1
|
Schimek N, Wood TR, Beck DAC, McKenna M, Toghani A, Nance E. High-fidelity predictions of diffusion in the brain microenvironment. Biophys J 2024; 123:3935-3950. [PMID: 39390745 PMCID: PMC11617630 DOI: 10.1016/j.bpj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Multiple-particle tracking (MPT) is a microscopy technique capable of simultaneously tracking hundreds to thousands of nanoparticles in a biological sample and has been used extensively to characterize biological microenvironments, including the brain extracellular space (ECS). Machine learning techniques have been applied to MPT data sets to predict the diffusion mode of nanoparticle trajectories as well as more complex biological variables, such as biological age. In this study, we develop a machine learning pipeline to predict and investigate changes to the brain ECS due to injury using supervised classification and feature importance calculations. We first validate the pipeline on three related but distinct MPT data sets from the living brain ECS-age differences, region differences, and enzymatic degradation of ECS structure. We predict three ages with 86% accuracy, three regions with 90% accuracy, and healthy versus enzyme-treated tissue with 69% accuracy. Since injury across groups is normally compared with traditional statistical approaches, we first used linear mixed effects models to compare features between healthy control conditions and injury induced by two different oxygen glucose deprivation exposure times. We then used machine learning to predict injury state using MPT features. We show that the pipeline predicts between the healthy control, 0.5 h OGD treatment, and 1.5 h OGD treatment with 59% accuracy in the cortex and 66% in the striatum, and identifies nonlinear relationships between trajectory features that were not evident from traditional linear models. Our work demonstrates that machine learning applied to MPT data is effective across multiple experimental conditions and can find unique biologically relevant features of nanoparticle diffusion.
Collapse
Affiliation(s)
- Nels Schimek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington
| | - David A C Beck
- Deparment of Computer Science and Engineering, University of Washington, Seattle, Washington; eScience Institute, University of Washington, Seattle, Washington; Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Ali Toghani
- Deparment of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Elizabeth Nance
- eScience Institute, University of Washington, Seattle, Washington; Department of Chemical Engineering, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
2
|
Safaee MM, McFarlane IR, Nishitani S, Yang SJ, Sun E, Medina SM, Squire H, Landry MP. Dual Infrared 2-Photon Microscopy Achieves Minimal Background Deep Tissue Imaging in Brain and Plant Tissues. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2404709. [PMID: 39711883 PMCID: PMC11661845 DOI: 10.1002/adfm.202404709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 12/24/2024]
Abstract
Traditional deep fluorescence imaging has primarily focused on red-shifting imaging wavelengths into the near-infrared (NIR) windows or implementation of multi-photon excitation approaches. Here, we combine the advantages of NIR and multiphoton imaging by developing a dual-infrared two-photon microscope to enable high-resolution deep imaging in biological tissues. We first computationally identify that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation. We next construct a NIR two-photon microscope with a 1640 nm femtosecond pulsed laser and a NIR PMT detector to image biological tissues labeled with fluorescent single-walled carbon nanotubes (SWNTs). We achieve spatial imaging resolutions close to the Abbe resolution limit and eliminate blur and background autofluorescence of biomolecules, 300 μm deep into brain slices and through the full 120 μm thickness of a Nicotiana benthamiana leaf. We also demonstrate that NIR-II two-photon microscopy can measure tissue heterogeneity by quantifying how much the fluorescence power law function varies across tissues, a feature we exploit to distinguish Huntington's Disease afflicted mouse brain tissues from wildtype. Our results suggest dual-infrared two-photon microscopy could accomplish in-tissue structural imaging and biochemical sensing with a minimal background, and with high spatial resolution, in optically opaque or highly autofluorescent biological tissues.
Collapse
Affiliation(s)
- Mohammad Moein Safaee
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ian R McFarlane
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sarah J Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ethan Sun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sebastiana M Medina
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Henry Squire
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Hill BF, Mohr JM, Sandvoss IK, Gretz J, Galonska P, Schnitzler L, Erpenbeck L, Kruss S. Ratiometric near infrared fluorescence imaging of dopamine with 1D and 2D nanomaterials. NANOSCALE 2024; 16:18534-18544. [PMID: 39279544 DOI: 10.1039/d4nr02358g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Neurotransmitters are released by neuronal cells to exchange information. Resolving their spatiotemporal patterns is crucial to understand chemical neurotransmission. Here, we present a ratiometric sensor for the neurotransmitter dopamine that combines Egyptian blue (CaCuSi4O10) nanosheets (EB-NS) and single-walled carbon nanotubes (SWCNTs). They both fluoresce in the near infrared (NIR) region, which is beneficial due to their ultra-low background and phototoxicity. (GT)10-DNA-functionalized monochiral (6,5)-SWCNTs increase their fluorescence (1000 nm) in response to dopamine, while EB-NS serve as a stable reference (936 nm). A robust ratiometric imaging scheme is implemented by directing these signals on two different NIR sensitive cameras. Additionally, we demonstrate stability against mechanical perturbations and image dopamine release from differentiated dopaminergic Neuro 2a cells. Therefore, this technique enables robust ratiometric and non-invasive imaging of cellular responses.
Collapse
Affiliation(s)
- Bjoern F Hill
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Jennifer M Mohr
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | | | - Juliana Gretz
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Phillip Galonska
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Lena Schnitzler
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, 48149 Münster, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr Universität Bochum, 44801 Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
4
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
5
|
Chen HJ, Zhao L, Wang L, Wang ZG, Pang DW, Liu SL. Simultaneous Mapping of the Nanoscale Organization and Redox State of Extracellular Space in Living Brain Tissue. ACS NANO 2024; 18:22245-22256. [PMID: 39116272 DOI: 10.1021/acsnano.4c06059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The spatial organization characteristics and redox status of the extracellular space (ECS) are crucial in the development of brain diseases. However, it remains a challenge to simultaneously capture dynamic changes in microstructural features and redox states at the submicron level within the ECS. Here, we developed a reversible glutathione (GSH)-responsive nanoprobe (RGN) for mapping the spatial organization features and redox status of the ECS in brain tissues with nanoscale resolution. The RGN is composed of polymer nanoparticles modified with GSH-responsive molecules and amino-functionalized methoxypoly(ethylene glycol), which exhibit exceptional single-particle brightness and excellent free diffusion capability in the ECS of brain tissues. Tracking single RGNs in acute brain slices allowed us to dynamically map spatial organizational features and redox levels within the ECS of brain tissues in disease models. This provides a powerful super-resolution imaging method that offers a potential opportunity to study the dynamic changes in the ECS microenvironment and to understand the physiological and pathological roles of the ECS in vivo.
Collapse
Affiliation(s)
- Hua-Jie Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Settele S, Stammer F, Sebastian FL, Lindenthal S, Wald SR, Li H, Flavel BS, Zaumseil J. Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-like Reaction. ACS NANO 2024; 18:20667-20678. [PMID: 39051444 PMCID: PMC11308917 DOI: 10.1021/acsnano.4c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restricted window of reaction conditions or the necessity for controlled irradiation with ultraviolet light. Here, we report a method for introducing luminescent oxygen defects via a Fenton-like reaction that uses benign and inexpensive chemicals without light irradiation. (6,5) SWNTs in aqueous dispersion functionalized with this method show bright E11* emission (1105 nm) with 3.2 times higher peak intensities than the pristine E11 emission and a reproducible photoluminescence quantum yield of 3%. The functionalization can be performed within a wide range of reaction parameters and even with unsorted nanotube raw material at high concentrations (100 mg L-1), giving access to large amounts of brightly luminescent SWNTs. We further find that the introduced oxygen defects rearrange under light irradiation, which gives additional insights into the structure and dynamics of oxygen defects. Finally, the functionalization of ultrashort SWNTs with oxygen defects also enables high photoluminescence quantum yields. Their excellent emission properties are retained after surfactant exchange with biocompatible pegylated phospholipids or single-stranded DNA to make them suitable for in vivo NIR-II imaging and dopamine sensing.
Collapse
Affiliation(s)
- Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Florian Stammer
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Simon R. Wald
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Han Li
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Wang L, Chen HJ, Wang ZG, Ning D, Zhao W, Rat V, Lamb DC, Pang DW, Liu SL. Mapping Extracellular Space Features of Viral Encephalitis to Evaluate the Proficiency of Anti-Viral Drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311457. [PMID: 38243660 DOI: 10.1002/adma.202311457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The extracellular space (ECS) is an important barrier against viral attack on brain cells, and dynamic changes in ECS microstructure characteristics are closely related to the progression of viral encephalitis in the brain and the efficacy of antiviral drugs. However, mapping the precise morphological and rheological features of the ECS in viral encephalitis is still challenging so far. Here, a robust approach is developed using single-particle diffusional fingerprinting of quantum dots combined with machine learning to map ECS features in the brain and predict the efficacy of antiviral encephalitis drugs. These results demonstrated that this approach can characterize the microrheology and geometry of the brain ECS at different stages of viral infection and identify subtle changes induced by different drug treatments. This approach provides a potential platform for drug proficiency assessment and is expected to offer a reliable basis for the clinical translation of drugs.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Virgile Rat
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
Metternich JT, Hill B, Wartmann JAC, Ma C, Kruskop RM, Neutsch K, Herbertz S, Kruss S. Signal Amplification and Near-Infrared Translation of Enzymatic Reactions by Nanosensors. Angew Chem Int Ed Engl 2024; 63:e202316965. [PMID: 38100133 DOI: 10.1002/anie.202316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/18/2024]
Abstract
Enzymatic reactions are used to detect analytes in a range of biochemical methods. To measure the presence of an analyte, the enzyme is conjugated to a recognition unit and converts a substrate into a (colored) product that is detectable by visible (VIS) light. Thus, the lowest enzymatic turnover that can be detected sets a limit on sensitivity. Here, we report that substrates and products of horseradish peroxidase (HRP) and β-galactosidase change the near-infrared (NIR) fluorescence of (bio)polymer modified single-walled carbon nanotubes (SWCNTs). They translate a VIS signal into a beneficial NIR signal. Moreover, the affinity of the nanosensors leads to a higher effective local concentration of the reactants. This causes a non-linear sensor-based signal amplification and translation (SENSAT). We find signal enhancement up to ≈120x for the HRP substrate p-phenylenediamine (PPD), which means that reactions below the limit of detection in the VIS can be followed in the NIR (≈1000 nm). The approach is also applicable to other substrates such as 3,3'-5,5'-tetramethylbenzidine (TMB). An adsorption-based theoretical model fits the observed signals and corroborates the sensor-based enhancement mechanism. This approach can be used to amplify signals, translate them into the NIR and increase sensitivity of biochemical assays.
Collapse
Affiliation(s)
- Justus T Metternich
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Björn Hill
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Janus A C Wartmann
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Chen Ma
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Rebecca M Kruskop
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Krisztian Neutsch
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Svenja Herbertz
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstrasse 61, 47057, Duisburg, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| |
Collapse
|
9
|
Nguyen TT, Nguyen-Thi PT, Nguyen THA, Ho TT, Tran NMA, Van Vo T, Van Vo G. Recent Advancements in Nanomaterials: A Promising Way to Manage Neurodegenerative Disorders. Mol Diagn Ther 2023; 27:457-473. [PMID: 37217723 DOI: 10.1007/s40291-023-00654-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Neurodegenerative diseases (NDs) such as dementia, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis are some of the most prevalent disorders currently afflicting healthcare systems. Many of these diseases share similar pathological hallmarks, including elevated oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation, all of which contribute to the deterioration of the nervous system's structure and function. The development of diagnostic and therapeutic materials in the monitoring and treatment of these diseases remains challenging. One of the biggest challenges facing therapeutic and diagnostic materials is the blood-brain barrier (BBB). The BBB is a multifunctional membrane possessing a plethora of biochemical, cellular, and immunological features that ensure brain homeostasis by preventing the entry and accumulation of unwanted compounds. With regards to neurodegenerative diseases, the recent application of tailored nanomaterials (nanocarriers and nanoparticles) has led to advances in diagnostics and therapeutics. In this review, we provide an overview of commonly used nanoparticles and their applications in NDs, which may offer new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | | | - Thi Hong Anh Nguyen
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, 700000, Vietnam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Vietnam.
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
10
|
Duan L, Li X, Ji R, Hao Z, Kong M, Wen X, Guan F, Ma S. Nanoparticle-Based Drug Delivery Systems: An Inspiring Therapeutic Strategy for Neurodegenerative Diseases. Polymers (Basel) 2023; 15:2196. [PMID: 37177342 PMCID: PMC10181407 DOI: 10.3390/polym15092196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases are common, incurable neurological disorders with high prevalence, and lead to memory, movement, language, and intelligence impairments, threatening the lives and health of patients worldwide. The blood-brain barrier (BBB), a physiological barrier between the central nervous system and peripheral blood circulation, plays an important role in maintaining the homeostasis of the intracerebral environment by strictly regulating the transport of substances between the blood and brain. Therefore, it is difficult for therapeutic drugs to penetrate the BBB and reach the brain, and this affects their efficacy. Nanoparticles (NPs) can be used as drug transport carriers and are also known as nanoparticle-based drug delivery systems (NDDSs). These systems not only increase the stability of drugs but also facilitate the crossing of drugs through the BBB and improve their efficacy. In this article, we provided an overview of the types and administration routes of NPs, highlighted the preclinical and clinical studies of NDDSs in neurodegenerative diseases, and summarized the combined therapeutic strategies in the management of neurodegenerative diseases. Finally, the prospects and challenges of NDDSs in recent basic and clinical research were also discussed. Above all, NDDSs provide an inspiring therapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Rong Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Zhizhong Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Mingyue Kong
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China;
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China;
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Loewenthal D, Kamber D, Bisker G. Monitoring the Activity and Inhibition of Cholinesterase Enzymes using Single-Walled Carbon Nanotube Fluorescent Sensors. Anal Chem 2022; 94:14223-14231. [PMID: 36206351 PMCID: PMC9583068 DOI: 10.1021/acs.analchem.2c02471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinesterase enzymes are involved in a wide range of bodily functions, and their disruption is linked to pathologies such as neurodegenerative diseases and cancer. While cholinesterase inhibitors are used as drug treatments for diseases such as Alzheimer and dementia at therapeutic doses, acute exposure to high doses, found in pesticides and nerve agents, can be lethal. Therefore, measuring cholinesterase activity is important for numerous applications ranging from the search for novel treatments for neurodegenerative disorders to the on-site detection of potential health hazards. Here, we present the development of a near-infrared (near-IR) fluorescent single-walled carbon nanotube (SWCNT) optical sensor for cholinesterase activity and demonstrate the detection of both acetylcholinesterase and butyrylcholinesterase, as well as their inhibition. We show sub U L-1 sensitivity, demonstrate the optical response at the level of individual nanosensors, and showcase an optical signal output in the 900-1400 nm range, which overlaps with the biological transparency window. To the best of our knowledge, this is the longest wavelength cholinesterase activity sensor reported to date. Our near-IR fluorescence-based approach opens new avenues for spatiotemporal-resolved detection of cholinesterase activity, with numerous applications such as advancing the research of the cholinergic system, detecting on-site potential health hazards, and measuring biomarkers in real-time.
Collapse
Affiliation(s)
- Dan Loewenthal
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv6997801, Israel.,Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona7410001, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv6997801, Israel.,Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv6997801, Israel.,Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
13
|
Paviolo C, Ferreira JS, Lee A, Hunter D, Calaresu I, Nandi S, Groc L, Cognet L. Near-Infrared Carbon Nanotube Tracking Reveals the Nanoscale Extracellular Space around Synapses. NANO LETTERS 2022; 22:6849-6856. [PMID: 36038137 PMCID: PMC9479209 DOI: 10.1021/acs.nanolett.1c04259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We provide evidence of a local synaptic nanoenvironment in the brain extracellular space (ECS) lying within 500 nm of postsynaptic densities. To reveal this brain compartment, we developed a correlative imaging approach dedicated to thick brain tissue based on single-particle tracking of individual fluorescent single wall carbon nanotubes (SWCNTs) in living samples and on speckle-based HiLo microscopy of synaptic labels. We show that the extracellular space around synapses bears specific properties in terms of morphology at the nanoscale and inner diffusivity. We finally show that the ECS juxta-synaptic region changes its diffusion parameters in response to neuronal activity, indicating that this nanoenvironment might play a role in the regulation of brain activity.
Collapse
Affiliation(s)
- Chiara Paviolo
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Joana S. Ferreira
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Antony Lee
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Daniel Hunter
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Ivo Calaresu
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Somen Nandi
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| | - Laurent Groc
- Université
de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076 Bordeaux, France
| | - Laurent Cognet
- Université
de Bordeaux, Institut d’Optique & Centre National de la
Recherche Scientifique, UMR 5298, 33400 Talence, France
| |
Collapse
|
14
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
15
|
Xu X, Ge X, Xiong H, Qin Z. Toward dynamic, anisotropic, high-resolution, and functional measurement in the brain extracellular space. NEUROPHOTONICS 2022; 9:032210. [PMID: 35573823 PMCID: PMC9094757 DOI: 10.1117/1.nph.9.3.032210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Diffusion of substances in the brain extracellular space (ECS) is important for extrasynaptic communication, extracellular ionic homeostasis, drug delivery, and metabolic waste clearance. However, substance diffusion is largely constrained by the geometry of brain ECS and the extracellular matrix. Investigating the diffusion properties of substances not only reveals the structural information of the brain ECS but also advances the understanding of intercellular signaling of brain cells. Among different techniques for substance diffusion measurement, the optical imaging method is sensitive and straightforward for measuring the dynamics and distribution of fluorescent molecules or sensors and has been used for molecular diffusion measurement in the brain. We mainly discuss recent advances of optical imaging-enabled measurements toward dynamic, anisotropic, high-resolution, and functional aspects of the brain ECS diffusion within the last 5 to 10 years. These developments are made possible by advanced imaging, such as light-sheet microscopy and single-particle tracking in tissue, and new fluorescent biosensors for neurotransmitters. We envision future efforts to map the ECS diffusivity across the brain under healthy and diseased conditions to guide the therapeutic delivery and better understand neurochemical transmissions that are relevant to physiological signaling and functions in brain circuits.
Collapse
Affiliation(s)
- Xueqi Xu
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
| | - Xiaoqian Ge
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
| | - Hejian Xiong
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
| | - Zhenpeng Qin
- University of Texas at Dallas, Department of Mechanical Engineering, Richardson, Texas, United States
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas at Southwestern Medical Center, Department of Surgery, Richardson, Texas, United States
- University of Texas at Dallas, The Center for Advanced Pain Studies, Richardson, Texas, United States
| |
Collapse
|
16
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202112372. [PMID: 34978752 PMCID: PMC9313876 DOI: 10.1002/anie.202112372] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Indexed: 12/23/2022]
Abstract
Biosensors are powerful tools for modern basic research and biomedical diagnostics. Their development requires substantial input from the chemical sciences. Sensors or probes with an optical readout, such as fluorescence, offer rapid, minimally invasive sensing of analytes with high spatial and temporal resolution. The near-infrared (NIR) region is beneficial because of the reduced background and scattering of biological samples (tissue transparency window) in this range. In this context, single-walled carbon nanotubes (SWCNTs) have emerged as versatile NIR fluorescent building blocks for biosensors. Here, we provide an overview of advances in SWCNT-based NIR fluorescent molecular sensors. We focus on chemical design strategies for diverse analytes and summarize insights into the photophysics and molecular recognition. Furthermore, different application areas are discussed-from chemical imaging of cellular systems and diagnostics to in vivo applications and perspectives for the future.
Collapse
Affiliation(s)
- Julia Ackermann
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department EBSUniversity Duisburg-EssenBismarckstrasse 8147057DuisburgGermany
| | - Justus T. Metternich
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
17
|
Nandi S, Caicedo K, Cognet L. When Super-Resolution Localization Microscopy Meets Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12091433. [PMID: 35564142 PMCID: PMC9105540 DOI: 10.3390/nano12091433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
We recently assisted in a revolution in the realm of fluorescence microscopy triggered by the advent of super-resolution techniques that surpass the classic diffraction limit barrier. By providing optical images with nanometer resolution in the far field, super-resolution microscopy (SRM) is currently accelerating our understanding of the molecular organization of bio-specimens, bridging the gap between cellular observations and molecular structural knowledge, which was previously only accessible using electron microscopy. SRM mainly finds its roots in progress made in the control and manipulation of the optical properties of (single) fluorescent molecules. The flourishing development of novel fluorescent nanostructures has recently opened the possibility of associating super-resolution imaging strategies with nanomaterials’ design and applications. In this review article, we discuss some of the recent developments in the field of super-resolution imaging explicitly based on the use of nanomaterials. As an archetypal class of fluorescent nanomaterial, we mainly focus on single-walled carbon nanotubes (SWCNTs), which are photoluminescent emitters at near-infrared (NIR) wavelengths bearing great interest for biological imaging and for information optical transmission. Whether for fundamental applications in nanomaterial science or in biology, we show how super-resolution techniques can be applied to create nanoscale images “in”, “of” and “with” SWCNTs.
Collapse
Affiliation(s)
- Somen Nandi
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Karen Caicedo
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
- Correspondence:
| |
Collapse
|
18
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Ackermann
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
- Department EBS University Duisburg-Essen Bismarckstrasse 81 47057 Duisburg Germany
| | - Justus T. Metternich
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Svenja Herbertz
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Sebastian Kruss
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| |
Collapse
|
19
|
Ehrlich R, Wulf V, Hendler-Neumark A, Kagan B, Bisker G. Super-Resolution Radial Fluctuations (SRRF) nanoscopy in the near infrared. OPTICS EXPRESS 2022; 30:1130-1142. [PMID: 35209279 DOI: 10.1364/oe.440441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Super resolution microscopy methods have been designed to overcome the physical barrier of the diffraction limit and push the resolution to nanometric scales. A recently developed super resolution technique, super-resolution radial fluctuations (SRRF) [Nature communications, 7, 12471 (2016)10.1038/ncomms12471], has been shown to super resolve images taken with standard microscope setups without fluorophore localization. Herein, we implement SRRF on emitters in the near-infrared (nIR) range, single walled carbon nanotubes (SWCNTs), whose fluorescence emission overlaps with the biological transparency window. Our results open the path for super-resolving SWCNTs for biomedical imaging and sensing applications.
Collapse
|
20
|
Del Bonis-O'Donnell JT, Mun J, Delevich K, Landry MP. Synthetic nanosensors for imaging neuromodulators. J Neurosci Methods 2021; 363:109326. [PMID: 34418445 DOI: 10.1016/j.jneumeth.2021.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
Neuromodulation plays a critical role in regulating brain function and its dysregulation is implicated in the pathogenesis of numerous neurological and psychiatric disorders. However, only in the last few years have optical tools become available to probe the spatial and temporal profiles of neuromodulator signaling, including dopamine, with the requisite resolution to uncover mechanisms of neuromodulation. In this review, we summarize the current state of synthetic nanomaterial-based optical nanosensors for monitoring neurotransmission with high spatial and temporal resolution. Specifically, we highlight how synthetic nanosensors can elucidate the spatial distribution of neuromodulator release sites and report the temporal dynamics and spatial diffusion of neuromodulator release. Next, we outline advantages and limitations of currently available nanosensors and their recent application to imaging endogenous dopamine release in brain tissue. Finally, we discuss strategies to improve nanosensors for in vivo use, with implications for translational applications.
Collapse
Affiliation(s)
| | - Jaewan Mun
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Kristen Delevich
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
21
|
Yoshida S, Kisley L. Super-resolution fluorescence imaging of extracellular environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119767. [PMID: 33862370 DOI: 10.1016/j.saa.2021.119767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) is an important biophysical environment that plays a role in a number of physiological processes. The ECM is highly dynamic, with changes occurring as local, nanoscale, physicochemical variations in physical confinement and chemistry from the perspective of biological molecules. The length and time scale of ECM dynamics are challenging to measure with current spectroscopic techniques. Super-resolution fluorescence microscopy has the potential to probe local, nanoscale, physicochemical variations in the ECM. Here, we review super-resolution imaging and analysis methods and their application to study model nanoparticles and biomolecules within synthetic ECM hydrogels and the brain extracellular space (ECS). We provide a perspective of future directions for the field that can move super-resolution imaging of the ECM towards more biomedically-relevant samples. Overall, super-resolution imaging is a powerful tool that can increase our understanding of extracellular environments at new spatiotemporal scales to reveal ECM processes at the molecular-level.
Collapse
Affiliation(s)
- Shawn Yoshida
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Ehrlich R, Hendler-Neumark A, Wulf V, Amir D, Bisker G. Optical Nanosensors for Real-Time Feedback on Insulin Secretion by β-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101660. [PMID: 34197026 DOI: 10.1002/smll.202101660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Quantification of insulin is essential for diabetes research in general, and for the study of pancreatic β-cell function in particular. Herein, fluorescent single-walled carbon nanotubes (SWCNT) are used for the recognition and real-time quantification of insulin. Two approaches for rendering the SWCNT sensors for insulin are compared, using surface functionalization with either a natural insulin aptamer with known affinity to insulin, or a synthetic lipid-poly(ethylene glycol) (PEG) (C16 -PEG(2000Da)-Ceramide), both of which show a modulation of the emitted fluorescence in response to insulin. Although the PEGylated-lipid has no prior affinity to insulin, the response of C16 -PEG(2000Da)-Ceramide-SWCNTs to insulin is more stable and reproducible compared to the insulin aptamer-SWCNTs. The SWCNT sensors successfully detect insulin secreted by β-cells within the complex environment of the conditioned media. The insulin is quantified by comparing the SWCNTs fluorescence response to a standard calibration curve, and the results are found to be in agreement with an enzyme-linked immunosorbent assay. This novel analytical tool for real time quantification of insulin secreted by β-cells provides new opportunities for rapid assessment of β-cell function, with the ability to push forward many aspects of diabetes research.
Collapse
Affiliation(s)
- Roni Ehrlich
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dean Amir
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|