1
|
Ananth MR, Gardus JD, Huang C, Palekar N, Slifstein M, Zaborszky L, Parsey RV, Talmage DA, DeLorenzo C, Role LW. A central role for acetylcholine in entorhinal cortex function and dysfunction with age in humans and mice. Cell Rep 2025; 44:115249. [PMID: 39891909 DOI: 10.1016/j.celrep.2025.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025] Open
Abstract
Structural and functional changes in the entorhinal cortex (EC) are among the earliest signs of cognitive aging. Here, we ask whether a compromised cholinergic system influences early EC impairments and plays a primary role in EC cognition. We evaluated the relationship between loss of integrity of cholinergic inputs to the EC and cognitive deficits in otherwise healthy humans and mice. Using in vivo imaging (PET/MRI) in older humans and high-resolution imaging in wild-type mice and mice with genetic susceptibility to Alzheimer's disease pathology, we establish that loss of cholinergic input to the EC is, in fact, an early feature in cognitive aging. Through mechanistic studies in mice, we find a central role for EC-projecting cholinergic neurons in the expression of EC-related behaviors. Our data demonstrate that alterations to the cholinergic EC are an early, conserved feature of cognitive aging across species and may serve as an early predictor of cognitive status.
Collapse
Affiliation(s)
- Mala R Ananth
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | - John D Gardus
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikhil Palekar
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, New Newark, NJ, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - David A Talmage
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook Medicine, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Lorna W Role
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Maji M, Khajanchi S. Mathematical models on Alzheimer's disease and its treatment: A review. Phys Life Rev 2025; 52:207-244. [PMID: 39813887 DOI: 10.1016/j.plrev.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease is a gradually advancing neurodegenerative disease. According to the report by "World Health Organization (WHO)", there are over 55 million individuals currently living with Alzheimer's disease and other dementia globally, and the number of sufferers is increasing every day. In absence of effective cures and preventive measures, this number is predicted to triple by 2050. The disease's origin is still unclear, and also no such treatment is available for eradicating the disease. Based on the crucial factors that are connected to the disease's progression, the authors developed several types of mathematical models. We review such mathematical models that are utilized to better understand the pathophysiology of Alzheimer's disease. Section-wise, we categorize the mathematical models in terms of different components that might be responsible for Alzheimer's disease. We explain the mathematical models with their descriptions and respective conclusions. In addition to mathematical models, we concentrate on biological aspects of the disease and possible therapeutic targets. We explore the disease's biological basis primarily to understand how proteins, glial cells, cytokines, genes, calcium signaling and oxidative stress contribute to the disease. We go through several treatment targets that might stop the progression of the disease or at least slow it down. We present a table that summarizes the mathematical models in terms of their formalisms, highlighting key components and important remarks.
Collapse
Affiliation(s)
- Mitali Maji
- Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Subhas Khajanchi
- Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
3
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
4
|
Fukuda M, Okanishi H, Ino D, Ono K, Ota T, Wakai E, Sato T, Ohta Y, Kikkawa Y, Inohara H, Kanai Y, Hibino H. Protein profile of mouse endolymph suggests a role in controlling cochlear homeostasis. iScience 2024; 27:111214. [PMID: 39563888 PMCID: PMC11574807 DOI: 10.1016/j.isci.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
The cochlea contains two extracellular fluids, perilymph and endolymph. Endolymph exhibits high potential of approximately +80 to +110 mV (depending on species), which sensitizes sensory hair cells. Other properties of this unique fluid remain elusive, owing to its minuscule volume in rodent cochlea. We therefore developed a technique to collect high-purity endolymph from mouse cochleae. Comprehensive proteomic analysis of sampled endolymph using liquid chromatography with mass spectrometry identified 301 proteins, dominated by molecules engaged in immunity and proteostasis. Approximately 30% of these proteins were undetectable in our perilymph. A combination of mass spectrometry and different approaches revealed that, compared to perilymph, endolymph was enriched with α2-macroglobulin, osteopontin, apolipoprotein D, apolipoprotein E, and apolipoprotein J/clusterin. In other cells or tissues, α2-macroglobulin, apolipoprotein E, and apolipoprotein J contribute to the clearance of degraded proteins from extracellular fluid. Altogether, with the proteins described here, endolymph may play a protective role in stabilizing cochlear homeostasis.
Collapse
Affiliation(s)
- Masatoshi Fukuda
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Ino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Ono
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeru Ota
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eri Wakai
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Kikkawa
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- AMED-CREST, AMED, Osaka 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- AMED-CREST, AMED, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Pirota V, Stritto AD, Magnaghi LR, Biesuz R, Doria F, Mella M, Freccero M, Crespan E. A Novel G-Quadruplex Structure within Apolipoprotein E Promoter: A New Promising Target in Cancer and Dementia Fight? ACS OMEGA 2024; 9:45203-45213. [PMID: 39554422 PMCID: PMC11561760 DOI: 10.1021/acsomega.4c06430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Human apolipoprotein E (APOE) is a crucial lipid transport glycoprotein involved in various biological processes, including lipid metabolism, immune response, and neurodegeneration. Elevated APOE levels are linked to poor prognosis in several cancers and increased risk of Alzheimer's disease (AD). Therefore, modulating APOE expression presents a promising therapeutic strategy for both cancer and AD. Considering the pivotal role of G-quadruplex (G4) structures in medicinal chemistry as modulators of gene expression, here, we present a newly discovered G-quadruplex (G4) structure within the ApoE gene promoter. Bioinformatic analysis identified 21 potential G4-forming sequences in the ApoE promoter, with the more proximal to the transcription start site, pApoE, showing the highest G-score. Biophysical studies confirmed the folding of pApoE into a stable parallel G4 under physiological conditions, supported by circular dichroism, NMR spectroscopy, UV-melting, and a quantitative PCR stop assay. Moreover, the ability to modulate pApoE-G4 folding was demonstrated by using G4-stabilizing ligands (HPHAM, Braco19, and PDS), which increased the thermal stability of pApoE-G4. In contrast, peptide nucleic acid conjugates were synthesized to disrupt G4 formation, effectively hybridizing with pApoE sequences, and confirming the potential to unfold G4 structures. Overall, our findings provide a mainstay for future therapeutic approaches targeting ApoE-G4s to regulate APOE expression, offering potential advancements in cancer and AD treatment.
Collapse
Affiliation(s)
- Valentina Pirota
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- G4-INTERACT,
USERN, via Taramelli
10, I-27100 Pavia, Italy
| | - Angela Dello Stritto
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Lisa Rita Magnaghi
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Raffaela Biesuz
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mariella Mella
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
6
|
Aumont-Rodrigue G, Picard C, Labonté A, Poirier J. Apolipoprotein B gene expression and regulation in relation to Alzheimer's disease pathophysiology. J Lipid Res 2024; 65:100667. [PMID: 39395793 PMCID: PMC11602985 DOI: 10.1016/j.jlr.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Apolipoprotein B (APOB), a receptor-binding protein present in cholesterol-rich lipoproteins, has been implicated in Alzheimer's disease (AD). High levels of APOB-containing low-density lipoproteins (LDL) are linked to the pathogenesis of both early-onset familial and late-onset sporadic AD. Rare coding mutations in the APOB gene are associated with familial AD, suggesting a role for APOB-bound lipoproteins in the central nervous system. This research explores APOB gene regulation across the AD spectrum using four cohorts: BRAINEAC (elderly control brains), DBCBB (controls, AD brains), ROSMAP (controls, MCI, AD brains), and ADNI (control, MCI, AD clinical subjects). APOB protein levels, measured via mass spectrometry and ELISA, positively correlated with AD pathology indices and cognition, while APOB mRNA levels showed negative correlations. Brain APOB protein levels are also correlated with cortical Aβ levels. A common coding variant in the APOB gene locus affected its expression but didn't impact AD risk or brain cholesterol concentrations, except for 24-S-hydroxycholesterol. Polymorphisms in the CYP27A1 gene, notably rs4674344, were associated with APOB protein levels. A negative correlation was observed between brain APOB gene expression and AD biomarker levels. CSF APOB correlated with Tau pathology in presymptomatic subjects, while cortical APOB was strongly associated with cortical Aβ deposition in late-stage AD. The study discusses the potential link between blood-brain barrier dysfunction and AD symptoms in relation to APOB neurobiology. Overall, APOB's involvement in lipoprotein metabolism appears to influence AD pathology across different stages of the disease.
Collapse
Affiliation(s)
- Gabriel Aumont-Rodrigue
- Douglas Mental Health University Institute, Neurosciences divison, Montréal, Québec, Canada; Centre for the Studies on Prevention of Alzheimer's Disease, Montréal, Québec, Canada; McGill University, Psychiatry department, Montréal, Québec, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Neurosciences divison, Montréal, Québec, Canada; Centre for the Studies on Prevention of Alzheimer's Disease, Montréal, Québec, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Neurosciences divison, Montréal, Québec, Canada; Centre for the Studies on Prevention of Alzheimer's Disease, Montréal, Québec, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Neurosciences divison, Montréal, Québec, Canada; Centre for the Studies on Prevention of Alzheimer's Disease, Montréal, Québec, Canada; McGill University, Psychiatry department, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Grimaldi L, Bovi E, Formisano R, Sancesario G. ApoE: The Non-Protagonist Actor in Neurological Diseases. Genes (Basel) 2024; 15:1397. [PMID: 39596597 PMCID: PMC11593850 DOI: 10.3390/genes15111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Apolipoprotein E (APOE = gene, ApoE = protein) is a glycoprotein involved in the biological process of lipid transportation and metabolism, contributing to lipid homeostasis. APOE has been extensively studied for its correlation with neurodegenerative diseases, in particular Alzheimer's disease (AD), where the possession of the epsilon 4 (E4) allele is established as a risk factor for developing AD in non-familiar sporadic forms. Recently, evidence suggests a broad involvement of E4 also in other neurological conditions, where it has been shown to be a predictive marker for worse clinical outcomes in Parkinson's disease (PD), brain trauma, and disturbances of consciousness. The mechanisms underlying these associations are complex and involve amyloid-β (Aβ) peptide accumulation and neuroinflammation, although many others have yet to be identified. OBJECTIVES The aim of this review is to overview the current knowledge on ApoE as a non-protagonist actor in processes underlying neurodegenerative diseases and its clinical significance in AD, PD, acquired brain trauma, and Disorders of Consciousness (DoC). Ethical implications of genetic testing for APOE variants and information disclosure will also be briefly discussed.
Collapse
Affiliation(s)
- Lorenzo Grimaldi
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
- European Center for Brain Research, Via del Fosso del Fiorano, 00143 Rome, Italy
| | - Eleonora Bovi
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
- Parkinson’s Disease Unit, University Hospital of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| | - Rita Formisano
- Post-Coma Unit and Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Giulia Sancesario
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
- European Center for Brain Research, Via del Fosso del Fiorano, 00143 Rome, Italy
| |
Collapse
|
8
|
Yuan F, Tang Y, Zheng F, Xie Q. Analyzing the Role of Specific Damage-Associated Molecular Patterns-Related Genes in Osteoarthritis and Investigating the Association between β-Amyloid and Apolipoprotein E Isoforms. J Innate Immun 2024; 16:501-512. [PMID: 39471788 PMCID: PMC11521507 DOI: 10.1159/000541542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a prevalent chronic joint disorder. It is characterized by an immune response that maintains a low level of inflammation throughout its progression. During OA, cartilage degradation leads to the release of damage-associated molecular patterns (DAMPs), which intensify the inflammatory response. β-Amyloid is a well-recognized DAMP in OA, can interact with APOE isoforms. METHODS This study identified DAMPs-related genes in OA using bioinformatics techniques. Additionally, we examined the expression levels of β-amyloid and apolipoprotein E (ApoE) isoforms by enzyme-linked immunosorbent assay. RESULTS We identified 10 key genes by machine learning techniques. Immune infiltration analysis revealed upregulation of various immune cell types in OA cartilage, underscoring the critical role of inflammation in OA pathogenesis. In the validation study, elevated serum levels of β-amyloid in knee osteoarthritis (KOA) patients were confirmed, showing positive correlations with ApoE2 and ApoE4. Notably, ApoE3 was identified as an independent protective factor against KOA. CONCLUSION In this bioinformatics analysis, we identified the DAMPs-related genes of KOA and explored their potential functions and regulatory networks. The high expression of β-amyloid in KOA was confirmed by experiments, and the correlation between β-amyloid and ApoE2, ApoE4 in KOA was revealed for the first time, this provides a new way to explore the pathogenesis of KOA and to study the therapeutic targets of KOA.
Collapse
Affiliation(s)
- Fangling Yuan
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yatian Tang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Laureyssen C, Küçükali F, Van Dongen J, Gawor K, Tomé SO, Ronisz A, Otto M, von Arnim CAF, Van Damme P, Vandenberghe R, Thal DR, Sleegers K. Hypothesis-based investigation of known AD risk variants reveals the genetic underpinnings of neuropathological lesions observed in Alzheimer's-type dementia. Acta Neuropathol 2024; 148:55. [PMID: 39424714 PMCID: PMC11489263 DOI: 10.1007/s00401-024-02815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Besides neurofibrillary tangles and amyloid beta (Aβ) plaques, a wide range of co-morbid neuropathological features can be observed in AD brains. Since AD has a very strong genetic background and displays a wide phenotypic heterogeneity, this study aims at investigating the genetic underpinnings of co-morbid and hallmark neuropathological lesions. This was realized by obtaining the genotypes for 75 AD risk variants from low-coverage whole-genome sequencing data for 325 individuals from the Leuven Brain Collection. Association testing with deeply characterized neuropathological lesions revealed a strong and likely direct effect of rs117618017, a SNP in exon 1 of APH1B, with tau-related pathology. Second, a relation between APOE and granulovacuolar degeneration, a proxy for necroptosis, was also discovered in addition to replication of the well-known association of APOE with AD hallmark neuropathological lesions. Additionally, several nominal associations with AD risk genes were detected for pTDP pathology, α-synuclein lesions and pTau-related pathology. These findings were confirmed in a meta-analysis with three independent cohorts. For example, we replicated a prior association between TPCN1 (rs6489896) and LATE-NC risk. Furthermore, we identified new putative LATE-NC-linked SNPs, including rs7068231, located upstream of ANK3. We found association between BIN1 (rs6733839) and α-synuclein pathology, and replicated a prior association between USP6NL (rs7912495) and Lewy body pathology. Additionally, we also found that UMAD1 (rs6943429) was nominally associated with Lewy body pathology. Overall, these results contribute to a broader general understanding of how AD risk variants discovered in large-scale clinical genome-wide association studies are involved in the pathological mechanisms of AD and indicate the importance of downstream elimination of phenotypic heterogeneity introduced in these studies.
Collapse
Affiliation(s)
- Celeste Laureyssen
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Philip Van Damme
- Laboratory for Neurobiology, VIB-KU Leuven, Louvain, Belgium
- Department of Neurology, UZ Leuven, Louvain, Belgium
| | - Rik Vandenberghe
- Department of Neurology, UZ Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Louvain, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
- Department of Pathology, University Hospital Leuven, Louvain, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Dai Z, Pang X, Chen N, Fan X, Liu W, Liu J, Chen Z, Fang S, Cai C, Fang J. Network Medicine Approach Unravels Endophenotype Signature in Alzheimer's Disease through Large-Scale Comparative Proteomics Analysis: Vascular Dysfunction as a Prime Example. J Chem Inf Model 2024; 64:7758-7771. [PMID: 39322987 DOI: 10.1021/acs.jcim.4c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Collapse
Affiliation(s)
- Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Nan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuang Chen
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
11
|
Ding Y, Palecek SP, Shusta EV. iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta. Fluids Barriers CNS 2024; 21:79. [PMID: 39394110 PMCID: PMC11468049 DOI: 10.1186/s12987-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB. METHODS To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate. RESULTS Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the "brain-to-blood" amyloid beta 1-40 (Aβ40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aβ42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients. CONCLUSIONS While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Masurkar AV, Marsh K, Morgan B, Leitner D, Wisniewski T. Factors Affecting Resilience and Prevention of Alzheimer's Disease and Related Dementias. Ann Neurol 2024; 96:633-649. [PMID: 39152774 PMCID: PMC11534551 DOI: 10.1002/ana.27055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating, age-associated neurodegenerative disorder and the most common cause of dementia. The clinical continuum of AD spans from preclinical disease to subjective cognitive decline, mild cognitive impairment, and dementia stages (mild, moderate, and severe). Neuropathologically, AD is defined by the accumulation of amyloid β (Aβ) into extracellular plaques in the brain parenchyma and in the cerebral vasculature, and by abnormally phosphorylated tau that accumulates intraneuronally forming neurofibrillary tangles (NFTs). Development of treatment approaches that prevent or even reduce the cognitive decline because of AD has been slow compared to other major causes of death. Recently, the United States Food and Drug Administration gave full approval to 2 different Aβ-targeting monoclonal antibodies. However, this breakthrough disease modifying approach only applies to a limited subset of patients in the AD continuum and there are stringent eligibility criteria. Furthermore, these approaches do not prevent progression of disease, because other AD-related pathologies, such as NFTs, are not directly targeted. A non-mutually exclusive alternative is to address lifestyle interventions that can help reduce the risk of AD and AD-related dementias (ADRD). It is estimated that addressing such modifiable risk factors could potentially delay up to 40% of AD/ADRD cases. In this review, we discuss some of the many modifiable risk factors that may be associated with prevention of AD/ADRD and/or increasing brain resilience, as well as other factors that may interact with these modifiable risk factors to influence AD/ADRD progression. [Color figure can be viewed at www.annalsofneurology.org] ANN NEUROL 2024;96:633-649.
Collapse
Affiliation(s)
- Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Karyn Marsh
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Brianna Morgan
- Department of Medicine, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Dominique Leitner
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Thomas Wisniewski
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Pathology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Psychiatry, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| |
Collapse
|
14
|
Abrego-Guandique DM, Saraceno GF, Cannataro R, Manzzo de Burnside M, Caroleo MC, Cione E. Apolipoprotein E and Alzheimer's Disease in Italian Population: Systematic Review and Meta-Analysis. Brain Sci 2024; 14:908. [PMID: 39335404 PMCID: PMC11430190 DOI: 10.3390/brainsci14090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Objective: This meta-analysis with a systematic review was undertaken to assess the association between APOE allelic genotypes and the risk of Alzheimer's disease (AD) in the Italian population. Methods: The Web of Science, PubMed, and Scopus databases were searched until 15 November 2023. The odds ratio (OR) with a 95% confidence interval (CI) was calculated using fixed and random effect models, depending on the I2 statistic value. The systematic review and meta-analysis were conducted in agreement with the PRISMA guideline and registered with PROSPERO (CRD42023492580). Results: Our meta-analysis based on 15 studies revealed a higher risk of AD among Italian individuals carrying the APOE ε4 allele (OR = 3.60, 95% CI [2.90-4.47], p < 0.0001). The association of AD genotype APOE ε2ε4 (OR = 1.36, 95% CI [0.76-2.41], p = 0.29) was not statistically significant, while APOE ε3ε4 (OR = 3.43, 95% CI [2.95-3.99], p < 0.0001) has a high risk of AD development; the risk is more notably in the APOE ε4ε4 genotype (OR = 7.08, 95% CI [4.22-11.86], p < 0.0001). The APOE ε2 allele has a protective effect (APOE ε2 (OR = 0.47, 95% CI [0.29-0.74], p = 0.0013)), and similar results were achieved by APOE ε3 (OR = 0.49, 95% CI [0.37-0.65], p < 0.0001). Subgroup analysis of three areas of Italy (southern, northern, and center) revealed that that APOE ε4 allele was a risk factor with a higher OR in northern Italy (OR 4.22; 95% CI [3.46-5.16], p < 0.0001) compared to southern and center Italy (OR 3.02; 95% CI [2.28-4.01], p < 0.0001 and OR 3.97; 95% CI [1.37-11.56], p < 0.0001, respectively). As well, APOE ε4ε4 genotype carriers had a significantly higher OR in northern Italy (OR 9.69; 95% CI [4.94-18.99], p < 0.0001) compared to in southern and center Italy (OR 4.38; 95% CI [1.54-12.47], p < 0.0001 and OR 3.59; 95% CI [0.87-14.86], p < 0.0001, respectively). Conclusions: This systematic review with a meta-analysis of the Italian population on APOE alleles, genotyping, and AD incidence, highlights that individuals harboring APOE ε4 have a higher risk of developing AD compared to those with other alleles. It also supports the protective effect of the APOE ε2 allele against the progress of AD. The qualitative analysis on the complex genetic interactions influencing Alzheimer risk emphasizes the need for further research on genetic and environmental factors for effective prevention strategies.
Collapse
Affiliation(s)
| | - Giorgia Francesca Saraceno
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende, Italy; (G.F.S.); (E.C.)
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110311, Colombia
| | | | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende, Italy; (G.F.S.); (E.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
15
|
A genome-wide association meta-analysis of all-cause and vascular dementia. Alzheimers Dement 2024; 20:5973-5995. [PMID: 39046104 PMCID: PMC11497727 DOI: 10.1002/alz.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Dementia is a multifactorial disease with Alzheimer's disease (AD) and vascular dementia (VaD) pathologies making the largest contributions. Yet, most genome-wide association studies (GWAS) focus on AD. METHODS We conducted a GWAS of all-cause dementia (ACD) and examined the genetic overlap with VaD. Our dataset includes 800,597 individuals, with 46,902 and 8702 cases of ACD and VaD, respectively. Known AD loci for ACD and VaD were replicated. Bioinformatic analyses prioritized genes that are likely functionally relevant and shared with closely related traits and risk factors. RESULTS For ACD, novel loci identified were associated with energy transport (SEMA4D), neuronal excitability (ANO3), amyloid deposition in the brain (RBFOX1), and magnetic resonance imaging markers of small vessel disease (SVD; HBEGF). Novel VaD loci were associated with hypertension, diabetes, and neuron maintenance (SPRY2, FOXA2, AJAP1, and PSMA3). DISCUSSION Our study identified genetic risks underlying ACD, demonstrating overlap with neurodegenerative processes, vascular risk factors, and cerebral SVD. HIGHLIGHTS We conducted the largest genome-wide association study of all-cause dementia (ACD) and vascular dementia (VaD). Known genetic variants associated with AD were replicated for ACD and VaD. Functional analyses identified novel loci for ACD and VaD. Genetic risks of ACD overlapped with neurodegeneration, vascular risk factors, and cerebral small vessel disease.
Collapse
|
16
|
Matsuo K, Nshihara H. Rebuilding insight into the pathophysiology of Alzheimer's disease through new blood-brain barrier models. Neural Regen Res 2024; 19:1954-1960. [PMID: 38227521 DOI: 10.4103/1673-5374.390978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024] Open
Abstract
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system. Blood-brain barrier breakdown is a common pathology in various neurological diseases, such as Alzheimer's disease, stroke, multiple sclerosis, and Parkinson's disease. Traditionally, it has been considered a consequence of neuroinflammation or neurodegeneration, but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss. Thus, the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics. To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases, there is a growing demand for experimental models of human origin that allow for functional assessments. Recently, several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed. Especially in the Alzheimer's disease field, the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier. In this review, we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer's disease from pathological analyses, imaging studies, animal models, and stem cell sources. Additionally, we discuss the potential future directions for blood-brain barrier research.
Collapse
Affiliation(s)
- Kinya Matsuo
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hideaki Nshihara
- Department of Neurotherapeutics, Yamaguchi University, Ube, Japan
| |
Collapse
|
17
|
Shen H, Liu K, Kong F, Ren M, Wang X, Wang S. Strategies for measuring concentrations and forms of amyloid-β peptides. Biosens Bioelectron 2024; 259:116405. [PMID: 38776801 DOI: 10.1016/j.bios.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is affecting more and more people worldwide without the effective treatment, while the existed pathological mechanism has been confirmed barely useful in the treatment. Amyloid-β peptide (Aβ), a main component of senile plaque, is regarded as the most promising target in AD treatment. Aβ clearance from AD brain seems to be a reliably therapeutic strategy, as the two exited drugs, GV-971 and aducanumab, are both developed based on it. However, doubt still exists. To exhaustive expound on the pathological mechanism of Aβ, rigorous analyses on the concentrations and aggregation forms are essential. Thus, it is attracting broad attention these years. However, most of the sensors have not been used in pathological studies, as the lack of the bridge between analytical chemist and pathologists. In this review, we made a brief introduce on Aβ-related pathological mechanism included in β-amyloid hypothesis to elucidate the detection conditions of sensor methods. Furthermore, a summary of the sensor methods was made, which were based on Aβ concentrations and form detections that have been developed in the past 10 years. As the greatest number of the sensors were built on fluorescent spectroscopy, electrochemistry, and Roman spectroscopy, detailed elucidation on them was made. Notably, the aggregation process is another important factor in revealing the progress of AD and developing the treatment methods, so the sensors on monitoring Aβ aggregation processes were also summarized.
Collapse
Affiliation(s)
- Hangyu Shen
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Keyin Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong, 264333, PR China.
| | - Shoujuan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
18
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
19
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Ikeda M, Kondo H, Murakami T, Iwaide S, Itoh Y, Shibuya H. Identification of apolipoprotein E-derived amyloid within cholesterol granulomas of leopard geckos (Eublepharis macularius). Sci Rep 2024; 14:13746. [PMID: 38877049 PMCID: PMC11178906 DOI: 10.1038/s41598-024-64643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Apolipoprotein E (ApoE) is involved in cholesterol transport among cells and also plays an important role in amyloid formation, co-depositing with amyloid fibrils in various types of amyloidosis. Although the in vivo amyloidogenicity of ApoE has not been previously demonstrated, this study provides evidence of ApoE amyloidogenicity in leopard geckos (Eublepharis macularius), belonging to the class Reptilia. Histologically, amyloid deposits were localized within cholesterol granulomas and exhibited positive Congo red staining, with yellow to green birefringence under polarized light. On mass spectrometry-based proteomic analysis, ApoE was detected as a dominant component of amyloid; of the full length of the 274 amino acid residues, peptides derived from Leu185-Arg230 were frequently detected with non-tryptic truncations. Immunohistochemistry with anti-leopard gecko ApoE antibody showed positive reactions of amyloid deposits. These results show that ApoE is an amyloid precursor protein within the cholesterol granulomas of leopard geckos. Although further investigations are needed, the C-terminal region of ApoE involved in amyloid formation is a lipid-binding region, and there should be a relationship between amyloidogenesis and the development of cholesterol granulomas in leopard geckos. This study provides novel insights into the pathogenesis of ApoE-related diseases.
Collapse
Affiliation(s)
- Mitsuhiro Ikeda
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan.
| | - Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Susumu Iwaide
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiyuki Itoh
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hisashi Shibuya
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Bioresource, Nihon University, Kanagawa, Japan
| |
Collapse
|
21
|
Wu LY, Real R, Martinez-Carrasco A, Chia R, Lawton MA, Shoai M, Bresner C, Blauwendraat C, Singleton AB, Ryten M, Scholz SW, Traynor BJ, Williams NM, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Investigation of the genetic aetiology of Lewy body diseases with and without dementia. Brain Commun 2024; 6:fcae190. [PMID: 38978726 PMCID: PMC11228432 DOI: 10.1093/braincomms/fcae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be the key to understanding disease pathways and, ultimately, therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7804 patients of European ancestry from Tracking Parkinson's, The Oxford Discovery Cohort, and Accelerating Medicine Partnership-Parkinson's Disease Initiative. We conducted a discrete phenotype genome-wide association study comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk allele rs429358 tagging APOEe4 increases the odds of developing dementia, and that rs7668531 near the MMRN1 and SNCA-AS1 genes and an intronic variant rs17442721 tagging LRRK2 G2019S on chromosome 12 are protective against dementia. These results should be validated in autopsy-confirmed cases in future studies.
Collapse
Affiliation(s)
- Lesley Yue Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20814, USA
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Maryam Shoai
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, National Institute on Aging, Bethesda, MD 20814, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Genetics and Genomic Medicine, NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, Cambridge, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
| | - John Hardy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
22
|
Thierry M, Ponce J, Martà-Ariza M, Askenazi M, Faustin A, Leitner D, Pires G, Kanshin E, Drummond E, Ueberheide B, Wisniewski T. The influence of APOE ε4 on the pTau interactome in sporadic Alzheimer's disease. Acta Neuropathol 2024; 147:91. [PMID: 38772917 PMCID: PMC11108952 DOI: 10.1007/s00401-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aβ pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aβ 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aβ-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Manon Thierry
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Mitchell Martà-Ariza
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Arline Faustin
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Dominique Leitner
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Department of Neurology, Comprehensive Epilepsy Center, Grossman School of Medicine, New York University, New York, NY, USA
| | - Geoffrey Pires
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Eleanor Drummond
- Brain and Mind Centre, School of Medical Science, University of Sydney, Sydney, Australia
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
- Departments of Pathology and Psychiatry, Grossman School of Medicine, New York University, Science Building, Rm 1017, 435 East 30 Street, New York, NY, 10016, USA.
| |
Collapse
|
23
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
24
|
Wang H, Shi L, Luo S, Luo Y, Xu C, Qiu G, Guo Q, Chen C, Lu T, Liu K, Zhu F. Associations of apolipoprotein E ε4 allele, regional cerebral blood flow, and serum liver function markers in patients with cognitive impairment. Front Neurol 2024; 15:1345705. [PMID: 38628697 PMCID: PMC11018914 DOI: 10.3389/fneur.2024.1345705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction The ε4 allele of the apolipoprotein E gene (APOE4) is expressed abundantly in both the brain and peripheral circulation as a genetic risk factor for Alzheimer's disease (AD). Cerebral blood flow (CBF) dysfunction is an essential feature of AD, and the liver plays an important role in the pathogenesis of dementia. However, the associations of APOE4 with CBF and liver function markers in patients with cognitive impairment remains unclear. We aimed to evaluate the associations of APOE4 with CBF measured by arterial spin labeling (ASL) magnetic resonance imaging (MRI) and serum liver function markers in participants who were diagnosed with cognitive impairment. Methods Fourteen participants with AD and sixteen with amnestic mild cognitive impairment (MCI) were recruited. In addition to providing comprehensive clinical information, all patients underwent laboratory tests and MRI. All participants were divided into carriers and noncarriers of the ε4 allele, and T-tests and Mann-Whitney U tests were used to observe the differences between APOE4 carriers and noncarriers in CBF and liver function markers. Results Regarding regional cerebral blood flow (rCBF), APOE4 carriers showed hyperperfusion in the bilateral occipital cortex, bilateral thalamus, and left precuneus and hypoperfusion in the right lateral temporal cortex when compared with noncarriers. Regarding serum liver function markers, bilirubin levels (including total, direct, and indirect) were lower in APOE4 carriers than in noncarriers. Conclusion APOE4 exerts a strong effect on CBF dysfunction by inheritance, representing a risk factor for AD. APOE4 may be related to bilirubin metabolism, potentially providing specific neural targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Shi
- BrainNow Research Institute, Guangdong, China
| | - Shimei Luo
- Department of Nuclear Magnetic Resonance, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Yishan Luo
- BrainNow Research Institute, Guangdong, China
| | - Chunyan Xu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Guozhen Qiu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Qiwen Guo
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Chunchun Chen
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Taikun Lu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kangding Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| |
Collapse
|
25
|
Dey A, Verma A, Bhaskar U, Sarkar B, Kallianpur M, Vishvakarma V, Das AK, Garai K, Mukherjee O, Ishii K, Tahara T, Maiti S. A Toxicogenic Interaction between Intracellular Amyloid-β and Apolipoprotein-E. ACS Chem Neurosci 2024; 15:1265-1275. [PMID: 38421952 DOI: 10.1021/acschemneuro.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the aggregation of amyloid β (Aβ) and tau proteins. Why ApoE variants are significant genetic risk factors remains a major unsolved puzzle in understanding AD, although intracellular interactions with ApoE are suspected to play a role. Here, we show that specific changes in the fluorescence lifetime of fluorescently tagged small Aβ oligomers in rat brain cells correlate with the cellular ApoE content. An inhibitor of the Aβ-ApoE interaction suppresses these changes and concomitantly reduces Aβ toxicity in a dose-dependent manner. Single-molecule techniques show changes both in the conformation and in the stoichiometry of the oligomers. Neural stem cells derived from hiPSCs of Alzheimer's patients also exhibit these fluorescence lifetime changes. We infer that intracellular interaction with ApoE modifies the N-terminus of the Aβ oligomers, inducing changes in their stoichiometry, membrane affinity, and toxicity. These changes can be directly imaged in live cells and can potentially be used as a rapid and quantitative cellular assay for AD drug discovery.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Aditi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Uchit Bhaskar
- Institute of Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Bidyut Sarkar
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Mamata Kallianpur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Vicky Vishvakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Odity Mukherjee
- Institute of Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Saitama 3510198, Japan
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
26
|
Sepulveda J, Kim JY, Binder J, Vicini S, Rebeck GW. APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Mol Neurodegener 2024; 19:24. [PMID: 38468308 DOI: 10.1186/s13024-024-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 μm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid β (Aβ), we infused locally Hi-Lyte Fluor 555-labeled Aβ in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aβ, and less Aβ coverage at early time points after Aβ injection. To test whether P2RY12 is involved in process movement in response to Aβ, we treated acute brain slices with a P2RY12 antagonist before Aβ injection; microglial processes no longer migrated towards Aβ. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aβ pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.
Collapse
Affiliation(s)
- Jordy Sepulveda
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - Jennifer Yejean Kim
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Joseph Binder
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
27
|
Watt JK, Dickie DA, Ho FK, Lyall DM, Dawson J, Quinn TJ. Validation of the brain health index in the European Prevention of Alzheimer's Dementia cohort. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100214. [PMID: 38595911 PMCID: PMC11002803 DOI: 10.1016/j.cccb.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/11/2024]
Abstract
Background Brain Health Index (BHI) assimilates various MRI sequences, giving a quantitative measure of brain health. To date, BHI validation has been cross-sectional and limited to selected populations. Further large-scale validation and assessment of temporal change is required to understand its clinical utility. Aim Assess 1) relationships between variables associated with cognitive decline and BHI 2) associations between BHI and measures of cognition and 3) longitudinal changes in BHI and relationship with cognitive function. Methods BHI computation involved Gaussian mixture-model cluster analysis of T1, T2, T2*, and T2 FLAIR MRI data from participants within the European Prevention of Alzheimer's Dementia (EPAD) cohort. Group differences (gender- and health-based) were evaluated using independent samples Welch's t-tests. Relationships between BHI, age and cognitive tests used linear regression. Longitudinal analysis (12/24 months) utilised mixed linear regression models to examine BHI changes, and paired BHI/cognition associations. Results Data from N = 1496 predominantly Caucasian participants (50-88 years old, 43.32% male) were used. BHI scores were lower in those with diabetes (p < 0.001, d = 0.419), hypertension (p < 0.001, d = 0.375), hypercholesterolemia (p < 0.001, d = 0.193) and stroke (p < 0.05, d = 0.512). APOE was not significantly related to BHI scores. After correction for age, cross-sectional BHI scores were significantly associated with all measures of cognitive function in males, but only the Four Mountains Test (4MT) in females. Longitudinal change in BHI and cognition were not consistently related. Conclusions BHI is a valid marker of cognitive decline and relatively stable over 1-2 year follow-up periods. Further work should assess temporal changes over a longer duration and determine relationships between BHI and cognition in more diverse populations.
Collapse
Affiliation(s)
- Jodi K. Watt
- School of Cardiovascular and Metabolic Health, University of Glasgow, Scotland, United Kingdom
| | - David Alexander Dickie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Scotland, United Kingdom
| | - Frederick K. Ho
- School of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Donald M. Lyall
- School of Health and Wellbeing, University of Glasgow, Scotland, United Kingdom
| | - Jesse Dawson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Scotland, United Kingdom
| | - Terence J. Quinn
- School of Cardiovascular and Metabolic Health, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
28
|
Majou D, Dermenghem AL. Effects of DHA (omega-3 fatty acid) and estradiol on amyloid β-peptide regulation in the brain. Brain Res 2024; 1823:148681. [PMID: 37992797 DOI: 10.1016/j.brainres.2023.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In the early stages of sporadic Alzheimer's disease (SAD), there is a strong correlation between memory impairment and cortical levels of soluble amyloid-β peptide oligomers (Aβ). It has become clear that Aβ disrupt glutamatergic synaptic function, which can in turn lead to the characteristic cognitive deficits of SAD, but the actual pathways are still not well understood. This opinion article describes the pathogenic mechanisms underlying cerebral amyloidosis. These mechanisms are dependent on the amyloid precursor protein and concern the synthesis of Aβ peptides with competition between the non-amyloidogenic pathway and the amyloidogenic pathway (i.e. a competition between the ADAM10 and BACE1 enzymes), on the one hand, and the various processes of Aβ residue clearance, on the other hand. This clearance mobilizes both endopeptidases (NEP, and IDE) and removal transporters across the blood-brain barrier (LRP1, ABCB1, and RAGE). Lipidated ApoE also plays a major role in all processes. The disturbance of these pathways induces an accumulation of Aβ. The description of the mechanisms reveals two key molecules in particular: (i) free estradiol, which has genomic and non-genomic action, and (ii) free DHA as a preferential ligand of PPARα-RXRα and PPARɣ-RXRα heterodimers. DHA and free estradiol are also self-regulating, and act in synergy. When a certain level of chronic DHA and free estradiol deficiency is reached, a permanent imbalance is established in the central nervous system. The consequences of these deficits are revealed in particular by the presence of Aβ peptide deposits, as well as other markers of the etiology of SAD.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| | | |
Collapse
|
29
|
Dauar MT, Picard C, Labonté A, Breitner J, Rosa-Neto P, Villeneuve S, Poirier J. Contactin 5 and Apolipoproteins Interplay in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1361-1375. [PMID: 38578887 DOI: 10.3233/jad-231003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p < 0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - John Breitner
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- McGill University, Montreal, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Verdun, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
30
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. Cell Mol Life Sci 2023; 80:376. [PMID: 38010414 PMCID: PMC11061799 DOI: 10.1007/s00018-023-05026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Mari N Nakamura
- Undergraduate program, Department of Chemistry and Biochemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT, 05753, USA
| | - Michael J Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
31
|
Wu L, Real R, Martinez A, Chia R, Lawton MA, Shoai M, Bresner C, Hubbard L, Blauwendraat C, Singleton AB, Ryten M, Scholz SW, Traynor BJ, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Investigation of the genetic aetiology of Lewy body diseases with and without dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.17.23297157. [PMID: 37987016 PMCID: PMC10659505 DOI: 10.1101/2023.10.17.23297157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be key to understanding disease pathways and ultimately therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7,804 patients of European ancestry from Tracking Parkinson's (PRoBaND), The Oxford Discovery Cohort, and AMP-PD. We conducted a discrete phenotype genome-wide association studies comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk alleles rs429358 tagging APOEe4 and rs7668531 near the MMRN1 and SNCA-AS1 genes, increase the odds of developing dementia and that an intronic variant rs17442721 tagging LRRK2 G2019S, on chromosome 12 is protective against dementia. These results should be validated in autopsy confirmed cases in future studies.
Collapse
Affiliation(s)
- Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Maryam Shoai
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
32
|
Mitroshina E, Kalinina E, Vedunova M. Optogenetics in Alzheimer's Disease: Focus on Astrocytes. Antioxidants (Basel) 2023; 12:1856. [PMID: 37891935 PMCID: PMC10604138 DOI: 10.3390/antiox12101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
Collapse
Affiliation(s)
- Elena Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia (M.V.)
| | | | | |
Collapse
|
33
|
Sahoo BR, Bardwell JCA. SERF, a family of tiny highly conserved, highly charged proteins with enigmatic functions. FEBS J 2023; 290:4150-4162. [PMID: 35694898 DOI: 10.1111/febs.16555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a misfolding process that has been linked to age-related diseases, including Alzheimer's and Huntington's. Understanding how cellular factors affect this process in vivo is vital in realizing the dream of controlling this insidious process that robs so many people of their humanity. SERF (small EDRK-rich factor) was initially isolated as a factor that accelerated polyglutamine amyloid formation in a C. elegans model. SERF knockouts inhibit amyloid formation of a number of proteins that include huntingtin, α-synuclein and β-amyloid which are associated with Huntington's, Parkinson's and Alzheimer's disease, respectively, and purified SERF protein speeds their amyloid formation in vitro. SERF proteins are highly conserved, highly charged and conformationally dynamic proteins that form a fuzzy complex with amyloid precursors. They appear to act by specifically accelerating the primary step of amyloid nucleation. Brain-specific SERF knockout mice, though viable, appear to be more prone to deposition of amyloids, and show modified fibril morphology. Whole-body knockouts are perinatally lethal due to an apparently unrelated developmental issue. Recently, it was found that SERF binds RNA and is localized to nucleic acid-rich membraneless compartments. SERF-related sequences are commonly found fused to zinc finger sequences. These results point towards a nucleic acid-binding function. How this function relates to their ability to accelerate amyloid formation is currently obscure. In this review, we discuss the possible biological functions of SERF family proteins in the context of their structural fuzziness, modulation of amyloid pathway, nucleic acid binding and their fusion to folded proteins.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Liu Y, Wang P, Jin G, Shi P, Zhao Y, Guo J, Yin Y, Shao Q, Li P, Yang P. The novel function of bexarotene for neurological diseases. Ageing Res Rev 2023; 90:102021. [PMID: 37495118 DOI: 10.1016/j.arr.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Bexarotene, a retinoid X receptor (RXR) agonist, is approved by FDA to treat cutaneous T-cell lymphoma. However, it has also demonstrated promising therapeutic potential for neurological diseases such as stroke, traumatic brain injury, Parkinson's disease, and particularly Alzheimer's disease(AD). In AD, bexarotene inhibits the production and aggregation of amyloid β (Aβ), activates Liver X Receptor/RXR heterodimers to increase lipidated apolipoprotein E to remove Aβ, mitigates the negative impact of Aβ, regulates neuroinflammation, and ultimately improves cognitive function. For other neurological diseases, its mechanisms of action include inhibiting inflammatory responses, up-regulating microglial phagocytosis, and reducing misfolded protein aggregation, all of which aid in alleviating neurological damage. Here, we briefly discuss the characteristics, applications, and adverse effects of bexarotene, summarize its pharmacological mechanisms and therapeutic results in various neurological diseases, and elaborate on the problems encountered in preclinical research, with the aim of providing help for the further application of bexarotene in central nervous system diseases.
Collapse
Affiliation(s)
- Yangtao Liu
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; College of Third Clinical, Xinxiang Medical University, Xinxiang, China
| | - Pengwei Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Weihui, China
| | - Guofang Jin
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Peijie Shi
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yonghui Zhao
- Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiayi Guo
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yaling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qianhang Shao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China.
| | - Peng Li
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| | - Pengfei Yang
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| |
Collapse
|
35
|
Langella S, Barksdale NG, Vasquez D, Aguillon D, Chen Y, Su Y, Acosta-Baena N, Acosta-Uribe J, Baena AY, Garcia-Ospina G, Giraldo-Chica M, Tirado V, Muñoz C, Ríos-Romenets S, Guzman-Martínez C, Oliveira G, Yang HS, Vila-Castelar C, Pruzin JJ, Ghisays V, Arboleda-Velasquez JF, Kosik KS, Reiman EM, Lopera F, Quiroz YT. Effect of apolipoprotein genotype and educational attainment on cognitive function in autosomal dominant Alzheimer's disease. Nat Commun 2023; 14:5120. [PMID: 37612284 PMCID: PMC10447560 DOI: 10.1038/s41467-023-40775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Autosomal dominant Alzheimer's disease (ADAD) is genetically determined, but variability in age of symptom onset suggests additional factors may influence cognitive trajectories. Although apolipoprotein E (APOE) genotype and educational attainment both influence dementia onset in sporadic AD, evidence for these effects in ADAD is limited. To investigate the effects of APOE and educational attainment on age-related cognitive trajectories in ADAD, we analyzed data from 675 Presenilin-1 E280A mutation carriers and 594 non-carriers. Here we show that age-related cognitive decline is accelerated in ADAD mutation carriers who also have an APOE e4 allele compared to those who do not and delayed in mutation carriers who also have an APOE e2 allele compared to those who do not. Educational attainment is protective and moderates the effect of APOE on cognition. Despite ADAD mutation carriers being genetically determined to develop dementia, age-related cognitive decline may be influenced by other genetic and environmental factors.
Collapse
Affiliation(s)
| | - N Gil Barksdale
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Vasquez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Juliana Acosta-Uribe
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ana Y Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Gloria Garcia-Ospina
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Margarita Giraldo-Chica
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Victoria Tirado
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Claudia Muñoz
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Silvia Ríos-Romenets
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Claudia Guzman-Martínez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Gabriel Oliveira
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyun-Sik Yang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| |
Collapse
|
36
|
Lewkowicz E, Nakamura MN, Rynkiewicz MJ, Gursky O. Molecular modeling of apoE in complexes with Alzheimer's amyloid-β fibrils from human brain suggests a structural basis for apolipoprotein co-deposition with amyloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551703. [PMID: 37577501 PMCID: PMC10418262 DOI: 10.1101/2023.08.04.551703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-β (Aβ) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aβ1-40 and Aβ1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aβ aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aβ aggregation.
Collapse
Affiliation(s)
- Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Mari N. Nakamura
- Undergraduate program, Department of Chemistry, Middlebury College, 14 Old Chapel Rd, Middlebury, VT 05753VT United States
| | - Michael J. Rynkiewicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, W302, 700 Albany Street, Boston, MA, 02118, United States
| |
Collapse
|
37
|
Trojan E, Curzytek K, Cieślik P, Wierońska JM, Graff J, Lasoń W, Saito T, Saido TC, Basta-Kaim A. Prenatal stress aggravates age-dependent cognitive decline, insulin signaling dysfunction, and the pro-inflammatory response in the APP NL-F/NL-F mouse model of Alzheimer's disease. Neurobiol Dis 2023:106219. [PMID: 37422091 DOI: 10.1016/j.nbd.2023.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APPNL-F/NL-F mouse model of Alzheimer's disease has not yet been evaluated. We have identified age-dependent cognitive learning and memory deficits using male C57BL/6 J (wild type, WT) and the knock-in APPNL-F/NL-F (KI) aged 12, 15, and 18 months. An increase in the Aβ42/Aβ40 ratio and mouse ApoE levels in the hippocampus and frontal cortex preceded the onset of cognitive deficits in the KI mice. Moreover, dysfunction in insulin signaling, including increased IRS-1 serine phosphorylation in both brain areas and the tyrosine phosphorylation deficit in the frontal cortex, suggested age-dependent insulin/IGF-1 resistance. Resistance was reflected by disturbances in mTOR or ERK1/2 kinase phosphorylation and excessive pro-inflammatory (TNF-α, IL-6, and IL-23) status in the KI mice. Importantly, our study has provided insights into the higher vulnerability to PS-induced exacerbation of age-dependent cognitive deficits and biochemical dysfunction in KI mice than in WT animals. We anticipate our study will lead to future investigation of a multi-faceted cause-and-effect relationship between stress during neurodevelopment and the onset of AD pathology, distinguishing it from changes in the course of dementia during normal ageing.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland.
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Psychiatric Disorders, 12 Smętna St., 31-343 Kraków, Poland
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Psychiatric Disorders, 12 Smętna St., 31-343 Kraków, Poland
| | - Johannes Graff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Władysław Lasoń
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, University Graduate School of Medical Sciences, Nagoya City, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland.
| |
Collapse
|
38
|
Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer's disease and potential therapeutic targets. Front Aging Neurosci 2023; 15:1199434. [PMID: 37333457 PMCID: PMC10272394 DOI: 10.3389/fnagi.2023.1199434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
The most prevalent genetic risk factor for Alzheimer's disease (AD) is Apolipoprotein E (ApoE), a gene located on chromosome 19 that encodes three alleles (e2, e3, and e4) that give rise to the ApoE subtypes E2, E3, and E4, respectively. E2 and E4 have been linked to increased plasma triglyceride concentrations and are known to play a critical role in lipoprotein metabolism. The prominent pathological features of AD mainly include senile plaques formed by amyloid β (Aβ42) aggregation and neuronal fibrous tangles (NFTs), and the deposited plaques are mainly composed of Aβ hyperphosphorylation and truncated head. In the central nervous system, the ApoE protein is primarily derived from astrocytes, but ApoE is also produced when neurons are stressed or affected by certain stress, injury, and aging conditions. ApoE4 in neurons induces Aβ and tau protein pathologies, leading to neuroinflammation and neuronal damage, impairing learning and memory functions. However, how neuronal ApoE4 mediates AD pathology remains unclear. Recent studies have shown that neuronal ApoE4 may lead to greater neurotoxicity, which increases the risk of AD development. This review focuses on the pathophysiology of neuronal ApoE4 and explains how neuronal ApoE4 mediates Aβ deposition, pathological mechanisms of tau protein hyperphosphorylation, and potential therapeutic targets.
Collapse
|
39
|
Sud K, Narula N, Aikawa E, Arbustini E, Pibarot P, Merlini G, Rosenson RS, Seshan SV, Argulian E, Ahmadi A, Zhou F, Moreira AL, Côté N, Tsimikas S, Fuster V, Gandy S, Bonow RO, Gursky O, Narula J. The contribution of amyloid deposition in the aortic valve to calcification and aortic stenosis. Nat Rev Cardiol 2023; 20:418-428. [PMID: 36624274 PMCID: PMC10199673 DOI: 10.1038/s41569-022-00818-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 01/11/2023]
Abstract
Calcific aortic valve disease (CAVD) and stenosis have a complex pathogenesis, and no therapies are available that can halt or slow their progression. Several studies have shown the presence of apolipoprotein-related amyloid deposits in close proximity to calcified areas in diseased aortic valves. In this Perspective, we explore a possible relationship between amyloid deposits, calcification and the development of aortic valve stenosis. These amyloid deposits might contribute to the amplification of the inflammatory cycle in the aortic valve, including extracellular matrix remodelling and myofibroblast and osteoblast-like cell proliferation. Further investigation in this area is needed to characterize the amyloid deposits associated with CAVD, which could allow the use of antisense oligonucleotides and/or isotype gene therapies for the prevention and/or treatment of CAVD.
Collapse
Affiliation(s)
- Karan Sud
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navneet Narula
- New York University Grossman School of Medicine, New York, NY, USA.
| | - Elena Aikawa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | | | - Edgar Argulian
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Ahmadi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Zhou
- New York University Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- New York University Grossman School of Medicine, New York, NY, USA
| | - Nancy Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | - Sam Gandy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Bonow
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Olga Gursky
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Sim KY, Byeon Y, Bae SE, Yang T, Lee CR, Park SG. Mycoplasma fermentans infection induces human necrotic neuronal cell death via IFITM3-mediated amyloid-β (1-42) deposition. Sci Rep 2023; 13:6864. [PMID: 37100873 PMCID: PMC10132800 DOI: 10.1038/s41598-023-34105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Mycoplasma fermentans is a proposed risk factor of several neurological diseases that has been detected in necrotic brain lesions of acquired immunodeficiency syndrome patients, implying brain invasiveness. However, the pathogenic roles of M. fermentans in neuronal cells have not been investigated. In this study, we found that M. fermentans can infect and replicate in human neuronal cells, inducing necrotic cell death. Necrotic neuronal cell death was accompanied by intracellular amyloid-β (1-42) deposition, and targeted depletion of amyloid precursor protein by a short hairpin RNA (shRNA) abolished necrotic neuronal cell death. Differential gene expression analysis by RNA sequencing (RNA-seq) showed that interferon-induced transmembrane protein 3 (IFITM3) was dramatically upregulated by M. fermentans infection, and knockdown of IFITM3 abolished both amyloid-β (1-42) deposition and necrotic cell death. A toll-like receptor 4 antagonist inhibited M. fermentans infection-mediated IFITM3 upregulation. M. fermentans infection also induced necrotic neuronal cell death in the brain organoid. Thus, neuronal cell infection by M. fermentans directly induces necrotic cell death through IFITM3-mediated amyloid-β deposition. Our results suggest that M. fermentans is involved in neurological disease development and progression through necrotic neuronal cell death.
Collapse
Affiliation(s)
- Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yeongseon Byeon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-Eun Bae
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Cho-Rong Lee
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Lizama BN, Kahle J, Catalano SM, Caggiano AO, Grundman M, Hamby ME. Sigma-2 Receptors—From Basic Biology to Therapeutic Target: A Focus on Age-Related Degenerative Diseases. Int J Mol Sci 2023; 24:ijms24076251. [PMID: 37047224 PMCID: PMC10093856 DOI: 10.3390/ijms24076251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
There is a large unmet medical need to develop disease-modifying treatment options for individuals with age-related degenerative diseases of the central nervous system. The sigma-2 receptor (S2R), encoded by TMEM97, is expressed in brain and retinal cells, and regulates cell functions via its co-receptor progesterone receptor membrane component 1 (PGRMC1), and through other protein–protein interactions. Studies describing functions of S2R involve the manipulation of expression or pharmacological modulation using exogenous small-molecule ligands. These studies demonstrate that S2R modulates key pathways involved in age-related diseases including autophagy, trafficking, oxidative stress, and amyloid-β and α-synuclein toxicity. Furthermore, S2R modulation can ameliorate functional deficits in cell-based and animal models of disease. This review summarizes the current evidence-based understanding of S2R biology and function, and its potential as a therapeutic target for age-related degenerative diseases of the central nervous system, including Alzheimer’s disease, α-synucleinopathies, and dry age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | | | - Michael Grundman
- Global R&D Partners, LLC., San Diego, CA 92130, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Mary E. Hamby
- Cognition Therapeutics, Inc., Pittsburgh, PA 15203, USA
- Correspondence:
| |
Collapse
|
42
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Hamza EA, Moustafa AA, Tindle R, Karki R, Nalla S, Hamid MS, El Haj M. Effect of APOE4 Allele and Gender on the Rate of Atrophy in the Hippocampus, Entorhinal Cortex, and Fusiform Gyrus in Alzheimer's Disease. Curr Alzheimer Res 2023; 19:CAR-EPUB-130079. [PMID: 36892120 DOI: 10.2174/1567205020666230309113749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The hippocampus, entorhinal cortex, and fusiform gyrus are brain areas that deteriorate during early-stage Alzheimer's disease (AD). The ApoE4 allele has been identified as a risk factor for AD development, is linked to an increase in the aggregation of amyloid ß (Aß) plaques in the brain, and is responsible for atrophy of the hippocampal area. However, to our knowledge, the rate of deterioration over time in individuals with AD, with or without the ApoE4 allele, has not been investigated. METHOD In this study, we, for the first time, analyze atrophy in these brain structures in AD patients with and without the ApoE4 using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. RESULTS It was found that the rate of decrease in the volume of these brain areas over 12 months was related to the presence of ApoE4. Further, we found that neural atrophy was not different for female and male patients, unlike prior studies, suggesting that the presence of ApoE4 is not linked to the gender difference in AD. CONCLUSION Our results confirm and extend previous findings, showing that the ApoE4 allele gradually impacts brain regions impacted by AD.
Collapse
Affiliation(s)
- Eid Abo Hamza
- Faculty of Education, Department of Mental Health, Tanta University, Egypt
- College of Education, Humanities & Social Sciences, Al Ain University, UAE
| | - Ahmed A Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Queensland, Australia
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, South Africa
| | - Richard Tindle
- Department of Psychology, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Rasu Karki
- Department of Psychology, Western Sydney University, Penrith, NSW, 2214, Australia
| | - Shahed Nalla
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, South Africa
| | | | - Mohamad El Haj
- Laboratoire de Psychologie des Pays de la Loire (LPPL - EA 4638), Nantes Université, Univ. Angers., Nantes, F-44000, France
- Clinical Gerontology Department, CHU Nantes, Bd Jacques Monod,Nantes, F44093, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
44
|
Bac B, Hicheri C, Weiss C, Buell A, Vilcek N, Spaeni C, Geula C, Savas JN, Disterhoft JF. The TgF344-AD rat: behavioral and proteomic changes associated with aging and protein expression in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 123:98-110. [PMID: 36657371 PMCID: PMC10118906 DOI: 10.1016/j.neurobiolaging.2022.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Animal models of Alzheimer's Disease (AD) are attractive tools for preclinical, prodromal drug testing. The TgF344-AD (Tg) rat exhibits cognitive deficits and 5 major hallmarks of AD. Here we show that spatial water maze (WMZ) memory deficits and proteomic differences in dorsal CA1 were present in young Tg rats. Aged learning-unimpaired (AU) and aged learning-impaired (AI) proteome associated changes were identified and differed by sex. Levels of phosphorylated tau, reactive astrocytes and microglia were significantly increased in aged Tg rats and correlated with the WMZ learning index (LI); in contrast, no significant correlation was present between amyloid plaques or insoluble Aβ levels and LI. Neuroinflammatory markers were also significantly correlated with LI and increased in female Tg rats. The anti-inflammatory marker, triggering receptor expressed on myeloid cells-2 (TREM2), was significantly reduced in aged impaired Tg rats and correlated with LI. Identifying and understanding mechanisms that allow for healthy aging by overcoming genetic drivers for AD, and/or promoting drivers for successful aging, are important for developing successful therapeutics against AD.
Collapse
Affiliation(s)
- Birsu Bac
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cheima Hicheri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig Weiss
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amelia Buell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Natalia Vilcek
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Claudia Spaeni
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John F Disterhoft
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
45
|
Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer's Disease? Int J Mol Sci 2023; 24:ijms24043205. [PMID: 36834617 PMCID: PMC9964432 DOI: 10.3390/ijms24043205] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for more than half of all dementia cases in the elderly. Interestingly, the clinical manifestations of AD disproportionately affect women, comprising two thirds of all AD cases. Although the underlying mechanisms for these sex differences are not fully elucidated, evidence suggests a link between menopause and a higher risk of developing AD, highlighting the critical role of decreased estrogen levels in AD pathogenesis. The focus of this review is to evaluate clinical and observational studies in women, which have investigated the impact of estrogens on cognition or attempted to answer the prevailing question regarding the use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. The articles were retrieved through a systematic review of the databases: OVID, SCOPUS, and PubMed (keywords "memory", "dementia," "cognition," "Alzheimer's disease", "estrogen", "estradiol", "hormone therapy" and "hormone replacement therapy" and by searching reference sections from identified studies and review articles). This review presents the relevant literature available on the topic and discusses the mechanisms, effects, and hypotheses that contribute to the conflicting findings of HRT in the prevention and treatment of age-related cognitive deficits and AD. The literature suggests that estrogens have a clear role in modulating dementia risk, with reliable evidence showing that HRT can have both a beneficial and a deleterious effect. Importantly, recommendation for the use of HRT should consider the age of initiation and baseline characteristics, such as genotype and cardiovascular health, as well as the dosage, formulation, and duration of treatment until the risk factors that modulate the effects of HRT can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
|
46
|
Wu Y, Eisel UL. Microglia-Astrocyte Communication in Alzheimer's Disease. J Alzheimers Dis 2023; 95:785-803. [PMID: 37638434 PMCID: PMC10578295 DOI: 10.3233/jad-230199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Wisniewski T, Masurkar AV. Gait dysfunction in Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:267-274. [PMID: 37620073 DOI: 10.1016/b978-0-323-98817-9.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of age-associated dementia and will exponentially rise in prevalence in the coming decades, supporting the parallel development of the early stage detection and disease-modifying strategies. While primarily considered as a cognitive disorder, AD also features motor symptoms, primarily gait dysfunction. Such gait abnormalities can be phenotyped across classic clinical syndromes as well as by quantitative kinematic assessments to address subtle dysfunction at preclinical and prodromal stages. As such, certain measures of gait can predict the future cognitive and functional decline. Moreover, cross-sectional and longitudinal studies have associated gait abnormalities with imaging, biofluid, and genetic markers of AD across all stages. This suggests that gait assessment is an important tool in the clinical assessment of patients across the AD spectrum, especially to help identify at-risk individuals.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, NYU School of Medicine, New York, NY, United States; Department of Pathology, NYU School of Medicine, New York, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States; Division of Cognitive Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States.
| | - Arjun V Masurkar
- Department of Neurology, NYU School of Medicine, New York, NY, United States; Division of Cognitive Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
48
|
Nicolazzo J, Cavuoto M, Rowsthorn E, Cribb L, Bransby L, Gibson M, Wall P, Velakoulis D, Eratne D, Buckley R, Yassi N, Yiallourou S, Brodtmann A, Hamilton GS, Naughton MT, Lim YY, Pase MP. Insomnia Symptoms and Biomarkers of Alzheimer's Disease in the Community. J Alzheimers Dis 2023; 91:1423-1434. [PMID: 36641673 PMCID: PMC11446570 DOI: 10.3233/jad-220924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Insomnia is one of the most common sleep disorders yet its relationship to the biology of Alzheimer's disease remains equivocal. OBJECTIVE We investigated the cross-sectional relationship between insomnia symptom severity and cerebrospinal fluid (CSF) concentrations of Alzheimer's disease biomarkers in a cognitively unimpaired middle-aged community sample. METHODS A total of 63 participants from the Healthy Brain Project (age = 59±7 years; 67% women) completed a lumbar puncture and two weeks of actigraphy to measure two of insomnia's core features: difficulty initiating sleep (prolonged sleep onset latency) and difficulty maintaining sleep (wake after sleep onset [WASO] and number of awakenings). Additionally, the Insomnia Severity Index (ISI) was completed by 58 participants. Linear and Tobit regression were used to estimate the associations between each insomnia variable and CSF Aβ42, phosphorylated tau 181 (p-tau181), total-tau, and neurofilament light chain protein (NfL), adjusting for age, sex, and APOEɛ4 genotype. RESULTS Higher ISI score was associated with greater average levels of CSF Aβ42 (per point: 30.7 pg/mL, 95% CI: 4.17-57.3, p = 0.023), as was higher WASO (per 10 min: 136 pg/mL, 95% CI: 48-223, p = 0.002) and more awakenings (per 5:123 pg/mL, 95% CI = 55-192, p < 0.001). Difficulty initiating sleep was not associated with CSF Aβ42, nor were insomnia features associated with p-tau181, total-tau, or NfL levels. CONCLUSION Insomnia symptoms were associated with higher CSF Aβ42 levels in this relatively young, cognitively unimpaired sample. These findings may reflect increased amyloid production due to acute sleep disruption.
Collapse
Affiliation(s)
- Jessica Nicolazzo
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Marina Cavuoto
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Ella Rowsthorn
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Lachlan Cribb
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Lisa Bransby
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Madeline Gibson
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Prudence Wall
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Dennis Velakoulis
- Neuropsychiatry at The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry at The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Rachel Buckley
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephanie Yiallourou
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Melbourne, VIC, Australia
- Eastern Cognitive Disorders Clinic, Eastern Health, Monash University, Clayton, VIC, Australia
| | - Garun S Hamilton
- Monash Lung, Sleep, Allergy and Immunology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Matthew T Naughton
- Department of Respiratory Medicine, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Yen Ying Lim
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Matthew P Pase
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
49
|
Kilpatrick LA, Siddarth P, Krause-Sorio B, Milillo MM, Aguilar-Faustino Y, Ercoli L, Narr KL, Khalsa DS, Lavretsky H. Impact of Yoga Versus Memory Enhancement Training on Hippocampal Connectivity in Older Women at Risk for Alzheimer's Disease. J Alzheimers Dis 2023; 95:149-159. [PMID: 37482992 PMCID: PMC10578221 DOI: 10.3233/jad-221159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Yoga may be an ideal early intervention for those with modifiable risk factors for Alzheimer's disease (AD) development. OBJECTIVE To examine the effects of Kundalini yoga (KY) training versus memory enhancement training (MET) on the resting-state connectivity of hippocampal subregions in women with subjective memory decline and cardiovascular risk factors for AD. METHODS Participants comprised women with subjective memory decline and cardiovascular risk factors who participated in a parent randomized controlled trial (NCT03503669) of 12-weeks of KY versus MET and completed pre- and post-intervention resting-state magnetic resonance imaging scans (yoga: n = 11, age = 61.45±6.58 years; MET: n = 11, age = 64.55±6.41 years). Group differences in parcellated (Cole-anticevic atlas) hippocampal connectivity changes (post- minus pre-intervention) were evaluated by partial least squares analysis, controlling for age. Correlations between hippocampal connectivity and perceived stress and frequency of forgetting (assessed by questionnaires) were also evaluated. RESULTS A left anterior hippocampal subregion assigned to the default mode network (DMN) in the Cole-anticevic atlas showed greater increases in connectivity with largely ventral visual stream regions with KY than with MET (p < 0.001), which showed associations with lower stress (p < 0.05). Several posterior hippocampal subregions assigned to sensory-based networks in the Cole-anticevic atlas showed greater increases in connectivity with regions largely in the DMN and frontoparietal network with MET than with KY (p < 0.001), which showed associations with lower frequency of forgetting (p < 0.05). CONCLUSION KY training may better target stress-related hippocampal connectivity, whereas MET may better target hippocampal sensory-integration supporting better memory reliability, in women with subjective memory decline and cardiovascular risk factors.
Collapse
Affiliation(s)
- Lisa A. Kilpatrick
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Beatrix Krause-Sorio
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michaela M. Milillo
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Yesenia Aguilar-Faustino
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Linda Ercoli
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Neurology, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | - Helen Lavretsky
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Guo X, Zhang G, Peng Q, Huang L, Zhang Z, Zhang Z. Emerging Roles of Meningeal Lymphatic Vessels in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S355-S366. [PMID: 36683509 PMCID: PMC10473149 DOI: 10.3233/jad-221016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/22/2023]
Abstract
Meningeal lymphatic vessels (mLVs), the functional lymphatic system present in the meninges, are the key drainage route responsible for the clearance of molecules, immune cells, and cellular debris from the cerebrospinal fluid and interstitial fluid into deep cervical lymph nodes. Aging and ApoE4, the two most important risk factors for Alzheimer's disease (AD), induce mLV dysfunction, decrease cerebrospinal fluid influx and outflux, and exacerbate amyloid pathology and cognitive dysfunction. Dysfunction of mLVs results in the deposition of metabolic products, accelerates neuroinflammation, and promotes the release of pro-inflammatory cytokines in the brain. Thus, mLVs represent a novel therapeutic target for treating neurodegenerative and neuroinflammatory diseases. This review aims to summarize the structure and function of mLVs and to discuss the potential effect of aging and ApoE4 on mLV dysfunction, as well as their roles in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiaodi Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|