1
|
Yun Y, Lv T, Gui Z, Su T, Cao W, Tian X, Chen Y, Wang S, Jia Z, Li G, Ma T. Composition and metabolic flexibility of hydrocarbon-degrading consortia in oil reservoirs. BIORESOURCE TECHNOLOGY 2024; 409:131244. [PMID: 39127363 DOI: 10.1016/j.biortech.2024.131244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hydrocarbon-degrading consortia (HDC) play an important role in petroleum exploitation. However, the real composition and metabolic mechanism of HDC in the microbial enhanced oil recovery (MEOR) process remain unclear. By combining 13C-DNA stable isotope probing microcosms with metagenomics, some newly reported phyla, including Chloroflexi, Synergistetes, Thermotogae, and Planctomycetes, dominated the HDC in the oil reservoirs. In the field trials, the HDC in the aerobic-facultative-anaerobic stage of oilfields jointly promoted the MEOR process, with monthly oil increments of up to 189 tons. Pseudomonas can improve oil recovery by producing rhamnolipid in the facultative condition. Roseovarius was the novel taxa potentially oxidizing alkane and producing acetate to improve oil porosity and permeability in the aerobic condition. Ca. Bacteroidia were the new members potentially degrading hydrocarbons by fumarate addition in the anaerobic environment. Comprehensive identification of the active HDC in oil reservoirs provides a novel theoretical basis for oilfield regulatory scheme.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Tianhua Lv
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
2
|
Zhu F, Wei Y, Wang F, Xia Z, Gou M, Tang Y. Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance. Int Microbiol 2024; 27:1049-1062. [PMID: 38010566 DOI: 10.1007/s10123-023-00458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Developing microbial consortiums is necessary for microbial enhanced oil recovery (MEOR) in heavy crude oil production. The aqueous phase of produced fluid has long been considered an ideal source of microorganisms for MEOR. However, it is recently found that rich microorganisms (including hydrocarbon-degrading bacteria) are present in the crude oil phase, which is completely different from the aqueous phase of produced fluid. So, in this study, the microbial consortia from the crude oil phase of produced fluids derived from four wells were enriched, respectively. The microbial community structure during passage was dynamically tracked, and the response of enriched consortia to successive disturbance of environmental factors was investigated. The results showed the crude oil phase had high microbial diversity, and the original microbial community structure from four wells was significantly different. After ten generations of consecutive enrichment, different genera were observed in the four enriched microbial consortia, namely, Geobacillus, Bacillus, Brevibacillus, Chelativorans, Ureibacillus, and Ornithinicoccus. In addition, two enriched consortia (eG1614 and eP30) exhibited robustness to temperature and oxygen perturbations. These results further suggested that the crude oil phase of produced fluids can serve as a potential microbial source for MEOR.
Collapse
Affiliation(s)
- Fangfang Zhu
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Yanfeng Wei
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Fangzhou Wang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Ziyuan Xia
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| |
Collapse
|
3
|
Cate JD, Sullivan YZ, King MD. Inhibition of Microbial Growth and Biofilm Formation in Pure and Mixed Bacterial Samples. Microorganisms 2024; 12:1500. [PMID: 39065268 PMCID: PMC11278618 DOI: 10.3390/microorganisms12071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hydraulic fracturing, or fracking, requires large amounts of water to extract fossil fuel from rock formations. As a result of hydraulic fracturing, the briny wastewater, often termed back-produced fracturing or fracking water (FW), is pumped into holding ponds. One of the biggest challenges with produced water management is controlling microbial activity that could reduce the pond water's reusable layer and pose a significant environmental hazard. This study focuses on the characterization of back-produced water that has been hydraulically fractured using chemical and biological analysis and the development of a high-throughput screening method to evaluate and predict the antimicrobial effect of four naturally and commercially available acidic inhibitors (edetic acid, boric acid, tannic acid, and lactic acid) on the growth of the FW microbiome. Liquid cultures and biofilms of two laboratory model strains, the vegetative Escherichia coli MG1655, and the spore-forming Bacillus atrophaeus (also known as Bacillus globigii, BG) bacteria, were used as reference microorganisms. Planktonic bacteria in FW were more sensitive to antimicrobials than sessile bacteria in biofilms. Spore-forming BG bacteria exhibited more sensitivity to acidic inhibitors than the vegetative E. coli cells. Organic acids were the most effective bacterial growth inhibitors in liquid culture and biofilm.
Collapse
Affiliation(s)
| | | | - Maria D. King
- Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (J.D.C.); (Y.Z.S.)
| |
Collapse
|
4
|
Kapse N, Dagar SS, Dhakephalkar PK. Appropriate characterization of reservoir properties and investigation of their effect on microbial enhanced oil recovery through simulated laboratory studies. Sci Rep 2024; 14:15401. [PMID: 38965286 PMCID: PMC11224412 DOI: 10.1038/s41598-024-65728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Appropriate characterization of reservoir properties and investigation of the effect of these properties on microbial metabolism and oil recovery under simulated reservoir conditions can aid in development of a sustainable microbial enhanced oil recovery (MEOR) process. Our present study has unveiled the promising potential of the hyperthermophilic archaeon, identified as Thermococcus petroboostus sp. nov. 101C5, to positively influence the microenvironment within simulated oil reservoirs, by producing significant amounts of metabolites, such as biosurfactants, biopolymers, biomass, acids, solvents, gases. These MEOR desired metabolites were found to cause a series of desirable changes in the physicochemical properties of crude oil and reservoir rocks, thereby enhancing oil recovery. Furthermore, our study demonstrated that the microbial activity of 101C5 led to the mobilization of crude oil, consequently resulting in enhanced production rates and increased efficiency in simulated sand pack trials. 101C5 exhibited considerable potential as a versatile microorganism for MEOR applications across diverse reservoir conditions, mediating significant light as well as heavy oil recovery from Berea/carbonaceous nature of rock bearing intergranular/vugular/fracture porosity at extreme reservoir conditions characterized by high temperature (80-101 °C) and high pressure (700-1300 psi). Core flood study, which truly mimicked the reservoir conditions demonstrated 29.5% incremental oil recovery by 101C5 action from Berea sandstone at 900 psi and 96 °C, underscoring the potential of strain 101C5 for application in the depleted high temperature oil wells.
Collapse
Affiliation(s)
- Neelam Kapse
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
| | - Sumit S Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - P K Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
| |
Collapse
|
5
|
Stemple B, Gulliver D, Sarkar P, Tinker K, Bibby K. Metagenome-assembled genomes provide insight into the metabolic potential during early production of Hydraulic Fracturing Test Site 2 in the Delaware Basin. Front Microbiol 2024; 15:1376536. [PMID: 38933028 PMCID: PMC11199900 DOI: 10.3389/fmicb.2024.1376536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Demand for natural gas continues to climb in the United States, having reached a record monthly high of 104.9 billion cubic feet per day (Bcf/d) in November 2023. Hydraulic fracturing, a technique used to extract natural gas and oil from deep underground reservoirs, involves injecting large volumes of fluid, proppant, and chemical additives into shale units. This is followed by a "shut-in" period, during which the fracture fluid remains pressurized in the well for several weeks. The microbial processes that occur within the reservoir during this shut-in period are not well understood; yet, these reactions may significantly impact the structural integrity and overall recovery of oil and gas from the well. To shed light on this critical phase, we conducted an analysis of both pre-shut-in material alongside production fluid collected throughout the initial production phase at the Hydraulic Fracturing Test Site 2 (HFTS 2) located in the prolific Wolfcamp formation within the Permian Delaware Basin of west Texas, USA. Specifically, we aimed to assess the microbial ecology and functional potential of the microbial community during this crucial time frame. Prior analysis of 16S rRNA sequencing data through the first 35 days of production revealed a strong selection for a Clostridia species corresponding to a significant decrease in microbial diversity. Here, we performed a metagenomic analysis of produced water sampled on Day 33 of production. This analysis yielded three high-quality metagenome-assembled genomes (MAGs), one of which was a Clostridia draft genome closely related to the recently classified Petromonas tenebris. This draft genome likely represents the dominant Clostridia species observed in our 16S rRNA profile. Annotation of the MAGs revealed the presence of genes involved in critical metabolic processes, including thiosulfate reduction, mixed acid fermentation, and biofilm formation. These findings suggest that this microbial community has the potential to contribute to well souring, biocorrosion, and biofouling within the reservoir. Our research provides unique insights into the early stages of production in one of the most prolific unconventional plays in the United States, with important implications for well management and energy recovery.
Collapse
Affiliation(s)
- Brooke Stemple
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Preom Sarkar
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | - Kara Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
- Leidos Research Support Team, Pittsburgh, PA, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| |
Collapse
|
6
|
Xu K, Yan Z, Tao C, Wang F, Zheng X, Ma Y, Sun Y, Zheng Y, Jia Z. A novel bioprospecting strategy via 13C-based high-throughput probing of active methylotrophs inhabiting oil reservoir surface soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171686. [PMID: 38485026 DOI: 10.1016/j.scitotenv.2024.171686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.
Collapse
Affiliation(s)
- Kewei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China.
| | - Zhengfei Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cheng Tao
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuying Zheng
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yuanyuan Ma
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China; SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi 214126, China; Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, SINOPEC, Wuxi, Jiangsu 214126, China
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou 310027, China
| | - Yan Zheng
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Black Soils Conservation and Utilization, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
7
|
Mbow FT, Akbari A, Dopffel N, Schneider K, Mukherjee S, Meckenstock RU. Insights into the effects of anthropogenic activities on oil reservoir microbiome and metabolic potential. N Biotechnol 2024; 79:30-38. [PMID: 38040289 DOI: 10.1016/j.nbt.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Microbial communities have long been observed in oil reservoirs, where the subsurface conditions are major drivers shaping their structure and functions. Furthermore, anthropogenic activities such as water flooding during oil production can affect microbial activities and community compositions in oil reservoirs through the injection of recycled produced water, often associated with biocides. However, it is still unclear to what extent the introduced chemicals and microbes influence the metabolic potential of the subsurface microbiome. Here we investigated an onshore oilfield in Germany (Field A) that undergoes secondary oil production along with biocide treatment to prevent souring and microbially induced corrosion (MIC). With the integrated approach of 16 S rRNA gene amplicon and shotgun metagenomic sequencing of water-oil samples from 4 production wells and 1 injection well, we found differences in microbial community structure and metabolic functions. In the injection water samples, amplicon sequence variants (ASVs) belonging to families such as Halanaerobiaceae, Ectothiorhodospiraceae, Hydrogenophilaceae, Halobacteroidaceae, Desulfohalobiaceae, and Methanosarcinaceae were dominant, while in the production water samples, ASVs of families such as Thermotogaceae, Nitrospiraceae, Petrotogaceae, Syntrophaceae, Methanobacteriaceae, and Thermoprotei were also dominant. The metagenomic analysis of the injection water sample revealed the presence of C1-metabolism, namely, genes involved in formaldehyde oxidation. Our analysis revealed that the microbial community structure of the production water samples diverged slightly from that of injection water samples. Additionally, a metabolic potential for oxidizing the applied biocide clearly occurred in the injection water samples indicating an adaptation and buildup of degradation capacity or resistance against the added biocide.
Collapse
Affiliation(s)
- Fatou T Mbow
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany
| | - Ali Akbari
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany
| | - Nicole Dopffel
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | | | | | - Rainer U Meckenstock
- University of Duisburg-Essen - Environmental Microbiology and Biotechnology - Aquatic Microbiology, Universitätsstraße 5, 45141 Essen, Germany.
| |
Collapse
|
8
|
Singha NA, Neihsial R, Kipgen L, Lyngdoh WJ, Nongdhar J, Chettri B, Singh P, Singh AK. Taxonomic and Predictive Functional Profile of Hydrocarbonoclastic Bacterial Consortia Developed at Three Different Temperatures. Curr Microbiol 2023; 81:22. [PMID: 38017305 DOI: 10.1007/s00284-023-03529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
Microbial community exhibit shift in composition in response to temperature variation. We report crude oil-degrading activity and high-throughput 16S rRNA gene sequencing (metagenome) profiles of four bacterial consortia enriched at three different temperatures in crude oil-amended Bushnell-Hass Medium from an oily sludge sediment. The consortia were referred to as O (4 ± 2 ℃ in 3% w/v crude oil), A (25 ± 2 ℃ in 1% w/v crude oil), H (25 ± 2 ℃ in 3% w/v crude oil), and X (45 ± 2 ℃ in 3% w/v crude oil). The hydrocarbon-degrading activity was highest for consortium A and H and lowest for consortium O. The metagenome profile revealed the predominance of Proteobacteria (62.12-1.25%) in each consortium, followed by Bacteroidota (18.94-37.77%) in the consortium O, A, and H. Contrarily, consortium X comprised 7.38% Actinomycetota, which was essentially low (< 0.09%) in other consortia, and only 0.41% Bacteroidota. The PICRUSt-based functional analysis predicted major functions associated with the metabolism and 5060 common KEGG Orthology (KOs). A total of 296 KOs were predicted exclusively in consortium X. Additionally, 247 KOs were predicted from xenobiotic biodegradation pathways. This study found that temperature had a stronger influence on the composition and function of the bacterial community than crude oil concentration.
Collapse
Affiliation(s)
- Ningombam A Singha
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Roselin Neihsial
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Lhinglamkim Kipgen
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Waniabha J Lyngdoh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Jopthiaw Nongdhar
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Prabhakar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| | - Arvind K Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| |
Collapse
|
9
|
Gusmão ACB, Peres FV, Paula FS, Pellizari VH, Kolm HE, Signori CN. Microbial communities in the deep-sea sediments of the South São Paulo Plateau, Southwestern Atlantic Ocean. Int Microbiol 2023; 26:1041-1051. [PMID: 37093322 DOI: 10.1007/s10123-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Microbial communities play a key role in the ocean, acting as primary producers, nutrient recyclers, and energy providers. The São Paulo Plateau is a region located on the southeastern coast of Brazil within economic importance, due to its oil and gas reservoirs. With this focus, this study examined the diversity and composition of microbial communities in marine sediments located at three oceanographic stations in the southern region of São Paulo Plateau using the HOV Shinkai 6500 in 2013. The 16S rRNA gene was sequenced using the universal primers (515F and 926R) by the Illumina Miseq platform. The taxonomic compositions of samples recovered from SP3 station were markedly distinct from those obtained from SP1 and SP2. Although all three stations exhibited a high abundance of Gammaproteobacteria (> 15%), this taxon dominated more than 90% of composition of the A and C sediment layers at SP3. The highest abundance of the archaeal class Nitrososphaeria was presented at SP1, mainly at layer C (~ 21%), being absent at SP3 station. The prediction of chemoheterotrophy and fermentation as important microbial functions was supported by the data. Additionally, other metabolic pathways related to the cycles of nitrogen, carbon and sulfur were also predicted. The core microbiome analysis comprised only two ASVs. Our study contributes to a better understanding of microbial communities in an economically important little-explored region. This is the third microbiological survey in plateau sediments and the first focused on the southern region.
Collapse
Affiliation(s)
- Ana Carolina Bercini Gusmão
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil.
| | - Francielli Vilela Peres
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Fabiana S Paula
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Hedda Elisabeth Kolm
- Department of Oceanography, Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil
| | - Camila Negrão Signori
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| |
Collapse
|
10
|
Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol 2023; 14:1279865. [PMID: 37840718 PMCID: PMC10570749 DOI: 10.3389/fmicb.2023.1279865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Unsubstituted aromatic hydrocarbons (UAHs) are recalcitrant molecules abundant in crude oil, which is accumulated in subsurface reservoirs and occasionally enters the marine environment through natural seepage or human-caused spillage. The challenging anaerobic degradation of UAHs by microorganisms, in particular under thermophilic conditions, is poorly understood. Here, we established benzene- and naphthalene-degrading cultures under sulfate-reducing conditions at 50°C and 70°C from Guaymas Basin sediments. We investigated the microorganisms in the enrichment cultures and their potential for UAH oxidation through short-read metagenome sequencing and analysis. Dependent on the combination of UAH and temperature, different microorganisms became enriched. A Thermoplasmatota archaeon was abundant in the benzene-degrading culture at 50°C, but catabolic pathways remained elusive, because the archaeon lacked most known genes for benzene degradation. Two novel species of Desulfatiglandales bacteria were strongly enriched in the benzene-degrading culture at 70°C and in the naphthalene-degrading culture at 50°C. Both bacteria encode almost complete pathways for UAH degradation and for downstream degradation. They likely activate benzene via methylation, and naphthalene via direct carboxylation, respectively. The two species constitute the first thermophilic UAH degraders of the Desulfatiglandales. In the naphthalene-degrading culture incubated at 70°C, a Dehalococcoidia bacterium became enriched, which encoded a partial pathway for UAH degradation. Comparison of enriched bacteria with related genomes from environmental samples indicated that pathways for benzene degradation are widely distributed, while thermophily and capacity for naphthalene activation are rare. Our study highlights the capacities of uncultured thermophilic microbes for UAH degradation in petroleum reservoirs and in contaminated environments.
Collapse
Affiliation(s)
- Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Carolin Otersen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Alibrandi A, di Primio R, Bartholomäus A, Kallmeyer J. A modified isooctane-based DNA extraction method from crude oil. MLIFE 2023; 2:328-338. [PMID: 38817811 PMCID: PMC10989908 DOI: 10.1002/mlf2.12081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 07/29/2023] [Indexed: 06/01/2024]
Abstract
Microbes from oil reservoirs shape petroleum composition through processes such as biodegradation or souring. Such processes are considered economically detrimental and might pose health and safety hazards. It is therefore crucial to understand the composition of a reservoir's microbial community and its metabolic capabilities. However, such analyses are hindered by difficulties in extracting DNA from such complex fluids as crude oil. Here, we present a novel DNA extraction method from oils with a wide American Petroleum Institute (API) gravity (density) range. We investigated the ability to extract cells from oils with different solvents and surfactants, the latter both nonionic and ionic. Furthermore, we evaluated three DNA extraction methods. Overall, the best DNA yields and the highest number of 16S rRNA reads were achieved with isooctane as a solvent, followed by an ionic surfactant treatment using sodium dodecyl sulfate and DNA extraction using the PowerSoil Pro Kit (Qiagen). The final method was then applied to various oils from oil reservoirs collected in aseptic conditions. Despite the expected low cell density of 101-103 cells/ml, the new method yielded reliable results, with average 16S rRNA sequencing reads in the order of 41431 (±8860) per sample. Thermophilic, halophilic, and anaerobic taxa, which are most likely to be indigenous to the oil reservoir, were found in all samples. API gravity and DNA yield, despite the sufficient DNA obtained, did not show a correlation.
Collapse
Affiliation(s)
- Armando Alibrandi
- GFZ German Research Centre for Geoscience, Section GeomicrobiologyPotsdamGermany
| | | | | | - Jens Kallmeyer
- GFZ German Research Centre for Geoscience, Section GeomicrobiologyPotsdamGermany
| |
Collapse
|
12
|
Wang J, Wang C, Hu M, Bian L, Qu L, Sun H, Wu X, Ren G. Bacterial co-occurrence patterns are more complex but less stable than archaea in enhanced oil recovery applied oil reservoirs. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Jiao Y, An L, Wang W, Ma J, Wu C, Wu X. Microbial communities and their roles in the Cenozoic sulfurous oil reservoirs in the Southwestern Qaidam Basin, Western China. Sci Rep 2023; 13:7988. [PMID: 37198206 PMCID: PMC10192311 DOI: 10.1038/s41598-023-33978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
The latest discovery of sulfurous natural gas marked a breakthrough in the Cenozoic natural gas exploration in the southwestern margin of Qaidam Basin. The 16S rRNA analyses were performed on the crude oil samples from H2S-rich reservoirs in the Yuejin, Shizigou and Huatugou profiles, to understand the sulfurous gas origin, which was also integrated with carbon and hydrogen isotopes of alkane and sulfur isotopes of H2S collected from the Yingxiongling Area. Results show that the microorganisms in samples can survive in the hypersaline reservoirs, and can be classified into multiple phyla, including Proteobacteria, Planctomycetes, Firmicutes, Bacteroidetes, and Haloanaerobiaeota. Methanogens are abundant in all of the three profiles, while sulfate-reducing bacteria are abundant in Yuejin and Huatugou profiles, contributing to the methane and H2S components in the natural gas. The carbon, hydrogen and sulfur isotopes of sulfurous natural gas in the Yingxiongling Area show that the natural gas is a mixture of coal-type gas and oil-type gas, which was primarily derived from thermal degradation, and natural gas from the Yuejin and Huatugou profiles also originated from biodegradation. The isotopic analysis agrees well with the 16S rRNA results, i.e., H2S-rich natural gas from the Cenozoic reservoirs in the southwest margin of the Qaidam Basin was primarily of thermal genesis, with microbial genesis of secondary importance.
Collapse
Affiliation(s)
- Yue Jiao
- The Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing, 100871, China
| | - Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wei Wang
- The No. 1 Oil Extraction Plant, Qinghai Oilfield Company, PetroChina, Haixi, 817000, Qinghai, China
| | - Jian Ma
- The Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing, 100871, China
| | - Chaodong Wu
- The Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing, 100871, China.
| | - Xiaolei Wu
- College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Yao S, Jin T, Zhang L, Zhang Y, Chen R, Wang Q, Lv M, Hu C, Ma T, Xia W. N/S element transformation modulating lithospheric microbial communities by single-species manipulation. MICROBIOME 2023; 11:107. [PMID: 37194043 DOI: 10.1186/s40168-023-01553-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The lithospheric microbiome plays a vital role in global biogeochemical cycling, yet their mutual modulation mechanisms remain largely uncharted. Petroleum reservoirs are important lithosphere ecosystems that provide desirable resources for understanding microbial roles in element cycling. However, the strategy and mechanism of modulating indigenous microbial communities for the optimization of community structures and functions are underexplored, despite its significance in energy recovery and environmental remediation. RESULTS Here we proposed a novel selective stimulation of indigenous functional microbes by driving nitrogen and sulfur cycling in petroleum reservoirs using injections of an exogenous heterocycle-degrading strain of Pseudomonas. We defined such bacteria capable of removing and releasing organically bound sulfur and nitrogen from heterocycles as "bioredox triggers". High-throughput 16S rRNA amplicon sequencing, metagenomic, and gene transcription-level analyses of extensive production water and sandstone core samples spanning the whole oil production process clarified the microbiome dynamics following the intervention. These efforts demonstrated the feasibility of in situ N/S element release and electron acceptor generation during heterocycle degradation, shifting microbiome structures and functions and increasing phylogenetic diversity and genera engaged in sulfur and nitrogen cycling, such as Desulfovibrio, Shewanella, and Sulfurospirillum. The metabolic potentials of sulfur- and nitrogen-cycling processes, particularly dissimilatory sulfate reduction and dissimilatory nitrate reduction, were elevated in reservoir microbiomes. The relative expression of genes involved in sulfate reduction (dsrA, dsrB) and nitrate reduction (napA) was upregulated by 85, 28, and 22 folds, respectively. Field trials showed significant improvements in oil properties, with a decline in asphaltenes and aromatics, hetero-element contents, and viscosity, hence facilitating the effective exploitation of heavy oil. CONCLUSIONS The interactions between microbiomes and element cycling elucidated in this study will contribute to a better understanding of microbial metabolic involvement in, and response to, biogeochemical processes in the lithosphere. The presented findings demonstrated the immense potential of our microbial modulation strategy for green and enhanced heavy oil recovery. Video Abstract.
Collapse
Affiliation(s)
- Shun Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tianzhi Jin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Qian Wang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Mingjie Lv
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Chuxiao Hu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
15
|
Hussain NAS, Stafford JL. Abiotic and biotic constituents of oil sands process-affected waters. J Environ Sci (China) 2023; 127:169-186. [PMID: 36522051 DOI: 10.1016/j.jes.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/17/2023]
Abstract
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
Collapse
Affiliation(s)
- Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada.
| |
Collapse
|
16
|
Sharma N, Lavania M, Koul V, Prasad D, Koduru N, Pandey A, Raj R, Kumar MS, Lal B. Nutrient optimization for indigenous microbial consortia of a Bhagyam oil field: MEOR studies. Front Microbiol 2023; 14:1026720. [PMID: 37007479 PMCID: PMC10060980 DOI: 10.3389/fmicb.2023.1026720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The microbial enhanced oil recovery (MEOR) method is an eco-friendly and economical alternative technology. The technology involves a variety of uncertainties, and its success depends on controlling microbial growth and metabolism. This study is one of a kind that showed successful tertiary recovery of crude oil through indigenous microbial consortia. In this study, a medium was optimized to allow ideal microbial growth under reservoir conditions through RSM. Once the nutrient recipe was optimized, the microbial metabolites were estimated through gas chromatography. The maximum amount of methane gas (0.468 mM) was produced in the TERIW174 sample. The sequencing data set showed the presence of Methanothermobacter sp. and Petrotoga sp. In addition, these established consortia were analyzed for their toxicity, and they appeared to be safe for the environment. Furthermore, a core flood study showed efficient recovery that was ~25 and 34% in TERIW70 and TERIW174 samples, respectively. Thus, both the isolated consortia appeared to be suitable for the field trials.
Collapse
Affiliation(s)
- Neha Sharma
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | - Meeta Lavania
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
- *Correspondence: Meeta Lavania
| | - Vatsala Koul
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | - Dhruva Prasad
- Cairn Oil and Gas, Vedanta Limited, ASF Center, Gurugram, India
| | - Nitish Koduru
- Cairn Oil and Gas, Vedanta Limited, ASF Center, Gurugram, India
| | - Amitabh Pandey
- Cairn Oil and Gas, Vedanta Limited, ASF Center, Gurugram, India
| | - Rahul Raj
- Cairn Oil and Gas, Vedanta Limited, ASF Center, Gurugram, India
| | - M. Suresh Kumar
- Cairn Oil and Gas, Vedanta Limited, ASF Center, Gurugram, India
| | - Banwari Lal
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| |
Collapse
|
17
|
Buret AG, Allain T. Gut microbiota biofilms: From regulatory mechanisms to therapeutic targets. J Exp Med 2023; 220:e20221743. [PMID: 36688957 PMCID: PMC9884580 DOI: 10.1084/jem.20221743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gut microbiota contain communities of viruses, bacteria, fungi, and Eukarya, and live as biofilms. In health, these biofilms adhere to the intestinal mucus surface without contacting the epithelium. Disruptions to the equilibrium between these biofilms and the host may create invasive pathobionts from these commensal communities and contribute to disease pathogenesis. Environmental factors appear to dominate over genetics in determining the shifts in microbiota populations and function, including when comparing microbiota between low-income and industrialized countries. The observations discussed herein carry enormous potential for the development of novel therapies targeting phenotype in microbiota dysbiosis.
Collapse
Affiliation(s)
- Andre G. Buret
- Department of Biological Sciences, Host-Parasite Interactions program, Inflammation Research Network, University of Calgary, Calgary, Canada
| | - Thibault Allain
- Department of Biological Sciences, Host-Parasite Interactions program, Inflammation Research Network, University of Calgary, Calgary, Canada
| |
Collapse
|
18
|
Zhou L, Wu J, Ji JH, Gao J, Liu YF, Wang B, Yang SZ, Gu JD, Mu BZ. Characteristics of microbiota, core sulfate-reducing taxa and corrosion rates in production water from five petroleum reservoirs in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159861. [PMID: 36397603 DOI: 10.1016/j.scitotenv.2022.159861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Microbial diversity and activities in petroleum reservoir systems can be altered by water-flooding operation, but the current understanding of the mechanism for such changes in microbial composition characteristics and community is inadequate. In this study, microbial communities especially functional groups in production water from five petroleum reservoirs in China were investigated by chemical and molecular biological analyses. The dominant and core phyla in the five oil reservoirs were Proteobacteria, Deferribacterota, Firmicutes, Desulfobacterota, Euryarchaeota and Thermoplasmatota. At the genus level, the dominant taxa in each petroleum reservoir were different, and not all of the dominant genera were the core members across the five oil reservoirs. The microbiologically influenced corrosion (MIC) were investigated for the functional groups in each production water. The corrosion rates in production water were higher than controls with a positive correlation to the abundances of sulfate-reducing prokaryotes (SRP). The SRP diversity based on the aprA and dsrA gene analysis showed that obvious differences were evident between onshore (JS, SL, DQ and XJ) and offshore (BS) oilfields. The core SRP taxa in onshore oilfields were Desulfomicrobium and Desulfovibrio, also with Desulfotomaculum in medium/low-temperature oil reservoirs (DQ and XJ), but in high-temperature petroleum reservoirs (JS, BS and SL), Archaeoglobus, Thermodesulfobacterium and Thermodesulfovibrio were the core groups. Statistical analysis indicated that temperature, electron acceptors and donors showed significant influence on the SRP community. This research reveals the characteristics of microbial and functional community as well as their interaction mechanism on corrosion in petroleum reservoir environments, and will improve industrial bio-control and management of MIC in oilfields.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jun Wu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jia-Heng Ji
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jie Gao
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Biao Wang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Research Institute of Petroleum Engineering, Jiangsu Oilfield, Sinopec, Yangzhou 225009, PR China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
19
|
pH and Nitrate Drive Bacterial Diversity in Oil Reservoirs at a Localized Geographic Scale. Microorganisms 2023; 11:microorganisms11010151. [PMID: 36677443 PMCID: PMC9865607 DOI: 10.3390/microorganisms11010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Oil reservoirs are one of the most important deep subsurface biospheres. They are inhabited by diverse microorganisms including bacteria and archaea with diverse metabolic activities. Although recent studies have investigated the microbial communities in oil reservoirs at large geographic scales, it is still not clear how the microbial communities assemble, as the variation in the environment may be confounded with geographic distance. In this work, the microbial communities in oil reservoirs from the same oil field were identified at a localized geographic scale. We found that although the injected water contained diverse exogenous microorganisms, this had little effect on the microbial composition of the produced water. The Neutral Community Model analysis showed that both bacterial and archaeal communities are dispersal limited even at a localized scale. Further analysis showed that both pH and nitrate concentrations drive the assembly of bacterial communities, of which nitrate negatively correlated with bacterial alpha diversity and pH differences positively correlated with the dissimilarity of bacterial communities. In contrast, the physiochemical parameters had little effect on archaeal communities at the localized scale. Our results suggest that the assembly of microbial communities in oil reservoirs is scale- and taxonomy-dependent. Our work provides a comprehensive analysis of microbial communities in oil reservoirs at a localized geographic scale, which improves the understanding of the assembly of the microbial communities in oil reservoirs.
Collapse
|
20
|
Yun Y, Su T, Gui Z, Tian X, Chen Y, Cao Y, Yang S, Xie J, Anwar N, Li M, Li G, Ma T. Stress-responses of microbes in oil reservoir under high tetracycline exposure and their environmental risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120355. [PMID: 36243187 DOI: 10.1016/j.envpol.2022.120355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
As the groundwater ecosystem is connected with surface, antibiotics and antibiotic resistance genes (ARGs) in aquatic environments will gradually infiltrate into the deep environment, posing a potential threat to groundwater ecosystem. However, knowledge on the environmental risk of antibiotics and ARGs in groundwater ecosystem and their ecological process still remains unexplored. In this study, lab-scale oil reservoirs under high tetracycline stress were performed to evaluate the dynamics of microbial communities, ARGs and potential functions by using 16S rRNA gene sequencing and metagenomics analysis. Although the presence of antibiotics remarkably reduced the microbial abundance and diversity in a short term, but remain stable or even increased after a long-term incubation. Antibiotic stress caused a greater diversity and abundance of ARGs, and higher numbers of ARGs-related species with the capacity to transfer ARGs to other microbes through horizontal gene transfer. Thus, a much more frequent associations of microbial community at both node- and network-level and a selective pressure on enrichment of antibiotic resistant bacteria related to "anaerobic n-alkane degradation" and "methylotrophic methanogenesis" were observed. It is important to emphasize that high antibiotic stress could also prevent some microbes related to "Sulfate reduction", "Fe(II) oxidation", "Nitrate reduction", and "Xylene and Toluene degradation". This study provides an insight into the long-term stress-responses of microbial communities and functions in oil reservoir under tetracycline exposure, which may help to elucidate the effect of antibiotic stress on biogeochemical cycling with microbial involvement in groundwater ecosystem.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunke Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shicheng Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Nusratgul Anwar
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
21
|
de Oliveira HL, Dias GM, Neves BC. Genome sequence of Pseudomonas aeruginosa PA1-Petro—A role model of environmental adaptation and a potential biotechnological tool. Heliyon 2022; 8:e11566. [DOI: 10.1016/j.heliyon.2022.e11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
22
|
Gao P, Li Y, Tian H, Li G, Zhao F, Xia W, Pan X, Gu JD, Le J, Jia C, Ma T. Bacterial and Archaeal Community Distribution in Oilfield Water Re-injection Facilities and the Influences from Microorganisms in Injected Water. MICROBIAL ECOLOGY 2022; 84:1011-1028. [PMID: 34845558 DOI: 10.1007/s00248-021-01933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Water flooding is widely employed for oil production worldwide. However, there has never been a systematic investigation of the microbial communities occurring in oilfield water re-injection facilities. Here, we investigated the distribution of bacterial and archaeal communities in water re-injection facilities of an oilfield, and illustrated the combined influences of environmental variation and the microorganisms in injected water on the microbial communities. Bacterial communities from the surface injection facilities were dominated by aerobic or facultative anaerobic Betaproteobacteria, Alphaproteobacteria, and Flavobacteria, whereas Clostridia, Deltaproteobacteria, Anaerolineae, and Synergistia predominated in downhole of the injection wells, and Gammaproteobacteria, Betaproteobacteria, and Epsilonproteobacteria predominated in the production wells. Methanosaeta, Methanobacterium, and Methanolinea were dominant archaea in the injection facilities, while Methanosaeta, Methanomethylovorans, and Methanoculleus predominated in the production wells. This study also demonstrated that the microorganisms in injected water could be easily transferred from injection station to wellheads and downhole of injection wells, and environmental variation and diffusion-limited microbial transfer resulted from formation filtration were the main factors determining microbial community assembly in oil-bearing strata. The results provide novel information on the bacterial and archaeal communities and the underlying mechanisms occurring in oilfield water re-injection facilities, and benefit the development of effective microbiologically enhanced oil recovery and microbiologically prevented reservoir souring programs.
Collapse
Affiliation(s)
- Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Yu Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Huimei Tian
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guoqiang Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Feng Zhao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Wenjie Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xunli Pan
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, Guangdong, China
| | - Jianjun Le
- Daqing Oilfield Company Ltd Exploration and Development Research Institute, Daqing, 163000, Heilongjiang, China
| | - Chuanxing Jia
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ting Ma
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
23
|
The Biosorption of Copper(II) Using a Natural Biofilm Formed on the Stones from the Metro River, Malang City, Indonesia. Int J Microbiol 2022; 2022:9975333. [PMID: 36204461 PMCID: PMC9532089 DOI: 10.1155/2022/9975333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Biofilm is the predominant habitat of microbes in aquatic ecosystems. Microhabitat inside the biofilm matrix is a nutrient-rich environment promoted by the adsorption of nutrient ions from the surrounding water. Biofilms can not only adsorb ions that are nutrients but also other ions, such as heavy metals. The ability of biofilm to attract and retain heavy metals, such as copper(II), makes biofilms a promising biosorbent for water pollution treatment. The present study analyzes the characteristics of copper(II) adsorption by biofilms naturally formed in the river. The biofilms used in this study grow naturally on the stones in the Metro River in Malang City, Indonesia. Methods to analyze the adsorption characteristics of copper(II) by biofilms were kinetics of the adsorption and adsorption isotherm. The maximum adsorption amount and the adsorption equilibrium constant were calculated using a variant of the Langmuir isotherm model. In addition, the presence of the functional groups as suggested binding sites in biofilm polymers was investigated using the Fourier transform infrared (FTIR) analysis. The results indicate that copper(II)’s adsorption to the biofilm is a physicochemical process. The adsorption of copper(II) is fitted well with the Langmuir isotherm model, suggesting that the adsorption of copper(II) to a biofilm is due to the interaction between the adsorption sites on the biofilm and the ions. The biofilm’s maximum absorption capacity for copper(II) is calculated to be 2.14 mg/wet-g of biofilm, with the equilibrium rate constant at 0.05 L/mg. Therefore, the biofilms on the stones from river can be a promising biosorbent of copper(II) pollution in aquatic ecosystems.
Collapse
|
24
|
Yun Y, Gui Z, Su T, Tian X, Wang S, Chen Y, Su Z, Fan H, Xie J, Li G, Xia W, Ma T. Deep mining decreases the microbial taxonomic and functional diversity of subsurface oil reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153564. [PMID: 35101516 DOI: 10.1016/j.scitotenv.2022.153564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Microbes in subsurface oil reservoirs play important roles in elemental cycles and biogeochemical processes. However, the community assembly pattern of indigenous microbiome and their succession under long-term human activity remain poorly understood. Here we studied the microbial community assembly in underground sandstone cores from 190 to 2050 m in northeast China and their response to long-term oil recovery (10-50 years). Indigenous microbiome in subsurface petroleum reservoirs were dominated by Gammaproteobacteria, Firmicutes, Alphaproteobacteria, Bacteroidetes, and Actinobacteria, which exhibited a higher contribution of homogenizing dispersal assembly and different taxonomy distinct ecological modules when compared with perturbed samples. Specifically, the long-term oil recovery reduced the bacterial taxonomic- and functional-diversity, and increased the community co-occurrence associations in subsurface oil reservoirs. Moreover, distinguished from the perturbed samples, both variation partition analysis and structural equation model revealed that the contents of quartz, NO3- and Cl- significantly structured the α- and β-diversity in indigenous subsurface bacterial communities. These findings first provide the holistic picture of microbiome in the deep oil reservoirs, which demonstrate the significant impact of human activity on microbiome in deep continental subsurface.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shaojing Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhaoying Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Huiqiang Fan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Wei YF, Wang L, Xia ZY, Gou M, Sun ZY, Lv WF, Tang YQ. Microbial communities in crude oil phase and filter-graded aqueous phase from a Daqing oilfield after polymer flooding. J Appl Microbiol 2022; 133:842-856. [PMID: 35490352 DOI: 10.1111/jam.15603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022]
Abstract
AIMS The aim was to characterize indigenous microorganisms in oil reservoirs after polymer flooding (RAPF). METHODS The microbial communities in the crude oil phase (Oil) and in the filter-graded aqueous phases Aqu0.22 (>0.22 μm) and Aqu0.1 (0.1~0.22 μm) were investigated by 16S rRNA gene high-throughput sequencing. RESULTS Indigenous microorganisms related to hydrocarbon degradation prevailed in the three phases of each well. However, obvious differences of bacterial compositions were observed among the three phases of the same well and among the same phase of different wells. The crude oil and Aqu0.22 shared many dominant bacteria. Aqu0.1 contained a unique bacterial community in each well. Most bacteria in Aqu0.1 were affiliated to culturable genera, suggesting that they may adapt to the oil reservoir environment by reduction of cell size. Contrary to the bacterial genera, archaeal genera were similar in the three phases but varied in relative abundances. The observed microbial differences may be driven by specific environmental factors in each oil well. CONCLUSIONS The results suggest an application potential of microbial enhanced oil recovery (MEOR) technology in RAPF. The crude oil and Aqu0.1 contain many different functional microorganisms related to hydrocarbon degradation. Both should not be overlooked when investing and exploring the indigenous microorganisms for MEOR. SIGNIFICANCE AND IMPACT OF THE STUDY This work facilitates the understanding of microbial community structures in RAPF and provides information for microbial control in oil fields.
Collapse
Affiliation(s)
- Yan-Feng Wei
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Wei-Feng Lv
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
26
|
Pavlova ON, Izosimova ON, Chernitsyna SM, Ivanov VG, Pogodaeva TV, Khabuev AV, Gorshkov AG, Zemskaya TI. Anaerobic oxidation of petroleum hydrocarbons in enrichment cultures from sediments of the Gorevoy Utes natural oil seep under methanogenic and sulfate-reducing conditions. MICROBIAL ECOLOGY 2022; 83:899-915. [PMID: 34255112 DOI: 10.1007/s00248-021-01802-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
This article presents the first experimental data on the ability of microbial communities from sediments of the Gorevoy Utes natural oil seep to degrade petroleum hydrocarbons under anaerobic conditions. Like in marine ecosystems associated with oil discharge, available electron acceptors, in particular sulfate ions, affect the composition of the microbial community and the degree of hydrocarbon conversion. The cultivation of the surface sediments under sulfate-reducing conditions led to the formation of a more diverse bacterial community and greater loss of n-alkanes (28%) in comparison to methanogenic conditions (6%). Microbial communities of both surface and deep sediments are more oriented to degrade polycyclic aromatic hydrocarbons (PAHs), to which the degree of the PAH conversion testifies (up to 46%) irrespective of the present electron acceptors. Microorganisms with the uncultured closest homologues from thermal habitats, sediments of mud volcanoes, and environments contaminated with hydrocarbons mainly represented microbial communities of enrichment cultures. The members of the phyla Firmicutes, Chloroflexi, and Caldiserica (OP5), as well as the class Deltaproteobacteria and Methanomicrobia, were mostly found in enrichment cultures. The influence of gas-saturated fluids may be responsible for the presence in the bacterial 16S rRNA gene libraries of the sequences of "rare taxa": Planctomycetes, Ca. Atribacteria (OP9), Ca. Armatimonadetes (OP10), Ca. Latescibacteria (WS3), Ca. division (AC1), Ca. division (OP11), and Ca. Parcubacteria (OD1), which can be involved in hydrocarbon oxidation.
Collapse
Affiliation(s)
- O N Pavlova
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| | - O N Izosimova
- Laboratory of Chromatography, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - S M Chernitsyna
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - V G Ivanov
- Laboratory of Hydrology and Hydrophysics, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T V Pogodaeva
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A V Khabuev
- Laboratory of Lake Baikal Geology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A G Gorshkov
- Laboratory of Chromatography, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T I Zemskaya
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
27
|
Komariah LN, Arita S, Rendana M, Ramayanti C, Suriani NL, Erisna D. Microbial contamination of diesel-biodiesel blends in storage tank; an analysis of colony morphology. Heliyon 2022; 8:e09264. [PMID: 35464710 PMCID: PMC9018388 DOI: 10.1016/j.heliyon.2022.e09264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022] Open
Abstract
Fuel contamination is a major issue that comes with the utilization of biodiesel. Microbial growth is one of the primary causes of contamination during fuel handling and storage. This work attempts to identify the types, shapes, and growth profiles of microorganisms on fuel samples. The morphology of microbial colonies is presented in order to analyze the potential of fuel contamination. The diesel, biodiesel, and blends are stored in stainless steel (SS) and glass tanks, where each is placed indoors and outdoors during the 90 days of storage time. The morphology of microbial colonies is observed through a microscope with a magnification of 1000× and the quantity is calculated by a digital colony counter. Microbial contamination in all samples is considered as high contamination where the Colony Forming Unit (CFU) is greater than 105 L−1. Colony forms are far more assorted in blends than in pure diesel (B0) and neat biodiesel (B100). The transformation of microbial colonies accelerates after 60 days of storage time. The results reveal that the number of bacterial colonies that grow in B20 is higher and more varied, nevertheless, the contamination in B100 is significantly higher. This is indicated by a 1.5-fold rise in B20 acidity and a 2.5-fold increase in water content compared to the initial condition.
Collapse
Affiliation(s)
- Leily Nurul Komariah
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
- Corresponding author.
| | - Susila Arita
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Muhammad Rendana
- Chemical Engineering, Department Faculty of Engineering Universitas Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Cindi Ramayanti
- Chemical Engineering, Department State Polytechnic of Sriwijaya, Palembang, South Sumatera, 30139, Indonesia
| | - Ni Luh Suriani
- Biology Study Program, Faculty of Mathematics, and Natural Sciences, Udayana University, Denpasar, Bali, 80232, Indonesia
| | - Desi Erisna
- Energy Engineering Laboratory Universitas Sriwijaya, Indralaya, South Sumatera, 30662, Indonesia
| |
Collapse
|
28
|
Aftab A, Hassanpouryouzband A, Xie Q, Machuca LL, Sarmadivaleh M. Toward a Fundamental Understanding of Geological Hydrogen Storage. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04380] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Adnan Aftab
- Curtin University, Discipline of Petroleum Engineering, 26 Dick Perry Avenue, 6151 Kensington, Australia
- Petroleum Engineering Department, Mehran UET, SZAB, Khairpur Mir’s Campus, 66020 Pakistan
- Energy Resources and Petroleum Engineering, King Abdullah University of Science and Technology KAUST, Thuwal 23955-6900, Saudi Arabia
| | | | - Quan Xie
- Curtin University, Discipline of Petroleum Engineering, 26 Dick Perry Avenue, 6151 Kensington, Australia
| | - Laura L. Machuca
- Curtin Corrosion Centre, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mohammad Sarmadivaleh
- Curtin University, Discipline of Petroleum Engineering, 26 Dick Perry Avenue, 6151 Kensington, Australia
| |
Collapse
|
29
|
Haddad PG, Mura J, Castéran F, Guignard M, Ranchou-Peyruse M, Sénéchal P, Larregieu M, Isaure MP, Svahn I, Moonen P, Le Hécho I, Hoareau G, Chiquet P, Caumette G, Dequidt D, Cézac P, Ranchou-Peyruse A. Biological, geological and chemical effects of oxygen injection in underground gas storage aquifers in the setting of biomethane deployment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150690. [PMID: 34600980 DOI: 10.1016/j.scitotenv.2021.150690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The last few years have seen the proliferation of anaerobic digestion plants to produce biomethane. Oxygen (O2) traces added to biogas during the desulfurization process are co-injected in the gas network and can be stored in Underground Gas Storage (UGS). However, there are no data available for the undesirable effects of O2 on these anoxic environments, especially on deep aquifers. In addition to mineral alteration, O2 can have an impact on the anaerobic autochthonous microbial life. In our study, the storage conditions of an UGS aquifer were reproduced in a high-pressure reactor and bio-geo-chemical interactions between the aqueous, gas and solid phases were studied. Sulfate was depleted from the liquid phase for three consecutive times during the first 130 days of incubation reproducing the storage conditions (36 °C, 60 bar, methane with 1% CO2). Sulfate-reducers, such as Desulfovibrionaceae, were identified from the high-pressure system. Simulations with PHREEQC were used to determine the thermodynamic equilibrium to confirm any gas consumption. CO2 quantities decreased in the gas phase, suggesting its use as carbon source by microbial life. Benzene and toluene, hydrocarbons found in traces and known to be biodegradable in storages, were monitored and a decrease of toluene was revealed and associated to the Peptococcaceae family. Afterwards, O2 was added as 1% of the gas phase, corresponding to the maximum quantity found in biomethane after desulfurization process. Re-oxidation of sulfide to sulfate was observed along with the end of sulfate reducing activity and toluene biodegradation and the disappearance of most of the community. H2 surprisingly appeared and accumulated as soon as hydrogenotrophic sulfate-reducers decreased. H2 would be produced via the necromass fermentation accomplished by microorganisms able to resist the oxic conditions of 4.42·10-4 mol.Kgw-1 of O2. The solid phase composed essentially of quartz, presented no remarkable changes.
Collapse
Affiliation(s)
- Perla G Haddad
- Universite de Pau et Pays de l'Adour, E2S UPPA, LaTEP, Pau, France
| | - Jean Mura
- Universite de Pau et Pays de l'Adour, E2S UPPA, LaTEP, Pau, France
| | - Franck Castéran
- Universite de Pau et Pays de l'Adour, E2S UPPA, LaTEP, Pau, France; Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, 64000 Pau, France
| | - Marion Guignard
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Magali Ranchou-Peyruse
- Universite de Pau et Pays de l'Adour, E2S UPPA, LaTEP, Pau, France; Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, 64000 Pau, France; Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Pascale Sénéchal
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, DMEX, Pau, France
| | - Marie Larregieu
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Isabelle Svahn
- Bordeaux Imaging Center (BIC), CNRS, Université de Bordeaux, Bordeaux, France
| | - Peter Moonen
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, DMEX, Pau, France
| | - Isabelle Le Hécho
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, 64000 Pau, France; Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Guilhem Hoareau
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, TOTAL, LFCR, Pau, France
| | - Pierre Chiquet
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, 64000 Pau, France; Teréga, Pau, France
| | - Guilhem Caumette
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, 64000 Pau, France; Teréga, Pau, France
| | - David Dequidt
- STORENGY - Geosciences Department, Bois-Colombes, France
| | - Pierre Cézac
- Universite de Pau et Pays de l'Adour, E2S UPPA, LaTEP, Pau, France; Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, 64000 Pau, France
| | - Anthony Ranchou-Peyruse
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, 64000 Pau, France; Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
30
|
Voskuhl L, Brusilova D, Brauer VS, Meckenstock RU. Inhibition of sulfate-reducing bacteria with formate. FEMS Microbiol Ecol 2022; 98:6510814. [PMID: 35040992 PMCID: PMC8831227 DOI: 10.1093/femsec/fiac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Despite hostile environmental conditions, microbial communities have been found in µL-sized water droplets enclosed in heavy oil of the Pitch Lake, Trinidad. Some droplets showed high sulfate concentrations and surprisingly low relative abundances of sulfate-reducing bacteria in a previous study. Hence, we investigated here whether sulfate reduction might be inhibited naturally. Ion chromatography revealed very high formate concentrations around 2.37 mM in 21 out of 43 examined droplets. Since these concentrations were unexpectedly high, we performed growth experiments with the three sulfate-reducing type strains Desulfovibrio vulgaris, Desulfobacter curvatus, and Desulfococcus multivorans, and tested the effects of 2.5, 8 or 10 mM formate on sulfate reduction. Experiments demonstrated that 8 or 10 mM formate slowed down the growth rate of D. vulgaris and D. curvatus and the sulfate reduction rate of D. curvatus and D. multivorans. Concerning D. multivorans, increasing formate concentrations delayed the onsets of growth and sulfate reduction, which were even inhibited completely while formate was added constantly. Contrary to previous studies, D. multivorans was the only organism capable of formate consumption. Our study suggests that formate accumulates in the natural environment of the water droplets dispersed in oil and that such levels are very likely inhibiting sulfate-reducing microorganisms.
Collapse
Affiliation(s)
- L Voskuhl
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - D Brusilova
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - V S Brauer
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - R U Meckenstock
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
31
|
Voskuhl L, Akbari A, Müller H, Pannekens M, Brusilova D, Dyksma S, Haque S, Graupner N, Dunthorn M, Meckenstock RU, Brauer VS. Indigenous microbial communities in heavy oil show a threshold response to salinity. FEMS Microbiol Ecol 2021; 97:6447536. [PMID: 34864985 PMCID: PMC8684454 DOI: 10.1093/femsec/fiab157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
Microbial degradation influences the quality of oil resources. The environmental factors that shape the composition of oil microbial communities are largely unknown because most samples from oil fields are impacted by anthropogenic oil production, perturbing the native ecosystem with exogenous fluids and microorganisms. We investigated the relationship between formation water geochemistry and microbial community composition in undisturbed oil samples. We isolated 43 microliter-sized water droplets naturally enclosed in the heavy oil of the Pitch Lake, Trinidad and Tobago. The water chemistry and microbial community composition within the same water droplet were determined by ion chromatography and 16S rRNA gene amplicon sequencing, respectively. The results revealed a high variability in ion concentrations and community composition between water droplets. Microbial community composition was mostly affected by the chloride concentration, which ranged from freshwater to brackish-sea water. Remarkably, microbial communities did not respond gradually to increasing chloride concentration but showed a sudden change to less diverse and uneven communities when exceeding a chloride concentration of 57.3 mM. The results reveal a threshold-regulated response of microbial communities to salinity, offering new insights into the microbial ecology of oil reservoirs.
Collapse
Affiliation(s)
- Lisa Voskuhl
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Ali Akbari
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Hubert Müller
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Mark Pannekens
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Darya Brusilova
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany.,German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Shirin Haque
- Faculty of Science and Technology, Department of Physics, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Nadine Graupner
- Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Micah Dunthorn
- Eukaryotic Microbiology, Natural History Museum of Oslo, P.O. Box 1172, Blindern, Oslo 0318, Norway
| | - Rainer U Meckenstock
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Verena S Brauer
- Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
32
|
Bedoya K, Niño J, Acero J, Jaimes-Prada R, Cabarcas F, Alzate JF. Metagenomic Analysis of Biocide-Treated Neotropical Oil Reservoir Water Unveils Microdiversity of Thermophile Tepidiphilus. Front Microbiol 2021; 12:741555. [PMID: 34790180 PMCID: PMC8591294 DOI: 10.3389/fmicb.2021.741555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are capable of colonizing extreme environments like deep biosphere and oil reservoirs. The prokaryotes diversity in exploited oil reservoirs is composed of indigenous microbial communities and artificially introduced microbes. In the present work, high throughput sequencing techniques were applied to analyze the microbial community from the injected and produced water in a neotropical hyper-thermophile oil reservoir located in the Orinoquia region of Colombia, South America. Tepidiphilus is the dominant bacteria found in both injection and produced waters. The produced water has a higher microbial richness and exhibits a Tepidiphilus microdiversity. The reservoir injected water is recycled and treated with the biocides glutaraldehyde and tetrakis-hydroxymethyl-phosphonium sulfate (THPS) to reduce microbial load. This process reduces microbial richness and selects a single Tepidiphilus genome (T. sp. UDEAICP_D1) as the dominant isolate. Thermus and Hydrogenobacter were subdominants in both water systems. Phylogenomic analysis of the injection water dominant Tepidiphilus positioned it as an independent branch outside T. succinatimandens and T. thermophilus lineage. Comparative analysis of the Tepidiphilus genomes revealed several genes that might be related to the biocide-resistant phenotype and the tolerance to the stress conditions imposed inside the oil well, like RND efflux pumps and type II toxin-antitoxin systems. Comparing the abundance of Tepidiphilus protein-coding genes in both water systems shows that the biocide selected Tepidiphilus sp. UDEAICP_D1 genome has enriched genes annotated as ABC-2 type transporter, ABC transporter, Methionine biosynthesis protein MetW, Glycosyltransferases, and two-component system NarL.
Collapse
Affiliation(s)
- Katherine Bedoya
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia -UdeA, Medellín, Colombia
| | - Jhorman Niño
- Centro de Innovación y Tecnología ICP, Ecopetrol S.A, Gerencia de Operaciones, Bucaramanga, Colombia
| | - Julia Acero
- Centro de Innovación y Tecnología ICP, Ecopetrol S.A, Gerencia de Operaciones, Bucaramanga, Colombia
| | - Ronald Jaimes-Prada
- Centro de Innovación y Tecnología ICP, Ecopetrol S.A, Gerencia de Operaciones, Bucaramanga, Colombia
| | - Felipe Cabarcas
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia -UdeA, Medellín, Colombia.,Grupo SISTEMIC, Ingeniería Electrónica, Facultad de Ingeniería, Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria - SIU, Universidad de Antioquia -UdeA, Medellín, Colombia
| |
Collapse
|
33
|
Singh NK, Choudhary S. Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58819-58836. [PMID: 33410029 DOI: 10.1007/s11356-020-11705-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Hydrocarbon is a primary source of energy in the current urbanized society. Considering the increasing demand, worldwide oil productions are declining due to maturity of oil fields and because of difficulty in discovering new oil fields to substitute the exploited ones. To meet current and future energy demands, further exploitation of oil resources is highly required. Microorganisms inhabiting in these areas exhibit highly diverse catabolic activities to degrade, transform, or accumulate various hydrocarbons. Enrichment of hydrocarbon-utilizing bacteria in oil basin is caused by continuous long duration and low molecular weight hydrocarbon microseepage which plays a very important role as an indicator for petroleum prospecting. The important microbial metabolic processes in most of the oil reservoir are sulfate reduction, fermentation, acetogenesis, methanogenesis, NO3- reduction, and Fe (III) and Mn (IV) reduction. The microorganisms residing in these sites have critical control on petroleum composition, recovery, and production methods. Physical characteristics of heavy oil are altered by microbial biotransformation and biosurfactant production. Considering oil to be one of the most vital energy resources, it is important to have a comprehensive understanding of petroleum microbiology. This manuscript reviews the recent research work referring to the diversity of bacteria in oil field and reservoir sites and their applications for enhancing oil transformation in the target reservoir and geomicrobial prospecting scope for petroleum exploration.
Collapse
Affiliation(s)
- Nishi Kumari Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India.
| |
Collapse
|
34
|
Scheffer G, Hubert CRJ, Enning DR, Lahme S, Mand J, de Rezende JR. Metagenomic Investigation of a Low Diversity, High Salinity Offshore Oil Reservoir. Microorganisms 2021; 9:2266. [PMID: 34835392 PMCID: PMC8621343 DOI: 10.3390/microorganisms9112266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Oil reservoirs can represent extreme environments for microbial life due to low water availability, high salinity, high pressure and naturally occurring radionuclides. This study investigated the microbiome of saline formation water samples from a Gulf of Mexico oil reservoir. Metagenomic analysis and associated anaerobic enrichment cultures enabled investigations into metabolic potential for microbial activity and persistence in this environment given its high salinity (4.5%) and low nutrient availability. Preliminary 16S rRNA gene amplicon sequencing revealed very low microbial diversity. Accordingly, deep shotgun sequencing resulted in nine metagenome-assembled genomes (MAGs), including members of novel lineages QPJE01 (genus level) within the Halanaerobiaceae, and BM520 (family level) within the Bacteroidales. Genomes of the nine organisms included respiratory pathways such as nitrate reduction (in Arhodomonas, Flexistipes, Geotoga and Marinobacter MAGs) and thiosulfate reduction (in Arhodomonas, Flexistipes and Geotoga MAGs). Genomic evidence for adaptation to high salinity, withstanding radioactivity, and metal acquisition was also observed in different MAGs, possibly explaining their occurrence in this extreme habitat. Other metabolic features included the potential for quorum sensing and biofilm formation, and genes for forming endospores in some cases. Understanding the microbiomes of deep biosphere environments sheds light on the capabilities of uncultivated subsurface microorganisms and their potential roles in subsurface settings, including during oil recovery operations.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
| | - Dennis R. Enning
- Faculty of Life Sciences and Technology, Berlin University of Applied Sciences and Technology, D-13347 Berlin, Germany;
| | - Sven Lahme
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
- Exxon Mobil Upstream Research Company, Spring, TX 77389, USA;
| | - Jaspreet Mand
- Exxon Mobil Upstream Research Company, Spring, TX 77389, USA;
| | - Júlia R. de Rezende
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
35
|
Yun Y, Gui Z, Xie J, Chen Y, Tian X, Li G, Gu JD, Ma T. Stochastic assembly process dominates bacterial succession during a long-term microbial enhanced oil recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148203. [PMID: 34380257 DOI: 10.1016/j.scitotenv.2021.148203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Microbial enhanced oil recovery (MEOR) has been successfully used in oil exploitation to increase oil production. However, the mechanisms of microbial interactions and community assembly related to oil production performance along MEOR process are poorly understood. Here, we investigated the microbiome of an oil reservoir for a period of 5 years under three phases of different treatments with the injection of a mixture of microbes, nutrients, and air at different intensity. During the MEOR process, amplification of functional genes revealed an increase of genes related to hydrocarbon degradation linked to methanogenesis, supported by stable isotope analysis for confirmation of the methanogenesis activity. Meanwhile, a lower contribution of the ubiquitous/common taxa, closer and more positive associations, and lower modularity were observed in bacterial co-occurrence networks, with the rare taxa being the keystone taxa. The null model analysis and structural equation modeling revealed that the contribution of stochastic processes affected by functional groups and co-occurrence patterns to bacterial community increased significantly with the increase of oil production. This provides new insight that stochastic assembly in bacterial community increased along with MEOR process, and it is worthwhile paying attention to the uncertain consequences caused by random evolution since the treatment effect of MEOR is closely related to the in-situ community in oil reservoir.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Jinxia Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, The People's Republic of China.
| |
Collapse
|
36
|
Yun Y, Gui Z, Chen Y, Tian X, Gao P, Li G, Ma T. Disentangling the distinct mechanisms shaping the subsurface oil reservoir bacterial and archaeal communities across northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148074. [PMID: 34323826 DOI: 10.1016/j.scitotenv.2021.148074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Microbes in surface ecosystem exhibit strong biogeographic patterns, and are less apparent after human management. However, in contrast with the considerable knowledge on the surface ecosystem, the microbial biogeographic patterns in deep subsurface ecosystem under artificial disturbance is poorly understood. Here, we explored the spatial scale-dependence patterns of bacterial and archaeal communities in oil reservoirs under different artificial flooding duration and environmental conditions across northern China. Bacterial and archaeal communities of oil reservoirs exhibited distinct assembly patterns with a stronger distance-decay relationship in archaeal communities than bacterial communities, as different environmental factors linked to the diversity of bacteria and archaea. Specifically, bacterial and archaeal network properties revealed a significant correlation with spatial reservoir isolation by distinct co-occurrence patterns. The co-occurrences of bacterial communities were more complex in high temperature and alkaline pH, while archaeal co-occurrences were more frequent in low temperature and neutral pH. Potential functions in bacterial communities were more connected with chemoheterotrophy, whereas methanogenesis was abundant in archaeal communities, as confirmed by both keystone taxa and main ecological clusters in networks. This revealed that different mechanisms underlain geography and co-occurrence patterns of bacteria and archaea in oil reservoirs, providing a new insight for understanding biogeography and coexistence theory in deep subsurface ecosystem.
Collapse
Affiliation(s)
- Yuan Yun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyu Gui
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuefeng Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
37
|
Hu B, Zhao JY, Nie Y, Qin XY, Zhang KD, Xing JM, Wu XL. Bioemulsification and Microbial Community Reconstruction in Thermally Processed Crude Oil. Microorganisms 2021; 9:microorganisms9102054. [PMID: 34683375 PMCID: PMC8539444 DOI: 10.3390/microorganisms9102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.
Collapse
Affiliation(s)
- Bing Hu
- Group of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102401, China;
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China, Beijing 102401, China
| | - Jie-Yu Zhao
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Correspondence: (Y.N.); (X.-L.W.)
| | - Xiao-Yu Qin
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Kai-Duan Zhang
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
| | - Jian-Min Xing
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, China; (J.-Y.Z.); (X.-Y.Q.); (K.-D.Z.)
- Institute of Ecology, Peking University, Beijing 100871, China
- Correspondence: (Y.N.); (X.-L.W.)
| |
Collapse
|
38
|
Arslan M, Gamal El-Din M. Bacterial diversity in petroleum coke based biofilters treating oil sands process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146742. [PMID: 33839672 DOI: 10.1016/j.scitotenv.2021.146742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Adopting nature-based solutions for the bioremediation of oil sands process water (OSPW) is of significant interest, which requires a thorough understanding of how bacterial communities behave within treatment systems operated under natural conditions. This study investigates the OSPW remediation potential of delayed petroleum-coke (PC), which is a byproduct of bitumen upgrading process and is readily available at oil refining sites, in fixed-bed biofilters particularly for the degradation of naphthenic acids (NAs) and aromatics. The biofilters were operated continuously and total and active bacterial communities were studied by DNA and RNA-based amplicon sequencing in a metataxonomic fashion to extrapolate the underlying degradation mechanisms. The results of total community structure indicated a high abundance of aerobic bacteria at all depths of the biofilter, e.g., Porphyrobacter, Legionella, Pseudomonas, Planctomyces. However, redox conditions within the biofilters were anoxic (-153 to -182 mV) that selected anaerobic bacteria to actively participate in the remediation of OSPW, i.e., Ruminicoccus, Eubacterium, Faecalibacterium, Dorea. After 15 days of operation, the removal of classical NAs was recorded up to 20% whereas oxidized NAs species were poorly removed, i.e., O3-NAs: 4.8%, O4-NAs: 1.2%, O5-NAs: 1.7%, and O6-NAs: 0.5%. Accordingly, monoaromatics, diaromatics, and triaromatics were removed up to 16%, 22%, and 15%, respectively. The physiology of the identified genera suggested that the degradation in the PC-based biofilters was most likely proceeded in a scheme similar to beta-oxidation during anaerobic digestion process. The presence of hydrogenotrophic methanogens namely Methanobrevibacter and Methanomassiliicoccus and quantification of mcrA gene (2.4 × 102 to 8.7 × 102 copies/mg of PC) revealed that methane production was likely occurring in a syntrophic mechanism during the OSPW remediation. A slight reduction in toxicity was also observed. This study suggests that PC-based biofilters may offer some advantages in the remediation of OSPW; however, the production of methane could be of future concerns if operated at field-scale.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
39
|
Long-Term Biocide Efficacy and Its Effect on a Souring Microbial Community. Appl Environ Microbiol 2021; 87:e0084221. [PMID: 34160245 PMCID: PMC8357289 DOI: 10.1128/aem.00842-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reservoir souring, which is the production of H2S mainly by sulfate-reducing microorganisms (SRM) in oil reservoirs, has been a long-standing issue for the oil industry. While biocides have been frequently applied to control biogenic souring, the effects of biocide treatment are usually temporary, and biocides eventually fail. The reasons for biocide failure and the long-term response of the microbial community remain poorly understood. In this study, one-time biocide treatments with glutaraldehyde (GA) and an aldehyde-releasing biocide (ARB) at low (100 ppm) and high (750 ppm) doses were individually applied to a complex SRM community, followed by 1 year of monitoring of the chemical responses and the microbial community succession. The chemical results showed that souring control failed after 7 days at a dose of 100 ppm regardless of the biocide type and lasting souring control for the entire 1-year period was achieved only with ARB at 750 ppm. Microbial community analyses suggested that the high-dose biocide treatments resulted in 1 order of magnitude lower average total microbial abundance and average SRM abundance, compared to the low-dose treatments. The recurrence of souring was associated with reduction of alpha diversity and with long-term microbial community structure changes; therefore, monitoring changes in microbial community metrics may provide early warnings of the failure of a biocide-based souring control program in the field. Furthermore, spore-forming sulfate reducers (Desulfotomaculum and Desulfurispora) were enriched and became dominant in both GA-treated groups, which could cause challenges for the design of long-lasting remedial souring control strategies. IMPORTANCE Reservoir souring is a problem for the oil and gas industry, because H2S corrodes the steel infrastructure, downgrades oil quality, and poses substantial risks to field personnel and the environment. Biocides have been widely applied to remedy souring, but the long-term performance of biocide treatments is hard to predict or to optimize due to limited understanding of the microbial ecology affected by biocide treatment. This study investigates the long-term biocide performance and associated changes in the abundance, diversity, and structure of the souring microbial community, thus advancing the knowledge toward a deeper understanding of the microbial ecology of biocide-treated systems and contributing to the improvement of current biocide-based souring control practices. The study showcases the potential application of incorporating microbial community analyses to forecast souring, and it highlights the long-term consequences of biocide treatment in the microbial communities, with relevance to both operators and regulators.
Collapse
|
40
|
Pannekens M, Voskuhl L, Mohammadian S, Köster D, Meier A, Köhne JM, Kulbatzki M, Akbari A, Haque S, Meckenstock RU. Microbial Degradation Rates of Natural Bitumen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8700-8708. [PMID: 34169718 PMCID: PMC8264945 DOI: 10.1021/acs.est.1c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms are present in nearly every oil or bitumen sample originating from temperate reservoirs. Nevertheless, it is very difficult to obtain reliable estimates about microbial processes taking place in deep reservoirs, since metabolic rates are rather low and differ strongly during artificially cultivation. Here, we demonstrate the importance and impact of microorganisms entrapped in microscale water droplets for the overall biodegradation process in bitumen. To this end, we measured degradation rates of heavily biodegraded bitumen from the Pitch Lake (Trinidad and Tobago) using the novel technique of reverse stable isotope labeling, allowing precise measurements of comparatively low mineralization rates in the ng range in microcosms under close to natural conditions. Freshly taken bitumen samples were overlain with artificial brackish water and incubated for 945 days. Additionally, three-dimensional distribution of water droplets in bitumen was studied with computed tomography, revealing a water bitumen interface of 1134 cm2 per liter bitumen, resulting in an average mineralization rate of 9.4-38.6 mmol CO2 per liter bitumen and year. Furthermore, a stable and biofilm-forming microbial community established on the bitumen itself, mainly composed of fermenting and sulfate-reducing bacteria. Our results suggest that small water inclusions inside the bitumen substantially increase the bitumen-water interface and might have a major impact on the overall oil degradation process.
Collapse
Affiliation(s)
- Mark Pannekens
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Lisa Voskuhl
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Sadjad Mohammadian
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Daniel Köster
- Instrumental
Analytical Chemistry, University of Duisburg—Essen, 45141 Essen, Germany
| | - Arne Meier
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - John M. Köhne
- Department
of Soil System Science, Helmholtz Centre
for Environmental Research, 06120 Halle, Germany
| | - Michelle Kulbatzki
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Ali Akbari
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Shirin Haque
- Department
of Physics, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Rainer U. Meckenstock
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| |
Collapse
|
41
|
Zemskaya TI, Bukin SV, Lomakina AV, Pavlova ON. Microorganisms in the Sediments of Lake Baikal, the Deepest and Oldest Lake in the World. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Rajbongshi A, Gogoi SB. A review on anaerobic microorganisms isolated from oil reservoirs. World J Microbiol Biotechnol 2021; 37:111. [PMID: 34076736 DOI: 10.1007/s11274-021-03080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
The Role of microorganisms in the petroleum industry is wide-ranging. To understand the role of microorganisms in hydrocarbon transformation, identification of such microorganisms is vital, especially the ones capable of in situ degradation. Microorganisms play a pivotal role in the degradation of hydrocarbons and remediation of heavy metals. Anaerobic microorganisms such as Sulphate Reducing Bacteria (SRB), responsible for the production of hydrogen sulphide (H2S) within the reservoir, reduces the oil quality by causing reservoir souring and reduction in oil viscosity. This paper reviews the diversity of SRB, methanogens, Nitrogen Reducing Bacteria (NRB), and fermentative bacteria present in oil reservoirs. It also reviews the extensive diversity of these microorganisms, their applications in petroleum industries, characteristics and adaptability to survive in different conditions, the potential to alter the petroleum hydrocarbons properties, the propensity to petroleum hydrocarbon degradation, and remediation of metals.
Collapse
Affiliation(s)
- Amarjit Rajbongshi
- Brahmaputra Valley Fertilizer Corporation Limited, Namrup, Assam, India.
| | | |
Collapse
|
43
|
Thermococcus bergensis sp. nov., a Novel Hyperthermophilic Starch-Degrading Archaeon. BIOLOGY 2021; 10:biology10050387. [PMID: 33947041 PMCID: PMC8146568 DOI: 10.3390/biology10050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Hyperthermophiles grow optimally above 80 °C and include mostly microorganisms belonging to the Archaea domain and are thriving in terrestrial and seafloor geothermal vents as well as in subsurface environments. From an anaerobic hyperthermophilic mixed culture obtained from water produced from a deep and hot oil reservoir we isolated and characterized a starch-degrading strain. Based on phylogenomic analysis, the strain represents a novel hyper-thermophilic species belonging to genus Thermococcus, for which we propose the name Thermococcus bergensis sp. nov. Abstract A novel hyperthermophilic archaeon, termed strain T7324T, was isolated from a mixed sulfate-reducing consortium recovered from hot water produced from a deep North Sea oil reservoir. The isolate is a strict anaerobic chemo-organotroph able to utilize yeast extract or starch as a carbon source. The genes for a number of sugar degradation enzymes and glutamate dehydrogenase previously attributed to the sulfate reducing strain of the consortium (Archaeoglobus fulgidus strain 7324) were identified in the nearly completed genome sequence. Sequence analysis of the 16S rRNA gene placed the strain in the Thermococcus genus, but with an average nucleotide identity that is less than 90% to its closest relatives. Phylogenomic treeing reconstructions placed the strain on a distinct lineage clearly separated from other Thermococcus spp. The results indicate that the strain T7324T represents a novel species, for which the name Thermococcus bergensis sp. nov. is proposed. The type strain is T7324T (=DSM 27149T = KCTC 15808T).
Collapse
|
44
|
Bergfors SN, Huynh K, Jensen AE, Sundberg J. Non-target screening of organic compounds in offshore produced water by GC×GC-MS. PEERJ ANALYTICAL CHEMISTRY 2021. [DOI: 10.7717/peerj-achem.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Produced water is the largest by-product of oil and gas production. At off-shore installations, the produced water is typically reinjected or discharged into the sea. The water contains a complex mixture of dispersed and dissolved oil, solids and inorganic ions. A better understanding of its composition is fundamental to (1) improve environmental impact assessment tools and (2) develop more efficient water treatment technologies. The objective of the study was to screen produced water sampled from a producing field in the Danish region of the North Sea to identify any containing organic compounds. The samples were taken at a test separator and represent an unfiltered picture of the composition before cleaning procedures. The analytes were isolated by liquid-liquid extraction and derivatized using a silylation reagent to increase the volatility of oxygenated compounds. The final extracts were analyzed by comprehensive multi-dimensional gas chromatography coupled to a high-resolution mass spectrometer. A non-target processing workflow was implemented to extract features and quantify the confidence of library matches by correlation to retention indices and the presence of molecular ions. Approximately 120 unique compounds were identified across nine samples. Of those, 15 were present in all samples. The main types of compounds are aliphatic and aromatic carboxylic acids with a small fraction of hydrocarbons. The findings have implications for developing improved environmental impact assessment tools and water remediation technologies.
Collapse
|
45
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
46
|
Shlimon A, Mansurbeg H, Othman R, Head I, Kjeldsen KU, Finster K. Identity and hydrocarbon degradation activity of enriched microorganisms from natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI). Biodegradation 2021; 32:251-271. [PMID: 33782778 DOI: 10.1007/s10532-021-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
A previous cultivation-independent investigation of the microbial community structure of natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI) revealed the dominance of uncultured bacterial taxa belonging to the phyla Deferribacterota and Coprothermobacterota and the orders Thermodesulfobacteriales, Thermales, and Burkholderiales. Here we report on a cultivation-dependent approach to identify members of these groups involved in hydrocarbon degradation in the KRI oil and asphalt seeps. For this purpose, we set up anoxic crude oil-degrading enrichment cultures based on cultivation media known to support the growth of members of the above-mentioned taxonomic groups. During 100-200 days incubation periods, nitrate-reducing and fermentative enrichments showed up to 90% degradation of C8-C17 alkanes and up to 28% degradation of C18-C33 alkanes along with aromatic hydrocarbons. Community profiling of the enrichment cultures showed that they were dominated by diverse bacterial taxa, which were rare in situ community members in the investigated seeps. Groups initially targeted by our approach were not enriched, possibly because their members are slow-growing and involved in the degradation of recalcitrant hydrocarbons. Nevertheless, the enriched taxa were taxonomically related to phylotypes recovered from hydrocarbon-impacted environments as well as to characterized bacterial isolates not previously known to be involved in hydrocarbon degradation. Marker genes (assA and bssA), diagnostic for fumarate addition-based anaerobic hydrocarbon degradation, were not detectable in the enrichment cultures by PCR. We conclude that hydrocarbon biodegradation in our enrichments occurred via unknown pathways and synergistic interactions among the enriched taxa. We suggest, that although not representing abundant populations in situ, studies of the cultured close relatives of these taxa will reveal an unrecognized potential for anaerobic hydrocarbon degradation, possibly involving poorly characterized mechanisms.
Collapse
Affiliation(s)
- Adris Shlimon
- Department of Biology, Soran University, Soran, Iraq. .,Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark.
| | - Howri Mansurbeg
- Department of Petroleum Geoscience, Soran University, Soran, Iraq.,Department of Earth and Environmental Sciences, University of Windsor, Windsor, ON, Canada
| | - Rushdy Othman
- Department of Petroleum Geoscience, Soran University, Soran, Iraq
| | - Ian Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Kasper U Kjeldsen
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Kai Finster
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| |
Collapse
|
47
|
Abou Khalil C, Prince VL, Prince RC, Greer CW, Lee K, Zhang B, Boufadel MC. Occurrence and biodegradation of hydrocarbons at high salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143165. [PMID: 33131842 DOI: 10.1016/j.scitotenv.2020.143165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Hypersaline environments are found around the world, above and below ground, and many are exposed to hydrocarbons on a continuous or a frequent basis. Some surface hypersaline environments are exposed to hydrocarbons because they have active petroleum seeps while others are exposed because of oil exploration and production, or nearby human activities. Many oil reservoirs overlie highly saline connate water, and some national oil reserves are stored in salt caverns. Surface hypersaline ecosystems contain consortia of halophilic and halotolerant microorganisms that decompose organic compounds including hydrocarbons, and subterranean ones are likely to contain the same. However, the rates and extents of hydrocarbon biodegradation are poorly understood in such ecosystems. Here we describe hypersaline environments potentially or likely to become contaminated with hydrocarbons, including perennial and transient environments above and below ground, and discuss what is known about the microbes degrading hydrocarbons and the extent of their activities. We also discuss what limits the microbial hydrocarbon degradation in hypersaline environments and whether there are opportunities for inhibiting (oil storage) or stimulating (oil spills) such biodegradation as the situation requires.
Collapse
Affiliation(s)
- Charbel Abou Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
48
|
Ren G, Wang J, Qu L, Li W, Hu M, Bian L, Zhang Y, Le J, Dou X, Chen X, Bai L, Li Y. Compositions and Co-occurrence Patterns of Bacterial Communities Associated With Polymer- and ASP-Flooded Petroleum Reservoir Blocks. Front Microbiol 2020; 11:580363. [PMID: 33335516 PMCID: PMC7736161 DOI: 10.3389/fmicb.2020.580363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Polymer flooding technology and alkaline-surfactant-polymer (ASP) flooding technology have been widely used in some oil reservoirs. About 50% of remaining oil is trapped, however, in polymer-flooded and ASP-flooded reservoirs. How to further improve oil recovery of these reservoirs after chemical flooding is technically challenging. Microbial enhanced oil recovery (MEOR) technology is a promising alternative technology. However, the bacterial communities in the polymer-flooded and ASP-flooded reservoirs have rarely been investigated. We investigated the distribution and co-occurrence patterns of bacterial communities in ASP-flooded and polymer-flooded oil production wells. We found that Arcobacter and Pseudomonas were dominant both in the polymer-flooded and ASP-flooded production wells. Halomonas accounted for a large amount of the bacterial communities inhabiting in the ASP-flooded blocks, whereas they were hardly detected in the polymer-flooded blocks, and the trends for Acetomicrobium were the opposite. RDA analysis indicated that bacterial communities in ASP-flooded and polymer-flooded oil production wells are closely related to the physical and chemical properties, such as high salinity and strong alkaline, which together accounted for 56.91% of total variance. Co-occurrence network analysis revealed non-random combination patterns of bacterial composition from production wells of ASP-flooded and polymer-flooded blocks, and the ASP-flooded treatment decreased bacterial network complexity, suggesting that the application of ASP flooding technology reduced the tightness of bacterial interactions.
Collapse
Affiliation(s)
- Guoling Ren
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing, China.,College of Bioengineering, Daqing Normal University, Daqing, China
| | - Jinlong Wang
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing, China.,College of Bioengineering, Daqing Normal University, Daqing, China
| | - Lina Qu
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing, China.,College of Bioengineering, Daqing Normal University, Daqing, China
| | - Wei Li
- Exploration and Development Research Institute, Daqing Oil Field Company, Ltd., Daqing, China
| | - Min Hu
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing, China.,College of Bioengineering, Daqing Normal University, Daqing, China
| | - Lihong Bian
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing, China.,College of Bioengineering, Daqing Normal University, Daqing, China
| | - Yiting Zhang
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing, China.,College of Bioengineering, Daqing Normal University, Daqing, China
| | - Jianjun Le
- Exploration and Development Research Institute, Daqing Oil Field Company, Ltd., Daqing, China
| | - Xumou Dou
- Exploration and Development Research Institute, Daqing Oil Field Company, Ltd., Daqing, China
| | - Xinhong Chen
- Exploration and Development Research Institute, Daqing Oil Field Company, Ltd., Daqing, China
| | - Lulu Bai
- Exploration and Development Research Institute, Daqing Oil Field Company, Ltd., Daqing, China
| | - Yue Li
- College of Bioengineering, Daqing Normal University, Daqing, China
| |
Collapse
|
49
|
Sakamoto S, Nobu MK, Mayumi D, Tamazawa S, Kusada H, Yonebayashi H, Iwama H, Ikarashi M, Wakayama T, Maeda H, Sakata S, Tamura T, Nomura N, Kamagata Y, Tamaki H. Koleobacter methoxysyntrophicus gen. nov., sp. nov., a novel anaerobic bacterium isolated from deep subsurface oil field and proposal of Koleobacteraceae fam. nov. and Koleobacterales ord. nov. within the class Clostridia of the phylum Firmicutes. Syst Appl Microbiol 2020; 44:126154. [PMID: 33227632 DOI: 10.1016/j.syapm.2020.126154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
An anaerobic thermophilic, rod-shaped bacterium possessing a unique non-lipid sheathed-like structure enveloping a single-membraned cell, designated strain NRmbB1T was isolated from at the deep subsurface oil field located in Yamagata Prefecture, Japan. Growth occurred with 40-60°C (optimum, 55°C), 0-2% (2%), NaCl and pH 6.0-8.5 (8.0). Fermentative growth with various sugars was observed. Glucose-grown cells generated acetate, hydrogen, pyruvate and lactate as the main end products. Syntrophic growth occurred with glucose, pyruvate and 3,4,5-trimethoxybenzoate in the presence of an H2-scavenging partner, and growth on 3,4,5-trimethoxybenzoate was only observed under syntrophic condition. The predominant cellular fatty acids were C16:0, iso-C16:0, anteiso-C15:0, and iso-C14:0. Respiratory quinone was not detected. The genomic G+C content was 40.8mol%. Based on 16S rRNA gene phylogeny, strain NRmbB1T belongs to a distinct order-level clade in the class Clostridia of the phylum Firmicutes, sharing low similarity with other isolated organisms (i.e., 87.5% for top hit Moorella thermoacetica DSM 2955T). In total, chemotaxonomic, phylogenetic and genomic characterization revealed that strain NRmbB1T (=KCTC 25035T, =JCM 39120T) represents a novel species of a new genus. In addition, we also propose the associated family and order as Koleobacteraceae fam. nov and Koleobacterales ord. nov., respectively.
Collapse
Affiliation(s)
- Sachiko Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Satoshi Tamazawa
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan; Northern Advancement Center for Science & Technology, H-RISE, 5-3 Sakae-machi, Horonobe-cho, Teshio-gun, BPRI, Hokkaido 098-3221, Japan
| | - Hiroyuki Kusada
- JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideharu Yonebayashi
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Hiroki Iwama
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Masayuki Ikarashi
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Tatsuki Wakayama
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Haruo Maeda
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan; Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Susumu Sakata
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideyuki Tamaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| |
Collapse
|
50
|
Summers ZM, Belahbib H, Pradel N, Bartoli M, Mishra P, Tamburini C, Dolla A, Ollivier B, Armougom F. A novel Thermotoga strain TFO isolated from a Californian petroleum reservoir phylogenetically related to Thermotoga petrophila and T. naphthophila, two thermophilic anaerobic isolates from a Japanese reservoir: Taxonomic and genomic considerations. Syst Appl Microbiol 2020; 43:126132. [DOI: 10.1016/j.syapm.2020.126132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
|