal expression of sleep homeostasis. Whereas some sleep pressure correlates respond to sleep deprivation, the strongest electroencephalogram (EEG) correlate of sleep pressure, non-REM delta power, failed to increase. This highlights the relevance of sleep deficits in this disease, in which the drive for sleep exists but the underlying disease prevents its full expression. Sleep abnormalities could contribute to early disease symptoms such as behavioral disorder and cognitive decline. Our study also shows sleep homeostatic EEG correlates in sheep, opening up new opportunities for studying sleep in a large social mammal with complex human-like brain neuroanatomy.
Collapse
|
30
|
Best HL, Neverman NJ, Wicky HE, Mitchell NL, Leitch B, Hughes SM. Characterisation of early changes in ovine CLN5 and CLN6 Batten disease neural cultures for the rapid screening of therapeutics. Neurobiol Dis 2017; 100:62-74. [DOI: 10.1016/j.nbd.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/19/2016] [Accepted: 01/01/2017] [Indexed: 01/12/2023] Open
|
31
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Nicol AU, Perentos N, Martins AQ, Morton AJ. Automated detection and characterisation of rumination in sheep using in vivo electrophysiology. Physiol Behav 2016; 163:258-266. [DOI: 10.1016/j.physbeh.2016.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
33
|
Kolicheski A, Johnson GS, O'Brien DP, Mhlanga-Mutangadura T, Gilliam D, Guo J, Anderson-Sieg TD, Schnabel RD, Taylor JF, Lebowitz A, Swanson B, Hicks D, Niman ZE, Wininger FA, Carpentier MC, Katz ML. Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies. J Vet Intern Med 2016; 30:1149-58. [PMID: 27203721 PMCID: PMC5084771 DOI: 10.1111/jvim.13971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs. Objective Characterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause. Animals Tissues from 4 Australian Cattle Dogs with NCL‐like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped. Methods Tissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole‐genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping. Results The accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole‐genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote. Conclusions and Clinical Importance The homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | | | - D Gilliam
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - J Guo
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - T D Anderson-Sieg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - A Lebowitz
- Animal Medical Center of New York, New York, NY
| | - B Swanson
- Animal Medical Center of New York, New York, NY
| | - D Hicks
- Blue Pearl Veterinary Hospital, Tacoma, WA
| | - Z E Niman
- Chicago Veterinary Specialty Group, Chicago, IL
| | - F A Wininger
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M C Carpentier
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
34
|
Cronin GM, Beganovic DF, Sutton AL, Palmer D, Thomson PC, Tammen I. Manifestation of neuronal ceroid lipofuscinosis in Australian Merino sheep: observations on altered behaviour and growth. Appl Anim Behav Sci 2016; 175:32-40. [PMID: 26949278 DOI: 10.1016/j.applanim.2015.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) is an inherited neurodegenerative disorder in children. Presently there is no effective treatment and the disorder is lethal. NCL occur in a variety of non-human species including sheep, which are recognised as valuable large animal models for NCL. This experiment investigated the progressive postural, behavioural and liveweight changes in NCL-affected lambs, to establish practical, non-invasive biomarkers of disease progression for future preclinical trials in a CLN6 Merino sheep model. A flock of eight lambs at pasture was studied, with the observer blind to the disorder status. Three genotypes were compared: homozygous affected NCL; n = 4), clinically normal heterozygous (Carrier; n = 2) and homozygous normal (non-carrier control (Normal); n = 2). Direct observation during daylight and continuous accelerometer measurements over 72 h were used to quantify lamb posture and behaviour in 11 sessions between 26-60 weeks of age, conducted at 3-5 week intervals. There was a Genotype (G) × Age (A) interaction (P = 0.001) for liveweight of the lambs in the experiment, with NCL, Carrier and Normal lambs gaining 11.8, 16.5 and 23.4 kg, respectively, between 26 and 60 weeks of age. G×A interactions were also found for walking behaviour (means for NCL, Carrier and Normal genotype groups at 26 and 60 weeks, were 1.7 and 7.9%, 3.3 and 3.1%, and 2.5 and 1.9% of observations, P = 0.008) and a composite variable of key behaviours identified in the principal components analysis (P < 0.001), with mean values for NCL lambs increasing three-fold compared to non-affected lambs as age increased. Similarly, NCL lambs became less responsive to visual and auditory stimuli as they aged. Mean responsiveness scores (out of 3) to visual stimuli for the NCL, Carrier and Normal genotypes at 26 and 60 weeks of age were 2.7 and 1.4, 2.8 and 2.9, and 3.0 and 3.0, respectively (G × A, P < 0.001). Changes in response to auditory stimuli were similar to visual stimuli. NCL lambs took more (P = 0.015) steps per 24 h than Carrier and Normal genotype lambs, but there was no G × A interaction. At 26 and 60 weeks of age respectively, NCL lambs took 2724 and 4121 steps per 24 h, compared to Carrier (1708 and 3105 steps) and Normal genotype lambs (2109 and 3506 steps). NCL lambs also performed less (P = 0.018) grazing behaviour than Carrier and Normal genotype lambs (66.5, 72.3 and 72.5% of observations for NCL, Carrier and Normal lambs, respectively). A number of behavioural changes identified in the experiment could form the basis for a protocol for monitoring and evaluation of disease progression.
Collapse
Affiliation(s)
- Greg M Cronin
- The University of Sydney, Faculty of Veterinary Science, Private Bag 4003 Narellan, New South Wales 2567, Australia
| | - Danai F Beganovic
- The University of Sydney, Faculty of Veterinary Science, Private Bag 4003 Narellan, New South Wales 2567, Australia
| | - Amanda L Sutton
- The University of Sydney, Faculty of Veterinary Science, Private Bag 4003 Narellan, New South Wales 2567, Australia
| | - DavidJ Palmer
- The University of Sydney, Faculty of Veterinary Science, Private Bag 4003 Narellan, New South Wales 2567, Australia
| | - Peter C Thomson
- The University of Sydney, Faculty of Veterinary Science, Private Bag 4003 Narellan, New South Wales 2567, Australia
| | - Imke Tammen
- The University of Sydney, Faculty of Veterinary Science, Private Bag 4003 Narellan, New South Wales 2567, Australia
| |
Collapse
|
35
|
Amorim IS, Mitchell NL, Palmer DN, Sawiak SJ, Mason R, Wishart TM, Gillingwater TH. Molecular neuropathology of the synapse in sheep with CLN5 Batten disease. Brain Behav 2015; 5:e00401. [PMID: 26664787 PMCID: PMC4667763 DOI: 10.1002/brb3.401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
AIMS Synapses represent a major pathological target across a broad range of neurodegenerative conditions. Recent studies addressing molecular mechanisms regulating synaptic vulnerability and degeneration have relied heavily on invertebrate and mouse models. Whether similar molecular neuropathological changes underpin synaptic breakdown in large animal models and in human patients with neurodegenerative disease remains unclear. We therefore investigated whether molecular regulators of synaptic pathophysiology, previously identified in Drosophila and mouse models, are similarly present and modified in the brain of sheep with CLN5 Batten disease. METHODS Gross neuropathological analysis of CLN5 Batten disease sheep and controls was used alongside postmortem MRI imaging to identify affected brain regions. Synaptosome preparations were then generated and quantitative fluorescent Western blotting used to determine and compare levels of synaptic proteins. RESULTS The cortex was particularly affected by regional neurodegeneration and synaptic loss in CLN5 sheep, whilst the cerebellum was relatively spared. Quantitative assessment of the protein content of synaptosome preparations revealed significant changes in levels of seven out of eight synaptic neurodegeneration proteins investigated in the motor cortex, but not cerebellum, of CLN5 sheep (α-synuclein, CSP-α, neurofascin, ROCK2, calretinin, SIRT2, and UBR4). CONCLUSIONS Synaptic pathology is a robust correlate of region-specific neurodegeneration in the brain of CLN5 sheep, driven by molecular pathways similar to those reported in Drosophila and rodent models. Thus, large animal models, such as sheep, represent ideal translational systems to develop and test therapeutics aimed at delaying or halting synaptic pathology for a range of human neurodegenerative conditions.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| | - Nadia L Mitchell
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - David N Palmer
- Department of Molecular Biosciences Faculty of Agricultural and Life Sciences and Batten Animal Research Network Lincoln University Christchurch New Zealand
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK ; Wolfson Brain Imaging Centre University of Cambridge Box 65 Addenbrooke's Hospital Hills Road Cambridge UK
| | - Roger Mason
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK ; Division of Neurobiology The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh Edinburgh UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology University of Edinburgh Hugh Robson Building Edinburgh UK ; Euan MacDonald Centre for Motor Neurone Disease Research University of Edinburgh Hugh Robson Building Edinburgh UK
| |
Collapse
|
36
|
Pinnapureddy AR, Stayner C, McEwan J, Baddeley O, Forman J, Eccles MR. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease. Orphanet J Rare Dis 2015; 10:107. [PMID: 26329332 PMCID: PMC4557632 DOI: 10.1186/s13023-015-0327-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022] Open
Abstract
Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.
Collapse
Affiliation(s)
- Ashish R Pinnapureddy
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand.
| | - Olivia Baddeley
- New Zealand Organisation for Rare Disorders, Wellington, New Zealand.
| | - John Forman
- New Zealand Organisation for Rare Disorders, Wellington, New Zealand.
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
37
|
Furmston T, Morton AJ, Hailes S. A Significance Test for Inferring Affiliation Networks from Spatio-Temporal Data. PLoS One 2015; 10:e0132417. [PMID: 26192280 PMCID: PMC4508121 DOI: 10.1371/journal.pone.0132417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/13/2015] [Indexed: 11/18/2022] Open
Abstract
Scientists have long been interested in studying social structures within groups of gregarious animals. However, obtaining evidence about interactions between members of a group is difficult. Recent technologies, such as Global Positioning System technology, have made it possible to obtain a vast wealth of animal movement data, but inferring the underlying (latent) social structure of the group from such data remains an important open problem. While intuitively appealing measures of social interaction exist in the literature, they typically lack formal statistical grounding. In this article, we provide a statistical approach to the problem of inferring the social structure of a group from the movement patterns of its members. By constructing an appropriate null model, we are able to construct a significance test to detect meaningful affiliations between members of the group. We demonstrate our method on large-scale real-world data sets of positional data of flocks of Merino sheep, Ovis aries.
Collapse
Affiliation(s)
- Thomas Furmston
- Department of Computer Science, University College London, London, United Kingdom
- * E-mail:
| | - A. Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Hailes
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
38
|
Recent studies of ovine neuronal ceroid lipofuscinoses from BARN, the Batten Animal Research Network. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2279-86. [PMID: 26073432 DOI: 10.1016/j.bbadis.2015.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 12/19/2022]
Abstract
Studies on naturally occurring New Zealand and Australian ovine models of the neuronal ceroid-lipofuscinoses (Batten disease, NCLs) have greatly aided our understanding of these diseases. Close collaborations between the New Zealand groups at Lincoln University and the University of Otago, Dunedin, and a group at the University of Sydney, Australia, led to the formation of BARN, the Batten Animal Research Network. This review focusses on presentations at the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease), recent relevant background work, and previews of work in preparation for publication. Themes include CLN5 and CLN6 neuronal cell culture studies, studies on tissues from affected and control animals and whole animal in vivo studies. Topics include the effect of a CLN6 mutation on endoplasmic reticulum proteins, lysosomal function and the interactions of CLN6 with other lysosomal activities and trafficking, scoping gene-based therapies, a molecular dissection of neuroinflammation, identification of differentially expressed genes in brain tissue, an attempted therapy with an anti-inflammatory drug in vivo and work towards gene therapy in ovine models of the NCLs. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
39
|
Gilliam D, Kolicheski A, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Katz ML. Golden Retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5. Mol Genet Metab 2015; 115:101-9. [PMID: 25934231 DOI: 10.1016/j.ymgme.2015.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
We studied a recessive, progressive neurodegenerative disease occurring in Golden Retriever siblings with an onset of signs at 15 months of age. As the disease progressed these signs included ataxia, anxiety, pacing and circling, tremors, aggression, visual impairment and localized and generalized seizures. A whole genome sequence, generated with DNA from one affected dog, contained a plausibly causal homozygous mutation: CLN5:c.934_935delAG. This mutation was predicted to produce a frameshift and premature termination codon and encode a protein variant, CLN5:p.E312Vfs*6, which would lack 39 C-terminal amino acids. Eighteen DNA samples from the Golden Retriever family members were genotyped at CLN5:c.934_935delAG. Three clinically affected dogs were homozygous for the deletion allele; whereas, the clinically normal family members were either heterozygotes (n = 11) or homozygous for the reference allele (n = 4). Among archived Golden Retrievers DNA samples with incomplete clinical records that were also genotyped at the CLN5:c.934_935delAG variant, 1053 of 1062 were homozygous for the reference allele, 8 were heterozygotes and one was a deletion-allele homozygote. When contacted, the owner of this homozygote indicated that their dog had been euthanized because of a neurologic disease that progressed similarly to that of the affected Golden Retriever siblings. We have collected and stored semen from a heterozygous Golden Retriever, thereby preserving an opportunity for us or others to establish a colony of CLN5-deficient dogs.
Collapse
Affiliation(s)
- D Gilliam
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - T Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - J F Taylor
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - R D Schnabel
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - M L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
40
|
Cooper JD, Tarczyluk MA, Nelvagal HR. Towards a new understanding of NCL pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2256-61. [PMID: 26026924 DOI: 10.1016/j.bbadis.2015.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/29/2023]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders that have been traditionally grouped together on the basis of certain shared clinical and pathological features. However, as the number of genes that appear to cause new forms of NCL continues to grow, it is timely to reassess our understanding of the pathogenesis of these disorders and what groups them together. The various NCL subtypes do indeed share features of a build-up of autofluorescent storage material, progressive neuron loss and activation of the innate immune system. The characterisation of animal models has highlighted the selective nature of neuron loss and its intimate relationship with glial activation, rather than the generalised build-up of storage material. More recent data provide evidence for the pathway-dependent nature of pathology, the contribution of glial dysfunction, and the involvement of new brain regions previously thought to be unaffected, and it is becoming apparent that pathology extends beyond the brain. These data have important implications, not just for therapy, but also for our understanding of these disorders. However, looking beneath these broadly similar pathological themes evidence emerges for marked differences in the nature and extent of these events in different forms of NCL. Indeed, given the widely different nature of the mutated gene products it is perhaps more surprising that these disorders resemble each other as much as they do. Such data raise the question whether we should rethink the collective grouping of these gene deficiencies together, or whether it would be better to consider them as separate entities. This article is part of a Special Issue entitled: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease).
Collapse
Affiliation(s)
- Jonathan D Cooper
- Pediatric Storage Disorders Laboratory (PSDL), Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | - Marta A Tarczyluk
- Pediatric Storage Disorders Laboratory (PSDL), Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hemanth R Nelvagal
- Pediatric Storage Disorders Laboratory (PSDL), Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
41
|
Faller KME, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, Bond M. The neuronal ceroid lipofuscinoses: Opportunities from model systems. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2267-78. [PMID: 25937302 DOI: 10.1016/j.bbadis.2015.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative disorders, generally with childhood onset. Despite the fact that these diseases remain fatal, significant breakthroughs have been made in our understanding of the genetics that underpin these conditions. This understanding has allowed the development of a broad range of models to study disease processes, and to develop new therapeutic approaches. Such models have contributed significantly to our knowledge of these conditions. In this review we will focus on the advantages of each individual model, describe some of the contributions the models have made to our understanding of the broader disease biology and highlight new techniques and approaches relevant to the study and potential treatment of the neuronal ceroid lipofuscinoses. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Kiterie M E Faller
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Veterinary, Medical and Life Sciences, Bearsden Road, Glasgow G61 1QH, UK
| | - Alamin Mohammed
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Richard I Tuxworth
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kim Wager
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Michael Bond
- MRC Laboratory for Molecular Cell Biology, University College of London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Perentos N, Martins AQ, Watson TC, Bartsch U, Mitchell NL, Palmer DN, Jones MW, Morton AJ. Translational neurophysiology in sheep: measuring sleep and neurological dysfunction in CLN5 Batten disease affected sheep. Brain 2015; 138:862-74. [PMID: 25724202 PMCID: PMC5014075 DOI: 10.1093/brain/awv026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/22/2022] Open
Abstract
Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders.
Collapse
Affiliation(s)
- Nicholas Perentos
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Amadeu Q Martins
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Thomas C Watson
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Ullrich Bartsch
- 2 School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Nadia L Mitchell
- 3 Department of Molecular Biosciences, Faculty of Agricultural and Life Sciences and Batten Animal Research Network, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - David N Palmer
- 3 Department of Molecular Biosciences, Faculty of Agricultural and Life Sciences and Batten Animal Research Network, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Matthew W Jones
- 2 School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - A Jennifer Morton
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
43
|
Grubman A, Lidgerwood GE, Duncan C, Bica L, Tan JL, Parker SJ, Caragounis A, Meyerowitz J, Volitakis I, Moujalled D, Liddell JR, Hickey JL, Horne M, Longmuir S, Koistinaho J, Donnelly PS, Crouch PJ, Tammen I, White AR, Kanninen KM. Deregulation of subcellular biometal homeostasis through loss of the metal transporter, Zip7, in a childhood neurodegenerative disorder. Acta Neuropathol Commun 2014; 2:25. [PMID: 24581221 PMCID: PMC4029264 DOI: 10.1186/2051-5960-2-25] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background Aberrant biometal metabolism is a key feature of neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases. Metal modulating compounds are promising therapeutics for neurodegeneration, but their mechanism of action remains poorly understood. Neuronal ceroid lipofuscinoses (NCLs), caused by mutations in CLN genes, are fatal childhood neurodegenerative lysosomal storage diseases without a cure. We previously showed biometal accumulation in ovine and murine models of the CLN6 variant NCL, but the mechanism is unknown. This study extended the concept that alteration of biometal functions is involved in pathology in these disorders, and investigated molecular mechanisms underlying impaired biometal trafficking in CLN6 disease. Results We observed significant region-specific biometal accumulation and deregulation of metal trafficking pathways prior to disease onset in CLN6 affected sheep. Substantial progressive loss of the ER/Golgi-resident Zn transporter, Zip7, which colocalized with the disease-associated protein, CLN6, may contribute to the subcellular deregulation of biometal homeostasis in NCLs. Importantly, the metal-complex, ZnII(atsm), induced Zip7 upregulation, promoted Zn redistribution and restored Zn-dependent functions in primary mouse Cln6 deficient neurons and astrocytes. Conclusions This study demonstrates the central role of the metal transporter, Zip7, in the aberrant biometal metabolism of CLN6 variants of NCL and further highlights the key contribution of deregulated biometal trafficking to the pathology of neurodegenerative diseases. Importantly, our results suggest that ZnII(atsm) may be a candidate for therapeutic trials for NCLs.
Collapse
|
44
|
Hughes SM, Hope KM, Xu JB, Mitchell NL, Palmer DN. Inhibition of storage pathology in prenatal CLN5-deficient sheep neural cultures by lentiviral gene therapy. Neurobiol Dis 2014; 62:543-50. [PMID: 24269732 DOI: 10.1016/j.nbd.2013.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/01/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are inherited neurodegenerative lysosomal storage diseases caused by mutations in several different genes. Mutations in CLN5 cause a variant late-infantile human disease and some cases of juvenile and adult clinical disease. NCLs also occur in animals, and a flock of New Zealand Borderdale sheep with a CLN5 splice-site mutation has been developed for model studies. Dissociated mixed neural cells from CLN5-deficient foetal sheep brains contained no obvious storage bodies at plating but these accumulated rapidly in culture, mainly in microglial cells and also in neurons and astrocytes. Accumulation was very obvious after a week, as monitored by fluorescent microscopy and immunostaining for subunit c of mitochondrial ATP synthase. Photography at intervals revealed the dynamic nature of the cultures and a flow of storage bodies between cells, specifically the phagocytosis of storage-body containing cells by microglia and incorporation of the storage bodies into the host cells. No storage was observed in cultured control cells. Transduction of cell cultures with a lentiviral vector expressing a C-terminal Myc tagged CLN5 resulted in secretion of post-translationally glycosylated and processed CLN5. Transduction of CLN5-deficient cultures with this construct rapidly reversed storage body accumulation, to less than half in only six days. These results show that storage body accumulation is reversible with enzyme correction and support the use of these cultures for testing of therapeutics prior to whole animal studies.
Collapse
Affiliation(s)
- Stephanie M Hughes
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 54, Dunedin 9054, New Zealand; Brain Health Research Centre, University of Otago, PO Box 54, Dunedin 9054, New Zealand.
| | - Katie M Hope
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 54, Dunedin 9054, New Zealand.
| | - Janet Boyu Xu
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand.
| | - Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand.
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
45
|
Chalkley MD, Armien AG, Gilliam DH, Johnson GS, Zeng R, Wünschmann A, Kovi RC, Katz ML. Characterization of Neuronal Ceroid-Lipofuscinosis in 3 Cats. Vet Pathol 2013; 51:796-804. [DOI: 10.1177/0300985813502818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three young domestic shorthair cats were presented for necropsy with similar histories of slowly progressive visual dysfunction and neurologic deficits. Macroscopic examination of each cat revealed cerebral and cerebellar atrophy, dilated lateral ventricles, and slight brown discoloration of the gray matter. Histologically, there was bilateral loss of neurons within the limbic, motor, somatosensory, visual, and, to a lesser extent, vestibular systems with extensive astrogliosis in the affected regions of all 3 cases. Many remaining neurons and glial cells throughout the entire central nervous system were distended by pale yellow to eosinophilic, autofluorescent cytoplasmic inclusions with ultrastructural appearances typical of neuronal ceroid-lipofuscinoses (NCLs). Differences in clinical presentation and neurological lesions suggest that the 3 cats may have had different variants of NCL. Molecular genetic characterization in the 1 cat from which DNA was available did not reveal any plausible disease-causing mutations of the CLN1 ( PPT1), CLN3, CLN5, CLN8, and CLN10 ( CTSD) genes. Further investigations will be required to identify the mutations responsible for NCLs in cats.
Collapse
Affiliation(s)
- M. D. Chalkley
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - A. G. Armien
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - D. H. Gilliam
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - G. S. Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - R. Zeng
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - A. Wünschmann
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - R. C. Kovi
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - M. L. Katz
- Mason Eye Institute, School of Medicine, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
46
|
Abstract
The neuronal ceroid lipofuscinoses, collectively referred to as Batten disease, make up a group of inherited childhood disorders that result in blindness, motor and cognitive regression, brain atrophy, and seizures, ultimately leading to premature death. So far more than 10 genes have been implicated in different forms of the neuronal ceroid lipofuscinoses. Most related research has involved mouse models, but several naturally occurring large animal models have recently been discovered. In this review, we discuss the different large animal models and their significance in Batten disease research.
Collapse
Affiliation(s)
- Krystal Weber
- Sanford Children's Health Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD, USA
| | - David A. Pearce
- Sanford Children's Health Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD, USA
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| |
Collapse
|
47
|
Increased zinc and manganese in parallel with neurodegeneration, synaptic protein changes and activation of Akt/GSK3 signaling in ovine CLN6 neuronal ceroid lipofuscinosis. PLoS One 2013; 8:e58644. [PMID: 23516525 PMCID: PMC3597713 DOI: 10.1371/journal.pone.0058644] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/04/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.
Collapse
|
48
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
49
|
Lühken G. Genetic testing for phenotype-causing variants in sheep and goats. Mol Cell Probes 2012; 26:231-7. [PMID: 22554501 DOI: 10.1016/j.mcp.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/19/2022]
Abstract
This review gives an overview on ovine and caprine defects/disorders, disease predispositions, production traits and coat colours for which causal gene variants are known. Most phenotypes are inherited autosomal-recessive or dominant and in the majority are caused by single nucleotide substitutions or deletions. Causative sequence variants mainly were identified by sequencing candidate genes in the past, and recently also by whole genome analysis using the ovine 50k SNP chip. While PCR-fragment length polymorphism analyses were developed for the majority of causative sequence variants, other low- to medium-throughput PCR-based methods as PCR-single strand conformation analysis and allele-specific PCR were also established frequently. For processing large sample numbers, high-throughput methods as MALDI-ToF MS or real-time PCR are available for some gene variants. Further progress in development of ovine and caprine genome sequences and SNP chips will be beneficial for the discovery of additional causative variants in these two species.
Collapse
Affiliation(s)
- Gesine Lühken
- Department of Animal Breeding and Genetics, Justus-Liebig University of Giessen, Ludwigstrasse 21B, 35390 Giessen, Germany.
| |
Collapse
|
50
|
Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull 2012; 88:43-57. [PMID: 22502604 DOI: 10.1016/j.brainresbull.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/04/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL, also known as Batten disease) is a devastating neurodegenerative diseases caused by mutations in either soluble enzymes or membrane-associated structural proteins that result in lysosome dysfunction. Different forms of NCL were defined initially by age of onset, affected population and/or type of storage material but collectively represent the most prevalent pediatric hereditary neurovisceral storage disorder. Specific gene mutations are now known for each subclass of NCL in humans that now largely define the disease: cathepsin D (CTSD) for congenital (CLN10 form); palmitoyl protein thioesterase 1 (PPT1) for infantile (CLN1 form); tripeptidyl peptidase 1 (TPP1) for classic late infantile (CLN2 form); variant late infantile-CLN5, CLN6 or CLN8 for variant late infantile forms; and CLN3 for juvenile (CLN3 form). Several mouse models of NCL have been developed, or in some cases exist sporadically, that exhibit mutations producing a progressive neurodegenerative phenotype similar to that observed in human NCL. The study of these mouse models of NCL has dramatically advanced our knowledge of NCL pathophysiology and in some cases has helped delineate the function of proteins mutated in human NCL. In addition, NCL mutant mice have been tested for several different therapeutic approaches and as such they have become important pre-clinical models for validating treatment options. In this review we will assess the current state of mouse models of NCL with regards to their unique pathophysiology and how these mice have helped investigators achieve a better understanding of human NCL disease and therapy.
Collapse
Affiliation(s)
- John J Shacka
- Neuropathology Division, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|