1
|
Murlanova K, Pletnikov MV. Modeling psychotic disorders: Environment x environment interaction. Neurosci Biobehav Rev 2023; 152:105310. [PMID: 37437753 DOI: 10.1016/j.neubiorev.2023.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Schizophrenia is a major psychotic disorder with multifactorial etiology that includes interactions between genetic vulnerability and environmental risk factors. In addition, interplay of multiple environmental adversities affects neurodevelopment and may increase the individual risk of developing schizophrenia. Consistent with the two-hit hypothesis of schizophrenia, we review rodent models that combine maternal immune activation as the first hit with other adverse environmental exposures as the second hit. We discuss the strengths and pitfalls of the current animal models of environment x environment interplay and propose some future directions to advance the field.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Kondo MA, Norris AL, Yang K, Cheshire M, Newkirk I, Chen X, Ishizuka K, Jaffe AE, Sawa A, Pevsner J. Dysfunction of mitochondria and GABAergic interneurons in the anterior cingulate cortex of individuals with schizophrenia. Neurosci Res 2022; 185:67-72. [PMID: 36162734 DOI: 10.1016/j.neures.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Here we re-analyze RNA-sequencing data from the anterior cingulate cortex (ACC) of SZ patients using recent methods to improve accuracy and sensitivity of results, such as the quality surrogate variable analysis (qSVA) method and the derfinder R package. We found that genes significantly down-regulated in SZ demonstrated an enrichment for parvalbumin-positive interneurons (FDR < 0.0001). Down-regulated genes were also enriched in oxidative phosphorylation functions (FDR < 0.05). We also addressed whether lifetime exposure to antipsychotics might influence gene expression, highlighting DUSP6, LBH, and NR1D1. Our results support the role of redox imbalance/mitochondrial dysfunction and implicate interneuron subtypes in SZ pathophysiology.
Collapse
Affiliation(s)
- Mari A Kondo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America
| | - Alexis L Norris
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, the United States of America; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America
| | - Madeline Cheshire
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, the United States of America
| | - Isabelle Newkirk
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, the United States of America
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, the United States of America
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, the United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, the United States of America; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America; Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, the United States of America; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, the United States of America.
| |
Collapse
|
3
|
Kulason S, Ratnanather JT, Miller MI, Kamath V, Hua J, Yang K, Ma M, Ishizuka K, Sawa A. A comparative neuroimaging perspective of olfaction and higher-order olfactory processing: on health and disease. Semin Cell Dev Biol 2022; 129:22-30. [PMID: 34462249 PMCID: PMC9900497 DOI: 10.1016/j.semcdb.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.
Collapse
Affiliation(s)
- Sue Kulason
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia. J Neurosci 2020; 40:3304-3317. [PMID: 32205341 DOI: 10.1523/jneurosci.1897-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/07/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022] Open
Abstract
Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone.SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function.
Collapse
|
6
|
Nucifora FC, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol Dis 2019; 131:104257. [PMID: 30170114 PMCID: PMC6395548 DOI: 10.1016/j.nbd.2018.08.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/07/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Treatment resistant schizophrenia (TRS) refers to the significant proportion of schizophrenia patients who continue to have symptoms and poor outcomes despite treatment. While many definitions of TRS include failure of two different antipsychotics as a minimum criterion, the wide variability in inclusion criteria has challenged the consistency and reproducibility of results from studies of TRS. We begin by reviewing the clinical, neuroimaging, and neurobiological characteristics of TRS. We further review the current treatment strategies available, addressing clozapine, the first-line pharmacological agent for TRS, as well as pharmacological and non-pharmacological augmentation of clozapine including medication combinations, electroconvulsive therapy, repetitive transcranial magnetic stimulation, deep brain stimulation, and psychotherapies. We conclude by highlighting the most recent consensus for defining TRS proposed by the Treatment Response and Resistance in Psychosis Working Group, and provide our overview of future perspectives and directions that could help advance the field of TRS research, including the concept of TRS as a potential subtype of schizophrenia.
Collapse
Affiliation(s)
- Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | - Edgar Woznica
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Brian J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Nicola Cascella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Tatsukawa T, Raveau M, Ogiwara I, Hattori S, Miyamoto H, Mazaki E, Itohara S, Miyakawa T, Montal M, Yamakawa K. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol Autism 2019; 10:15. [PMID: 30962870 PMCID: PMC6437867 DOI: 10.1186/s13229-019-0265-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
Background Mutations of the SCN2A gene encoding a voltage-gated sodium channel alpha-II subunit Nav1.2 are associated with neurological disorders such as epilepsy, autism spectrum disorders, intellectual disability, and schizophrenia. However, causal relationships and pathogenic mechanisms underlying these neurological defects, especially social and psychiatric features, remain to be elucidated. Methods We investigated the behavior of mice with a conventional or conditional deletion of Scn2a in a comprehensive test battery including open field, elevated plus maze, light-dark box, three chambers, social dominance tube, resident-intruder, ultrasonic vocalization, and fear conditioning tests. We further monitored the effects of the positive allosteric modulator of AMPA receptors CX516 on these model mice. Results Conventional heterozygous Scn2a knockout mice (Scn2aKO/+) displayed novelty-induced exploratory hyperactivity and increased rearing. The increased vertical activity was reproduced by heterozygous inactivation of Scn2a in dorsal-telencephalic excitatory neurons but not in inhibitory neurons. Moreover, these phenotypes were rescued by treating Scn2aKO/+ mice with CX516. Additionally, Scn2aKO/+ mice displayed mild social behavior impairment, enhanced fear conditioning, and deficient fear extinction. Neuronal activity was intensified in the medial prefrontal cortex of Scn2aKO/+ mice, with an increase in the gamma band. Conclusions Scn2aKO/+ mice exhibit a spectrum of phenotypes commonly observed in models of schizophrenia and autism spectrum disorder. Treatment with the CX516 ampakine, which ameliorates hyperactivity in these mice, could be a potential therapeutic strategy to rescue some of the disease phenotypes. Electronic supplementary material The online version of this article (10.1186/s13229-019-0265-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tetsuya Tatsukawa
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Matthieu Raveau
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Ikuo Ogiwara
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan.,2Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Satoko Hattori
- 3Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-shi, Aichi 470-1192 Japan
| | - Hiroyuki Miyamoto
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Emi Mazaki
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shigeyoshi Itohara
- 4Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan.,5FIRST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 Japan
| | - Tsuyoshi Miyakawa
- 3Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-shi, Aichi 470-1192 Japan
| | - Mauricio Montal
- 6Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Kazuhiro Yamakawa
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| |
Collapse
|
8
|
Abstract
Hippocampal abnormalities have been heavily implicated in the pathophysiology of schizophrenia. The dentate gyrus of the hippocampus was shown to manifest an immature molecular profile in schizophrenia subjects, as well as in various animal models of the disorder. In this position paper, we advance a hypothesis that this immature molecular profile is accompanied by an identifiable immature morphology of the dentate gyrus granule cell layer. We adduce evidence for arrested maturation of the dentate gyrus in the human schizophrenia-affected brain, as well as multiple rodent models of the disease. Implications of this neurohistopathological signature for current theory regarding the development of schizophrenia are discussed.
Collapse
Affiliation(s)
- Ayda Tavitian
- Department of Neurology & Neurosurgery, Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hyman M. Schipper
- Department of Neurology & Neurosurgery, Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
10
|
Avramopoulos D. Recent Advances in the Genetics of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2018; 4:35-51. [PMID: 29998117 PMCID: PMC6032037 DOI: 10.1159/000488679] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022]
Abstract
The last decade brought tremendous progress in the field of schizophrenia genetics. As a result of extensive collaborations and multiple technological advances, we now recognize many types of genetic variants that increase the risk. These include large copy number variants, rare coding inherited and de novο variants, and over 100 loci harboring common risk variants. While the type and contribution to the risk vary among genetic variants, there is concordance in the functions of genes they implicate, such as those whose RNA binds the fragile X-related protein FMRP and members of the activity-regulated cytoskeletal complex involved in learning and memory. Gene expression studies add important information on the biology of the disease and recapitulate the same functional gene groups. Studies of alternative phenotypes help us widen our understanding of the genetic architecture of mental function and dysfunction, how diseases overlap not only with each other but also with non-disease phenotypes. The challenge is to apply this new knowledge to prevention and treatment and help patients. The data generated so far and emerging technologies, including new methods in cell engineering, offer significant promise that in the next decade we will unlock the translational potential of these significant discoveries.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Thion MS, Garel S. On place and time: microglia in embryonic and perinatal brain development. Curr Opin Neurobiol 2017; 47:121-130. [PMID: 29080445 DOI: 10.1016/j.conb.2017.10.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 12/26/2022]
Abstract
Microglia, the brain-resident macrophages, play key roles in regulating synapse density and homeostasis in the postnatal and adult brain. However, microglia enter the brain during embryogenesis and recent studies have revealed additional early functions of these immune cells in prenatal and perinatal cerebral development. Such findings are of importance since prenatal inflammation and microglia dysfunction have been associated with several neurodevelopmental disorders. This review provides a selective overview of the early roles of microglia, their link with a specific spatiotemporal distribution and how they can be modulated by intrinsic factors or environmental signals.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Sonia Garel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
12
|
Nimgaonkar VL, Prasad KM, Chowdari KV, Severance EG, Yolken RH. The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis. Mol Psychiatry 2017; 22:1554-1561. [PMID: 28761078 PMCID: PMC5656502 DOI: 10.1038/mp.2017.151] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
The pathogenesis of schizophrenia is considered to be multi-factorial, with likely gene-environment interactions (GEI). Genetic and environmental risk factors are being identified with increasing frequency, yet their very number vastly increases the scope of possible GEI, making it difficult to identify them with certainty. Accumulating evidence suggests a dysregulated complement pathway among the pathogenic processes of schizophrenia. The complement pathway mediates innate and acquired immunity, and its activation drives the removal of damaged cells, autoantigens and environmentally derived antigens. Abnormalities in complement functions occur in many infectious and autoimmune disorders that have been linked to schizophrenia. Many older reports indicate altered serum complement activity in schizophrenia, though the data are inconclusive. Compellingly, recent genome-wide association studies suggest repeat polymorphisms incorporating the complement 4A (C4A) and 4B (C4B) genes as risk factors for schizophrenia. The C4A/C4B genetic associations have re-ignited interest not only in inflammation-related models for schizophrenia pathogenesis, but also in neurodevelopmental theories, because rodent models indicate a role for complement proteins in synaptic pruning and neurodevelopment. Thus, the complement system could be used as one of the 'staging posts' for a variety of focused studies of schizophrenia pathogenesis. They include GEI studies of the C4A/C4B repeat polymorphisms in relation to inflammation-related or infectious processes, animal model studies and tests of hypotheses linked to autoimmune diseases that can co-segregate with schizophrenia. If they can be replicated, such studies would vastly improve our understanding of pathogenic processes in schizophrenia through GEI analyses and open new avenues for therapy.
Collapse
Affiliation(s)
- Vishwajit L. Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Kodavali V. Chowdari
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Emily G. Severance
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert H. Yolken
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| |
Collapse
|
13
|
Eachus H, Bright C, Cunliffe VT, Placzek M, Wood JD, Watt PJ. Disrupted-in-Schizophrenia-1 is essential for normal hypothalamic-pituitary-interrenal (HPI) axis function. Hum Mol Genet 2017; 26:1992-2005. [PMID: 28334933 PMCID: PMC5437527 DOI: 10.1093/hmg/ddx076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/23/2017] [Indexed: 02/01/2023] Open
Abstract
Psychiatric disorders arise due to an interplay of genetic and environmental factors, including stress. Studies in rodents have shown that mutants for Disrupted-In-Schizophrenia-1 (DISC1), a well-accepted genetic risk factor for mental illness, display abnormal behaviours in response to stress, but the mechanisms through which DISC1 affects stress responses remain poorly understood. Using two lines of zebrafish homozygous mutant for disc1, we investigated behaviour and functioning of the hypothalamic-pituitary-interrenal (HPI) axis, the fish equivalent of the hypothalamic-pituitary-adrenal (HPA) axis. Here, we show that the role of DISC1 in stress responses is evolutionarily conserved and that DISC1 is essential for normal functioning of the HPI axis. Adult zebrafish homozygous mutant for disc1 show aberrant behavioural responses to stress. Our studies reveal that in the embryo, disc1 is expressed in neural progenitor cells of the hypothalamus, a conserved region of the vertebrate brain that centrally controls responses to environmental stressors. In disc1 mutant embryos, proliferating rx3+ hypothalamic progenitors are not maintained normally and neuronal differentiation is compromised: rx3-derived ff1b+ neurons, implicated in anxiety-related behaviours, and corticotrophin releasing hormone (crh) neurons, key regulators of the stress axis, develop abnormally, and rx3-derived pomc+ neurons are disorganised. Abnormal hypothalamic development is associated with dysfunctional behavioural and neuroendocrine stress responses. In contrast to wild type siblings, disc1 mutant larvae show altered crh levels, fail to upregulate cortisol levels when under stress and do not modulate shoal cohesion, indicative of abnormal social behaviour. These data indicate that disc1 is essential for normal development of the hypothalamus and for the correct functioning of the HPA/HPI axis.
Collapse
Affiliation(s)
- Helen Eachus
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.,The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Charlotte Bright
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Vincent T Cunliffe
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan D Wood
- The Bateson Centre, Department of Biomedical Science, Firth Court, Western Bank, Sheffield S10 2TN, UK.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Penelope J Watt
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
14
|
Abstract
Schizophrenia is a devastating illness that affects up to 1% of the population; it is characterized by a combination of positive symptoms, negative symptoms, and cognitive impairment. Currently, treatment consists of one class of medications known as antipsychotics, which include typical (first-generation) and atypical (second-generation) agents. Unfortunately, antipsychotic medications have limited efficacy, with up to a third of patients lacking a full response. Clozapine, the first atypical antipsychotic developed, is the only medication shown to be superior to all other antipsychotics. However, owing to several life-threatening side effects and required enrollment in a registry with routine blood monitoring, clozapine is greatly underutilized in the US. Developing a medication as efficacious as clozapine with limited side effects would likely become the first-line therapy for schizophrenia and related disorders. In this review, we discuss the history of clozapine, landmark studies, and its clinical advantages and disadvantages. We further discuss the hypotheses for clozapine's superior efficacy based on neuroreceptor binding, and the limitations of a receptor-based approach to antipsychotic development. We highlight some of the advances from pharmacogenetic studies on clozapine and then focus on studies of clozapine using unbiased approaches such as pharmacogenomics and gene expression profiling. Finally, we examine how these approaches could provide insights into clozapine's mechanism of action and side-effect profile, and lead to novel and improved therapeutics.
Collapse
Affiliation(s)
- Frederick C Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Brian J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
O’Tuathaigh CMP, Fumagalli F, Desbonnet L, Perez-Branguli F, Moloney G, Loftus S, O’Leary C, Petit E, Cox R, Tighe O, Clarke G, Lai D, Harvey RP, Cryan JF, Mitchell KJ, Dinan TG, Riva MA, Waddington JL. Epistatic and Independent Effects on Schizophrenia-Related Phenotypes Following Co-disruption of the Risk Factors Neuregulin-1 × DISC1. Schizophr Bull 2017; 43:214-225. [PMID: 27613806 PMCID: PMC5216856 DOI: 10.1093/schbul/sbw120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Few studies have addressed likely gene × gene (ie, epistatic) interactions in mediating risk for schizophrenia. Using a preclinical genetic approach, we investigated whether simultaneous disruption of the risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) would produce a disease-relevant phenotypic profile different from that observed following disruption to either gene alone. NRG1 heterozygotes exhibited hyperactivity and disruption to prepulse inhibition, both reversed by antipsychotic treatment, and accompanied by reduced striatal dopamine D2 receptor protein expression, impaired social cognition, and altered glutamatergic synaptic protein expression in selected brain areas. Single gene DISC1 mutants demonstrated a disruption in social cognition and nest-building, altered brain 5-hydroxytryptamine levels and hippocampal ErbB4 expression, and decreased cortical expression of the schizophrenia-associated microRNA miR-29b. Co-disruption of DISC1 and NRG1, indicative of epistasis, evoked an impairment in sociability and enhanced self-grooming, accompanied by changes in hypothalamic oxytocin/vasopressin gene expression. The findings indicate specific behavioral correlates and underlying cellular pathways downstream of main effects of DNA variation in the schizophrenia-associated genes NRG1 and DISC1.
Collapse
Affiliation(s)
- Colm M. P. O’Tuathaigh
- School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland;,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland;,*To whom correspondence should be addressed; School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork T12 YN60, Ireland; tel: +353-(0)21-420-5303, fax: +353-(0)21-490-1594, e-mail:
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita` degli Studi di Milano, Milan,
Italy
| | - Lieve Desbonnet
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland
| | - Francesc Perez-Branguli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland;,IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | - Gerard Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Samim Loftus
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Claire O’Leary
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Emilie Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland
| | - Gerard Clarke
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland;,Department of Psychiatry, University College Cork, Cork, Ireland
| | - Donna Lai
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | | | - John F. Cryan
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland;,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Timothy G. Dinan
- Neurogastroenterology Laboratory, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland;,Department of Psychiatry, University College Cork, Cork, Ireland
| | - Marco A. Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita` degli Studi di Milano, Milan,
Italy
| | - John L. Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2,Ireland;,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Altered cytokine profile, pain sensitivity, and stress responsivity in mice with co-disruption of the developmental genes Neuregulin-1×DISC1. Behav Brain Res 2016; 320:113-118. [PMID: 27916686 DOI: 10.1016/j.bbr.2016.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Abstract
The complex genetic origins of many human disorders suggest that epistatic (gene×gene) interactions may contribute to a significant proportion of their heritability estimates and phenotypic heterogeneity. Simultaneous disruption of the developmental genes and schizophrenia risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) in mice has been shown to produce disease-relevant and domain-specific phenotypic profiles different from that observed following disruption of either gene alone. In the current study, anxiety and stress responsivity phenotypes in male and female mutant mice with simultaneous disruption of DISC1 and NRG1 were examined. NRG1×DISC1 mutant mice were generated and adult mice from each genotype were assessed for pain sensitivity (hot plate and tail flick tests), anxiety (light-dark box), and stress-induced hypothermia. Serum samples were assayed to measure circulating levels of pro-inflammatory cytokines. Mice with the NRG1 mutation, irrespective of DISC1 mutation, spent significantly more time in the light chamber, displayed increased core body temperature following acute stress, and decreased pain sensitivity. Basal serum levels of cytokines IL8, IL1β and IL10 were decreased in NRG1 mutants. Mutation of DISC1, in the absence of epistatic interaction with NRG1, was associated with increased serum levels of IL1β. Epistatic effects were evident for IL6, IL12 and TNFα. NRG1 mutation alters stress and pain responsivity, anxiety, and is associated with changes in basal cytokine levels. Epistasis resulting from synergistic NRG1 and DISC1 gene mutations altered pro-inflammatory cytokine levels relative to the effects of each of these genes individually, highlighting the importance of epistatic mechanisms in immune-related pathology.
Collapse
|
17
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
18
|
Xia M, Abazyan S, Jouroukhin Y, Pletnikov M. Behavioral sequelae of astrocyte dysfunction: focus on animal models of schizophrenia. Schizophr Res 2016; 176:72-82. [PMID: 25468180 PMCID: PMC4439390 DOI: 10.1016/j.schres.2014.10.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate multiple processes in the brain ranging from trophic support of developing neurons to modulation of synaptic neurotransmission and neuroinflammation in adulthood. It is, therefore, understandable that pathogenesis and pathophysiology of major psychiatric disorders involve astrocyte dysfunctions. Until recently, there has been the paucity of experimental approaches to studying the roles of astrocytes in behavioral disease. A new generation of in vivo models allows us to advance our understanding of the roles of astrocytes in psychiatric disorders. This review will evaluate the recent studies that focus on the contribution of astrocyte dysfunction to behavioral alterations pertinent to schizophrenia and will propose the possible solutions of the limitations of the existing approaches.
Collapse
Affiliation(s)
- Meng Xia
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,Preclinical College, Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi Province, China,Chinese Medicine College, Hubei University for Nationalities, ENSHI, 445000, Hubei Province, China
| | - Sofya Abazyan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, United States.
| |
Collapse
|
19
|
David CN, Frias ES, Szu JI, Vieira PA, Hubbard JA, Lovelace J, Michael M, Worth D, McGovern KE, Ethell IM, Stanley BG, Korzus E, Fiacco TA, Binder DK, Wilson EH. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii. PLoS Pathog 2016; 12:e1005643. [PMID: 27281462 PMCID: PMC4900626 DOI: 10.1371/journal.ppat.1005643] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023] Open
Abstract
The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. The protozoan parasite Toxoplasma gondii infects a third of the world’s population and causes a chronic lifelong infection in the brain of the host. The consequences of such an infection are poorly understood. Here, we demonstrate that Toxoplasma infection can induce profound changes in astrocyte physiology leading to significant disruption of neuronal networks. Pathology can be rescued by upregulating the astrocytic glutamate transporter, GLT-1, restoring concentrations of extracellular glutamate and EEG power. We suggest that such global dysregulation of neurotransmitters should be considered when determining the effects of infection on the CNS.
Collapse
Affiliation(s)
- Clément N. David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Elma S. Frias
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Jenny I. Szu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Philip A. Vieira
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Jacqueline A. Hubbard
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Jonathan Lovelace
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Marena Michael
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Kathryn E. McGovern
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Iryna M. Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - B. Glenn Stanley
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, California, United States of America
| | - Todd A. Fiacco
- Department of Neuroscience, University of California, Riverside, Riverside, California, United States of America
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Sigurdsson T. Neural circuit dysfunction in schizophrenia: Insights from animal models. Neuroscience 2016; 321:42-65. [DOI: 10.1016/j.neuroscience.2015.06.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022]
|
21
|
Kannan G, Crawford JA, Yang C, Gressitt KL, Ihenatu C, Krasnova IN, Cadet JL, Yolken RH, Severance EG, Pletnikov MV. Anti-NMDA receptor autoantibodies and associated neurobehavioral pathology in mice are dependent on age of first exposure to Toxoplasma gondii. Neurobiol Dis 2016; 91:307-14. [PMID: 26969530 DOI: 10.1016/j.nbd.2016.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is a pathogen implicated in psychiatric disorders. As elevated antibodies to T. gondii are also present in non-symptomatic individuals, we hypothesized that the age during first exposure to the pathogen may affect symptom manifestation. We tested this hypothesis by evaluating neurobehavioral abnormalities and the immune response in mice following adolescent or adult T. gondii infection. METHODS Mice were infected with T. gondii at postnatal day 33 (adolescent/juvenile) or 61 (adult). At 8weeks post-infection (wpi), pre-pulse inhibition of the acoustic startle (PPI) in mice administered MK-801 (0.1 and 0.3mg/kg) and amphetamine (5 and 10mg/kg) was assessed. Peripheral (anti-T. gondii, C1q-associated IgG and anti-GLUN2 antibodies) and central (C1q and Iba1) markers of the immune response were also evaluated. In addition, regional brain expression of N-methyl-d-aspartate receptor (NMDAR) subunits (GLUN1 and GLUN2A), glutamatergic (vGLUT1, PSD95) and GABAergic (GAD67) markers, and monoamines (DA, NE, 5-HT) and their metabolites were measured. RESULTS Juvenile and adult infected mice exhibited opposite effects of MK-801 on PPI, with decreased PPI in juveniles and increased PPI in adults. There was a significantly greater elevation of GLUN2 autoantibodies in juvenile-compared to adult-infected mice. In addition, age-dependent differences were found in regional expression of NMDAR subunits and markers of glutamatergic, GABAergic, and monoaminergic systems. Activated microglia and C1q elevations were found in both juvenile- and adult-T. gondii infected mice. CONCLUSIONS Our study demonstrates that the age at first exposure to T. gondii is an important factor in shaping distinct behavioral and neurobiological abnormalities. Elevation in GLUN2 autoantibodies or complement protein C1q may be a potential underlying mechanism. A better understanding of these age-related differences may lead to more efficient treatments of behavioral disorders associated with T. gondii infection.
Collapse
Affiliation(s)
- Geetha Kannan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | - Joshua A Crawford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - ChunXia Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Kristin L Gressitt
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chinezimuzo Ihenatu
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
22
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Burrows EL, Hannan AJ. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biol Psychol 2015; 116:82-9. [PMID: 26687973 DOI: 10.1016/j.biopsycho.2015.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations.
Collapse
Affiliation(s)
- Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
24
|
Kaiser T, Feng G. Modeling psychiatric disorders for developing effective treatments. Nat Med 2015; 21:979-88. [PMID: 26340119 DOI: 10.1038/nm.3935] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
Recent advances in identifying risk-associated genes have provided unprecedented opportunities for developing animal models for psychiatric disease research with the goal of attaining translational utility to ultimately develop novel treatments. However, at this early stage, successful translation has yet to be achieved. Here we review recent advances in modeling psychiatric disease, discuss the utility and limitations of animal models, and emphasize the importance of shifting from behavioral analysis to identifying neurophysiological abnormalities, which are likely to be more conserved across species and thus may increase translatability. Looking forward, we envision that preclinical research will align with clinical research to build a common framework of comparable neurobiological abnormalities and to help form subgroups of patients on the basis of similar pathophysiology. Experimental neuroscience can then use animal models to discover mechanisms underlying distinct abnormalities and develop strategies for effective treatments.
Collapse
Affiliation(s)
- Tobias Kaiser
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
26
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
27
|
Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, Hatzimanolis A, Goes FS, Nestadt G, Mulle J, Coneely K, Hopkins M, Ruczinski I, Yolken R, Pulver AE. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS One 2015; 10:e0116696. [PMID: 25781172 PMCID: PMC4363491 DOI: 10.1371/journal.pone.0116696] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammation and maternal or fetal infections have been suggested as risk factors for schizophrenia (SZ) and bipolar disorder (BP). It is likely that such environmental effects are contingent on genetic background. Here, in a genome-wide approach, we test the hypothesis that such exposures increase the risk for SZ and BP and that the increase is dependent on genetic variants. We use genome-wide genotype data, plasma IgG antibody measurements against Toxoplasma gondii, Herpes simplex virus type 1, Cytomegalovirus, Human Herpes Virus 6 and the food antigen gliadin as well as measurements of C-reactive protein (CRP), a peripheral marker of inflammation. The subjects are SZ cases, BP cases, parents of cases and screened controls. We look for higher levels of our immunity/infection variables and interactions between them and common genetic variation genome-wide. We find many of the antibody measurements higher in both disorders. While individual tests do not withstand correction for multiple comparisons, the number of nominally significant tests and the comparisons showing the expected direction are in significant excess (permutation p=0.019 and 0.004 respectively). We also find CRP levels highly elevated in SZ, BP and the mothers of BP cases, in agreement with existing literature, but possibly confounded by our inability to correct for smoking or body mass index. In our genome-wide interaction analysis no signal reached genome-wide significance, yet many plausible candidate genes emerged. In a hypothesis driven test, we found multiple interactions among SZ-associated SNPs in the HLA region on chromosome 6 and replicated an interaction between CMV infection and genotypes near the CTNNA3 gene reported by a recent GWAS. Our results support that inflammatory processes and infection may modify the risk for psychosis and suggest that the genotype at SZ-associated HLA loci modifies the effect of these variables on the risk to develop SZ.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - John McGrath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Paula Wolyniec
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ruihua Wang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nicole Eckart
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alexandros Hatzimanolis
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Fernando S. Goes
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jennifer Mulle
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Karen Coneely
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Myfanwy Hopkins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Ingo Ruczinski
- Bloomberg School of Public Heath, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Robert Yolken
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ann E. Pulver
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
28
|
Zhang Z, van Praag H. Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice. Brain Behav Immun 2015; 45:60-70. [PMID: 25449671 DOI: 10.1016/j.bbi.2014.10.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is associated with deficits in the hippocampus, a brain area important for learning and memory. The dentate gyrus (DG) of the hippocampus develops both before and after birth. To study the relative contribution of mature and adult-born DG granule cells to disease etiology, we compared both cell populations in a mouse model of psychiatric illness resulting from maternal immune activation. Polyriboinosinic-polyribocytidilic acid (PolyIC, 5mg/kg) or saline was given on gestation day 15 to pregnant female C57Bl/6 mice. Male offspring (n=105), was administered systemic bromodeoxyuridine (BrdU, 50mg/kg) (n=52) or intracerebral retroviral injection into the DG (n=53), to label dividing cells at one month of age. Two months later behavioral tests were performed to evaluate disease phenotype. Immunohistochemistry and whole-cell patch clamping were used to assess morphological and physiological characteristics of DG cells. Three-month-old PolyIC exposed male offspring exhibited deficient pre-pulse inhibition, spatial maze performance and motor coordination, as well as increased depression-like behavior. Histological analysis showed reduced DG volume and parvalbumin positive interneuron number. Both mature and new hippocampal neurons showed modifications in intrinsic properties such as increased input resistance and lower current threshold, and decreased action potential number. Reduced GABAergic inhibitory transmission was observed only in mature DG neurons. Differential impairments in mature DG cells and adult-born new neurons may have implications for behavioral deficits associated with maternal immune activation.
Collapse
Affiliation(s)
- Zhi Zhang
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
29
|
Abstract
In recent years good progress has been made in uncovering the genetic underpinnings of schizophrenia. Even so, as a polygenic disorder, schizophrenia has a complex etiology that is far from understood. Meanwhile data are being collected enabling the study of interactions between genes and the environment. A confluence of data from genetic and environmental exposure studies points to the role of infections and immunity in the pathophysiology of schizophrenia. In a recent study by Børglum et al., a single nucleotide polymorphism (SNP) in the gene CTNNA3 was identified that may provide clues to gene-environment interactions. The carriers of the minor allele for the SNP had a 5 fold risk of later developing schizophrenia if their mothers were CMV positive, while the children not carrying the allele had no excess risk from maternal CMV. In the current paper we summarize recent advances to clarify possible mechanism of such interactions between the host genotype and infection in schizophrenia risk.
Collapse
Affiliation(s)
- Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Denmark
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Brad D. Pearce
- Rollins School of Public Health, Department of Epidemiology, Emory University, Atlanta GA, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta GA, USA
| |
Collapse
|
30
|
Beurel E, Jope RS. Inflammation and lithium: clues to mechanisms contributing to suicide-linked traits. Transl Psychiatry 2014; 4:e488. [PMID: 25514751 PMCID: PMC4270310 DOI: 10.1038/tp.2014.129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/21/2014] [Accepted: 10/26/2014] [Indexed: 12/15/2022] Open
Abstract
Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3). GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions, which may include inhibitors of GSK3.
Collapse
Affiliation(s)
- E Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - R S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA,Miller School of Medicine, University of Miami, 1011 NW 15th Street, Gautier Building Room 416, Miami, FL 33136, USA. E-mail:
| |
Collapse
|
31
|
Kannan G, Prandovszky E, Steinfeldt CB, Gressitt KL, Yang C, Yolken RH, Severance EG, Jones-Brando L, Pletnikov MV. One minute ultraviolet exposure inhibits Toxoplasma gondii tachyzoite replication and cyst conversion without diminishing host humoral-mediated immune response. Exp Parasitol 2014; 145:110-7. [PMID: 25131777 DOI: 10.1016/j.exppara.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/20/2014] [Accepted: 08/03/2014] [Indexed: 12/17/2022]
Abstract
We developed a protocol to inactivate Toxoplasma gondii (T. gondii) tachyzoites employing 1 min of ultraviolet (UV) exposure. We show that this treatment completely inhibited parasite replication and cyst formation in vitro and in vivo but did not affect the induction of a robust IgG response in mice. We propose that our protocol can be used to study the contribution of the humoral immune response to rodent behavioral alterations following T. gondii infection.
Collapse
Affiliation(s)
- Geetha Kannan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Curtis B Steinfeldt
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Kristin L Gressitt
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - ChunXia Yang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Emily G Severance
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Lorraine Jones-Brando
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Mikhail V Pletnikov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
Brennand KJ, Landek-Salgado MA, Sawa A. Modeling heterogeneous patients with a clinical diagnosis of schizophrenia with induced pluripotent stem cells. Biol Psychiatry 2014; 75:936-44. [PMID: 24331955 PMCID: PMC4022707 DOI: 10.1016/j.biopsych.2013.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022]
Abstract
Schizophrenia (SZ) is a devastating complex genetic mental condition that is heterogeneous in terms of clinical etiologies, symptoms, and outcomes. Despite decades of postmortem, neuroimaging, pharmacological, and genetic studies of patients, in addition to animal models, much of the biological mechanisms that underlie the pathology of SZ remain unknown. The ability to reprogram adult somatic cells into human induced pluripotent stem cells (hiPSCs) provides a new tool that supplies live human neurons for modeling complex genetic conditions such as SZ. The purpose of this review is to discuss the technical and clinical constraints currently limiting hiPSC-based studies. We posit that reducing the clinical heterogeneity of hiPSC-based studies, by selecting subjects with common clinical manifestations or rare genetic variants, will help our ability to draw meaningful insights from the necessarily small patient cohorts that can be studied at this time.
Collapse
Affiliation(s)
- Kristen J Brennand
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Almeida LEF, Roby CD, Krueger BK. Increased BDNF expression in fetal brain in the valproic acid model of autism. Mol Cell Neurosci 2014; 59:57-62. [PMID: 24480134 PMCID: PMC4008664 DOI: 10.1016/j.mcn.2014.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/29/2022] Open
Abstract
Human fetal exposure to valproic acid (VPA), a widely-used anti-epileptic and mood-stabilizing drug, leads to an increased incidence of behavioral and intellectual impairments including autism; VPA administration to pregnant rats and mice at gestational days 12.5 (E12.5) or E13.5 leads to autistic-like symptoms in the offspring and is widely used as an animal model for autism. We report here that this VPA administration protocol transiently increased both BDNF mRNA and BDNF protein levels 5-6-fold in the fetal mouse brain. VPA exposure in utero induced smaller increases in the expression of mRNA encoding the other neurotrophins, NT3 (2.5-fold) and NT4 (2-fold). Expression of the neurotrophin receptors, trkA, trkB and trkC were minimally affected, while levels of the low-affinity neurotrophin receptor, p75(NTR), doubled. Of the nine 5'-untranslated exons of the mouse BDNF gene, only expression of exons I, IV and VI was stimulated by VPA in utero. In light of the well-established role of BDNF in regulating neurogenesis and the laminar fate of postmitotic neurons in the developing cortex, an aberrant increase in BDNF expression in the fetal brain may contribute to VPA-induced cognitive disorders by altering brain development.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Clinton D Roby
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce K Krueger
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Burrows EL, Hannan AJ. Decanalization mediating gene-environment interactions in schizophrenia and other psychiatric disorders with neurodevelopmental etiology. Front Behav Neurosci 2013; 7:157. [PMID: 24312026 PMCID: PMC3826253 DOI: 10.3389/fnbeh.2013.00157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/21/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emma L. Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
36
|
Hannan AJ. Nature, nurture and neurobiology: Gene–environment interactions in neuropsychiatric disorders. Neurobiol Dis 2013; 57:1-4. [DOI: 10.1016/j.nbd.2013.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Turner KM, Burne THJ. Interaction of genotype and environment: effect of strain and housing conditions on cognitive behavior in rodent models of schizophrenia. Front Behav Neurosci 2013; 7:97. [PMID: 23914162 PMCID: PMC3728474 DOI: 10.3389/fnbeh.2013.00097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/16/2013] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia is associated with many genetic and environmental risk factors and there is growing evidence that the interactions between genetic and environmental "hits" are critical for disease onset. Animal models of schizophrenia have traditionally used specific strain and housing conditions to test potential risk factors. As the field moves towards testing gene (G) x environment (E) interactions the impact of these choices should be considered. Given the surge of research focused on cognitive deficits, we have examined studies of cognition in rodents from the perspective of GxE interactions, in which strain or housing manipulations have been varied. Behavior is clearly altered by these factors, yet few animal models of schizophrenia have investigated cognitive deficits using different strain and housing conditions. It is important to recognise the large variation in behavior observed when using different strain and housing combinations because GxE interactions may mask or exacerbate cognitive outcomes. Further consideration will improve our understanding of GxE interactions and the underlying neurobiology of cognitive impairments in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Karly M. Turner
- Queensland Brain Institute, The University of Queensland, St. Lucia, BrisbaneQLD, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St. Lucia, BrisbaneQLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, WacolQLD, Australia
| |
Collapse
|