1
|
McCormack RM, Chandran AS, Lhatoo SD, Pati S, Li Z, Harris K, Lacuey N, Kalamangalam G, Thompson S, Tandon N. Laser Ablation of Periventricular Nodular Heterotopia for Medically Refractory Epilepsy. Ann Neurol 2024; 96:1174-1184. [PMID: 39297387 DOI: 10.1002/ana.27059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Periventricular nodular heterotopia (PVNH) is the most common neuronal heterotopia, frequently resulting in pharmaco-resistant epilepsy. Here, we characterize variables that predict good epilepsy outcomes following surgical intervention using stereo-electroencephalography (SEEG) -informed magnetic resonance-guided laser interstitial thermal therapy (MRgLITT). METHODS A retrospective review of consecutive cases from a single high-volume epilepsy referral center identified patients who underwent SEEG evaluation for PVNH to characterize the intervention and outcomes. RESULTS Thirty-nine patients underwent SEEG-guided MRgLITT of the seizure onset zone (SoZ) in PVNH and associated epileptic tissue. PVNH and polymicrogyria (PMG) were densely sampled with a mean of 16.5 (SD = 2)/209.4 (SD = 36.9) SEEG probes/recording contacts per patient. Ablation principally targeted just the PVNH and cortex that was abnormal on imaging was ablated (5 patients) only if implicated in the SoZ. Volumetric analyses revealed a high percentage of PVNH SoZ ablation (96.6%, SD = 5.3%) in unilateral and bilateral (92.9%, SD = 7.2%) cases. Mean follow-up duration was 31.4 months (SD = 20.9). Seizure freedom (ILAE 1) was excellent: unilateral PVNH without other imaging abnormalities, 80%; PVNH with mesial temporal sclerosis (MTS) or PMG, 63%; bilateral PVNH, 50%. SoZ ablation percentage significantly impacted surgical outcomes (p < 0.001). INTERPRETATION PVNH plays a central role in seizure genesis as revealed by dense recordings and selective targeting by LITT. MRgLITT represents a transformative technological advance in PVNH-associated epilepsy with seizure control outcomes consistent with those seen in focal lesional epilepsies. In localized unilateral cases and otherwise normal imaging, PVNH ablation without invasive recordings may be considered, and this approach deserves to be explored further. ANN NEUROL 2024;96:1174-1184.
Collapse
Affiliation(s)
- Ryan M McCormack
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Arjun S Chandran
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
| | - Samden D Lhatoo
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Sandipan Pati
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Zhouxuan Li
- Department of Biostatistics and Data Science, The University of Texas School of Public Health, Dallas, TX, USA
| | - Katherine Harris
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Nuria Lacuey
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | | | - Stephen Thompson
- Department of Neurology, McGovern Medical School at UT Health Houston, Houston, TX, USA
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nitin Tandon
- Vivian L Smith Department of Neurological Surgery, McGovern Medical School at UT Health, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UT Health, Houston, TX, USA
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
2
|
Hong H, Jun Y, Yoon SB, Park S, Lee J, Jang JW, Nam HJ, Cho H. Manufacturing Uniform Cerebral Organoids for Neurological Disease Modeling and Drug Evaluation. Biomater Res 2024; 28:0104. [PMID: 39507522 PMCID: PMC11538552 DOI: 10.34133/bmr.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Human cerebral organoids are promising tools for investigating brain development and the pathogenesis underlying neurological disorders. To use organoids for drug effectiveness and safety screening, the organoids dispensed into each well must be prepared under precisely the same conditions as the cells. Despite decades of extensive research on approaches to improve organoid generation, various challenges remain, such as low yields and heterogeneity in size and differentiation both within and between batches. Here, we newly established uniform cerebral organoids (UCOs) derived from induced pluripotent stem cells by optimizing organoid size and performing real-time monitoring of telencephalic differentiation marker expression. These organoids exhibited morphological uniformity and consistent expression of FOXG1 during telencephalic differentiation, with high productivity. Moreover, UCOs faithfully recapitulated early corticogenesis, concomitant with the establishment of neuroepithelial populations, cortical plate neurons, and glial cells. Furthermore, UCOs systematically developed neural networks and exhibited both excitatory and inhibitory electrophysiological signals when exposed to neurotransmission blockers. Neurodevelopmental disease models derived from UCOs manifested neurite outgrowth defects, which could be ameliorated with targeted drug treatment. We propose UCOs as an advanced platform with low organoid variations and high reproducibility for modeling both brain development and neurological diseases.
Collapse
Affiliation(s)
- Hyowon Hong
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yesl Jun
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sae-Bom Yoon
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Seoyoon Park
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jaemeun Lee
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jeong Woon Jang
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hye Jin Nam
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology,
University of Science and Technology, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology,
University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Chavda V, Kandasamy S, Kodeeswaran OS, Bhatt AD, Sathyabal V, Ramakrishnan M, Devaraj S, M K, Chaurasia B. Neural migration and brain development: a critical perspective for neurological idiopathic diseases. Neurosurg Rev 2024; 47:694. [PMID: 39327348 DOI: 10.1007/s10143-024-02917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Vishal Chavda
- Department of Medicine, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
- Department of Critical Care, Multispecialty, Trauma and ICCU Centre, Sardar Hospital, Ahmadabad, Gujarat, India
| | | | | | - Anand D Bhatt
- Department of Obstetrics and Gynaecology, Sardar Women's Hospital and Dreamzz IVF Centre, Ahmadabad, Gujarat, India
| | - Varsha Sathyabal
- Government Medical College, Omandurar Government Estate, Chennai, 600002, India
| | | | - Suganth Devaraj
- MBBS Student, Tagore Medical College and Hospital, Chennai, India
| | - Kodeeswaran M
- Department of Neurosurgery, Neurosurgery Academy and Research Foundation, Kilpauk Medical College, Chennai, India
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
4
|
Procopio R, Fortunato F, Gagliardi M, Talarico M, Sammarra I, Sarubbi MC, Malanga D, Annesi G, Gambardella A. Phenotypic Variability in Novel Doublecortin Gene Variants Associated with Subcortical Band Heterotopia. Int J Mol Sci 2024; 25:5505. [PMID: 38791543 PMCID: PMC11122195 DOI: 10.3390/ijms25105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the "lissencephaly (LIS) spectrum", which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) in heterozygous female subjects. We performed targeted sequencing in three unrelated female cases with SBH. We identified three DCX-related variants: a novel missense (c.601A>G: p.Lys201Glu), a novel nonsense (c.210C>G: p.Tyr70*), and a previously identified nonsense (c.907C>T: p.Arg303*) variant. The novel c.601A>G: p.Lys201Glu variant shows a mother-daughter transmission pattern across four generations. The proband exhibits focal epilepsy and achieved seizure freedom with a combination of oxcarbazepine and levetiracetam. All other affected members have no history of epileptic seizures. Brain MRIs of the affected members shows predominant fronto-central SBH with mixed pachygyria on the overlying cortex. The two nonsense variants were identified in two unrelated probands with SBH, severe drug-resistant epilepsy and intellectual disability. These novel DCX variants further expand the genotypic-phenotypic correlations of lissencephaly spectrum disorders. Our documented phenotypic descriptions of three unrelated families provide valuable insights and stimulate further discussions on DCX-SBH cases.
Collapse
Affiliation(s)
- Radha Procopio
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, 88100 Catanzaro, Italy; (R.P.); (M.G.)
| | - Francesco Fortunato
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy; (F.F.); (M.T.); (I.S.)
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, 88100 Catanzaro, Italy; (R.P.); (M.G.)
| | - Mariagrazia Talarico
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy; (F.F.); (M.T.); (I.S.)
| | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy; (F.F.); (M.T.); (I.S.)
| | - Maria Chiara Sarubbi
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.C.S.); (D.M.)
| | - Donatella Malanga
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.C.S.); (D.M.)
- Interdepartmental Center of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy
| | - Grazia Annesi
- Institute for Biomedical Research and Innovation, National Research Council, 87036 Cosenza, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy; (F.F.); (M.T.); (I.S.)
| |
Collapse
|
5
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Fairbanks-Santana M, Rozet JM, Guemez-Gamboa A. PCDH12 loss results in premature neuronal differentiation and impeded migration in a cortical organoid model. Cell Rep 2023; 42:112845. [PMID: 37480564 PMCID: PMC10521973 DOI: 10.1016/j.celrep.2023.112845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Biallelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs). Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development, with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit the cell cycle and differentiate earlier when compared with wild type. Furthermore, we show that PCDH12 regulates neuronal migration and suggest that this could be through a mechanism requiring ADAM10-mediated ectodomain shedding and/or membrane recruitment of cytoskeleton regulators. Our results demonstrate a critical involvement of PCDH12 in cortical organoid development, suggesting a potential cause for the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
Affiliation(s)
- Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Sean McDermott
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Devin Davies
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Yang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fikayo Fagbemi
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maya Epstein
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Martín Fairbanks-Santana
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Alcaide Martin A, Mayerl S. Local Thyroid Hormone Action in Brain Development. Int J Mol Sci 2023; 24:12352. [PMID: 37569727 PMCID: PMC10418487 DOI: 10.3390/ijms241512352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Proper brain development essentially depends on the timed availability of sufficient amounts of thyroid hormone (TH). This, in turn, necessitates a tightly regulated expression of TH signaling components such as TH transporters, deiodinases, and TH receptors in a brain region- and cell-specific manner from early developmental stages onwards. Abnormal TH levels during critical stages, as well as mutations in TH signaling components that alter the global and/or local thyroidal state, result in detrimental consequences for brain development and neurological functions that involve alterations in central neurotransmitter systems. Thus, the question as to how TH signaling is implicated in the development and maturation of different neurotransmitter and neuromodulator systems has gained increasing attention. In this review, we first summarize the current knowledge on the regulation of TH signaling components during brain development. We then present recent advances in our understanding on how altered TH signaling compromises the development of cortical glutamatergic neurons, inhibitory GABAergic interneurons, cholinergic and dopaminergic neurons. Thereby, we highlight novel mechanistic insights and point out open questions in this evolving research field.
Collapse
Affiliation(s)
| | - Steffen Mayerl
- Department of Endocrinology Diabetes & Metabolism, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
7
|
Kurokawa M, Kurokawa R, Tamura K, Baba A, Ota Y, Nakaya M, Yokoyama K, Kim J, Moritani T, Abe O. Imaging Features of Ectopic Tissues and Their Complications: Embryologic and Anatomic Approach. Radiographics 2023; 43:e220111. [PMID: 37141139 DOI: 10.1148/rg.220111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ectopic tissue is an anatomic abnormality in which tissue develops in an area outside its normal location. It is primarily caused by abnormalities during the process of embryologic development. Although the majority of individuals with ectopic tissues remain asymptomatic, various symptoms and associated complications can occur. Failure in normal embryologic development leads to loss of normal physiologic function or may result in harmful functions such as ectopic hormonal secretion in the ectopic pituitary adenoma. Ectopic tissues may also frequently mimic tumors. For example, developmental abnormalities in the pharyngeal pouches may result in an ectopic parathyroid gland and ectopic thymus, both of which are frequently misdiagnosed as tumors. Adequate knowledge of embryology is essential for understanding the differential diagnoses of ectopic tissues and facilitating appropriate management. The authors summarize the embryologic development and pathogenesis of ectopic tissues by using illustrations to facilitate a deeper understanding of embryologic development and anatomy. Characteristic imaging findings (US, CT, MRI, and scintigraphy) are described for ectopic tissues of the brain, head, neck, thorax, abdomen, and pelvis by focusing on common conditions that radiologists may encounter in daily practice and their differential diagnoses. ©RSNA, 2023 Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Mariko Kurokawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Ryo Kurokawa
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Kentaro Tamura
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Akira Baba
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Yoshiaki Ota
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Moto Nakaya
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Kota Yokoyama
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - John Kim
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Toshio Moritani
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| | - Osamu Abe
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109 (M.K., R.K., A.B., Y.O., J.K., T.M.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (M.K., R.K., M.N., O.A.); Department of Radiology, National Institutes for Quantum Science and Technology, Chiba, Japan (K.T.); and Department of Radiology and Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan (K.Y.)
| |
Collapse
|
8
|
Piccirilli G, Gabrielli L, Bonasoni MP, Chiereghin A, Turello G, Borgatti EC, Simonazzi G, Felici S, Leone M, Salfi NCM, Santini D, Lazzarotto T. Fetal Brain Damage in Human Fetuses with Congenital Cytomegalovirus Infection: Histological Features and Viral Tropism. Cell Mol Neurobiol 2023; 43:1385-1399. [PMID: 35933637 PMCID: PMC10006254 DOI: 10.1007/s10571-022-01258-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
Human cytomegalovirus (HCMV) causes congenital neurological lifelong disabilities. To date, the neuropathogenesis of brain injury related to congenital HCMV (cCMV) infection is poorly understood. This study evaluates the characteristics and pathogenetic mechanisms of encephalic damage in cCMV infection. Ten HCMV-infected human fetuses at 21 weeks of gestation were examined. Specifically, tissues from different brain areas were analyzed by: (i) immunohistochemistry (IHC) to detect HCMV-infected cell distribution, (ii) hematoxylin-eosin staining to evaluate histological damage and (iii) real-time PCR to quantify tissue viral load (HCMV-DNA). The differentiation stage of HCMV-infected neural/neuronal cells was assessed by double IHC to detect simultaneously HCMV-antigens and neural/neuronal markers: nestin (a marker of neural stem/progenitor cells), doublecortin (DCX, marker of cells committed to the neuronal lineage) and neuronal nuclei (NeuN, identifying mature neurons). HCMV-positive cells and viral DNA were found in the brain of 8/10 (80%) fetuses. For these cases, brain damage was classified as mild (n = 4, 50%), moderate (n = 3, 37.5%) and severe (n = 1, 12.5%) based on presence and frequency of pathological findings (necrosis, microglial nodules, microglial activation, astrocytosis, and vascular changes). The highest median HCMV-DNA level was found in the hippocampus (212 copies/5 ng of human DNA [hDNA], range: 10-7,505) as well as the highest mean HCMV-infected cell value (2.9 cells, range: 0-23), followed by that detected in subventricular zone (1.7 cells, range: 0-19). These findings suggested a preferential viral tropism for both neural stem/progenitor cells and neuronal committed cells, residing in these regions, confirmed by the expression of DCX and nestin in 94% and 63.3% of HCMV-positive cells, respectively. NeuN was not found among HCMV-positive cells and was nearly absent in the brain with severe damage, suggesting HCMV does not infect mature neurons and immature neural/neuronal cells do not differentiate into neurons. This could lead to known structural and functional brain defects from cCMV infection.
Collapse
Affiliation(s)
- Giulia Piccirilli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Liliana Gabrielli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Angela Chiereghin
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele Turello
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eva Caterina Borgatti
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giuliana Simonazzi
- Department of Obstetrics and Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Felici
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marta Leone
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Donatella Santini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Turner A, Markey M, Le P, Reiter A, Cox C, Simmons S, Rao M, Altman L, Davis K, Huber D, Dufour JS, Marras W, Bhattacharya A. Disorientation effects, circulating small ribonucleic acid, and genetic susceptibility on static postural stability. Heliyon 2023; 9:e14413. [PMID: 36967955 PMCID: PMC10036646 DOI: 10.1016/j.heliyon.2023.e14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Background Motion Sickness increases risk of performance deficits and safety of flight concerns. The etiology of motion sickness is poorly understood. Here, we attempted to quantify the physiological effects of motion sickness on static balance and determine the genetic predictors associated with these effects. Methods 16 subjects underwent a disorientation stimulus to induce motion sickness. Motion sickness susceptibility was identified using the Motion Sickness Susceptibility Questionnaire. Postural balance outcomes were measured using two tasks, and small ribonucleic acid profiles were assessed with blood draws before motion sickness stimulus. Differences in postural sway before and after the stimulus as well as effect modification of susceptibility were assessed. A random forest followed by regression tree analysis was constructed for each postural sway variable to determine top genetic and covariate predictors. Findings Significant differences existed in mean postural balance responses between before and after stimulus. Individuals with longer stimulus survival experienced a greater (but insignificant) perception of sway, even if not displaying increased sway for all conditions. Circulation small ribonucleic acids were differentially expressed between individuals with long and short stimulus survival, many of these microRNA have purported targets in genes related to vestibular disorders. Interpretation We found motion sickness produces transient motor dysfunction in a healthy military population. Small ribonucleic acids were differentially expressed between subjects with long and short stimulus survival times.
Collapse
Affiliation(s)
- Ashley Turner
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Peter Le
- NAMRU-D and Air Force Research Laboratory, 711th Human Performance Wing, WPAFB, OH 45433, USA
| | - Ali Reiter
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Cyndy Cox
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Stacy Simmons
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - M.B. Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Lorenna Altman
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kermit Davis
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Dustin Huber
- NAMRU-D and Air Force Research Laboratory, 711th Human Performance Wing, WPAFB, OH 45433, USA
| | | | - William Marras
- Spine Research Institute, The Ohio State University, Columbus, OH, USA
| | - Amit Bhattacharya
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Luhmann HJ. Malformations-related neocortical circuits in focal seizures. Neurobiol Dis 2023; 178:106018. [PMID: 36706927 DOI: 10.1016/j.nbd.2023.106018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
This review article gives an overview on the molecular, cellular and network mechanisms underlying focal seizures in neocortical networks with developmental malformations. Neocortical malformations comprise a large variety of structural abnormalities associated with epilepsy and other neurological and psychiatric disorders. Genetic or acquired disorders of neocortical cell proliferation, neuronal migration and/or programmed cell death may cause pathologies ranging from the expression of dysmorphic neurons and heterotopic cell clusters to abnormal layering and cortical misfolding. After providing a brief overview on the pathogenesis and structure of neocortical malformations in humans, animal models are discussed and how they contributed to our understanding on the mechanisms of neocortical hyperexcitability associated with developmental disorders. State-of-the-art molecular biological and electrophysiological techniques have been also used in humans and on resectioned neocortical tissue of epileptic patients and provide deep insights into the subcellular, cellular and network mechanisms contributing to focal seizures. Finally, a brief outlook is given how novel models and methods can shape translational research in the near future.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.
| |
Collapse
|
11
|
Rakotomamonjy J, Rylaarsdam L, Fares-Taie L, McDermott S, Davies D, Yang G, Fagbemi F, Epstein M, Guemez-Gamboa A. Impaired migration and premature differentiation underlie the neurological phenotype associated with PCDH12 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522934. [PMID: 36711630 PMCID: PMC9881913 DOI: 10.1101/2023.01.05.522934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protocadherins (PCDHs) are cell adhesion molecules that regulate many essential neurodevelopmental processes related to neuronal maturation, dendritic arbor formation, axon pathfinding, and synaptic plasticity. Bi-allelic loss-of-function variants in PCDH12 are associated with several neurodevelopmental disorders (NDDs) such as diencephalic-mesencephalic dysplasia syndrome, cerebral palsy, cerebellar ataxia, and microcephaly. Despite the highly deleterious outcome resulting from loss of PCDH12, little is known about its role during brain development and disease. Here, we show that PCDH12 loss severely impairs cerebral organoid development with reduced proliferative areas and disrupted laminar organization. 2D models further show that neural progenitor cells lacking PCDH12 prematurely exit cell cycle and differentiate earlier when compared to wildtype. Furthermore, we show that PCDH12 regulates neuronal migration through a mechanism requiring ADAM10-mediated ectodomain shedding and membrane recruitment of cytoskeleton regulators. Our data demonstrate a critical and broad involvement of PCDH12 in cortical development, revealing the pathogenic mechanisms underlying PCDH12-related NDDs.
Collapse
|
12
|
Hong SJ, Park JE, Sohn YB, Suh YA, Lee JH, Park MS. Newborn Periventricular Nodular Heterotopia with Persistent Feeding Cyanosis and Apneic Spell: A Case Report. NEONATAL MEDICINE 2022. [DOI: 10.5385/nm.2022.29.4.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Periventricular nodular heterotopia (PNH) is a neuronal migration disorder that occurs during early brain development. Patients with PNH may be asymptomatic and have normal intelligence; however, PNH is also known to cause various symptoms such as seizures, dyslexia, and cardiovascular anomalies. PNH is not commonly diagnosed during early infancy because of the lack of clinical manifestations during this period. We present the case of a female infant diagnosed with PNH based on brain magnetic resonance imaging, who had symptomatic patent ductus arteriosus that had to be ligated surgically and had prolonged feeding cyanosis with frequent apneic spells.
Collapse
|
13
|
Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, Tai Y, Sun H, Wang M, Wei W, Wang Q. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf) 2022; 236:e13866. [PMID: 35959520 DOI: 10.1111/apha.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Abstract
Human G protein-coupled receptor 56 (GPR56) is encoded by gene ADGRG1 from chromosome 16q21 and is homologously encoded in mice, at chromosome 8. Both 687 and 693 splice forms are present in humans and mice. GPR56 has a 381 amino acid-long N-terminal extracellular segment and a GPCR proteolysis site upstream from the first transmembrane domain. GPR56 is mainly expressed in the heart, brain, thyroid, platelets, and peripheral blood mononuclear cells. Accumulating evidence indicates that GPR56 promotes the formation of myelin sheaths and the development of oligodendrocytes in the cerebral cortex of the central nervous system. Moreover, GPR56 contributes to the development and differentiation of hematopoietic stem cells, induces adipogenesis, and regulates the function of immune cells. The lack of GPR56 leads to nervous system dysfunction, platelet disorders, and infertility. Abnormal expression of GPR56 is related to the malignant transformation and tumor metastasis of several cancers including melanoma, neuroglioma, and gastrointestinal cancer. Metabolic disorders and cardiovascular diseases are also associated with dysregulation of GPR56 expression, and GPR56 is involved in the pharmacological resistance to some antidepressant and cancer drug treatments. In this review, the molecular structure, expression profile, and signal transduction of GPR56 are introduced, and physiological and pathological functions of GRP56 are comprehensively summarized. Attributing to its significant biological functions and its long N-terminal extracellular region that interacts with multiple ligands, GPR56 is becoming an attractive therapeutic target in treating neurological and hematopoietic diseases.
Collapse
Affiliation(s)
- Tiantian Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Huijuan Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunru Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
14
|
Indrakanti S, Chavez W, Castro-Aragon I. Normal variant residual germinal matrix in extremely premature infants: radiographic features and imaging pitfalls. J Ultrasound 2022; 25:493-505. [PMID: 35092600 PMCID: PMC9402871 DOI: 10.1007/s40477-021-00612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/12/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND As radiology volume from premature patients increases, previously undescribed imaging findings may be identified, posing diagnostic dilemma to the pediatric radiologist. OBJECTIVE The primary goal of our study is to characterize the previously undescribed imaging finding of subependymal echogenicity at the floor of the frontal horns, which we postulate represents normal variant embryologic remnant residual germinal matrix. Furthermore, we hope to equip the pediatric radiologist with diagnostic criteria to distinguish this normal variant from pathology. MATERIALS AND METHODS Retrospective review of neonates at our institution over a 10 year period was performed to identify extremely premature infants who received head ultrasounds during their hospital stay. Clinical data from EPIC was collected on these patients in addition to retrospective review of their head ultrasound images. RESULTS Literature review of neuroembryology and observed involution of the frontal horn subependymal echogenicity on sequential imaging inform our hypothesis that this imaging finding represents normal variant residual germinal matrix. Two-thirds of the 210 included extremely premature infants demonstrated this finding, which was frequently misinterpreted as grade 1 germinal matrix, intra-choroidal or intra-ventricular hemorrhage. Residual matrix was concomitantly present with additional pathology in 29.4% of the patients. CONCLUSION Previously undescribed subependymal echogenicity at the floor of the frontal horns is favored to represent normal variant embryologic remnant residual germinal matrix. Since this finding may be misinterpreted as germinal matrix, intra-choroidal or intra-ventricular hemorrhage, it is essential for the interpreting radiologist to be aware of this normal variant and not confuse it for pathology.
Collapse
Affiliation(s)
- Santoshi Indrakanti
- Department of Radiology, Massachusetts General Hospital, Boston Medical Center, 55 Fruit Street, White 427, Boston, MA, 02114, USA.
| | - Wilson Chavez
- Department of Radiology, Massachusetts General Hospital, Boston Medical Center, 55 Fruit Street, White 427, Boston, MA, 02114, USA
| | - Ilse Castro-Aragon
- Department of Radiology, Massachusetts General Hospital, Boston Medical Center, 55 Fruit Street, White 427, Boston, MA, 02114, USA
| |
Collapse
|
15
|
Moosavi A, Kanekar S. Congenital Malformations of Cerebellum. Clin Perinatol 2022; 49:603-621. [PMID: 36113925 DOI: 10.1016/j.clp.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in pre and postnatal neuroimaging techniques, and molecular genetics have increased our understanding of the congenital malformation of the brain. Correct diagnosis of these malformations in regards to embryology, and molecular neurogenetics is of paramount importance to understand the inheritance pattern and risk of recurrence. Lesions detected on prenatal imaging require confirmation either with postnatal ultrasound and/or with MR imaging. With the advent of the faster (rapid) MRI techniques, which can be conducted without sedation, MRI is commonly used in the evaluation of congenital malformation of the brain. Based on neuroimaging pattern, the congenital malformations of the posterior fossa are classified into 4 main categories: (a) predominantly cerebellar, (b) cerebellar and brainstem, (c) predominantly brainstem, and (d) predominantly midbrain malformations.
Collapse
Affiliation(s)
- Ali Moosavi
- Radiology Research, Division of Neuroradiology, Penn State Health, Penn State College of Medicine, Mail Code H066 500 University Drive, Hershey, PA 17033, USA
| | - Sangam Kanekar
- Radiology Research, Division of Neuroradiology, Penn State Health, Penn State College of Medicine, Mail Code H066 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
16
|
Etchegaray E, Baas D, Naville M, Haftek-Terreau Z, Volff JN. The neurodevelopmental gene MSANTD2 belongs to a gene family formed by recurrent molecular domestication of Harbinger transposons at the base of vertebrates. Mol Biol Evol 2022; 39:msac173. [PMID: 35980103 PMCID: PMC9392472 DOI: 10.1093/molbev/msac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
The formation of new genes is a major source of organism evolutionary innovation. Beyond their mutational effects, transposable elements can be co-opted by host genomes to form different types of sequences including novel genes, through a mechanism named molecular domestication.We report the formation of four genes through molecular domestication of Harbinger transposons, three in a common ancestor of jawed vertebrates about 500 million years ago and one in sarcopterygians approx. 430 million years ago. Additionally, one processed pseudogene arose approx. 60 million years ago in simians. In zebrafish, Harbinger-derived genes are expressed during early development but also in adult tissues, and predominantly co-expressed in male brain. In human, expression was detected in multiple organs, with major expression in the brain particularly during fetal development. We used CRISPR/Cas9 with direct gene knock-out in the F0 generation and the morpholino antisense oligonucleotide knock-down technique to study in zebrafish the function of one of these genes called MSANTD2, which has been suggested to be associated to neuro-developmental diseases such as autism spectrum disorders and schizophrenia in human. MSANTD2 inactivation led to developmental delays including tail and nervous system malformation at one day post fertilization. Affected embryos showed dead cell accumulation, major anatomical defects characterized by impaired brain ventricle formation and alterations in expression of some characteristic genes involved in vertebrate nervous system development. Hence, the characterization of MSANTD2 and other Harbinger-derived genes might contribute to a better understanding of the genetic innovations having driven the early evolution of the vertebrate nervous system.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| | - Dominique Baas
- Unité MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| | - Jean Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UCBL1, CNRS UMR 5242, Lyon, France
| |
Collapse
|
17
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals’ cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors’ behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
|
18
|
Marty MS, Sauer UG, Charlton A, Ghaffari R, Guignard D, Hallmark N, Hannas BR, Jacobi S, Marxfeld HA, Melching-Kollmuss S, Sheets LP, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny-part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol 2022; 52:546-617. [PMID: 36519295 DOI: 10.1080/10408444.2022.2130166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hansen AH, Pauler FM, Riedl M, Streicher C, Heger A, Laukoter S, Sommer C, Nicolas A, Hof B, Tsai LH, Rülicke T, Hippenmeyer S. Tissue-Wide Effects Override Cell-Intrinsic Gene Function in Radial Neuron Migration. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac009. [PMID: 38596707 PMCID: PMC10939316 DOI: 10.1093/oons/kvac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Armel Nicolas
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Björn Hof
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Li Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
20
|
Dincã DM, Lallemant L, González-Barriga A, Cresto N, Braz SO, Sicot G, Pillet LE, Polvèche H, Magneron P, Huguet-Lachon A, Benyamine H, Azotla-Vilchis CN, Agonizantes-Juárez LE, Tahraoui-Boris J, Martinat C, Hernández-Hernández O, Auboeuf D, Rouach N, Bourgeois CF, Gourdon G, Gomes-Pereira M. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun 2022; 13:3841. [PMID: 35789154 PMCID: PMC9253038 DOI: 10.1038/s41467-022-31594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function. Myotonic dystrophy type 1 (DM1) is characterized by debilitating neurological symptoms. Dinca et al. demonstrate the pronounced impact of DM1 on the morphology and RNA metabolism of astrocytes. Their findings suggest astroglial pathology in DM1 brain dysfunction.
Collapse
Affiliation(s)
- Diana M Dincã
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | | | - Noémie Cresto
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.,Inserm UMR1163, Institut Imagine, Université Paris Cite, 75015, Paris, France
| | - Géraldine Sicot
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, 75006, France
| | - Hélène Polvèche
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Hélène Benyamine
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cuauhtli N Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Luis E Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Julie Tahraoui-Boris
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Cécile Martinat
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| |
Collapse
|
21
|
Schaaf ZA, Tat L, Cannizzaro N, Panoutsopoulos AA, Green R, Rülicke T, Hippenmeyer S, Zarbalis KS. WDFY3 mutation alters laminar position and morphology of cortical neurons. Mol Autism 2022; 13:27. [PMID: 35733184 PMCID: PMC9219247 DOI: 10.1186/s13229-022-00508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. METHODS Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. RESULTS We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. LIMITATIONS While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. CONCLUSIONS Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.
Collapse
Affiliation(s)
- Zachary A Schaaf
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Lyvin Tat
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Noemi Cannizzaro
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Alexios A Panoutsopoulos
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
- University of California at Davis, Department of Physiology and Membrane Biology, Sacramento, CA, 95817, USA
| | - Ralph Green
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Konstantinos S Zarbalis
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA.
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA.
- UC Davis MIND Institute, Sacramento, CA, 95817, USA.
| |
Collapse
|
22
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
23
|
EROĞLU Y, AĞLAMIŞ S. Gri Cevher Heterotopisi Bulunan Pediatrik Hastaların Manyetik Rezonans Görüntüleme Bulguları ve Eşlik Eden Malformasyonların Değerlendirilmesi. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2022. [DOI: 10.17517/ksutfd.1023811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: The aim of the present study is to classify gray matter heterotopias according to magnetic resonance imaging findings and to define the accompanying malformations.
Methods: Images of all pediatric patients who were detected to have heterotopia in brain magnetic resonance imaging between January 2012 and June 2020 were retrospectively evaluated. The type, location of heterotopia, and accompanying cerebral anomalies were analyzed.
Results: A total of 42 patients, 22 male, and 20 female, with a mean age of 7.80 ± 4.53 years (2-16 years) with gray matter heterotopia were included in the study. Of the patients, 33 (78.6%) had subependymal, 7 (16.7%) had subcortical, and 2 (4.7%) had band heterotopia. Twenty-four patients had epilepsy.
Conclusion: The sub ependymal heterotopias were frequently located in the trigon region of the lateral ventricles. All subcortical heterotopias were in the frontal and unifocal locations. Band heterotopias were located bilaterally and subcortically in a symmetrical fashion in the cerebral hemisphere. The main accompanying anomalies were ventriculomegaly, Arnold-Chiari malformation, and corpus callosum agenesis. Considering the neurological developments of pediatric patients, it is important to identify the type of heterotopia and accompanying anomalies for patient management.
Collapse
Affiliation(s)
- Yeşim EROĞLU
- Firat University School of Medicine, Department of Radiology, Elazig
| | - Serpil AĞLAMIŞ
- Firat University School of Medicine, Department of Radiology, Elazig
| |
Collapse
|
24
|
Simmons R, Martinez AB, Barkovich J, Numis AL, Cilio MR, Glenn OA, Gano D, Rogers EE, Glass HC. Disorders of Neuronal Migration/Organization Convey the Highest Risk of Neonatal Onset Epilepsy Compared With Other Congenital Brain Malformations. Pediatr Neurol 2022; 127:20-27. [PMID: 34933271 DOI: 10.1016/j.pediatrneurol.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although seizures in neonates are common and often due to acute brain injury, 10-15% are unprovoked from congenital brain malformations. A better understanding of the risk of neonatal-onset epilepsy by the type of brain malformation is essential for counseling and monitoring. METHODS In this retrospective cohort study, we evaluated 132 neonates with congenital brain malformations and their risk of neonatal-onset epilepsy. Malformations were classified into one of five categories based on imaging patterns on prenatal or postnatal imaging. Infants were monitored with continuous video EEG (cEEG) for encephalopathy and paroxysmal events in addition to abnormal neuroimaging. RESULTS Seventy-four of 132 (56%) neonates underwent EEG monitoring, and 18 of 132 (14%) were diagnosed with neonatal-onset epilepsy. The highest prevalence of epilepsy was in neonates with disorders of neuronal migration/organization (9/34, 26%; 95% confidence interval [CI] = 13-44%), followed by disorders of early prosencephalic development (6/38, 16%; 95% CI = 6-31%), complex total brain malformations (2/16, 13%; 95% CI = 2-38%), and disorders of midbrain/hindbrain malformations (1/30, 3%; 95% CI = 0-17%). Of neonates with epilepsy, 5 of 18 (28%) had only electrographic seizures, 13 of 18 (72%) required treatment with two or more antiseizure medicines (ASMs), and 7 of 18 (39%) died within the neonatal period. CONCLUSION Our results demonstrate that disorders of neuronal migration/organization represent the highest-risk group for early-onset epilepsy. Seizures are frequently electrographic only, require treatment with multiple ASMs, and portend a high mortality rate. These results support American Clinical Neurophysiology Society recommendations for EEG monitoring during the neonatal period for infants with congenital brain malformations.
Collapse
Affiliation(s)
- Roxanne Simmons
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | | | - James Barkovich
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, San Francisco, California
| | - Adam L Numis
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | - Maria Roberta Cilio
- Department of Pediatrics, Saint-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Orit A Glenn
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, San Francisco, California
| | - Dawn Gano
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California; Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California
| | - Elizabeth E Rogers
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California
| | - Hannah C Glass
- Department of Neurology and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California; Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, California; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
25
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
26
|
Lin WX, Chai YY, Huang TT, Zhang X, Zheng G, Zhang G, Peng F, Huang YJ. Novel compound heterozygous GPR56 gene mutation in a twin with lissencephaly: A case report. World J Clin Cases 2022; 10:607-617. [PMID: 35097086 PMCID: PMC8771398 DOI: 10.12998/wjcc.v10.i2.607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lissencephaly (LIS) is a malformation of cortical development with broad gyri, shallow sulci and thickened cortex characterized by developmental delays and seizures. Currently, 20 genes have been implicated in LIS. However, GRP56-related LIS has never been reported. GRP56 is considered one of the causative genes for bilateral frontoparietal polymicrogyria. Here, we report a twin infant with LIS and review the relevant literature. The twins both carried the novel compound heterozygous GPR56 mutations.
CASE SUMMARY A 5-mo-old female infant was hospitalized due to repeated convulsions for 1 d. The patient had a flat head deformity that manifested as developmental delays and a sudden onset of generalized tonic-clonic seizures at 5 mo without any causes. The electroencephalography was normal. Brain magnetic resonance imaging revealed a simple brain structure with widened and thickened gyri and shallow sulci. The white matter of the brain was significantly reduced. Patchy long T1 and T2 signals could be seen around the ventricles, which were expanded, and the extracerebral space was widened. Genetic testing confirmed that the patient carried the GPR56 gene compound heterozygous mutations c.228delC (p.F76fs) and c.1820_1821delAT (p.H607fs). The unaffected father carried a heterozygous c.1820_1821delAT mutation, and the unaffected mother carried a heterozygous c.228delC mutation. The twin sister carried the same mutations as the proband. The patient was diagnosed with LIS.
CONCLUSION This is the first case report of LIS that is likely caused by mutations of the GPR56 gene.
Collapse
Affiliation(s)
- Wen-Xin Lin
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Ying-Ying Chai
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Ting-Ting Huang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Xia Zhang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Guo Zheng
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Gang Zhang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Fang Peng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan-Jun Huang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
27
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
28
|
Cohen N, Ebrahimi Y, Medvedovsky M, Gurevitch G, Aizenstein O, Hendler T, Fahoum F, Gazit T. Interictal Epileptiform Discharge Dynamics in Peri-sylvian Polymicrogyria Using EEG-fMRI. Front Neurol 2021; 12:658239. [PMID: 34149595 PMCID: PMC8212705 DOI: 10.3389/fneur.2021.658239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Polymicrogyria (PMG) is a common malformation of cortical development associated with a higher susceptibility to epileptic seizures. Seizures secondary to PMG are characterized by difficult-to-localize cerebral sources due to the complex and widespread lesion structure. Tracing the dynamics of interictal epileptiform discharges (IEDs) in patients with epilepsy has been shown to reveal the location of epileptic activity sources, crucial for successful treatment in cases of focal drug-resistant epilepsy. In this case series IED dynamics were evaluated with simultaneous EEG-fMRI recordings in four patients with unilateral peri-sylvian polymicrogyria (PSPMG) by tracking BOLD activations over time: before, during and following IED appearance on scalp EEG. In all cases, focal BOLD activations within the lesion itself preceded the activity associated with the time of IED appearance on EEG, which showed stronger and more widespread activations. We therefore propose that early hemodynamic activity corresponding to IEDs may hold important localizing information potentially leading to the cerebral sources of epileptic activity. IEDs are suggested to develop within a small area in the PSPMG lesion with structural properties obscuring the appearance of their electric field on the scalp and only later engage widespread structures which allow the production of large currents which are recognized as IEDs on EEG.
Collapse
Affiliation(s)
- Noa Cohen
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Ebrahimi
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Mordekhay Medvedovsky
- Department of Neurology, Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Guy Gurevitch
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Aizenstein
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Department of Diagnostic Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Science, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Electroencephalography and Epilepsy Unit, Sourasky Medical Center, Tel Aviv, Israel
| | - Tomer Gazit
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Excitatory/Inhibitory Synaptic Ratios in Polymicrogyria and Down Syndrome Help Explain Epileptogenesis in Malformations. Pediatr Neurol 2021; 116:41-54. [PMID: 33450624 DOI: 10.1016/j.pediatrneurol.2020.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ratio between excitatory (glutamatergic) and inhibitory (GABAergic) inputs into maturing individual cortical neurons influences their epileptic potential. Structural factors during development that alter synaptic inputs can be demonstrated neuropathologically. Increased mitochondrial activity identifies neurons with excessive discharge rates. METHODS This study focuses on the neuropathological examinaion of surgical resections for epilepsy and at autopsy, in fetuses, infants, and children, using immunocytochemical markers, and electron microscopy in selected cases. Polymicrogyria and Down syndrome are highlighted. RESULTS Factors influencing afferent synaptic ratios include the following: (1) synaptic short-circuitry in fused molecular zones of adjacent gyri (polymicrogyria); (2) impaired development of dendritic spines decreasing excitation (Down syndrome); (3) extracellular keratan sulfate proteoglycan binding to somatic membranes but not dendritic spines may be focally diminished (cerebral atrophy, schizencephaly, lissencephaly, polymicrogyria) or augmented, ensheathing individual axons (holoprosencephaly), or acting as a barrier to axonal passage in the U-fiber layer. If keratan is diminished, glutamate receptors on the neuronal soma enable ectopic axosomatic excitatory synapses to form; (4) dysplastic, megalocytic neurons and balloon cells in mammalian target of rapamycin disorders; (5) satellitosis of glial cells displacing axosomatic synapses; (6) peri-neuronal inflammation (tuberous sclerosis) and heat-shock proteins. CONCLUSIONS Synaptic ratio of excitatory/inhibitory afferents is a major fundamental basis of epileptogenesis at the neuronal level. Neuropathology can demonstrate subcellular changes that help explain either epilepsy or lack of seizures in immature brains. Synaptic ratios in malformations influence postnatal epileptogenesis. Single neurons can be hypermetabolic and potentially epileptogenic.
Collapse
|
30
|
Rolland M, Martin H, Bergamelli M, Sellier Y, Bessières B, Aziza J, Benchoua A, Leruez-Ville M, Gonzalez-Dunia D, Chavanas S. Human cytomegalovirus infection is associated with increased expression of the lissencephaly gene PAFAH1B1 encoding LIS1 in neural stem cells and congenitally infected brains. J Pathol 2021; 254:92-102. [PMID: 33565082 DOI: 10.1002/path.5640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
Congenital infection of the central nervous system by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae, including mental retardation or neurodevelopmental abnormalities. The most severe complications include smooth brain or polymicrogyria, which are both indicative of abnormal migration of neural cells, although the underlying mechanisms remain to be determined. To gain better insight on the pathogenesis of such sequelae, we assessed the expression levels of a set of neurogenesis-related genes, using HCMV-infected human neural stem cells derived from embryonic stem cells (NSCs). Among the 84 genes tested, we found dramatically increased expression of the gene PAFAH1B1, encoding LIS1 (lissencephaly-1), in HCMV-infected versus uninfected NSCs. Consistent with these findings, western blotting and immunofluorescence analyses confirmed the increased levels of LIS1 in HCMV-infected NSCs at the protein level. We next assessed the migratory abilities of HCMV-infected NSCs and observed that infection strongly impaired the migration of NSCs, without detectable effect on their proliferation. Moreover, we observed increased immunostaining for LIS1 in brains of congenitally infected fetuses, but not in control samples, highlighting the clinical relevance of our findings. Of note, PAFAH1B1 mutations (resulting in either haploinsufficiency or gain of function) are primary causes of hereditary neurodevelopmental diseases. Notably, mutations resulting in PAFAH1B1 haploinsufficiency cause classic lissencephaly. Taken together, our findings suggest that PAFAH1B1 is a critical target of HCMV infection. They also shine a new light on the pathophysiological basis of the neurological outcomes of congenital HCMV infection, by suggesting that defective neural cell migration might contribute to the pathogenesis of the neurodevelopmental sequelae of infection. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maude Rolland
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Hélène Martin
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Mathilde Bergamelli
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Yann Sellier
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Bettina Bessières
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Jacqueline Aziza
- Département d'Anatomie Pathologique, IUCT-Oncopôle Toulouse, Toulouse, France
| | | | - Marianne Leruez-Ville
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Paris, France
| | - Daniel Gonzalez-Dunia
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| | - Stéphane Chavanas
- Centre for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, Toulouse, France
| |
Collapse
|
31
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
32
|
Burger CA, Albrecht NE, Jiang D, Liang JH, Poché RA, Samuel MA. LKB1 and AMPK instruct cone nuclear position to modify visual function. Cell Rep 2021; 34:108698. [PMID: 33535040 PMCID: PMC7906279 DOI: 10.1016/j.celrep.2021.108698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cone photoreceptors detect light and are responsible for color vision. These cells display a distinct polarized morphology where nuclei are precisely aligned in the apical retina. However, little is known about the mechanisms involved in cone nuclear positioning or the impact of this organization on retina function. We show that the serine/threonine kinase LKB1 and one of its substrates, AMPK, regulate cone nuclear positioning. In the absence of either molecule, cone nuclei are misplaced along the axon, resulting in altered nuclear lamination. LKB1 is required specifically in cones to mediate this process, and disruptions in nuclear alignment result in reduced cone function. Together, these results identify molecular determinants of cone nuclear position and indicate that cone nuclear position alignment enables proper visual function.
Collapse
Affiliation(s)
- Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
34
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
35
|
Trovato F, Parra R, Pracucci E, Landi S, Cozzolino O, Nardi G, Cruciani F, Pillai V, Mosti L, Cwetsch AW, Cancedda L, Gritti L, Sala C, Verpelli C, Maset A, Lodovichi C, Ratto GM. Modelling genetic mosaicism of neurodevelopmental disorders in vivo by a Cre-amplifying fluorescent reporter. Nat Commun 2020; 11:6194. [PMID: 33273479 PMCID: PMC7713426 DOI: 10.1038/s41467-020-19864-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mosaicism, a condition in which an organ includes cells with different genotypes, is frequently present in monogenic diseases of the central nervous system caused by the random inactivation of the X-chromosome, in the case of X-linked pathologies, or by somatic mutations affecting a subset of neurons. The comprehension of the mechanisms of these diseases and of the cell-autonomous effects of specific mutations requires the generation of sparse mosaic models, in which the genotype of each neuron is univocally identified by the expression of a fluorescent protein in vivo. Here, we show a dual-color reporter system that, when expressed in a floxed mouse line for a target gene, leads to the creation of mosaics with tunable degree. We demonstrate the generation of a knockout mosaic of the autism/epilepsy related gene PTEN in which the genotype of each neuron is reliably identified, and the neuronal phenotype is accurately characterized by two-photon microscopy.
Collapse
Affiliation(s)
- Francesco Trovato
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
| | - Riccardo Parra
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Enrico Pracucci
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Silvia Landi
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
- Institute of Neuroscience CNR, Pisa, Italy
| | - Olga Cozzolino
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Gabriele Nardi
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Federica Cruciani
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Laura Mosti
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Andrzej W Cwetsch
- Istituto Italiano di Tecnologia, Genoa, Italy
- Università degli studi di Genova, Genoa, Italy
| | - Laura Cancedda
- Istituto Italiano di Tecnologia, Genoa, Italy
- Istituto Telethon Dulbecco, Rome, Italy
| | | | - Carlo Sala
- Institute of Neuroscience CNR, Milan, Italy
| | | | - Andrea Maset
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padova Università di Padova, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padova Università di Padova, Padua, Italy
- Institute of Neuroscience CNR, Padua, Italy
| | - Gian Michele Ratto
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
| |
Collapse
|
36
|
O'Shaughnessy KL, Gilbert ME. Thyroid disrupting chemicals and developmental neurotoxicity - New tools and approaches to evaluate hormone action. Mol Cell Endocrinol 2020; 518:110663. [PMID: 31760043 PMCID: PMC8270644 DOI: 10.1016/j.mce.2019.110663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
Abstract
It is well documented that thyroid hormone (TH) action is critical for normal brain development and is mediated by both nuclear and extranuclear pathways. Given this dependence, the impact of environmental endocrine disrupting chemicals that interfere with thyroid signaling is a major concern with direct implications for children's health. However, identifying thyroid disrupting chemicals in vivo is primarily reliant on serum thyroxine (T4) measurements within greater developmental and reproductive toxicity assessments. These studies do not examine known TH-dependent phenotypes in parallel, which complicates chemical evaluation. Additionally, there exist no recommendations regarding what degree of serum T4 dysfunction is adverse, and little consideration is given to quantifying TH action within the developing brain. This review summarizes current testing strategies in rodent models and discusses new approaches for evaluating the developmental neurotoxicity of thyroid disrupting chemicals. This includes assays to identify adverse cellular effects of the brain by both immunohistochemistry and gene expression, which would compliment serum T4 measures. While additional experiments are needed to test the full utility of these approaches, incorporation of these cellular and molecular assays could enhance chemical evaluation in the regulatory arena.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| | - Mary E Gilbert
- United States Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Endocrine Toxicology Branch, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
37
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
38
|
Villa R, Fergnani VGC, Silipigni R, Guerneri S, Cinnante C, Guala A, Danesino C, Scola E, Conte G, Fumagalli M, Gangi S, Colombo L, Picciolini O, Ajmone PF, Accogli A, Madia F, Tassano E, Scala M, Capra V, Srour M, Spaccini L, Righini A, Greco D, Castiglia L, Romano C, Bedeschi MF. Structural brain anomalies in Cri-du-Chat syndrome: MRI findings in 14 patients and possible genotype-phenotype correlations. Eur J Paediatr Neurol 2020; 28:110-119. [PMID: 32800423 DOI: 10.1016/j.ejpn.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/02/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Cri-du-Chat Syndrome (CdCS) is a genetic condition due to deletions showing different breakpoints encompassing a critical region on the short arm of chromosome 5, located between p15.2 and p15.3, first defined by Niebuhr in 1978. The classic phenotype includes a characteristic cry, peculiar facies, microcephaly, growth retardation, hypotonia, speech and psychomotor delay and intellectual disability. A wide spectrum of clinical manifestations can be attributed to differences in size and localization of the 5p deletion. Several critical regions related to some of the main features (such as cry, peculiar facies, developmental delay) have been identified. The aim of this study is to further define the genotype-phenotype correlations in CdCS with particular regards to the specific neuroradiological findings. PATIENTS AND METHODS Fourteen patients with 5p deletions have been included in the present study. Neuroimaging studies were conducted using brain Magnetic Resonance Imaging (MRI). Genetic testing was performed by means of comparative genomic hybridization (CGH) array at 130 kb resolution. RESULTS MRI analyses showed that isolated pontine hypoplasia is the most common finding, followed by vermian hypoplasia, ventricular anomalies, abnormal basal angle, widening of cavum sellae, increased signal of white matter, corpus callosum anomalies, and anomalies of cortical development. Chromosomal microarray analysis identified deletions ranging in size from 11,6 to 33,8 Mb on the short arm of chromosome 5. Then, we took into consideration the overlapping and non-overlapping deleted regions. The goal was to establish a correlation between the deleted segments and the neuroradiological features of our patients. CONCLUSIONS Performing MRI on all the patients in our cohort, allowed us to expand the neuroradiological phenotype in CdCS. Moreover, possible critical regions associated to characteristic MRI findings have been identified.
Collapse
Affiliation(s)
- R Villa
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - V G C Fergnani
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - R Silipigni
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - S Guerneri
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - C Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - A Guala
- Department of Pediatrics, Castelli Hospital, Verbania, Italy.
| | - C Danesino
- Molecular Medicine Department, General Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy.
| | - E Scola
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - G Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - M Fumagalli
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - S Gangi
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - L Colombo
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - O Picciolini
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - P F Ajmone
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | - A Accogli
- DINOGMI, Università degli Studi di Genova, Italy; IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - F Madia
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - E Tassano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - M Scala
- DINOGMI, Università degli Studi di Genova, Italy; IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - V Capra
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - M Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Canada; McGill University Health Center (MUHC) Research Institute, Montreal, Canada.
| | - L Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children's Hospital, University of Milan, Italy.
| | - A Righini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, University of Milan, Italy.
| | - D Greco
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - L Castiglia
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - C Romano
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - M F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
39
|
Basu A, Mestres I, Sahu SK, Tiwari N, Khongwir B, Baumgart J, Singh A, Calegari F, Tiwari VK. Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Genes Dev 2020; 34:1190-1209. [PMID: 32820037 PMCID: PMC7462064 DOI: 10.1101/gad.333906.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iván Mestres
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Centre, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
40
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
41
|
ZEB1 Represses Neural Differentiation and Cooperates with CTBP2 to Dynamically Regulate Cell Migration during Neocortex Development. Cell Rep 2020; 27:2335-2353.e6. [PMID: 31116980 DOI: 10.1016/j.celrep.2019.04.081] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Zinc-finger E-box binding homeobox 1 (Zeb1) is a key regulator of epithelial-mesenchymal transition and cancer metastasis. Mutation of ZEB1 is associated with human diseases and defective brain development. Here we show that downregulation of Zeb1 expression in embryonic cortical neural progenitor cells (NPCs) is necessary for proper neuronal differentiation and migration. Overexpression of Zeb1 during neuronal differentiation, when its expression normally declines, blocks NPC lineage progression and disrupts multipolar-to-bipolar transition of differentiating neurons, leading to severe migration defects and subcortical heterotopia bands at postnatal stages. ZEB1 regulates a cohort of genes involved in cell differentiation and migration, including Neurod1 and Pard6b. The interaction between ZEB1 and CTBP2 in the embryonic cerebral cortex is required for ZEB1 to elicit its effect on the multipolar-to-bipolar transition, but not its suppression of Neurod1. These findings provide insights into understanding the complexity of transcriptional regulation during neuronal differentiation.
Collapse
|
42
|
Naito Y, Asada N, Nguyen MD, Sanada K. AMP-activated protein kinase regulates cytoplasmic dynein behavior and contributes to neuronal migration in the developing neocortex. Development 2020; 147:dev187310. [PMID: 32554528 DOI: 10.1242/dev.187310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
The microtubule motor cytoplasmic dynein contributes to radial migration of newborn pyramidal neurons in the developing neocortex. Here, we show that AMP-activated protein kinase (AMPK) mediates the nucleus-centrosome coupling, a key process for radial neuronal migration that relies on dynein. Depletion of the catalytic subunit of AMPK in migrating neurons impairs this coupling as well as neuronal migration. AMPK shows overlapping subcellular distribution with cytoplasmic dynein and the two proteins interact with each other. Pharmacological inhibition or activation of AMPK modifies the phosphorylation states of dynein intermediate chain (DIC) and dynein functions. Furthermore, AMPK phosphorylates DIC at Ser81. Expression of a phospho-resistant mutant of DIC retards neuronal migration in a similar way to AMPK depletion. Conversely, expression of the phospho-mimetic mutant of DIC alleviates impaired neuronal migration caused by AMPK depletion. Thus, AMPK-regulated dynein function via Ser81 DIC phosphorylation is crucial for radial neuronal migration.
Collapse
Affiliation(s)
- Yasuki Naito
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoyuki Asada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry & Molecular Biology, Calgary, Alberta, Canada T2N4N1
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Martineau FS, Sahu S, Plantier V, Buhler E, Schaller F, Fournier L, Chazal G, Kawasaki H, Represa A, Watrin F, Manent JB. Correct Laminar Positioning in the Neocortex Influences Proper Dendritic and Synaptic Development. Cereb Cortex 2019; 28:2976-2990. [PMID: 29788228 PMCID: PMC6041803 DOI: 10.1093/cercor/bhy113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/28/2023] Open
Abstract
The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.
Collapse
Affiliation(s)
| | - Surajit Sahu
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | | | | | | | | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Alfonso Represa
- INMED, Aix-Marseille University, INSERM U901, Marseille, France
| | | | | |
Collapse
|
44
|
Liu X, Zheng J, Qi S, Shen Q. NONO Regulates Cortical Neuronal Migration and Postnatal Neuronal Maturation. Neurosci Bull 2019; 35:1097-1101. [PMID: 31502212 DOI: 10.1007/s12264-019-00428-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xiaoqing Liu
- Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Frontier Science Research Center for Stem Cells, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Jiangli Zheng
- Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Frontier Science Research Center for Stem Cells, Ministry of Education, Tongji University, Shanghai, 200092, China.,Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Shaojun Qi
- Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Frontier Science Research Center for Stem Cells, Ministry of Education, Tongji University, Shanghai, 200092, China.,Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qin Shen
- Tongji Hospital, Brain and Spinal Cord Innovative Research Center, School of Life Sciences and Technology, Frontier Science Research Center for Stem Cells, Ministry of Education, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
45
|
Topographical cues control the morphology and dynamics of migrating cortical interneurons. Biomaterials 2019; 214:119194. [DOI: 10.1016/j.biomaterials.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022]
|
46
|
Liu W, Wu X, Zhou D, Gong Q. Reading deficits correlate with cortical and subcortical volume changes in a genetic migration disorder. Medicine (Baltimore) 2019; 98:e17070. [PMID: 31490406 PMCID: PMC6739000 DOI: 10.1097/md.0000000000017070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periventricular nodular heterotopia (PNH) is the most common type of epileptogenic neuronal migration disorder, and often presents with epilepsy and reading disability. The functional role of ectopic nodules has been widely studied. However, the associated structural cortical and subcortical volumetric alterations have not been well characterized. Moreover, it is unknown whether a correlation between volumetric changes and behavioral problems exists.40 subjects with bilateral PNH and 40 matched healthy controls were enrolled in this study. The total cerebral, gray matter, white matter, and cerebrospinal fluid (CSF) volumes were compared between the two groups. Furthermore, structural and functional correlations were evaluated between volumetric changes and reading disability.There were no significant differences detected in total cerebral, gray matter or CSF volumes between the two groups, but there was a significant trend of larger gray-matter volume in PNH. Specifically, smaller white matter volumes were found in the PNH patients. Moreover, the volume of white matter was negatively related to time in the digit rapid naming task and a similar but insignificant trend was seen between the volume of gray matter and backward digit span.These findings suggest that reading disability exists in our sample of bilateral PNH. Periventricular nodules would have normally migrated to the overlying cortex. However, the total cerebral, gray matter, and CSF volumes were unaffected. Alterations in neuronal migration may have an impact in the white matter associated reading dysfluency, that is, visually normal.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Neurology, West China Hospital
| | - Xintong Wu
- Department of Neurology, West China Hospital
| | - Dong Zhou
- Department of Neurology, West China Hospital
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Hwang HM, Ku RY, Hashimoto-Torii K. Prenatal Environment That Affects Neuronal Migration. Front Cell Dev Biol 2019; 7:138. [PMID: 31380373 PMCID: PMC6652208 DOI: 10.3389/fcell.2019.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
Migration of neurons starts in the prenatal period and continues into infancy. This developmental process is crucial for forming a proper neuronal network, and the disturbance of this process results in dysfunction of the brain such as epilepsy. Prenatal exposure to environmental stress, including alcohol, drugs, and inflammation, disrupts neuronal migration and causes neuronal migration disorders (NMDs). In this review, we summarize recent findings on this topic and specifically focusing on two different modes of migration, radial, and tangential migration during cortical development. The shared mechanisms underlying the NMDs are discussed by comparing the molecular changes in impaired neuronal migration under exposure to different types of prenatal environmental stress.
Collapse
Affiliation(s)
- Hye M Hwang
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States.,The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Ray Y Ku
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Medical Center, The Children's Research Institute, Washington, DC, United States.,Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
48
|
Chen D, Wang C, Li M, She X, Yuan Y, Chen H, Zhang W, Zhao C. Loss of Foxg1 Impairs the Development of Cortical SST-Interneurons Leading to Abnormal Emotional and Social Behaviors. Cereb Cortex 2019; 29:3666-3682. [DOI: 10.1093/cercor/bhz114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
FOXG1 syndrome is a severe encephalopathy that exhibit intellectual disability, emotional disorder, and limited social communication. To elucidate the contribution of somatostatin-expressing interneurons (SST-INs) to the cellular basis underlying FOXG1 syndrome, here, by crossing SST-cre with a Foxg1fl/fl line, we selectively ablated Foxg1. Loss of Foxg1 resulted in an obvious reduction in the number of SST-INs, accompanied by an altered ratio of subtypes. Foxg1-deficient SST-INs exhibited decreased membrane excitability and a changed ratio of electrophysiological firing patterns, which subsequently led to an excitatory/inhibitory imbalance. Moreover, cognitive defects, limited social interactions, and depression-like behaviors were detected in Foxg1 cKO mice. Treatment with low-dose of clonazepam effectively alleviated the defects. These results identify a link of SST-IN development to the aberrant emotion, cognition, and social capacities in patients. Our findings identify a novel role of Foxg1 in SST-IN development and put new insights into the cellular basis of FOXG1 syndrome.
Collapse
Affiliation(s)
- Dongsheng Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Chunlian Wang
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Meiyi Li
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Xinyu She
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Huanxin Chen
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Weining Zhang
- School of Medicine, Jiangsu University, ZhenJiang, Jiangsu Province, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
49
|
Mohan A, Weiner H, Mohila C, Adesina A, Chintagumpala M, Curry D, Jea A, Lee J, Lam S, Whitehead W, Dauser R, Yoshor D, Aldave G. Epilepsy outcome following resection of low-grade brain tumors in children. J Neurosurg Pediatr 2019; 23:726–731. [PMID: 34806856 DOI: 10.3171/2019.1.peds18367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThe indication for and timing of surgery for epilepsy associated with low-grade mixed neuronal-glial tumors may be controversial. The purpose of this study was to evaluate the effect of resection and associated variables on epilepsy and on progression-free survival (PFS).METHODSA retrospective chart review of patients treated between 1992 and 2016 was conducted to identify individuals with epilepsy and low-grade gliomas or neuronal-glial tumors who underwent resective surgery. Data analyzed included age at epilepsy onset, age at surgery, extent of resection, use of electrocorticography, the number of antiepileptic drugs (AEDs) before and after surgery, the presence of dysplasia, Engel class, histological findings, and PFS. The institutional review board protocol was specifically approved to conduct this study.RESULTSA total of 107 patients were identified. The median follow-up was 4.9 years. The most common pathology was dysembryoplastic neuroepithelial tumor (36.4%), followed by ganglioglioma (31.8%). Eighty-four percent of patients had Engel class I outcomes following surgery. Gross-total resection was associated with a higher likelihood of an Engel class I outcome (90%) as compared to subtotal resection (58%) (p = 0.0005). Surgery reduced the AED burden, with 40% of patients requiring no AEDs after surgery (p < 0.0001). Children with neurodevelopmental comorbidities (n = 5) uniformly did not experience seizure improvement following resection (0% vs 83% overall; p < 0.0001). Electrocorticography was used in 33% of cases and did not significantly increase class I outcomes. PFS was 90% at 5 years. Eleven percent of tumors recurred, with subtotal resection more likely to result in recurrence (hazard ratio 5.3, p = 0.02). Histological subtype showed no significant impact on recurrence.CONCLUSIONSGross-total resection was strongly associated with Engel class I outcome and longer PFS. Further studies are needed to elucidate the suitable time for surgery and to identify factors associated with oncological transformation.
Collapse
Affiliation(s)
- Arvind Mohan
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| | - Howard Weiner
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| | - Carrie Mohila
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine
| | - Adekunle Adesina
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine
| | - Murali Chintagumpala
- Cancer and Hematology Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Daniel Curry
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| | - Andrew Jea
- Section of Pediatric Neurosurgery, Riley Hospital for Children, Department of Neurological Surgery, Indiana University School of Medicine and Goodman Campbell Brain and Spine, Indianapolis, Indiana
| | - Jonathan Lee
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
| | - Sandi Lam
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| | - William Whitehead
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| | - Robert Dauser
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| | - Daniel Yoshor
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| | - Guillermo Aldave
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children’s Hospital, and Department of Neurosurgery, Baylor College of Medicine
| |
Collapse
|
50
|
Minocha S, Herr W. Cortical and Commissural Defects Upon HCF-1 Loss in Nkx2.1-Derived Embryonic Neurons and Glia. Dev Neurobiol 2019; 79:578-595. [PMID: 31207118 PMCID: PMC6771735 DOI: 10.1002/dneu.22704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
Formation of the cerebral cortex and commissures involves a complex developmental process defined by multiple molecular mechanisms governing proliferation of neuronal and glial precursors, neuronal and glial migration, and patterning events. Failure in any of these processes can lead to malformations. Here, we study the role of HCF-1 in these processes. HCF-1 is a conserved metazoan transcriptional co-regulator long implicated in cell proliferation and more recently in human metabolic disorders and mental retardation. Loss of HCF-1 in a subset of ventral telencephalic Nkx2.1-positive progenitors leads to reduced numbers of GABAergic interneurons and glia, owing not to decreased proliferation but rather to increased apoptosis before cell migration. The loss of these cells leads to development of severe commissural and cortical defects in early postnatal mouse brains. These defects include mild and severe structural defects of the corpus callosum and anterior commissure, respectively, and increased folding of the cortex resembling polymicrogyria. Hence, in addition to its well-established role in cell proliferation, HCF-1 is important for organ development, here the brain.
Collapse
Affiliation(s)
- Shilpi Minocha
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| | - Winship Herr
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| |
Collapse
|