1
|
Chen Y, Xia W, Lu F, Chen Z, Liu Y, Cao M, He N. Cell-free synthesis system: An accessible platform from biosensing to biomanufacturing. Microbiol Res 2025; 293:128079. [PMID: 39908944 DOI: 10.1016/j.micres.2025.128079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The fundamental aspect of cell-free synthesis systems is the in vitro transcription-translation process. By artificially providing the components required for protein expression, in vitro protein production alleviates various limitations tied to in vivo production, such as oxygen supply and nutrient constraints, thus showcasing substantial potential in engineering applications. This article presents a comprehensive review of cell-free synthesis systems, with a primary focus on biosensing and biomanufacturing. In terms of biosensing, it summarizes the recognition-response mechanisms and key advantages of cell-free biosensors. Moreover, it examines the strategies for the cell-free production of intricate proteins, including membrane proteins and glycoproteins. Additionally, the integration of cell-free metabolic engineering approaches with cell-free synthesis systems in biomanufacturing is thoroughly discussed, with the expectation that biotechnology will embrace greater prosperity.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| |
Collapse
|
2
|
González-Ponce KS, Celaya-Herrera S, Mendoza-Acosta MF, Casados-Vázquez LE. Cell-Free Systems and Their Importance in the Study of Membrane Proteins. J Membr Biol 2025; 258:15-28. [PMID: 39760767 DOI: 10.1007/s00232-024-00333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
The Cell-Free Protein Synthesis (CFPS) is an innovative technique used to produce various proteins. It has several advantages, including short expression times, no strain engineering is required, and toxic proteins such as membrane proteins can be produced. However, the most important advantage is that it eliminates the need for a living cell as a production system. Membrane proteins (MPs) are difficult to express in heterologous strains such as Escherichia coli. Modified strains must be used, and sometimes the strain produces them as inclusion bodies, which makes purification difficult. CFPS can avoid the problem of toxicity and, with the use of additives, allows the production of folded and functional membrane proteins. In this review, we focus on describing what cell-free systems are. We address the advantages and disadvantages of the different organisms that can be used to obtain cell extracts, including PURE systems, where the components are obtained recombinantly, and the methodologies that allow the synthesis of membrane proteins in cell-free systems, which, given their hydrophobic nature, require additives for their correct folding.
Collapse
Affiliation(s)
- Karen Stephania González-Ponce
- Departamento de Alimentos. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México
| | - Samuel Celaya-Herrera
- Departamento de Formación Integral e Institucional, Fraccionamiento Industrial Puerto Interior, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional. Avenida Mineral de Valenciana 200, C.P. 36275, Silao de La Victoria, Guanajuato, México
| | - María Fernanda Mendoza-Acosta
- Posgrado en Biociencias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México
| | - Luz Edith Casados-Vázquez
- Departamento de Alimentos. División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México.
- Posgrado en Biociencias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato Silao km 9, 36500, Irapuato, Guanajuato, México.
- Investigadoras e Investigadores por México CONAHCYT, Consejo Nacional de Humanidades Ciencias y Tecnologías, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico, México.
| |
Collapse
|
3
|
Snow AJD, Wijesiriwardena T, Lane BJ, Farrell B, Dowdle PC, Katan M, Muench SP, Breeze AL. Cell-free expression and SMA copolymer encapsulation of a functional receptor tyrosine kinase disease variant, FGFR3-TACC3. Sci Rep 2025; 15:2958. [PMID: 39848978 PMCID: PMC11758000 DOI: 10.1038/s41598-025-86194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment. One such protein is the fibroblast growth factor receptor 3 fused with transforming acidic coiled-coil-containing protein 3 (FGFR3-TACC3), which has failed to express to sufficient quality or functionality in traditional expression systems. Cell-free protein expression (CFPE) is a burgeoning arm of synthetic biology, enabling the rapid and efficient generation of recombinant proteins. This platform is characterised by utilising an optimised solution of cellular machinery to facilitate protein synthesis in vitro. In doing so, CFPE can act as a surrogate system for a range of proteins that are otherwise difficult to express through traditional host cell-based approaches. Here, functional FGFR3-TACC3 was expressed through a novel cell-free expression system in under 48 h. The resultant protein was reconstituted using SMA copolymers with a specific yield of 300 µg/mL of lysate. Functionally, the protein demonstrated significant kinase domain phosphorylation (t < 0.0001). Currently, there is no published, high-resolution structure of any full-length RTK. These findings form a promising foundation for future research on oncogenic RTKs and the application of cell-free systems for synthesising functional membrane proteins.
Collapse
Affiliation(s)
- Alexander J D Snow
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tharushi Wijesiriwardena
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Brendan Farrell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Polly C Dowdle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
5
|
Kim D, Kim J, Han J, Shin J, Park KS. Split T7 switch-mediated cell-free protein synthesis system for detecting target nucleic acids. Biosens Bioelectron 2024; 261:116517. [PMID: 38924814 DOI: 10.1016/j.bios.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Cell-free protein synthesis (CFPS) reactions can be used to detect nucleic acids. However, most CFPS systems rely on a toehold switch and exhibit the following critical limitations: (i) off-target signals due to leaky translation in the absence of target nucleic acids, (ii) a suboptimal detection limit of approximately 30 nM without pre-amplification, and (iii) labor-intensive screening processes due to sequence constraints for the target nucleic acids. To overcome these shortcomings, we developed a new split T7 switch-mediated CFPS system in which the split T7 promoter was applied to a three-way junction structure to selectively initiate transcription-translation only in the presence of target nucleic acids. Both fluorescence and colorimetric detection systems were constructed by employing different reporter proteins. Notably, we introduced the self-complementation of split fluorescent proteins to streamline preparation of the proposed system, enabling versatile applications. Operation of this one-pot approach under isothermal conditions enabled the detection of target nucleic acids at concentrations as low as 10 pM, representing more than a thousand times improvement over previous toehold switch-based approaches. Furthermore, the proposed system demonstrated high specificity in detecting target nucleic acids and compatibility with various reporter proteins encoded in the expression region. By eliminating issues associated with the previous toehold switch system, our split T7 switch-mediated CFPS system could become a core platform for detecting various target nucleic acids.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Junhyeong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jinjoo Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Wang Y, Weng S, Tang Y, Lin S, Liu X, Zhang W, Liu G, Pandi B, Wu Y, Ma L, Wang L. A transmembrane scaffold from CD20 helps recombinant expression of a chimeric claudin 18.2 in an in vitro coupled transcription and translation system. Protein Expr Purif 2024; 215:106392. [PMID: 37952787 DOI: 10.1016/j.pep.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Cluster of differentiation 20 (CD20) is a nonglycosylated, multispanning transmembrane protein specifically integrated by B lymphocytes. Similar to CD20, another four-pass transmembrane protein, claudin 18.2, has attracted attention as an emerging therapeutic target for cancer. However, their poor solubility and toxic nature often hinder downstream applications, such as antibody drug development. Therefore, developing a cost-effective method for producing drug targets with multiple membrane-spanning domains is crucial. In this study, a high yield of recombinant CD20 was achieved through an E. coli-based in vitro coupled transcription-translation system. Surface plasmon resonance results showed that rituximab (an antileukemia drug) has nanomolar affinity with the CD20 protein, which aligns with published results. Notably, a previously hard-to-express claudin 18.2 recombinant protein was successfully expressed in the same reaction system by replacing its membrane-spanning domains with the transmembrane domains of CD20. The folding of the extracellular domain of the chimeric protein was verified using a commercial anti-claudin 18 antibody. This study provides a novel concept for promoting the expression of four-pass transmembrane proteins and lays the foundation for the large-scale industrial production of membrane-associated drug targets, similar to claudin 18.2.
Collapse
Affiliation(s)
- Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Shaoting Weng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yajie Tang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Sen Lin
- Anyang Kindstar Global Medical Laboratory Ltd, Anyang, Henan province, 455000, China
| | - Xiayue Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Wenhui Zhang
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Boomi Pandi
- Department of bioinformatics, Alagappa University, Karaikudi, India
| | - Yinrong Wu
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Lei Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| |
Collapse
|
8
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
11
|
Cui Y, Chen X, Wang Z, Lu Y. Cell-Free PURE System: Evolution and Achievements. BIODESIGN RESEARCH 2022; 2022:9847014. [PMID: 37850137 PMCID: PMC10521753 DOI: 10.34133/2022/9847014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/16/2022] [Indexed: 10/19/2023] Open
Abstract
The cell-free protein synthesis (CFPS) system, as a technical core of synthetic biology, can simulate the transcription and translation process in an in vitro open environment without a complete living cell. It has been widely used in basic and applied research fields because of its advanced engineering features in flexibility and controllability. Compared to a typical crude extract-based CFPS system, due to defined and customizable components and lacking protein-degrading enzymes, the protein synthesis using recombinant elements (PURE) system draws great attention. This review first discusses the elemental composition of the PURE system. Then, the design and preparation of functional proteins for the PURE system, especially the critical ribosome, were examined. Furthermore, we trace the evolving development of the PURE system in versatile areas, including prototyping, synthesis of unnatural proteins, peptides and complex proteins, and biosensors. Finally, as a state-of-the-art engineering strategy, this review analyzes the opportunities and challenges faced by the PURE system in future scientific research and diverse applications.
Collapse
Affiliation(s)
- Yi Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, Liaoning, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, Liaoning, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography. Acta Pharm Sin B 2022; 12:3682-3693. [PMID: 36176904 PMCID: PMC9513493 DOI: 10.1016/j.apsb.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with KD values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl4-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials.
Collapse
|
13
|
Blackholly LR, Harris NJ, Findlay HE, Booth PJ. Cell-Free Expression to Probe Co-Translational Insertion of an Alpha Helical Membrane Protein. Front Mol Biosci 2022; 9:795212. [PMID: 35187078 PMCID: PMC8847741 DOI: 10.3389/fmolb.2022.795212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/11/2022] [Indexed: 01/23/2023] Open
Abstract
The majority of alpha helical membrane proteins fold co-translationally during their synthesis on the ribosome. In contrast, most mechanistic folding studies address refolding of full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation of membrane proteins is emerging as a useful tool to address folding during translation by a ribosome. We summarise the benefits of this approach and show how it can be successfully extended to a membrane protein with a complex topology. The bacterial leucine transporter, LeuT can be synthesised and inserted into lipid membranes using a variety of in vitro transcription translation systems. Unlike major facilitator superfamily transporters, where changes in lipids can optimise the amount of correctly inserted protein, LeuT insertion yields are much less dependent on the lipid composition. The presence of a bacterial translocon either in native membrane extracts or in reconstituted membranes also has little influence on the yield of LeuT incorporated into the lipid membrane, except at high reconstitution concentrations. LeuT is considered a paradigm for neurotransmitter transporters and possesses a knotted structure that is characteristic of this transporter family. This work provides a method in which to probe the formation of a protein as the polypeptide chain is being synthesised on a ribosome and inserting into lipids. We show that in comparison with the simpler major facilitator transporter structures, LeuT inserts less efficiently into membranes when synthesised cell-free, suggesting that more of the protein aggregates, likely as a result of the challenging formation of the knotted topology in the membrane.
Collapse
Affiliation(s)
| | | | | | - Paula J. Booth
- Department of Chemistry, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Mezhyrova J, Mörs K, Glaubitz C, Dötsch V, Bernhard F. Applications of Cell-Free Synthesized Membrane Protein Precipitates. Methods Mol Biol 2022; 2406:245-266. [PMID: 35089562 DOI: 10.1007/978-1-0716-1859-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell-free protein expression systems are new core platforms for membrane protein synthesis. Expression in the presence of supplied artificial hydrophobic environments such as nanomembranes or micelles allows the co-translational solubilization and folding of membrane proteins. In the absence of hydrophobic compounds, the synthesized membrane proteins quantitatively precipitate, while frequently still retaining a significant part of folded structural elements. This so-called precipitate-forming cell-free (P-CF) expression mode is a very effective and reliable approach for numerous applications. Even from complex membrane proteins such as G-protein coupled receptors or large transporters, significant amounts of such precipitates can be synthesized within few hours. The precipitates can be solubilized in detergents or reconstituted into membranes for subsequent structural or functional analysis. Harsh denaturation and refolding procedures as known from the treatment of bacterial inclusion bodies are usually not required.This strategy is particularly interesting for applications requiring large amounts of membrane protein or fast access to a sample. It is further an excellent tool for the production of membrane protein antigens suitable for antibody generation. The purification of the precipitates in downstream processing is streamlined as only few proteins from the cell-free lysate may co-precipitate with the synthesized membrane protein. For most applications, a one-step affinity chromatography by taking advantage of small purification tags attached to the membrane protein target is sufficient. We give an overview on current applications of P-CF precipitates and describe the underlying techniques in detail. We furthermore provide protocols for the successful crystallization and NMR analysis of P-CF synthesized membrane proteins exemplified with the diacylglycerol kinase (DAGK). In addition, we describe the functional characterization of a P-CF synthesized large eukaryotic transporter.
Collapse
Affiliation(s)
- Julija Mezhyrova
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Karsten Mörs
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Clemens Glaubitz
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University , Frankfurt/Main, Germany.
| |
Collapse
|
15
|
Rauh O, Kukovetz K, Winterstein L, Introini B, Thiel G. Combining in vitro translation with nanodisc technology and functional reconstitution of channels in planar lipid bilayers. Methods Enzymol 2021; 652:293-318. [PMID: 34059286 DOI: 10.1016/bs.mie.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experimental studies on membrane proteins have been recently enriched by two promising method developments: protocols for cell-free protein synthesis and the use of soluble nanoscale lipid bilayers, so called nanodiscs, as membrane mimics for keeping these proteins in a soluble form. Here, we show how the advantages of these techniques can be combined with the classical planar lipid bilayer method for a functional reconstitution of channel activity. The present data demonstrate that the combination of these methods offers a very rapid and reliable way of recording channel activity in different bilayer systems. This approach has additional advantages in that it strongly lowers the propensity of contamination from the expression system and allows the simultaneous reconstitution of thousands of channel proteins for macroscopic current measurements without compromising bilayer stability.
Collapse
Affiliation(s)
- Oliver Rauh
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kerri Kukovetz
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Laura Winterstein
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bianca Introini
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
16
|
Gaut NJ, Adamala KP. Reconstituting Natural Cell Elements in Synthetic Cells. Adv Biol (Weinh) 2021; 5:e2000188. [DOI: 10.1002/adbi.202000188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| | - Katarzyna P. Adamala
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| |
Collapse
|
17
|
Yue K, Jiang J, Zhang P, Kai L. Functional Analysis of Aquaporin Water Permeability Using an Escherichia coli-Based Cell-Free Protein Synthesis System. Front Bioeng Biotechnol 2020; 8:1000. [PMID: 32974321 PMCID: PMC7466572 DOI: 10.3389/fbioe.2020.01000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Aquaporins are essential water channel proteins found in all kingdoms of life. Although the water permeability of aquaporins has been well characterized, sample preparation for aquaporin water permeability assays remains challenging and time-consuming. Besides the difficulty in overexpressing membrane proteins in a cell-based expression system, the unique requirement for homogeneity in aquaporin proteoliposome sample preparations for water transport assays further increases the complexity. In this study, a complementary Cell-free Protein Synthesis (CFPS) method is described in detail, providing three different strategies for the preparation of aquaporin proteoliposome samples. Aquaporin can be produced either as a pellet fraction and then resolubilized, or co-translationally as a detergent-soluble fraction. Furthermore, aquaporin can be directly incorporated into liposomes, which was included in the CFPS reactions. Although proteoliposomes tend to fuse during the incubation of the CFPS reactions, an additional treatment of the fused samples with detergent, followed by a detergent removal step, can re-form homogenously sized proteoliposomes suitable for functional analysis. Using this method, we successfully characterized aquaporins from both prokaryotic and eukaryotic organisms. In particular, in the presence of liposomes, the developed CFPS expression system is a fast and convenient method for sample preparation for the functional analysis of aquaporins.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng Zhang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
18
|
Kögler LM, Stichel J, Beck-Sickinger AG. Structural investigations of cell-free expressed G protein-coupled receptors. Biol Chem 2020; 401:97-116. [PMID: 31539345 DOI: 10.1515/hsz-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are of great pharmaceutical interest and about 35% of the commercial drugs target these proteins. Still there is huge potential left in finding molecules that target new GPCRs or that modulate GPCRs differentially. For a rational drug design, it is important to understand the structure, binding and activation of the protein of interest. Structural investigations of GPCRs remain challenging, although huge progress has been made in the last 20 years, especially in the generation of crystal structures of GPCRs. This is mostly caused by issues with the expression yield, purity or labeling. Cell-free protein synthesis (CFPS) is an efficient alternative for recombinant expression systems that can potentially address many of these problems. In this article the use of CFPS for structural investigations of GPCRs is reviewed. We compare different CFPS systems, including the cellular basis and reaction configurations, and strategies for an efficient solubilization. Next, we highlight recent advances in the structural investigation of cell-free expressed GPCRs, with special emphasis on the role of photo-crosslinking approaches to investigate ligand binding sites on GPCRs.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
19
|
Faik A, Held M. Review: Plant cell wall biochemical omics: The high-throughput biochemistry for polysaccharide biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:49-56. [PMID: 31300141 DOI: 10.1016/j.plantsci.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Progress in the functional biochemical analysis of plant glycosyltransferases (GTs) has been slow because plant GTs are generally membrane proteins, operate as part of larger, multimeric complexes, and utilize a vast complexity of substrate acceptors. Therefore, the field would benefit from development of adequate high throughput expression as well as product detection and characterization techniques. Here we review current approaches to tackle such obstacles and suggest a new path forward: nucleic acid programmable protein arrays (NAPPA) with liquid sample desorption ionization (LS-DESI-MS) mass spectrometry. NAPPA utilizes in vitro transcription and translation to produce epitope-tagged fusion proteins from cloned GT cDNAs. LS-DESI is a soft ionization technique that allows rapid and sensitive MS-based product characterization in situ. Coupling both approaches provides the opportunity to examine individual GT functions as well as protein-protein interactions. Furthermore, advances in automated oligosaccharide synthesis and lipid nanodisc technology should allow testing of plant GT activity in presence of numerous substrate acceptors and lipid environments in a high throughput fashion. Thus, NAPPA-DESI-MS has great potential to make headway in biochemical characterization of the large number of plant GTs.
Collapse
Affiliation(s)
- Ahmed Faik
- Environmental and Plant Biology Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA.
| | - Michael Held
- Chemistry and Biochemistry Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA
| |
Collapse
|
20
|
Abstract
Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Collapse
Affiliation(s)
- Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
21
|
Gregorio NE, Levine MZ, Oza JP. A User's Guide to Cell-Free Protein Synthesis. Methods Protoc 2019; 2:E24. [PMID: 31164605 PMCID: PMC6481089 DOI: 10.3390/mps2010024] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Collapse
Affiliation(s)
- Nicole E Gregorio
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Max Z Levine
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Javin P Oza
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
22
|
Kögler LM, Stichel J, Kaiser A, Beck-Sickinger AG. Cell-Free Expression and Photo-Crosslinking of the Human Neuropeptide Y 2 Receptor. Front Pharmacol 2019; 10:176. [PMID: 30881304 PMCID: PMC6405639 DOI: 10.3389/fphar.2019.00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of different proteins, which are involved in physiological processes throughout the entire body. Furthermore, they represent important drug targets. For rational drug design, it is important to get further insights into the binding mode of endogenous ligands as well as of therapeutic agents at the respective target receptors. However, structural investigations usually require homogenous, solubilized and functional receptors, which is still challenging. Cell-free expression methods have emerged in the last years and many different proteins are successfully expressed, including hydrophobic membrane proteins like GPCRs. In this work, an Escherichia coli based cell-free expression system was used to express the neuropeptide Y2 receptor (Y2R) for structural investigations. This GPCR was expressed in two different variants, a C-terminal enhanced green fluorescent fusion protein and a cysteine deficient variant. In order to obtain soluble receptors, the expression was performed in the presence of mild detergents, either Brij-35 or Brij-58, which led to high amounts of soluble receptor. Furthermore, the influence of temperature, pH value and additives on protein expression and solubilization was tested. For functional and structural investigations, the receptors were expressed at 37°C, pH 7.4 in the presence of 1 mM oxidized and 5 mM reduced glutathione. The expressed receptors were purified by ligand affinity chromatography and functionality of Y2R_cysteine_deficient was verified by a homogenous binding assay. Finally, photo-crosslinking studies were performed between cell-free expressed Y2R_cysteine_deficient and a neuropeptide Y (NPY) analog bearing the photoactive, unnatural amino acid p-benzoyl-phenylalanine at position 27 and biotin at position 22 for purification. After enzymatic digestion, fragments of crosslinked receptor were identified by mass spectrometry. Our findings demonstrate that, in contrast to Y1R, NPY position 27 remains flexible when bound to Y2R. These results are in agreement with the suggested binding mode of NPY at Y2R.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
23
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
24
|
|
25
|
Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins. Biochem Soc Trans 2018; 46:1355-1366. [PMID: 30190329 DOI: 10.1042/bst20170424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
Membrane proteins must be inserted into a membrane and folded into their correct structure to function correctly. This insertion occurs during translation and synthesis by the ribosome for most α-helical membrane proteins. Precisely how this co-translational insertion and folding occurs, and the role played by the surrounding lipids, is still not understood. Most of the work on the influence of the lipid environment on folding and insertion has focussed on denatured, fully translated proteins, and thus does not replicate folding during unidirectional elongation of nascent chains that occurs in the cell. This review aims to highlight recent advances in elucidating lipid composition and bilayer properties optimal for insertion and folding of nascent chains in the membrane and in the assembly of oligomeric proteins.
Collapse
|
26
|
Winterstein LM, Kukovetz K, Rauh O, Turman DL, Braun C, Moroni A, Schroeder I, Thiel G. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol 2018; 150:637-646. [PMID: 29487088 PMCID: PMC5881443 DOI: 10.1085/jgp.201711904] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that membrane proteins can be efficiently synthesized in vitro before spontaneously inserting into soluble nanoscale lipid bilayers called nanodiscs (NDs). In this paper, we present experimental details that allow a combination of in vitro translation of ion channels into commercially available NDs followed by their direct reconstitution from these nanobilayers into standard bilayer setups for electrophysiological characterization. We present data showing that two model K+ channels, Kcv and KcsA, as well as a recently discovered dual-topology F- channel, Fluc, can be reliably reconstituted from different types of NDs into bilayers without contamination from the in vitro translation cocktail. The functional properties of Kcv and KcsA were characterized electrophysiologically and exhibited sensitivity to the lipid composition of the target DPhPC bilayer, suggesting that the channel proteins were fully exposed to the target membrane and were no longer surrounded by the lipid/protein scaffold. The single-channel properties of the three tested channels are compatible with studies from recordings of the same proteins in other expression systems. Altogether, the data show that synthesis of ion channels into NDs and their subsequent reconstitution into conventional bilayers provide a fast and reliable method for functional analysis of ion channels.
Collapse
Affiliation(s)
| | - Kerri Kukovetz
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel L Turman
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA
| | - Christian Braun
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
27
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
28
|
Jiang L, Zhao J, Lian J, Xu Z. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synth Syst Biotechnol 2018; 3:90-96. [PMID: 29900421 PMCID: PMC5995451 DOI: 10.1016/j.synbio.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022] Open
Abstract
Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS) has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors) to speed up design-build-test (DBT) cycles of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiarun Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Suzuki Y, Ogasawara T, Tanaka Y, Takeda H, Sawasaki T, Mogi M, Liu S, Maeyama K. Functional G-Protein-Coupled Receptor (GPCR) Synthesis: The Pharmacological Analysis of Human Histamine H1 Receptor (HRH1) Synthesized by a Wheat Germ Cell-Free Protein Synthesis System Combined with Asolectin Glycerosomes. Front Pharmacol 2018; 9:38. [PMID: 29467651 PMCID: PMC5808195 DOI: 10.3389/fphar.2018.00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins distributed on the cell surface, and they may be potential drug targets. However, synthesizing GPCRs in vitro can be challenging. Recently, some cell-free protein synthesis systems have been shown to produce a large amount of membrane protein combined with chemical chaperones that include liposomes and glycerol. Liposomes containing high concentrations of glycerol are known as glycerosomes, which are used in new drug delivery systems. Glycerosomes have greater morphological stability than liposomes. Proteoglycerosomes are defined as glycerosomes that contain membrane proteins. Human histamine H1 receptor (HRH1) is one of the most studied GPCRs. In this study, we synthesized wild-type HRH1 (WT-HRH1) proteoglycerosomes and D107A-HRH1, (in which Asp107 was replaced by Ala) in a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes. The mutant HRH1 has been reported to have low affinity for the H1 antagonist. In this study, the amount of synthesized WT-HRH1 in one synthesis reaction was 434 ± 66.6 μg (7.75 ± 1.19 × 103pmol). The specific binding of [3H]pyrilamine to the WT-HRH1 proteoglycerosomes became saturated as the concentration of the radioligand increased. The dissociation constant (Kd) and maximum density (Bmax) of the synthesized WT-HRH1 were 9.76 ± 1.25 nM and 21.4 ± 0.936 pmol/mg protein, respectively. However, specific binding to D107A-HRH1 was reduced compared with WT-HRH1 and the binding did not become saturated. The findings of this study highlight that HRH1 synthesized using a wheat germ cell-free protein synthesis system combined with glycerosomes has the ability to bind to H1 antagonists.
Collapse
Affiliation(s)
- Yasuyuki Suzuki
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | | | - Yuki Tanaka
- Advanced Research Support Center, Division of Analytical Bio-Medicine, Ehime University, Toon, Japan
| | | | | | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shuang Liu
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kazutaka Maeyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
30
|
Fogeron ML, Badillo A, Penin F, Böckmann A. Wheat Germ Cell-Free Overexpression for the Production of Membrane Proteins. Methods Mol Biol 2017; 1635:91-108. [PMID: 28755365 DOI: 10.1007/978-1-4939-7151-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to their hydrophobic nature, membrane proteins are notoriously difficult to express in classical cell-based protein expression systems. Often toxic, they also undergo degradation in cells or aggregate in inclusion bodies, making delicate issues further solubilization and renaturation. These are major bottlenecks in their structural and functional analysis. The wheat germ cell-free (WGE-CF) system offers an effective alternative not only to classical cell-based protein expression systems but also to other cell-free systems for the expression of membrane proteins. The WGE-CF indeed allows the production of milligram amounts of membrane proteins in a detergent-solubilized, homogenous, and active form. Here, we describe the method to produce a viral integral membrane protein, which is the non-structural protein 2 (NS2) of hepatitis C virus, in view of structural studies by solid-state NMR in a native-like lipid environment.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France.
| |
Collapse
|
31
|
Malhotra K, Alder NN. Reconstitution of Mitochondrial Membrane Proteins into Nanodiscs by Cell-Free Expression. Methods Mol Biol 2017; 1567:155-178. [PMID: 28276018 DOI: 10.1007/978-1-4939-6824-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The isolation and characterization of mitochondrial membrane proteins is technically challenging because they natively reside within the specialized environment of the lipid bilayer, an environment that must be recapitulated to some degree during reconstitution to ensure proper folding, stability, and function. Here we describe protocols for the assembly of a membrane protein into lipid bilayer nanodiscs in a series of cell-free reactions. Cell-free expression of membrane proteins circumvents problems attendant with in vivo expression such as cytotoxicity, low expression levels, and the formation of inclusion bodies. Nanodiscs are artificial membrane systems comprised of discoidal lipid bilayer particles bound by annuli of amphipathic scaffold protein that shield lipid acyl chains from water. They are therefore excellent platforms for membrane protein reconstitution and downstream solution-based biochemical and biophysical analysis. This chapter details the procedures for the reconstitution of a mitochondrial membrane protein into nanodiscs using two different types of approaches: cotranslational and posttranslational assembly. These strategies are broadly applicable for different mitochondrial membrane proteins. They are also applicable for the use of nanodiscs with distinct lipid compositions that are biomimetic for different mitochondrial membranes and that recapitulate lipid profiles associated with pathological disorders in lipid metabolism.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269, USA.,Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, Sterling Hall of Medicine, New Haven, CT, 06520, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|
32
|
Waberer L, Henrich E, Peetz O, Morgner N, Dötsch V, Bernhard F, Volknandt W. The synaptic vesicle protein SV31 assembles into a dimer and transports Zn 2. J Neurochem 2016; 140:280-293. [PMID: 27917477 DOI: 10.1111/jnc.13886] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 01/20/2023]
Abstract
The integral synaptic vesicle protein SV31 has been shown to bind divalent cations. Here, we demonstrate that SV31 protein synthesized within a cell-free system binds Zn2+ and to a lower extent Ni2+ and Cu2+ ions. Expression with Zn2+ stabilized the protein and increased solubility. SV31 was preferentially monomeric in detergent and revealed specific binding of Zn2+ . When co-translationally inserted into defined nanodisc bilayers, SV31 assembled into dimeric complexes, resulting in increased binding of Zn2+ . Putative Zn2+ -binding motifs within SV31 comprise aspartic acid and histidine residues. Site-directed mutagenesis of two conserved aspartic acid residues leads to a potent decrease in Zn2+ binding but did not affect dimerization. Chemical modification of histidine residues abolished some of the Zn2+ -binding capacity. We demonstrate proton-dependent transport of Zn2+ as by accumulation of fluorescent FluoZin-1 inside of SV31-containing proteoliposomes. Transport activity has a Km value of 44.3 μM and required external Zn2+ and internal acidic pH. Our results demonstrate that the synaptic vesicle-integral protein SV31 functions as a proton-dependent Zn2+ transporter. SV31 may attribute specific and yet undiscovered functions to subsets of synapses.
Collapse
Affiliation(s)
- Lisa Waberer
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
34
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
35
|
Hunt JP, Yang SO, Wilding KM, Bundy BC. The growing impact of lyophilized cell-free protein expression systems. Bioengineered 2016; 8:325-330. [PMID: 27791452 DOI: 10.1080/21655979.2016.1241925] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently reported shelf-stable, on-demand protein synthesis platforms are enabling new possibilities in biotherapeutics, biosensing, biocatalysis, and high throughput protein expression. Lyophilized cell-free protein expression systems not only overcome cold-storage limitations, but also enable stockpiling for on-demand synthesis and completely sterilize the protein synthesis platform. Recently reported high-yield synthesis of cytotoxic protein Onconase from lyophilized E. coli extract preparations demonstrates the utility of lyophilized cell-free protein expression and its potential for creating on-demand biotherapeutics, vaccines, biosensors, biocatalysts, and high throughput protein synthesis.
Collapse
Affiliation(s)
- J Porter Hunt
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| | - Seung Ook Yang
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| | - Kristen M Wilding
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| | - Bradley C Bundy
- a Department of Chemical Engineering , Brigham Young University , Provo , Utah , USA
| |
Collapse
|
36
|
Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes. PLoS One 2016; 11:e0163058. [PMID: 27711229 PMCID: PMC5053487 DOI: 10.1371/journal.pone.0163058] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
The goal of bottom-up synthetic biology culminates in the assembly of an entire cell from separate biological building blocks. One major challenge resides in the in vitro production and implementation of complex genetic and metabolic pathways that can support essential cellular functions. Here, we show that phospholipid biosynthesis, a multiple-step process involved in cell membrane homeostasis, can be reconstituted starting from the genes encoding for all necessary proteins. A total of eight E. coli enzymes for acyl transfer and headgroup modifications were produced in a cell-free gene expression system and were co-translationally reconstituted in liposomes. Acyl-coenzyme A and glycerol-3-phosphate were used as canonical precursors to generate a variety of important bacterial lipids. Moreover, this study demonstrates that two-step acyl transfer can occur from enzymes synthesized inside vesicles. Besides clear implications for growth and potentially division of a synthetic cell, we postulate that gene-based lipid biosynthesis can become instrumental for ex vivo and protein purification-free production of natural and non-natural lipids.
Collapse
|
37
|
Schmitt C, Lippert AH, Bonakdar N, Sandoghdar V, Voll LM. Compartmentalization and Transport in Synthetic Vesicles. Front Bioeng Biotechnol 2016; 4:19. [PMID: 26973834 PMCID: PMC4770187 DOI: 10.3389/fbioe.2016.00019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/11/2016] [Indexed: 12/03/2022] Open
Abstract
Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Christine Schmitt
- Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna H. Lippert
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Navid Bonakdar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Lars M. Voll
- Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
38
|
Timm AC, Shankles PG, Foster CM, Doktycz MJ, Retterer ST. Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:810-7. [PMID: 26690885 DOI: 10.1002/smll.201502764] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/14/2015] [Indexed: 05/04/2023]
Abstract
Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro and nanofluidic architectures, CFPS can be optimized for point-of-care use. Here, the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care, is described. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel "reactor" and "feeder" channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, and can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. It has been shown that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.
Collapse
Affiliation(s)
- Andrea C Timm
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Peter G Shankles
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
- The University of Tennessee, Knoxville, TN, 37996, USA
| | - Carmen M Foster
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Mitchel J Doktycz
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
- The University of Tennessee, Knoxville, TN, 37996, USA
| | - Scott T Retterer
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
- The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
39
|
Rues RB, Henrich E, Boland C, Caffrey M, Bernhard F. Cell-Free Production of Membrane Proteins in Escherichia coli Lysates for Functional and Structural Studies. Methods Mol Biol 2016; 1432:1-21. [PMID: 27485326 DOI: 10.1007/978-1-4939-3637-3_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The complexity of membrane protein synthesis is largely reduced in cell-free systems and it results into high success rates of target expression. Protocols for the preparation of bacterial lysates have been optimized in order to ensure reliable efficiencies in membrane protein production that are even sufficient for structural applications. The open accessibility of the semisynthetic cell-free expression reactions allows to adjust membrane protein solubilization conditions according to the optimal folding requirements of individual targets. Two basic strategies will be exemplified. The post-translational solubilization of membrane proteins in detergent micelles is most straightforward for crystallization approaches. The co-translational integration of membrane proteins into preformed nanodiscs will enable their functional characterization in a variety of natural lipid environments.
Collapse
Affiliation(s)
- Ralf-Bernhardt Rues
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Erik Henrich
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Coilin Boland
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
40
|
Abstract
Which properties of the membrane environment are essential for the folding and oligomerization of transmembrane proteins? Because the lipids that surround membrane proteins in situ spontaneously organize into bilayers, it may seem intuitive that interactions with the bilayer provide both hydrophobic and topological constraints that help the protein to achieve a stable and functional three-dimensional structure. However, one may wonder whether folding is actually driven by the membrane environment or whether the folded state just reflects an adaptation of integral proteins to the medium in which they function. Also, apart from the overall transmembrane orientation, might the asymmetry inherent in biosynthesis processes cause proteins to fold to out-of-equilibrium, metastable topologies? Which of the features of a bilayer are essential for membrane protein folding, and which are not? To which extent do translocons dictate transmembrane topologies? Recent data show that many membrane proteins fold and oligomerize very efficiently in media that bear little similarity to a membrane, casting doubt on the essentiality of many bilayer constraints. In the following discussion, we argue that some of the features of bilayers may contribute to protein folding, stability and regulation, but they are not required for the basic three-dimensional structure to be achieved. This idea, if correct, would imply that evolution has steered membrane proteins toward an accommodation to biosynthetic pathways and a good fit into their environment, but that their folding is not driven by the latter or dictated by insertion apparatuses. In other words, the three-dimensional structure of membrane proteins is essentially determined by intramolecular interactions and not by bilayer constraints and insertion pathways. Implications are discussed.
Collapse
Affiliation(s)
- Jean-Luc Popot
- Centre National de la Recherche Scientifique/Université Paris-7 UMR 7099 , Institut de Biologie Physico-Chimique (FRC 550), 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University , Box 208114, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
41
|
Niwa T, Sasaki Y, Uemura E, Nakamura S, Akiyama M, Ando M, Sawada S, Mukai SA, Ueda T, Taguchi H, Akiyoshi K. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci Rep 2015; 5:18025. [PMID: 26667602 PMCID: PMC4678891 DOI: 10.1038/srep18025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023] Open
Abstract
Membrane proteins play pivotal roles in cellular processes and are key targets for drug discovery. However, the reliable synthesis and folding of membrane proteins are significant problems that need to be addressed owing to their extremely high hydrophobic properties, which promote irreversible aggregation in hydrophilic conditions. Previous reports have suggested that protein aggregation could be prevented by including exogenous liposomes in cell-free translation processes. Systematic studies that identify which membrane proteins can be rescued from irreversible aggregation during translation by liposomes would be valuable in terms of understanding the effects of liposomes and developing applications for membrane protein engineering in the context of pharmaceutical science and nanodevice development. Therefore, we performed a comprehensive study to evaluate the effects of liposomes on 85 aggregation-prone membrane proteins from Escherichia coli by using a reconstituted, chemically defined cell-free translation system. Statistical analyses revealed that the presence of liposomes increased the solubility of >90% of the studied membrane proteins, and ultimately improved the yields of the synthesized proteins. Bioinformatics analyses revealed significant correlations between the liposome effect and the physicochemical properties of the membrane proteins.
Collapse
Affiliation(s)
- Tatsuya Niwa
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Eri Uemura
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Shugo Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Minato Akiyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Mitsuru Ando
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
42
|
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems. Chembiochem 2015; 16:2420-31. [PMID: 26478227 PMCID: PMC4676933 DOI: 10.1002/cbic.201500340] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/07/2023]
Abstract
From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
43
|
LaGuerre A, Löhr F, Bernhard F, Dötsch V. Labeling of membrane proteins by cell-free expression. Methods Enzymol 2015; 565:367-88. [PMID: 26577739 DOI: 10.1016/bs.mie.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The particular advantage of the cell-free reaction is that it allows a plethora of supplementation during protein expression and offers complete control over the available amino acid pool in view of concentration and composition. In combination with the fast and reliable production efficiencies of cell-free systems, the labeling and subsequent structural evaluation of very challenging targets, such as membrane proteins, comes into focus. We describe current methods for the isotopic labeling of cell-free synthesized membrane proteins and we review techniques available to the practitioner pursuing structural studies by nuclear magnetic resonance spectroscopy. Though isotopic labeling of individual amino acid types appears to be relatively straightforward, an ongoing critical issue in most labeling schemes for structural approaches is the selective substitution of deuterons for protons. While few options are available, the continuous refinement of labeling schemes in combination with improved pulse sequences and optimized instrumentation gives promising perspectives for extended applications in the structural evaluation of cell-free synthesized membrane.
Collapse
Affiliation(s)
- Aisha LaGuerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| |
Collapse
|
44
|
Malhotra K, Alder NN. Advances in the use of nanoscale bilayers to study membrane protein structure and function. Biotechnol Genet Eng Rev 2015; 30:79-93. [PMID: 25023464 DOI: 10.1080/02648725.2014.921502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Within the last decade, nanoscale lipid bilayers have emerged as powerful experimental systems in the analysis of membrane proteins (MPs) for both basic and applied research. These discoidal lipid lamellae are stabilized by annuli of specially engineered amphipathic polypeptides (nanodiscs) or polymers (SMALPs/Lipodisqs®). As biomembrane mimetics, they are well suited for the reconstitution of MPs within a controlled lipid environment. Moreover, because they are water-soluble, they are amenable to solution-based biochemical and biophysical experimentation. Hence, due to their solubility, size, stability, and monodispersity, nanoscale lipid bilayers offer technical advantages over more traditional MP analytic approaches such as detergent solubilization and reconstitution into lipid vesicles. In this article, we review some of the most recent advances in the synthesis of polypeptide- and polymer-bound nanoscale lipid bilayers and their application in the study of MP structure and function.
Collapse
Affiliation(s)
- Ketan Malhotra
- a Department of Molecular and Cell Biology , University of Connecticut , Storrs , CT 06269 , USA
| | | |
Collapse
|
45
|
Henrich E, Hein C, Dötsch V, Bernhard F. Membrane protein production in Escherichia coli cell-free lysates. FEBS Lett 2015; 589:1713-22. [PMID: 25937121 DOI: 10.1016/j.febslet.2015.04.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
Abstract
Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| |
Collapse
|
46
|
Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015; 6:66. [PMID: 25873898 PMCID: PMC4379943 DOI: 10.3389/fphar.2015.00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 01/26/2023] Open
Abstract
Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland ; Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich Switzerland
| |
Collapse
|
47
|
Kai L, Orbán E, Henrich E, Proverbio D, Dötsch V, Bernhard F. Co-translational stabilization of insoluble proteins in cell-free expression systems. Methods Mol Biol 2015; 1258:125-143. [PMID: 25447862 DOI: 10.1007/978-1-4939-2205-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Precipitation, aggregation, and inclusion body (IB) formation are frequently observed problems upon overexpression of recombinant proteins. The open accessibility of cell-free reactions allows addressing such critical steps by the addition of protein stabilizers such as chemical chaperones or detergents directly into the expression reactions. This approach could therefore reduce or even prevent initial protein precipitation already in the translation environment. The strategy might be considered to generally improve protein sample quality and to rescue proteins that are difficult to refold from IBs or from aggregated precipitates. We describe a protocol for the co-translational stabilization of difficult proteins by their expression in the presence of supplements such as alcohols, poly-ions, or detergents. We compile potentially useful compounds together with their recommended stock and working concentrations. Examples of screening experiments in order to systematically identify compounds or compound mixtures that stabilize particular proteins of interest are given. The method can primarily be considered for the production of unstable soluble proteins or of membrane proteins containing larger soluble domains.
Collapse
Affiliation(s)
- Lei Kai
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Folding membrane proteins in vitro: A table and some comments. Arch Biochem Biophys 2014; 564:314-26. [DOI: 10.1016/j.abb.2014.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022]
|
49
|
Rues RB, Orbán E, Dötsch V, Bernhard F. Cell-free expression of G-protein coupled receptors: new pipelines for challenging targets. Biol Chem 2014; 395:1425-34. [DOI: 10.1515/hsz-2014-0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/25/2014] [Indexed: 11/15/2022]
Abstract
Abstract
Based on their eminent importance for medical applications, G-protein coupled receptors are currently amongst the most frequently membrane protein targets analyzed by cell-free expression. The cell-free expression approach removes most bottlenecks known from conventional cell-based protein production pipelines and ensures fast access to a selected receptor target. In addition, receptors can be synthesized in presence of a large variety of artificial solubilization environments comprising detergents, lipids, nanodiscs and other amphiphilic compounds. The currently accumulated data based on a variety of analyzed receptors already opens promising perspectives for applications of cell-free synthesized samples in functional characterization and drug screening. Structural evaluation still suffers from high conformational dynamics causing sample instability and might be addressed in future by molecular engineering or immuno-stabilization approaches.
Collapse
|
50
|
Hamakubo T, Kusano-Arai O, Iwanari H. Generation of antibodies against membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1920-1924. [PMID: 25135856 DOI: 10.1016/j.bbapap.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022]
Abstract
The monoclonal antibody has become an important therapeutic in the treatment of both hematological malignancies and solid tumors. The recent success of antibody-drug conjugates (ADCs) has broadened the extent of the potential target molecules in cancer immunotherapy. As a result, even molecules of low abundance have become targets for cytotoxic reagents. The multi-pass membrane proteins are an emerging target for the next generation antibody therapeutics. One outstanding challenge is the difficulty in preparing a sufficient amount of these membrane proteins so as to be able to generate the functional antibody. We have pursued the expression of various membrane proteins on the baculovirus particle and the utilization of displayed protein for immunization. The strong antigenicity of the virus acts either as a friend or foe in the making of an efficient antibody against an immunologically tolerant antigen. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan.
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Institute of Immunology Co. Ltd, .1-1-10 Koraku, Bunkyo, Tokyo 112-0004, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|