1
|
Liang LP, Sri Hari A, Day BJ, Patel M. Pharmacological elevation of glutathione inhibits status epilepticus-induced neuroinflammation and oxidative injury. Redox Biol 2024; 73:103168. [PMID: 38714094 PMCID: PMC11087235 DOI: 10.1016/j.redox.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Glutathione (GSH) is a major endogenous antioxidant, and its depletion has been observed in several brain diseases including epilepsy. Previous studies in our laboratory have shown that dimercaprol (DMP) can elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme and inhibit neuroinflammation in vitro. Here we determined 1) the role of cysteamine as a new mechanism by which DMP increases GSH biosynthesis and 2) its ability to inhibit neuroinflammation and neuronal injury in the rat kainate model of epilepsy. DMP depleted cysteamine in a time- and concentration-dependent manner in a cell free system. To guide the in vivo administration of DMP, its pharmacokinetic profile was determined in the plasma, liver, and brain. The results confirmed DMP's ability to cross the blood-brain-barrier. Treatment of rats with DMP (30 mg/kg) depleted cysteamine in the liver and hippocampus that was associated with increased GCL activity in these tissues. GSH levels were significantly increased (20 %) in the hippocampus 1 h after 30 mg/kg DMP administration. Following DMP (30 mg/kg) administration once daily, a marked attenuation of GSH depletion was seen in the SE model. SE-induced inflammatory markers including cytokine release, microglial activation, and neuronal death were significantly attenuated in the hippocampus with DMP treatment. Taken together, these results highlight the importance of restoring redox status with rescue of GSH depletion by DMP in post epileptogenic insults.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Medicine, National Jewish Health, Denver, CO, 80202, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Putra M, Vasanthi SS, Rao NS, Meyer C, Van Otterloo M, Thangi L, Thedens DR, Kannurpatti SS, Thippeswamy T. Inhibiting Inducible Nitric Oxide Synthase with 1400W Reduces Soman (GD)-Induced Ferroptosis in Long-Term Epilepsy-Associated Neuropathology: Structural and Functional Magnetic Resonance Imaging Correlations with Neurobehavior and Brain Pathology. J Pharmacol Exp Ther 2024; 388:724-738. [PMID: 38129129 PMCID: PMC10801728 DOI: 10.1124/jpet.123.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Organophosphate (OP) nerve agent (OPNA) intoxication leads to long-term brain dysfunctions. The ineffectiveness of current treatments for OPNA intoxication prompts a quest for the investigation of the mechanism and an alternative effective therapeutic approach. Our previous studies on 1400W, a highly selective inducible nitric oxide synthase (iNOS) inhibitor, showed improvement in epilepsy and seizure-induced brain pathology in rat models of kainate and OP intoxication. In this study, magnetic resonance imaging (MRI) modalities, behavioral outcomes, and biomarkers were comprehensively investigated for brain abnormalities following soman (GD) intoxication in a rat model. T1 and T2 MRI robustly identified pathologic microchanges in brain structures associated with GD toxicity, and 1400W suppressed those aberrant alterations. Moreover, functional network reduction was evident in the cortex, hippocampus, and thalamus after GD exposure, and 1400W rescued the losses except in the thalamus. Behavioral tests showed protection by 1400W against GD-induced memory dysfunction, which also correlated with the extent of brain pathology observed in structural and functional MRIs. GD exposure upregulated iron-laden glial cells and ferritin levels in the brain and serum, 1400W decreased ferritin levels in the epileptic foci in the brain but not in the serum. The levels of brain ferritin also correlated with MRI parameters. Further, 1400W mitigated the overproduction of nitroxidative markers after GD exposure. Overall, this study provides direct evidence for the relationships of structural and functional MRI modalities with behavioral and molecular abnormalities following GD exposure and the neuroprotective effect of an iNOS inhibitor, 1400W. SIGNIFICANT STATEMENT: Our studies demonstrate the MRI microchanges in the brain following GD toxicity, which strongly correlate with neurobehavioral performances and iron homeostasis. The inhibition of iNOS with 1400W mitigates GD-induced cognitive decline, iron dysregulation, and aberrant brain MRI findings.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Suraj S Vasanthi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Christina Meyer
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Madison Van Otterloo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Lal Thangi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Daniel R Thedens
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Sridhar S Kannurpatti
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa (M.P., S.S.V., N.S.R., C.M., M.V.O., L.T., T.T.); Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa (D.R.T.); and Department of Radiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey (S.S.K.)
| |
Collapse
|
3
|
Tripathi S, Nathan CL, Tate MC, Horbinski CM, Templer JW, Rosenow JM, Sita TL, James CD, Deneen B, Miller SD, Heimberger AB. The immune system and metabolic products in epilepsy and glioma-associated epilepsy: emerging therapeutic directions. JCI Insight 2024; 9:e174753. [PMID: 38193532 PMCID: PMC10906461 DOI: 10.1172/jci.insight.174753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Craig M. Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
- Department of Pathology, and
| | | | | | - Timothy L. Sita
- Department of Neurological Surgery
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles D. James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
4
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Almeida C, Pongilio RP, Móvio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct Cell-specific Roles of NOX2 and MyD88 in Epileptogenesis. Front Cell Dev Biol 2022; 10:926776. [PMID: 35859905 PMCID: PMC9289522 DOI: 10.3389/fcell.2022.926776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
It is well established that temporal lobe epilepsy (TLE) is often related to oxidative stress and neuroinflammation. Both processes subserve alterations observed in epileptogenesis and ultimately involve distinct classes of cells, including astrocytes, microglia, and specific neural subtypes. For this reason, molecules associated with oxidative stress response and neuroinflammation have been proposed as potential targets for therapeutic strategies. However, these molecules can participate in distinct intracellular pathways depending on the cell type. To illustrate this, we reviewed the potential role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and myeloid differentiation primary response 88 (MyD88) in astrocytes, microglia, and neurons in epileptogenesis. Furthermore, we presented approaches to study genes in different cells, employing single-cell RNA-sequencing (scRNAseq) transcriptomic analyses, transgenic technologies and viral serotypes carrying vectors with specific promoters. We discussed the importance of identifying particular roles of molecules depending on the cell type, endowing more effective therapeutic strategies to treat TLE.
Collapse
Affiliation(s)
- Cayo Almeida
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Rodrigo Ribeiro Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erika Reime Kinjo
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
6
|
Zhao H, Li S, He L, Tang F, Han X, Deng W, Lin Z, Huang R, Li Z. Ameliorating Effect of Umbilical Cord Mesenchymal Stem Cells in a Human Induced Pluripotent Stem Cell Model of Dravet Syndrome. Mol Neurobiol 2021; 59:748-761. [PMID: 34766239 DOI: 10.1007/s12035-021-02633-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023]
Abstract
Dravet syndrome (DS) is a form of severe childhood-onset refractory epilepsy typically caused by a heterozygous loss-of-function mutation. DS patient-derived induced pluripotent stem cells (iPSCs) are appropriate human cells for exploring disease mechanisms and testing new therapeutic strategies in vitro. Repeated spontaneous seizures can cause neuroinflammatory reactions and oxidative stress, resulting in neuronal toxicity, neuronal dysfunction, blood-brain barrier disruption, and hippocampal inflammation. Antiepileptic drug therapy does not delay the development of chronic epilepsy. The application of mesenchymal stem cells (MSCs) is one therapeutic strategy for thwarting epilepsy development. This study evaluated the effects of human umbilical cord mesenchymal stem cell-conditioned medium (HUMSC-CM) in a new in vitro model of neurons differentiated from DS patient-derived iPSCs. In the presence of HUMSC-CM, increases in superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase (GPX), and glutathione (GSH) levels were found to contribute to a reduction in reactive oxygen species (ROS) levels. In parallel, inflammation was rescued in DS patient-derived neuronal cells via increased expression of anti-inflammatory cytokines (TGF-β, IL-6, and IL-10) and significant downregulation of tumor necrosis factor-α and interleukin-1β expression. The intracellular calcium concentration ([Ca2+]i) and malondialdehyde (MDA) and ROS levels were decreased in DS patient-derived cells. In addition, action potential (AP) firing ability was enhanced by HUMSC-CM. In conclusion, HUMSC-CM can effectively eliminate ROS, affect migration and neurogenesis, and promote neurons to enter a highly functional state. Therefore, HUMSC-CM is a promising therapeutic strategy for the clinical treatment of refractory epilepsy such as DS.
Collapse
Affiliation(s)
- Huifang Zhao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shuai Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Tang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Han
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Medical University, Guangzhou, 511436, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zuoxian Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhiyuan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Folbergrová J, Ješina P, Otáhal J. Treatment With Resveratrol Ameliorates Mitochondrial Dysfunction During the Acute Phase of Status Epilepticus in Immature Rats. Front Neurosci 2021; 15:634378. [PMID: 33746702 PMCID: PMC7973046 DOI: 10.3389/fnins.2021.634378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to elucidate the effect of resveratrol (natural polyphenol) on seizure activity, production of ROS, brain damage and mitochondrial function in the early phase of status epilepticus (SE), induced in immature 12 day-old rats by substances of a different mechanism of action (Li-pilocarpine, DL-homocysteic acid, 4-amino pyridine, and kainate). Seizure activity, production of superoxide anion, brain damage and mitochondrial function were assessed by EEG recordings, hydroethidium method, FluoroJadeB staining and Complex I activity measurement. A marked decrease of complex I activity associated with the acute phase of SE in immature brain was significantly attenuated by resveratrol, given i.p. in two or three doses (25 mg/kg each), 30 min before, 30 or 30 and 60 min after the induction of SE. Increased O2.– production was completely normalized, brain damage partially attenuated. Since resveratrol did not influence seizure activity itself (latency, intensity, frequency), the mechanism of protection is likely due to its antioxidative properties. The findings have a clinical relevance, suggesting that clinically available substances with antioxidant properties might provide a high benefit as an add-on therapy during the acute phase of SE, influencing also mechanisms involved in the development of epilepsy.
Collapse
Affiliation(s)
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
He C, Su C, Zhang W, Zhou Q, Shen X, Yang J, Shi N. Modulatory Potential of LncRNA Zfas1 for Inflammation and Neuronal Apoptosis in Temporal Lobe Epilepsy. Yonsei Med J 2021; 62:215-223. [PMID: 33635011 PMCID: PMC7934098 DOI: 10.3349/ymj.2021.62.3.215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE This study aimed to elucidate whether lncRNA ZFAS1 is involved in neuronal apoptosis and inflammation in temporal lobe epilepsy (TLE). MATERIALS AND METHODS Ninety-six TLE patients were recruited, and their peripheral venous blood was gathered to determine Zfas1 expression with polymerase chain reaction. Neurons were separated from hippocampal tissue of newborn SD rats, and si-Zfas1 or pcDNA3.1-Zfas1 was transfected into the neurons. Inflammatory cytokines released by neurons were determined, and neuronal activities were evaluated through MTT assay, colony formation assay, and flow cytometry. RESULTS Serum levels of Zfas1 were higher in TLE patients than in healthy controls (p<0.05). Furthermore, Zfas1 expression in neurons was raised by pcDNA3.1-Zfas1 and declined after silencing of Zfas1 (p<0.05). Transfection of pcDNA-Zfas1 weakened the viability and proliferation of neurons and increased neuronal apoptosis (p<0.05). Meanwhile, pcDNA3.1-Zfas1 transfection promoted lipopolysaccharide-induced release of cytokines, including tumor necrosis factor-α, interleukin (IL)-1, IL-6, and intercellular adhesion molecule-1 (p<0.05), and boosted NF-κB activation by elevating the expression of NF-κB p65, pIκBα, and IKKβ in neurons (p<0.05). CONCLUSION Our results indicated that lncRNA ZFAS1 exacerbates epilepsy development by promoting neuronal apoptosis and inflammation, implying ZFAS1 as a promising treatment target for epilepsy.
Collapse
Affiliation(s)
- Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China.
| | - Caixia Su
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Wentong Zhang
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Qin Zhou
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Xu Shen
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Junjie Yang
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| | - Naixian Shi
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical Univeristy, Suzhou, China
| |
Collapse
|
9
|
Vega-García A, Rocha L, Guevara-Guzmán R, Guerra-Araiza C, Feria-Romero I, Gallardo JM, Neri-Gomez T, Suárez-Santiago JE, Orozco-Suarez S. Magnolia officinalis Reduces Inflammation and Damage Induced by Recurrent Status Epilepticus in Immature Rats. Curr Pharm Des 2020; 26:1388-1401. [PMID: 32196444 DOI: 10.2174/1381612826666200320121813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuroinflammation induced in response to damage caused by status epilepticus (SE) activates the interleukin (IL)1-β pathway and proinflammatory proteins that increase vulnerability to the development of spontaneous seizure activity and/or epilepsy. OBJECTIVES The study aimed to assess the short-term anti-inflammatory and neuroprotective effects of Magnolia officinalis (MO) on recurrent SE in immature rats. METHODS Sprague-Dawley rats at PN day 10 were used; n = 60 rats were divided into two control groups, SHAM and KA, and two experimental groups, MO (KA-MO) and Celecoxib (KA-Clbx). The anti-inflammatory effect of a single dose of MO was evaluated at 6 and 24 hr by Western blotting and on day 30 PN via a subchronic administration of MO to assess neuronal preservation and hippocampal gliosis by immunohistochemistry for NeunN and GFAP, respectively. RESULTS KA-MO caused a decrease in the expression of IL1-β and Cox-2 at 6 and 24 h post-treatment, a reduction in iNOS synthase at 6 and 24 hr post-treatment and reduced neuronal loss and gliosis at postnatal day 30, similar to Clbx. CONCLUSION The results indicating that Magnolia officinalis is an alternative preventive treatment for early stages of epileptogenesis are encouraging.
Collapse
Affiliation(s)
- Angélica Vega-García
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico.,Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiologia, Centro de Investigacion y Estudios Avanzados, Tlalpan, Ciudad de Mexico, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigacion Medica en Farmacologia, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Iris Feria-Romero
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Juan M Gallardo
- Unidad de Investigacion Medica en Enfermedades Nefrologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Teresa Neri-Gomez
- Unidad de Investigacion Biomolecular del Hospital de Cardiologia, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico DF, Mexico
| | | | - Sandra Orozco-Suarez
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
10
|
Yuan X, Fu Z, Ji P, Guo L, Al-Ghamdy AO, Alkandiri A, Habotta OA, Abdel Moneim AE, Kassab RB. Selenium Nanoparticles Pre-Treatment Reverse Behavioral, Oxidative Damage, Neuronal Loss and Neurochemical Alterations in Pentylenetetrazole-Induced Epileptic Seizures in Mice. Int J Nanomedicine 2020; 15:6339-6353. [PMID: 32922005 PMCID: PMC7455605 DOI: 10.2147/ijn.s259134] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Epilepsy is a chronic neurological condition characterized by behavioral, molecular, and neurochemical alterations. Current antiepileptic drugs are associated with various adverse impacts. The main goal of the current study is to investigate the possible anticonvulsant effect of selenium nanoparticles (SeNPs) against pentylenetetrazole (PTZ)-mediated epileptic seizures in mice hippocampus. Sodium valproate (VPA) was used as a standard anti-epileptic drug. Methods Mice were assigned into five groups (n=15): control, SeNPs (5 mg/kg, orally), PTZ (60 mg/kg, intraperitoneally), SeNPs+PTZ and VPA (200 mg/kg)+PTZ. All groups were treated for 10 days. Results PTZ injection triggered a state of oxidative stress in the hippocampal tissue as represented by the elevated lipoperoxidation, heat shock protein 70 level, and nitric oxide formation while decreased glutathione level and antioxidant enzymes activity. Additionally, the blotting analysis showed downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the epileptic mice. A state of neuroinflammation was recorded following the developed seizures represented by the increased pro-inflammatory cytokines. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions. At the neurochemical level, acetylcholinesterase activity and monoamines content were decreased in the epileptic mice, accompanied by high glutamate and low GABA levels in the hippocampal tissue. However, SeNP supplementation was found to delay the onset and decreased the duration of tonic, myoclonic, and generalized seizures following PTZ injection. Moreover, SeNPs were found to provide neuroprotection through preventing the development of oxidative challenge via the upregulation of Nrf2 and HO-1, inhibiting the inflammatory response and apoptotic cascade. Additionally, SeNPs reversed the changes in the activity and levels of neuromodulators following the development of epileptic seizures. Conclusion The obtained results suggest that SeNPs could be used as a promising anticonvulsant drug due to its potent antioxidant, anti-inflammatory, and neuromodulatory activities.
Collapse
Affiliation(s)
- Xiaona Yuan
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Zhenshuai Fu
- Department of ICU, Sunshine Union Hospital, Weifang City, Shandong Province 261000, People's Republic of China
| | - Pengfei Ji
- Department of Ophthalmology, Zhengzhou Second Hospital, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Lubo Guo
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, People's Republic of China
| | - Ali O Al-Ghamdy
- Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah, Saudi Arabia
| | - Ali Alkandiri
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, People's Republic of China.,Laboratory Technology Department, College of Technological Studies, Safat 13092, Kuwait
| | - Ola A Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan 11795, Egypt
| |
Collapse
|
11
|
Ibhazehiebo K, Rho JM, Kurrasch DM. Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 2020; 167:107988. [PMID: 32070912 DOI: 10.1016/j.neuropharm.2020.107988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
As one of the most common neurological disorders, epilepsy can occur throughout the lifespan and from a multiplicity of causes, including genetic mutations, inflammation, neurotrauma, or brain malformations. Although pharmacological agents are the mainstay of treatment for seizure control, an unyielding 30-40% of patients remain refractory to these medications and continue to experience spontaneous recurrent seizures with attendant life-long cognitive, behavioural, and mental health issues, as well as an increased risk for sudden unexpected death. Despite over eight decades of antiseizure drug (ASD) discovery and the approval of dozens of new medications, the percentage of this refractory population remains virtually unchanged, suggesting that drugs with new and unexpected mechanisms of action are needed. In this brief review, we discuss the need for new animal models of epilepsy, with a particular focus on the advantages and disadvantages of zebrafish. We also outline the evidence that epilepsy is characterized by derangements in mitochondrial function and introduce the rationale and promise of bioenergetics as a functional readout assay to uncover novel ASDs. We also consider limitations of a zebrafish metabolism-based drug screening approach. Our goal is to discuss the opportunities and challenges of further development of mitochondrial screening strategies for the development of novel ASDs. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Canada; Department of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
12
|
Yue J, Liang C, Wu K, Hou Z, Wang L, Zhang C, Liu S, Yang H. Upregulated SHP-2 expression in the epileptogenic zone of temporal lobe epilepsy and various effects of SHP099 treatment on a pilocarpine model. Brain Pathol 2019; 30:373-385. [PMID: 31398269 DOI: 10.1111/bpa.12777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is defined as the sporadic occurrence of spontaneous recurrent seizures, and its pathogenesis is complex. SHP-2 (Src homology 2-containing protein tyrosine phosphatase 2) is a widely expressed cytosolic tyrosine phosphatase protein that participates in the regulation of inflammation, angiogenesis, gliosis, neurogenesis and apoptosis, suggesting a potential role of SHP-2 in TLE. Therefore, we investigated the expression patterns of SHP-2 in the epileptogenic brain tissue of intractable TLE patients and the various effects of treatment with the SHP-2-specific inhibitor SHP099 on a pilocarpine model. Western blotting and immunohistochemistry results confirmed that SHP-2 expression was upregulated in the temporal neocortex of patients with TLE. Double-labeling experiments revealed that SHP-2 was highly expressed in neurons, astrocytes, microglia and vascular endothelial cells in the epileptic foci of TLE patients. In the pilocarpine-induced C57BL/6 mouse model, SHP-2 upregulation in the hippocampus began one day after status epilepticus, reached a peak at 21 days and then maintained a significantly high level until day 60. Similarly, we found a remarkable increase in SHP-2 expression at 1, 7, 21 and 60 days post-SE in the temporal neocortex. In addition, we also showed that SHP099 increased reactive gliosis, the release of IL-1β, neuronal apoptosis and neuronal loss, while reduced neurogenesis and albumin leakage. Taken together, the increased expression of SHP-2 in the epileptic zone may be involved in the process of TLE.
Collapse
Affiliation(s)
- Jiong Yue
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Liang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kefu Wu
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Hou
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lukang Wang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
13
|
Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019; 167:107742. [PMID: 31421074 DOI: 10.1016/j.neuropharm.2019.107742] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1β-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
14
|
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R, Liang LP, Villa BR, Balosso S, Abramov AY, van Vliet EA, Del Giudice E, Aronica E, Patel M, Walker MC, Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2019; 142:e39. [PMID: 31145451 PMCID: PMC6598637 DOI: 10.1093/brain/awz130] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 01/07/2023] Open
Abstract
Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.
Collapse
Affiliation(s)
- Alberto Pauletti
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Gaetano Terrone
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Tawfeeq Shekh-Ahmad
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Alessia Salamone
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Teresa Ravizza
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Massimo Rizzi
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Anna Pastore
- 3 Metabolomics and Proteomics Unit, ‘Bambino Gesù’ Children’s Hospital,
IRCCS, Rome, Italy
| | - Rosaria Pascente
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Li-Ping Liang
- 4 Department of Pharmaceutical Sciences, University of Colorado Denver,
Aurora, Colorado, USA
| | - Bianca R Villa
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Silvia Balosso
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Andrey Y Abramov
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Erwin A van Vliet
- 5 Department of (Neuro)Pathology, Academic Medical Center, University of
Amsterdam, The Netherlands
| | - Ennio Del Giudice
- 6 Department of Translational Medical Sciences, Section of Pediatrics,
Federico II University, Naples, Italy
| | - Eleonora Aronica
- 5 Department of (Neuro)Pathology, Academic Medical Center, University of
Amsterdam, The Netherlands
- 7 Stichting Epilepsie Instellingen Nederland, Amsterdam, The
Netherlands
| | - Manisha Patel
- 4 Department of Pharmaceutical Sciences, University of Colorado Denver,
Aurora, Colorado, USA
| | - Matthew C Walker
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Annamaria Vezzani
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
- Correpondence to: Annamaria Vezzani, PhD Department of Neuroscience
IRCCS-Istituto di Ricerche Farmacologiche Mario Negri Via G. La Masa 19, 20156 Milano,
Italy E-mail:
| |
Collapse
|
15
|
Tse K, Hammond D, Simpson D, Beynon RJ, Beamer E, Tymianski M, Salter MW, Sills GJ, Thippeswamy T. The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis. J Neurosci Res 2019; 97:1378-1392. [PMID: 31090233 DOI: 10.1002/jnr.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Antiepileptogenic agents that prevent the development of epilepsy following a brain insult remain the holy grail of epilepsy therapeutics. We have employed a label-free proteomic approach that allows quantification of large numbers of brain-expressed proteins in a single analysis in the mouse (male C57BL/6J) kainate (KA) model of epileptogenesis. In addition, we have incorporated two putative antiepileptogenic drugs, postsynaptic density protein-95 blocking peptide (PSD95BP or Tat-NR2B9c) and a highly selective inducible nitric oxide synthase inhibitor, 1400W, to give an insight into how such agents might ameliorate epileptogenesis. The test drugs were administered after the induction of status epilepticus (SE) and the animals were euthanized at 7 days, their hippocampi removed, and subjected to LC-MS/MS analysis. A total of 2,579 proteins were identified; their normalized abundance was compared between treatment groups using ANOVA, with correction for multiple testing by false discovery rate. Significantly altered proteins were subjected to gene ontology and KEGG pathway enrichment analyses. KA-induced SE was most robustly associated with an alteration in the abundance of proteins involved in neuroinflammation, including heat shock protein beta-1 (HSP27), glial fibrillary acidic protein, and CD44 antigen. Treatment with PSD95BP or 1400W moderated the abundance of several of these proteins plus that of secretogranin and Src substrate cortactin. Pathway analysis identified the glutamatergic synapse as a key target for both drugs. Our observations require validation in a larger-scale investigation, with candidate proteins explored in more detail. Nevertheless, this study has identified several mechanisms by which epilepsy might develop and several targets for novel drug development. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible as supporting information. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Dean Hammond
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edward Beamer
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Michael Tymianski
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michael W Salter
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Putra M, Sharma S, Gage M, Gasser G, Hinojo-Perez A, Olson A, Gregory-Flores A, Puttachary S, Wang C, Anantharam V, Thippeswamy T. Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiol Dis 2019; 133:104443. [PMID: 30940499 DOI: 10.1016/j.nbd.2019.03.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022] Open
Abstract
Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model. Several experimental studies have demonstrated that DFP-induced seizures and/or status epilepticus (SE) causes permanent brain injury, even after the countermeasure medication (atropine, oxime, and diazepam). In the present study, DFP-induced SE caused a significant increase in iNOS and 3-nitrotyrosine (3-NT) at 24 h, 48 h, 7d, and persisted for a long-term (12 weeks post-exposure), which led to the hypothesis that iNOS is a potential therapeutic target in DFP-induced brain injury. To test the hypothesis, we administered 1400W (20 mg/kg, i.m.) or the vehicle twice daily for the first three days of post-exposure. 1400W significantly reduced DFP-induced iNOS and 3-NT upregulation in the hippocampus and piriform cortex, and the serum nitrite levels at 24 h post-exposure. 1400W also prevented DFP-induced mortality in <24 h. The brain immunohistochemistry (IHC) at 7d post-exposure revealed a significant reduction in gliosis and neurodegeneration (NeuN+ FJB positive cells) in the 1400W-treated group. 1400W, in contrast to the vehicle, caused a significant reduction in the epileptiform spiking and spontaneous recurrent seizures (SRS) during 12 weeks of continuous video-EEG study. IHC of brain sections from the same animals revealed a significant reduction in reactive gliosis (both microgliosis and astrogliosis) and neurodegeneration across various brain regions in the 1400W-treated group when compared to the vehicle-treated group. A multiplex assay from hippocampal lysates at 6 weeks post-exposure showed a significant increase in several key pro-inflammatory cytokines/chemokines such as IL-1α, TNFα, IL-1β, IL-2, IL-6, IL-12, IL-17a, MCP-1, LIX, and Eotaxin, and a growth factor, VEGF in the vehicle-treated animals. 1400W significantly suppressed IL-1α, TNFα, IL-2, IL-12, and MCP-1 levels. It also suppressed DFP-induced serum nitrite levels at 6 weeks post-exposure. In the Morris water maze, the vehicle-treated animals spent significantly less time in the target quadrant in a probe trial at 9d post-exposure compared to their time spent in the same quadrant 11 days previously (i.e., 2 days prior to DFP exposure). Such a difference was not observed in the 1400W and control groups. However, learning and short-term memory were unaffected when tested at 10-16d and 28-34d post-exposure. Accelerated rotarod, horizontal bar test, and the forced swim test revealed no significant changes between groups. Overall, the findings from this study suggest that 1400W may be considered as a potential therapeutic agent as a follow-on therapy for CNA exposure, after controlling the acute symptoms, to prevent mortality and some of the long-term neurotoxicity parameters such as epileptiform spiking, SRS, neurodegeneration, reactive gliosis in some brain regions, and certain key proinflammatory cytokines and chemokine.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Andy Hinojo-Perez
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Ashley Olson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Adriana Gregory-Flores
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States
| | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
17
|
Liang LP, Pearson-Smith JN, Huang J, McElroy P, Day BJ, Patel M. Neuroprotective Effects of AEOL10150 in a Rat Organophosphate Model. Toxicol Sci 2019; 162:611-621. [PMID: 29272548 DOI: 10.1093/toxsci/kfx283] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prolonged seizure activity or status epilepticus (SE) is one of the most critical manifestations of organophosphate exposure. Previous studies in our laboratory have demonstrated that oxidative stress is a critical mediator of SE-induced neuronal injury. The goal of this study was to determine if diisopropylflurorphoshate (DFP) exposure in rats resulted in oxidative stress and whether scavenging reactive oxygen species attenuated DFP-induced neurotoxicity. DFP treatment increased indices of oxidative stress in a time- and region- dependent manner. Neuronal loss measured by Fluoro-Jade B staining was significantly increased in the hippocampus, piriform cortex and amygdala following DFP. Similarly, levels of the proinflammatory cytokines, particularly TNF-α, IL-6, and KC/GRO were significantly increased in the piriform cortex and in the hippocampus following DFP treatment. The catalytic antioxidant AEOL10150, when treatment was initiated 5 min after DFP-induced SE, significantly attenuated indices of oxidative stress, neuroinflammation and neuronal damage. This study suggests that catalytic antioxidant treatment may be useful as a novel therapy to attenuate secondary neuronal injury following organophosphate exposure.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | | | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Pallavi McElroy
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,Department of Medicine, National Jewish Health, Denver, Colorado
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
18
|
Mercado-Gómez OF, Córdova-Dávalos L, García-Betanzo D, Rocha L, Alonso-Vanegas MA, Cienfuegos J, Guevara-Guzmán R. Overexpression of inflammatory-related and nitric oxide synthase genes in olfactory bulbs from frontal lobe epilepsy patients. Epilepsy Res 2018; 148:37-43. [PMID: 30366204 DOI: 10.1016/j.eplepsyres.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
Abstract
Neuroinflammation has been shown to constitute a crucial mechanism in the pathophysiology of epileptic brain and several genes of inflammatory mediators have been detected in surgically resected hippocampus tissue but not in non-related seizure brain regions. Interestingly, it has been reported an olfactory dysfunction in frontal lobe epilepsy (FLE). Our aim was to quantify the gene expression of inflammatory-related and nitric oxide synthase genes in olfactory bulbs (OB) tissue from FLE patients. RNA was isolated from OB resection of FLE patients and autopsy subjects without any neurological disease (n = 7, each). After cDNA synthesis, we performed qPCR for interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor κB p65 (RELA), Toll-like receptor 4 (TLR 4), its agonist high mobility group box 1 (HMGB 1) as well nitric oxide synthase isozymes (NOS 1, 2 and 3). We found a significant increase in gene expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), TLR4 receptor and in its agonist HMGB1 and the downstream transcription factor NFκB p65. Moreover, we observed an increase of both NOS1 and NOS3 and a slightly increase of NOS2; however, it was not significant. Our study describes the overexpression of inflammatory-related genes and NOS isozymes in OB from FLE patients. Even though, the number of patients was limited, our findings could point out that neuroinflammation and nitrosative stress-related genes in the OB could be produced in general manner in all brain regions and thus contribute in part, to the olfactory dysfunction observed in FLE patients.
Collapse
Affiliation(s)
- Octavio Fabián Mercado-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico
| | - Laura Córdova-Dávalos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico; Departmento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, 14330, Ciudad deMéxico, Mexico; Sección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Ciudad deMéxico, Mexico
| | - Delfina García-Betanzo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico
| | - Luisa Rocha
- Departmento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, 14330, Ciudad deMéxico, Mexico
| | - Mario Arturo Alonso-Vanegas
- Sección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Ciudad deMéxico, Mexico
| | - Jesús Cienfuegos
- Sección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Ciudad deMéxico, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico.
| |
Collapse
|
19
|
Gano LB, Liang LP, Ryan K, Michel CR, Gomez J, Vassilopoulos A, Reisdorph N, Fritz KS, Patel M. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Free Radic Biol Med 2018; 123:116-124. [PMID: 29778462 PMCID: PMC6082368 DOI: 10.1016/j.freeradbiomed.2018.05.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
Impaired bioenergetics and oxidative damage in the mitochondria are implicated in the etiology of temporal lobe epilepsy, and hyperacetylation of mitochondrial proteins has recently emerged as a critical negative regulator of mitochondrial functions. However, the roles of mitochondrial acetylation and activity of the primary mitochondrial deacetylase, SIRT3, have not been explored in acquired epilepsy. We investigated changes in mitochondrial acetylation and SIRT3 activity in the development of chronic epilepsy in the kainic acid rat model of TLE. Hippocampal measurements were made at 48 h, 1 week and 12 weeks corresponding to the acute, latent and chronic stages of epileptogenesis. Assessment of hippocampal bioenergetics demonstrated a ≥ 27% decrease in the ATP/ADP ratio at all phases of epileptogenesis (p < 0.05), whereas cellular NAD+ levels were decreased by ≥ 41% in the acute and latent time points (p < 0.05), but not in chronically epileptic rats. In spontaneously epileptic rats, we found decreased protein expression of SIRT3 and a 60% increase in global mitochondrial acetylation, as well as enhanced acetylation of the known SIRT3 substrates MnSOD, Ndufa9 of Complex I and IDH2 (all p < 0.05), suggesting SIRT3 dysfunction in chronic epilepsy. Mass spectrometry-based acetylomics investigation of hippocampal mitochondria demonstrated a 79% increase in unique acetylated proteins from rats in the chronic phase vs. controls. Pathway analysis identified numerous mitochondrial bioenergetic pathways affected by mitochondrial acetylation. These results suggest SIRT3 dysfunction and aberrant protein acetylation may contribute to mitochondrial dysfunction in chronic epilepsy.
Collapse
Affiliation(s)
- Lindsey B Gano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Ryan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Athanassios Vassilopoulos
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
20
|
Pitsch J, Kuehn JC, Gnatkovsky V, Müller JA, van Loo KMJ, de Curtis M, Vatter H, Schoch S, Elger CE, Becker AJ. Anti-epileptogenic and Anti-convulsive Effects of Fingolimod in Experimental Temporal Lobe Epilepsy. Mol Neurobiol 2018; 56:1825-1840. [PMID: 29934763 DOI: 10.1007/s12035-018-1181-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
Temporal lobe epilepsy (TLE) represents a devastating neurological condition, in which approximately 4/5 of patients remain refractory for anti-convulsive drugs. Epilepsy surgery biopsies often reveal the damage pattern of "hippocampal sclerosis" (HS) characterized not only by neuronal loss but also pronounced astrogliosis and inflammatory changes. Since TLE shares distinct pathogenetic aspects with multiple sclerosis (MS), we have here scrutinized therapeutic effects in experimental TLE of the immunmodulator fingolimod, which is established in MS therapy. Fingolimod targets sphingosine-phosphate receptors (S1PRs). mRNAs of fingolimod target S1PRs were augmented in two experimental post status epilepticus (SE) TLE mouse models (suprahippocampal kainate/pilocarpine). SE frequently induces chronic recurrent seizures after an extended latency referred to as epileptogenesis. Transient fingolimod treatment of mice during epileptogenesis after suprahippocampal kainate-induced SE revealed substantial reduction of chronic seizure activity despite lacking acute attenuation of SE itself. Intriguingly, fingolimod exerted robust anti-convulsive activity in kainate-induced SE mice treated in the chronic TLE stage and had neuroprotective and anti-gliotic effects and reduced cytotoxic T cell infiltrates. Finally, the expression profile of fingolimod target-S1PRs in human hippocampal biopsy tissue of pharmacoresistant TLE patients undergoing epilepsy surgery for seizure relief suggests repurposing of fingolimod as novel therapeutic perspective in focal epilepsies.
Collapse
Affiliation(s)
- Julika Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | - Julia C Kuehn
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Vadym Gnatkovsky
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Karen M J van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Marco de Curtis
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Hartmut Vatter
- Clinic for Neurosurgery, University of Bonn Medical Center, 53105, Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.,Clinic for Epileptology, University of Bonn Medical Center, 53105, Bonn, Germany
| | - Christian E Elger
- Clinic for Epileptology, University of Bonn Medical Center, 53105, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| |
Collapse
|
21
|
Lorigados Pedre L, Gallardo JM, Morales Chacón LM, Vega García A, Flores-Mendoza M, Neri-Gómez T, Estupiñán Díaz B, Cruz-Xenes RM, Pavón Fuentes N, Orozco-Suárez S. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure. Behav Sci (Basel) 2018; 8:E59. [PMID: 29890748 PMCID: PMC6027168 DOI: 10.3390/bs8060059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS) patients compared to a control group (age and sex matched), and the results were related to clinical variables. We examined malondialdehyde (MDA), advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), nitric oxide (NO), uric acid, superoxide dismutase (SOD), glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE) and nitrotyrosine (3-NT). All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001) while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively). Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005) similarly to SOD activity (p = 0.0001), whereas vitamin C was considerably diminished (p = 0.0001). Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.
Collapse
Affiliation(s)
- Lourdes Lorigados Pedre
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805 Havana, Cuba.
| | - Juan M Gallardo
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Lilia M Morales Chacón
- Clinical Neurophysiology Lab., International Center for Neurological Restoration, 11300 Havana, Cuba.
| | - Angélica Vega García
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Monserrat Flores-Mendoza
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Teresa Neri-Gómez
- Nanomaterials Laboratory, Research Center in Health Sciences, Autonomous University of San Luis Potosí, 78300 San Luis Potosi; Mexico.
| | - Bárbara Estupiñán Díaz
- Morphological Laboratory, International Center for Neurological Restoration, 11300 Havana, Cuba.
| | | | - Nancy Pavón Fuentes
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805 Havana, Cuba.
| | - Sandra Orozco-Suárez
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| |
Collapse
|
22
|
A novel online fluorescence method for in-vivo measurement of hydrogen peroxide during oxidative stress produced in a temporal lobe epilepsy model. Neuroreport 2018; 29:621-630. [DOI: 10.1097/wnr.0000000000001007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis. Mol Neurobiol 2018; 55:7512-7522. [PMID: 29427088 DOI: 10.1007/s12035-018-0924-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.-), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: "acute treatment," i.p. administration 30 min before, 30 and 60 min after induction of SE and "full treatment" when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.-, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Hana Kubová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
24
|
Sharma S, Carlson S, Puttachary S, Sarkar S, Showman L, Putra M, Kanthasamy AG, Thippeswamy T. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiol Dis 2018; 110:102-121. [PMID: 29197620 PMCID: PMC5753797 DOI: 10.1016/j.nbd.2017.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (SE) induces neuroinflammation and epileptogenesis, but the mechanisms are not yet fully delineated. The Fyn, a non-receptor Src family tyrosine kinase (SFK), and its immediate downstream target, PKCδ are emerging as potential mediators of neuroinflammation. In order to first determine the role of Fyn kinase signaling in SE, we tested the efficacy of a SFK inhibitor, saracatinib (25mg/kg, oral) in C57BL/6J mouse kainate model of acute seizures. Saracatinib pretreatment dampened SE severity and completely prevented mortality. We further utilized fyn-/- and fyn+/+ mice (wildtype control for the fyn-/- mice on same genetic background), and the rat kainate model, treated with saracatinib post-SE, to validate the role of Fyn/SFK in SE and epileptogenesis. We observed significant reduction in SE severity, epileptiform spikes, and electrographic non-convulsive seizures in fyn-/- mice when compared to fyn+/+ mice. Interestingly, significant reductions in phosphorylated pSrc-416 and PKCδ (pPKCδ-507) and naive PKCδ were observed in fyn-/- mice as compared to fyn+/+ mice suggesting that PKCδ signaling is a downstream mediator of Fyn in SE and epileptogenesis. Notably, fyn-/- mice also showed a reduction in key proinflammatory mediators TNF-α, IL-1β, and iNOS mRNA expression; serum IL-6 and IL-12 levels; and nitro-oxidative stress markers such as 4-HNE, gp91phox, and 3-NT in the hippocampus. Immunohistochemistry revealed a significant increase in reactive microgliosis and neurodegeneration in the hippocampus and hilus of dentate gyrus in fyn+/+ mice in contrast to fyn-/- mice. Interestingly, we did not observe upregulation of Fyn in pyramidal neurons of the hippocampus during post-SE in fyn+/+ mice, but it was upregulated in hilar neurons of the dentate gyrus when compared to naïve control. In reactive microglia, both Fyn and PKCδ were persistently upregulated during post-SE suggesting that Fyn-PKCδ may drive neuroinflammation during epileptogenesis. Since disabling the Fyn kinase prior to SE, either by treating with saracatinib or fyn gene knockout, suppressed seizures and the subsequent epileptogenic events, we further tested whether Fyn/SFK inhibition during post-SE modifies epileptogenesis. Telemetry-implanted, SE-induced, rats were treated with saracatinib and continuously monitored for a month. At 2h post-diazepam, the saracatinib (25mg/kg) or the vehicle was administered orally and repeated twice daily for first three days followed by a single dose/day for the next four days. The saracatinib post-treatment prevented epileptogenesis in >50% of the rats and significantly reduced spontaneous seizures and epileptiform spikes in the rest (one animal did not respond) when compared to the vehicle treated group, which had >24 seizures in a month. Collectively, the findings suggest that Fyn/SFK is a potential mediator of epileptogenesis and a therapeutic target to prevent/treat seizures and epileptogenesis.
Collapse
Affiliation(s)
- Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Steven Carlson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Souvarish Sarkar
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames 50011, USA
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA.
| |
Collapse
|
25
|
Sharma S, Puttachary S, Thippeswamy T. Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy. J Neurosci Res 2017; 97:1363-1377. [PMID: 29230865 DOI: 10.1002/jnr.24205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Epileptogenesis is the process of developing an epileptic condition and/or its progression once it is established. The molecules that initiate, promote, and propagate remarkable changes in the brain during epileptogenesis are emerging as targets for prevention/treatment of epilepsy. Epileptogenesis is a continuous process that follows immediately after status epilepticus (SE) in animal models of acquired temporal lobe epilepsy (TLE). Both SE and epileptogenesis are potential therapeutic targets for the discovery of anticonvulsants and antiepileptogenic or disease-modifying agents. For translational studies, SE targets are appropriate for screening anticonvulsive drugs prior to their advancement as therapeutic agents, while targets of epileptogenesis are relevant for identification and development of therapeutic agents that can either prevent or modify the disease or its onset. The acute seizure models do not reveal antiepileptogenic properties of anticonvulsive drugs. This review highlights the important components of epileptogenesis and the long-term impact of intervening one of these components, nitric oxide (NO), in rat and mouse kainate models of TLE. NO is a putative pleotropic gaseous neurotransmitter and an important contributor of nitro-oxidative stress that coexists with neuroinflammation and epileptogenesis. The long-term impact of inhibiting the glial source of NO during early epileptogenesis in the rat model of TLE is reviewed. The importance of sex as a biological variable in disease modification strategies in epilepsy is also briefly discussed.
Collapse
Affiliation(s)
- Shaunik Sharma
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | | | - Thimmasettappa Thippeswamy
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
26
|
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J, Yao H. Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling Epilepsy-Induced Hippocampal Endoplasmic Reticulum Stress and Oxidative Damage. Front Cell Neurosci 2017; 11:377. [PMID: 29234274 PMCID: PMC5712337 DOI: 10.3389/fncel.2017.00377] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological disorders which provoke progressive neuronal degeneration. Endoplasmic reticulum (ER) stress has recently been recognized as pivotal etiological factors contributing to epilepsy-induced neuronal damage. However, the specific contribution of epilepsy made to ER stress remains largely elusive. Here we use pentylenetetrazole (PTZ) kindling, a chronic epilepsy model, to identify neuronal nitric oxide synthase (nNOS) as a signaling molecule triggering PTZ kindling epilepsy-induced ER stress and oxidative damage. By genetic deletion of nNOS gene, we further demonstrated that nNOS acts through peroxynitrite, an important member of reactive nitrogen species, to trigger hippocampal ER stress and oxidative damage in the PTZ-kindled mice. Our findings thus define a specific mechanism for chronic epilepsy-induced ER stress and oxidative damage, and identify a potential therapeutic target for neuroprotection in chronic epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center, Nanjing Medical University, Nanjing, China
| | - Huanhuan Chang
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School, Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
27
|
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R, Liang LP, Villa BR, Balosso S, Abramov AY, van Vliet EA, Del Giudice E, Aronica E, Antoine DJ, Patel M, Walker MC, Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2017; 140:1885-1899. [PMID: 28575153 DOI: 10.1093/brain/awx117] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/26/2017] [Indexed: 12/31/2022] Open
Abstract
Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.
Collapse
Affiliation(s)
- Alberto Pauletti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gaetano Terrone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Tawfeeq Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Alessia Salamone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Massimo Rizzi
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Anna Pastore
- Metabolomics and Proteomics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| | - Bianca R Villa
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Andrey Y Abramov
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ennio Del Giudice
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland, Amsterdam, The Netherlands
| | - Daniel J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
28
|
Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation. Exp Neurol 2017; 298:13-22. [PMID: 28822838 DOI: 10.1016/j.expneurol.2017.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/26/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
Inflammation has been identified as an important mediator of seizures and epileptogenesis. Understanding the mechanisms underlying seizure-induced neuroinflammation could lead to the development of novel therapies for the epilepsies. Reactive oxygen species (ROS) are recognized as mediators of seizure-induced neuronal damage and are known to increase in models of epilepsies. ROS are also known to contribute to inflammation in several disease states. We hypothesized that ROS are key modulators of neuroinflammation i.e. pro-inflammatory cytokine production and microglial activation in acquired epilepsy. The role of ROS in modulating seizure-induced neuroinflammation was investigated in the pilocarpine model of temporal lobe epilepsy (TLE). Pilocarpine-induced status epilepticus (SE) resulted in a time-dependent increase in pro-inflammatory cytokine production in the hippocampus and piriform cortex. Scavenging ROS with a small-molecule catalytic antioxidant decreased SE-induced pro-inflammatory cytokine production and microglial activation, suggesting that ROS contribute to SE-induced neuroinflammation. Scavenging ROS also attenuated phosphorylation of ribosomal protein S6, the downstream target of the mammalian target of rapamycin (mTOR) pathway indicating that this pathway might provide one mechanistic link between SE-induced ROS production and inflammation. Together, these results demonstrate that ROS contribute to SE-induced cytokine production and antioxidant treatment may offer a novel approach to control neuroinflammation in epilepsy.
Collapse
|
29
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
30
|
Kanamori K. Faster flux of neurotransmitter glutamate during seizure - Evidence from 13C-enrichment of extracellular glutamate in kainate rat model. PLoS One 2017; 12:e0174845. [PMID: 28403176 PMCID: PMC5389799 DOI: 10.1371/journal.pone.0174845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2017] [Indexed: 01/05/2023] Open
Abstract
The objective is to examine how the flux of neurotransmitter glutamate from neurons to the extracellular fluid, as measured by the rate of 13C enrichment of extracellular glutamate (GLUECF), changes in response to seizures in the kainate-induced rat model of temporal-lobe epilepsy. Following unilateral intrahippocampal injection of kainate, GLUECF was collected by microdialysis from the CA1/CA3 region of awake rats, in combination with EEG recording of chronic-phase recurrent seizures and intravenous infusion of [2,5-13C]glucose. The 13C enrichment of GLUECF C5 at ~ 10 picomol level was measured by gas-chromatography mass-spectrometry. The rate of 13C enrichment, expressed as the increase of the fractional enrichment/min, was 0.0029 ± 0.0001/min in frequently seizing rats (n = 4); this was significantly higher (p < 0.01) than in the control (0.00167 ± 0.0001/min; n = 6) or in rats with infrequent seizures (0.00172 ± 0.0001/min; n = 6). This result strongly suggests that the flux of the excitatory neurotransmitter from neurons to the extracellular fluid is significantly increased by frequent seizures. The extracellular [12C + 13C]glutamate concentration increased progressively in frequently seizing rats. Taken together, these results strongly suggest that the observed seizure-induced high flux of glutamate overstimulated glutamate receptors, which triggered a chain reaction of excitation in the CA3 recurrent glutamatergic networks. The rate of 13C enrichment of extracellular glutamine (GLNECF) at C5 was 0.00299 ± 0.00027/min in frequently seizing rats, which was higher (p < 0.05) than in controls (0.00227 ± 0.00008/min). For the first time in vivo, this study examined the effects of epileptic seizures on fluxes of the neurotransmitter glutamate and its precursor glutamine in the extracellular fluid of the hippocampus. The advantages, limitations and the potential for improvement of this approach for pre-clinical and clinical studies of temporal-lobe epilepsy are discussed.
Collapse
Affiliation(s)
- Keiko Kanamori
- Department of Epilepsy, Huntington Medical Research Institutes, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
McElroy PB, Sri Hari A, Day BJ, Patel M. Post-translational Activation of Glutamate Cysteine Ligase with Dimercaprol: A NOVEL MECHANISM OF INHIBITING NEUROINFLAMMATION IN VITRO. J Biol Chem 2017; 292:5532-5545. [PMID: 28202547 DOI: 10.1074/jbc.m116.723700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/25/2017] [Indexed: 11/06/2022] Open
Abstract
Neuroinflammation and oxidative stress are hallmarks of various neurological diseases. However, whether and how the redox processes control neuroinflammation is incompletely understood. We hypothesized that increasing cellular glutathione (GSH) levels would inhibit neuroinflammation. A series of thiol compounds were identified to elevate cellular GSH levels by a novel approach (i.e. post-translational activation of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH biosynthesis). These small thiol-containing compounds were examined for their ability to increase intracellular GSH levels in a murine microglial cell line (BV2), of which dimercaprol (2,3-dimercapto-1-propanol (DMP)) was found to be the most effective compound. DMP increased GCL activity and decreased LPS-induced production of pro-inflammatory cytokines and inducible nitric-oxide synthase induction in BV2 cells in a concentration-dependent manner. The ability of DMP to elevate GSH levels and attenuate LPS-induced pro-inflammatory cytokine production was inhibited by buthionine sulfoximine, an inhibitor of GCL. DMP increased the expression of GCL holoenzyme without altering the expression of its subunits or Nrf2 target proteins (NQO1 and HO-1), suggesting a post-translational mechanism. DMP attenuated LPS-induced MAPK activation in BV2 cells, suggesting the MAPK pathway as the signaling mechanism underlying the effect of DMP. Finally, the ability of DMP to increase GSH via GCL activation was observed in mixed cerebrocortical cultures and N27 dopaminergic cells. Together, the data demonstrate a novel mechanism of GSH elevation by post-translational activation of GCL. Post-translational activation of GCL offers a novel targeted approach to control inflammation in chronic neuronal disorders associated with impaired adaptive responses.
Collapse
Affiliation(s)
- Pallavi B McElroy
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Ashwini Sri Hari
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Brian J Day
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Manisha Patel
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| |
Collapse
|
32
|
Heischmann S, Quinn K, Cruickshank-Quinn C, Liang LP, Reisdorph R, Reisdorph N, Patel M. Exploratory Metabolomics Profiling in the Kainic Acid Rat Model Reveals Depletion of 25-Hydroxyvitamin D3 during Epileptogenesis. Sci Rep 2016; 6:31424. [PMID: 27526857 PMCID: PMC4985632 DOI: 10.1038/srep31424] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/20/2016] [Indexed: 12/02/2022] Open
Abstract
Currently, no reliable markers are available to evaluate the epileptogenic potential of a brain injury. The electroencephalogram is the standard method of diagnosis of epilepsy; however, it is not used to predict the risk of developing epilepsy. Biomarkers that indicate an individual's risk to develop epilepsy, especially those measurable in the periphery are urgently needed. Temporal lobe epilepsy (TLE), the most common form of acquired epilepsy, is characterized by spontaneous recurrent seizures following brain injury and a seizure-free "latent" period. Elucidation of mechanisms at play during epilepsy development (epileptogenesis) in animal models of TLE could enable the identification of predictive biomarkers. Our pilot study using liquid chromatography-mass spectrometry metabolomics analysis revealed changes (p-value ≤ 0.05, ≥1.5-fold change) in lipid, purine, and sterol metabolism in rat plasma and hippocampus during epileptogenesis and chronic epilepsy in the kainic acid model of TLE. Notably, disease development was associated with dysregulation of vitamin D3 metabolism at all stages and plasma 25-hydroxyvitamin D3 depletion in the acute and latent phase of injury-induced epileptogenesis. These data suggest that plasma VD3 metabolites reflect the severity of an epileptogenic insult and that a panel of plasma VD3 metabolites may be able to serve as a marker of epileptogenesis.
Collapse
Affiliation(s)
- Svenja Heischmann
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kevin Quinn
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Rick Reisdorph
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Nichole Reisdorph
- Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, School of Pharmacy, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci 2016; 1378:17-24. [PMID: 27371936 DOI: 10.1111/nyas.13115] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
Organophosphate (OP) nerve agents exert their toxicity through inhibition of acetylcholinesterase. The excessive stimulation of cholinergic receptors rapidly causes neuronal damage, seizures, death, and long-term neurological impairment in those that survive. Owing to the lethality of organophosphorus agents and the growing risk they pose, medical interventions that prevent OP toxicity and the delayed injury response are much needed. Studies have shown that oxidative stress occurs in models of subacute, acute, and chronic exposure to OP agents. Key findings of these studies include alterations in mitochondrial function and increased free radical-mediated injury, such as lipid peroxidation. This review focuses on the role of reactive oxygen species in OP neurotoxicity and its dependence on seizure activity. Understanding the sources, mechanisms, and pathological consequences of OP-induced oxidative stress can lead to the development of rational therapies for treating toxic exposures.
Collapse
Affiliation(s)
| | - Manisha Patel
- Neuroscience Program. .,Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
34
|
Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction. Front Cell Neurosci 2016; 10:136. [PMID: 27303267 PMCID: PMC4881382 DOI: 10.3389/fncel.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or additive role in the pathogenesis of epilepsies in infants and children.
Collapse
|
35
|
Puttachary S, Sharma S, Verma S, Yang Y, Putra M, Thippeswamy A, Luo D, Thippeswamy T. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis 2016; 93:184-200. [PMID: 27208748 DOI: 10.1016/j.nbd.2016.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/04/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022] Open
Abstract
Status epilepticus (SE) initiates epileptogenesis to transform normal brain to epileptic state which is characterized by spontaneous recurrent seizures (SRS). Prior to SRS, progressive changes occur in the brain soon after SE, for example, loss of blood-brain barrier (BBB) integrity, neuronal hyper-excitability (epileptiform spiking), neuroinflammation [reactive gliosis, high levels of reactive oxygen/nitrogen species (ROS/RNS)], neurodegeneration and synaptic re-organization. Our hypothesis was that modification of early epileptogenic events will alter the course of disease development and its progression. We tested the hypothesis in the rat kainate model of chronic epilepsy using a novel disease modifying drug, 1400W, a highly selective inhibitor of inducible nitric oxide synthase (iNOS/NOS-II). In an in vitro mouse brain slice model, using a multi-electrode array system, co-application of 1400W with kainate significantly suppressed kainate-induced epileptiform spiking. In the rats, in vivo, 4h after the induction of SE with kainate, 1400W (20mg/kg, i.p.) was administered twice daily for three days to target early events of epileptogenesis. The rats were subjected to continuous (24/7) video-EEG monitoring, remotely, for six months from epidurally implanted cortical electrodes. The 1400W treatment significantly reduced the epileptiform spike rate during the first 12-74h post-SE, which resulted in >90% reduction in SRS in long-term during the six month period when compared to the vehicle-treated control group (257±113 versus 19±10 episodes). Immunohistochemistry (IHC) of brain sections at seven days and six months revealed a significant reduction in; reactive astrogliosis and microgliosis (M1 type), extravascular serum albumin (a marker for BBB leakage) and neurodegeneration in the hippocampus, amygdala and entorhinal cortex in the 1400W-treated rats when compared to the vehicle control. In the seven day group, hippocampal Western blots revealed downregulation of inwardly-rectifying potassium (Kir 4.1) channels and glutamate transporter-1 (GLT-1) levels in the vehicle group, and 1400W treatment partially reversed Kir 4.1 levels, however, GLT-1 levels were unaffected. In the six month group, a significant reduction in mossy fiber staining intensity in the inner molecular layer of the dentate gyrus was observed in the 1400W-treated group. Overall these findings demonstrate that 1400W, by reducing the epileptiform spike rate during the first three days of post-insult, potentially modifies epileptogenesis and the severity of chronic epilepsy in the rat kainate model of TLE.
Collapse
Affiliation(s)
- Sreekanth Puttachary
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Shaunik Sharma
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Saurabh Verma
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Yang Yang
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Marson Putra
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Achala Thippeswamy
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Diou Luo
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | | |
Collapse
|
36
|
Zhu X, Shen K, Bai Y, Zhang A, Xia Z, Chao J, Yao H. NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy. Free Radic Biol Med 2016; 94:230-42. [PMID: 26969791 DOI: 10.1016/j.freeradbiomed.2016.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Growing evidence indicates that alterations in autophagy are present in a variety of neurological disorders, ranging from neurodegenerative diseases to acute neurological insults. Only recently has the role of autophagy in epilepsy started to be recognized. In this study, we used pentylenetetrazole (PTZ) kindling, which provides a model of chronic epilepsy, to investigate the involvement of autophagy in the hippocampus and the possible mechanisms involved. Our western blot results showed that autophagy-related proteins were significantly increased after the mice were fully kindled. In addition, immunofluorescence studies revealed a significant increase in the punctate accumulation of LC3 in the hippocampal CA1 region of fully PTZ-kindled mice. Consistent with the upregulation of ATG proteins and punctate accumulation of LC3 in the hippocampal CA1 region, autophagosomal vacuole formation was observed by an ultrastructural analysis, verifying the presence of a hippocampal autophagic response in PTZ-kindled mice. Increased oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurological diseases, including epilepsy. In this study, we demonstrate that PTZ kindling induced reactive oxygen species (ROS) production and lipid peroxidation, which were accompanied by mitochondrial ultrastructural damage due to the activation of NADPH oxidase. Pharmacological inhibition of NADPH oxidase by apocynin significantly suppressed the oxidative stress and ameliorated the hippocampal autophagy in PTZ-kindled mice. Interestingly, pharmacological induction of autophagy suppressed PTZ-kindling progress and reduced PTZ-kindling-induced oxidative stress while inhibition of autophagy accelerated PTZ kindling progress and increased PTZ-kindling-induced oxidative stress. These results suggest that the oxidative stress induced by NADPH oxidase activation may play a pivotal role in PTZ-kindling process as well as in PTZ kindling-induced hippocampal CA1 autophagy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, 87th Dingjiaqiao Road, Nanjing 210029, China.
| | - Kai Shen
- Department of Pharmacology, Medical School of Southeast University, 87th Dingjiaqiao Road, Nanjing 210029, China
| | - Ying Bai
- Department of Pharmacology, Medical School of Southeast University, 87th Dingjiaqiao Road, Nanjing 210029, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center of Nanjing Medical University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, 87th Dingjiaqiao Road, Nanjing 210029, China
| |
Collapse
|
37
|
Pearson JN, Rowley S, Liang LP, White AM, Day BJ, Patel M. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol Dis 2015; 82:289-297. [PMID: 26184893 PMCID: PMC4871280 DOI: 10.1016/j.nbd.2015.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 11/08/2022] Open
Abstract
Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it.
Collapse
Affiliation(s)
- Jennifer N Pearson
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Shane Rowley
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Andrew M White
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, 80045, USA
| | - Brian J Day
- National Jewish Health, Denver, CO 80206, USA
| | - Manisha Patel
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, 80045, USA; Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 80045, USA.
| |
Collapse
|
38
|
Bhuyan P, Patel DC, Wilcox KS, Patel M. Oxidative stress in murine Theiler's virus-induced temporal lobe epilepsy. Exp Neurol 2015; 271:329-34. [PMID: 26079647 DOI: 10.1016/j.expneurol.2015.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of acquired epilepsy that can be caused by several inciting events including viral infections. However, one-third of TLE patients are pharmacoresistant to current antiepileptic drugs and therefore, there is an urgent need to develop antiepileptogenic therapies that prevent the development of the disease. Oxidative stress and redox alterations have recently been recognized as important etiological factors contributing to seizure-induced neuronal damage. The goal of this study was to determine if oxidative stress occurs in the TMEV (Theiler's murine encephalomyelitis virus) model of temporal lobe epilepsy (TLE). C57Bl/6 mice were injected with TMEV or with PBS intracortically and observed for acute seizures. At various time points after TMEV injection, hippocampi were analyzed for levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and 3-nitrotyrosine (3 NT). Mice infected with TMEV displayed behavioral seizures between days 3 and 7 days post-infection (dpi). The intensity of seizures increased over time with most of the seizures being a stage 4 or 5 on the Racine scale at 6 days p.i. Mice exhibiting at least one seizure during the observation period were utilized for the biochemical analyses. The levels of GSH were significantly depleted in TMEV infected mice at 3, 4 and 14 days p.i. with a concomitant increase in GSSH levels as well as an impairment of the redox status. Additionally, there was a substantial increase in 3 NT levels in TMEV infected mice at these time points. These redox changes correlated with the occurrence of acute seizures in this model. Interestingly, we did not see changes in any of the indices in the cerebellum of TMEV-infected mice at 3 dpi indicating that these alterations are localized to the hippocampus and perhaps other limbic regions. This is the first study to demonstrate the occurrence of oxidative stress in the TMEV model of infection-induced TLE. The redox alterations were observed at time points coinciding with the appearance of acute behavioral seizures suggesting that these changes might be a consequence of seizure activity. Our results support the hypothesis that redox changes correlate with seizure activity in acquired epilepsies, regardless of the inciting insults, and suggest oxidative stress as a potential therapeutic target for their treatment.
Collapse
Affiliation(s)
- Pallavi Bhuyan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | - Dipan C Patel
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA.
| |
Collapse
|
39
|
TLR1 expression in mouse brain was increased in a KA-induced seizure model. Inflamm Res 2015; 64:487-95. [PMID: 26021825 DOI: 10.1007/s00011-015-0828-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Toll-like receptors (TLRs) that mediate inflammatory responses play an important role in epilepsy; however, whether TLR1 is also involved in epileptogenesis remains unclear. Thus, in this study, we investigated the extent and pattern of TLR1 expression in epileptic tissues. METHODS One-hundred and thirty-two mice were intra-cerebroventricularly injected with PBS or kainic acid (KA) and were examined at 1, 3, 8 and 24 h. The expression pattern and distribution of TLR1 were examined by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemistry staining. RESULTS The mRNA and protein levels of TLR1 were significantly upregulated in the hippocampus and temporal cortex of epileptic mice compared with those of controls. TLR1 expression was increased as early as 1 h following KA treatment and peaked at 8 and 24 h. Immunohistochemistry staining demonstrated that TLR1 was distributed in the CA1-3, dentate gyrus and hilus regions of the hippocampus and different cortical regions. Immunofluorescent staining further revealed that TLR1 was primarily expressed in the neurons, microglia, and astrocytes of epileptogenic tissue. SIGNIFICANCE These results demonstrate that cortical and hippocampal sub-regional expression of TLR1 is altered during epileptogenesis in a time- and location-specific manner, suggesting a close association with the process of epilepsy.
Collapse
|
40
|
Rettenbeck ML, von Rüden EL, Bienas S, Carlson R, Stein VM, Tipold A, Potschka H. Microglial ROS production in an electrical rat post-status epilepticus model of epileptogenesis. Neurosci Lett 2015; 599:146-51. [PMID: 26007700 DOI: 10.1016/j.neulet.2015.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species and inflammatory signaling have been identified as pivotal pathophysiological factors contributing to epileptogenesis. Considering the development of combined anti-inflammatory and antioxidant treatment strategies with antiepileptogenic potential, a characterization of the time course of microglial reactive oxygen species generation during epileptogenesis is of major interest. Thus, we isolated microglia cells and analyzed the generation of reactive oxygen species by flow cytometric analysis in an electrical rat post-status epilepticus model. Two days post status epilepticus, a large-sized cell cluster exhibited a pronounced response with excessive production of reactive oxygen species upon stimulation with phorbol-myristate-acetate. Neither in the latency phase nor in the chronic phase with spontaneous seizures a comparable cell population with induction of reactive oxygen species was identified. We were able to demonstrate in the electrical rat post-status-epilepticus model, that microglial ROS generation reaches a peak after the initial insult, is only marginally increased in the latency phase, and returns to control levels during the chronic epileptic phase. The data suggest that a combination of anti-inflammatory and radical scavenging approaches might only be beneficial during a short time window after an epileptogenic brain insult.
Collapse
Affiliation(s)
- Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Silvia Bienas
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
41
|
Zhvania MG, Ksovreli M, Japaridze NJ, Lordkipanidze TG. Ultrastructural changes to rat hippocampus in pentylenetetrazol- and kainic acid-induced status epilepticus: A study using electron microscopy. Micron 2015; 74:22-9. [PMID: 25978010 DOI: 10.1016/j.micron.2015.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
A pentylenetetrazol (PTZ)-induced status epilepticus model in rats was used in the study. The brains were studied one month after treatment. Ultrastructural observations using electron microscopy performed on the neurons, glial cells, and synapses, in the hippocampal CA1 region of epileptic brains, demonstrated the following major changes over normal control brain tissue. (i) There is ultrastructural alterations in some neurons, glial cells and synapses in the hippocampal CA1 region. (ii) The destruction of cellular organelles and peripheral, partial or even total chromatolysis in some pyramidal cells and in interneurons are observed. Several astrocytes are proliferated or activated. Presynaptic terminals with granular vesicles and degenerated presynaptic profiles are rarely observed. (iii) The alterations observed are found to be dependent on the frequency of seizure activities following the PTZ treatment. It was observed that if seizure episodes are frequent and severe, the ultrastructure of hippocampal area is significantly changed. Interestingly, the ultrastructure of CA1 area is found to be only moderately altered if seizure episodes following the status epilepticus are rare and more superficial; (iv) alterations in mitochondria and dendrites are among the most common ultrastructural changes seen, suggesting cell stress and changes to cellular metabolism. These morphological changes, observed in brain neurons in status epilepticus, are a reflection of epileptic pathophysiology. Further studies at the chemical and molecular level of neurotransmitter release, such as at the level of porosomes (secretory portals) at the presynaptic membrane, will further reveal molecular details of these changes.
Collapse
Affiliation(s)
- Mzia G Zhvania
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia.
| | - Mariam Ksovreli
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162 Tbilisi, Georgia.
| | - Nadezhda J Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia; New Vision University, 1A Evgeni Mikeladze Street, 0158 Tbilisi, Georgia.
| | - Tamar G Lordkipanidze
- Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokhashvili Avenue, 0162 Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, I. Beriitashvili Center of Experimental BioMedicine, 14, Gotua Street, 0160 Tbilisi, Georgia.
| |
Collapse
|
42
|
Pecorelli A, Natrella F, Belmonte G, Miracco C, Cervellati F, Ciccoli L, Mariottini A, Rocchi R, Vatti G, Bua A, Canitano R, Hayek J, Forman H, Valacchi G. NADPH oxidase activation and 4-hydroxy-2-nonenal/aquaporin-4 adducts as possible new players in oxidative neuronal damage presents in drug-resistant epilepsy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:507-19. [DOI: 10.1016/j.bbadis.2014.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
|
43
|
Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 2015; 75:151-8. [PMID: 25600213 DOI: 10.1016/j.nbd.2014.12.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 02/07/2023] Open
Abstract
Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2(fl/fl)NEX(Cre/Cre)) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development.
Collapse
Affiliation(s)
- Shane Rowley
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth Fulton
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 263-0022, Japan
| | - Brian Day
- National Jewish Health, Denver, CO 80206, USA
| | - Manisha Patel
- Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
44
|
Relevance of the glutathione system in temporal lobe epilepsy: evidence in human and experimental models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:759293. [PMID: 25538816 PMCID: PMC4265701 DOI: 10.1155/2014/759293] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022]
Abstract
Oxidative stress, which is a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with diseases that are systemic as well as diseases that affect the central nervous system. Epilepsy is a chronic neurological disorder, and temporal lobe epilepsy represents an estimated 40% of all epilepsy cases. Currently, evidence from human and experimental models supports the involvement of oxidative stress during seizures and in the epileptogenesis process. Hence, the aim of this review was to provide information that facilitates the processing of this evidence and investigate the therapeutic impact of the biochemical status for this specific pathology.
Collapse
|
45
|
Funck VR, Ribeiro LR, Pereira LM, de Oliveira CV, Grigoletto J, Fighera MR, Royes LFF, Furian AF, Oliveira MS. Long-term decrease in Na+,K+-ATPase activity after pilocarpine-induced status epilepticus is associated with nitration of its alpha subunit. Epilepsy Res 2014; 108:1705-10. [PMID: 25311690 DOI: 10.1016/j.eplepsyres.2014.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 11/30/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy with about one third of TLE patients being refractory to antiepileptic drugs. Knowledge about the mechanisms underlying seizure activity is fundamental to the discovery of new drug targets. Brain Na(+),K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. In the present study we tested the hypothesis that decreased Na(+),K(+)-ATPase activity is associated with changes in the alpha subunit phosphorylation and/or redox state. Activity of Na(+),K(+)-ATPase decreased in the hippocampus of C57BL/6 mice 60 days after pilocarpine-induced status epilepticus (SE). In addition, the Michaelis-Menten constant for ATP of α2/3 isoforms increased at the same time point. Nitration of the α subunit may underlie decreased Na(+),K(+)-ATPase activity, however no changes in expression or phosphorylation state at Ser(943) were found. Further studies are necessary define the potential of nitrated Na(+),K(+)-ATPase as a new therapeutic target for seizure disorders.
Collapse
Affiliation(s)
- Vinícius Rafael Funck
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Letícia Meier Pereira
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Jéssica Grigoletto
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michele Rechia Fighera
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ana Flávia Furian
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|