1
|
Di Carlo D, Annereau M, Vignes M, Denis L, Epaillard N, Dumont S, Guyon D, Rieutord A, Jacobs S, Salomon V, Yoldjian I, Duperray F, Brunel L, Baiao X, Lemos F, Vauleon E, Capra M, Abbou S, Touat M, Sanson M, Gandemer V, De Carli E, Bourdeaut F, Hezam I, Vassal G, Grill J. Real life data of ONC201 (dordaviprone) in pediatric and adult H3K27-altered recurrent diffuse midline glioma: Results of an international academia-driven compassionate use program. Eur J Cancer 2024; 216:115165. [PMID: 39700833 DOI: 10.1016/j.ejca.2024.115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION H3K27-altered diffuse midline gliomas (DMG) have limited therapeutic options and a very poor prognosis. Encouraging responses were observed in early clinical trials with ONC201. As ONC201 was unavailable in Europe, a compassionate use program supported by the French Authorities was launched for patients at progression after standard of care radiotherapy. METHODS This program was developed by the French Society of Pediatric Oncology (SFCE) and Association des Neuro-Oncologues d'Expression Française in collaboration with the French National Agency For Medicines and Health Products Safety and Parents Associations. RESULTS 174 patients (102 children, 72 adults) from 14 countries were treated from November 2021 to August 2023 at Gustave Roussy Institut (Villejuif, France). 37 % received a second course of irradiation at the time of relapse. Median duration of treatment was 57 days or 1,9 months (mo) (range 1-456 days). Median OS since diagnosis for the whole cohort was 466 days or 15,5 mo (112-2612 days); 426 or 14,2 mo (112-2612 days) and 590 or 19,6 mo (range 160-1881) for children and adults, respectively (p = 0.001). Median OS after ONC201 start was 143 days or 4,7 mo (1-711 days) for the whole cohort. Univariate and multivariable analysis identified site (thalamus) and age (older) as favorable prognostic factors. Reirradiation was associated with significantly longer survival after ONC201 start only in children. CONCLUSION While the efficacy of ONC201 needs validation in a controlled randomized clinical trial, our real-life data support a better outcome for patients with thalamic tumors treated with ONC201. We demonstrated furthermore the feasibility of a successful academia-driven compassionate use program.
Collapse
Affiliation(s)
- D Di Carlo
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France; Hematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padova, Italy.
| | - M Annereau
- Gustave Roussy Cancer Campus, Department of Clinical Pharmacy, Villejuif, France
| | - M Vignes
- Gustave Roussy Cancer Campus, Department of Clinical Pharmacy, Villejuif, France
| | - L Denis
- Gustave Roussy Cancer Campus, Department of Clinical Pharmacy, Villejuif, France
| | - N Epaillard
- Gustave Roussy Cancer Campus, Medical Oncology Department, Villejuif, France
| | - S Dumont
- Gustave Roussy Cancer Campus, Medical Oncology Department, Villejuif, France
| | - D Guyon
- Gustave Roussy Cancer Campus, Medical Oncology Department, Villejuif, France
| | - A Rieutord
- Gustave Roussy Cancer Campus, Department of Clinical Pharmacy, Villejuif, France
| | - S Jacobs
- Department of Pediatric Hematology and Oncology, University Hospitals Leuven, Leuven, Belgium and Pediatric Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - V Salomon
- National Agency for the Safety of Medicines and Health Products (ANSM), Paris, France
| | - I Yoldjian
- National Agency for the Safety of Medicines and Health Products (ANSM), Paris, France
| | - F Duperray
- National Agency for the Safety of Medicines and Health Products (ANSM), Paris, France
| | - L Brunel
- National Agency for the Safety of Medicines and Health Products (ANSM), Paris, France
| | - X Baiao
- "Nathanael, du Rêve et de l'Espoir" organisation, 7 Impasse Abraham Duquesne, Cuers, France
| | - F Lemos
- "Guerir Le Cancer des Enfants" campaign, Gustave Roussy Foundation, Villejuif, France
| | - E Vauleon
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurooncology Service, Lille, France
| | - M Capra
- Pediatric Oncology, CHI at Crumlin, Dublin, Ireland
| | - S Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France; Team Genomics and Oncogenesis of Brain Tumors, INSERM U981, Paris Saclay University, Villejuif, France
| | - M Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Institut de Neurologie, Paris, France
| | - M Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Institut de Neurologie, Paris, France
| | - V Gandemer
- French Society of Pediatric cancer (SFCE), Rennes, France
| | - E De Carli
- Pediatric Hematology and Oncology Department, University Hospital of Angers, Angers, France
| | - F Bourdeaut
- SIREDO Center (Care, Innovation Research in Pediatric, Adolescent and Young Adult Oncology), Institut Curie, Paris, France
| | - I Hezam
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - G Vassal
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - J Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France; Team Genomics and Oncogenesis of Brain Tumors, INSERM U981, Paris Saclay University, Villejuif, France
| |
Collapse
|
2
|
Czuczi T, Murányi J, Móra I, Gurbi B, Varga A, Papp D, Schlosser G, Csala M, Csámpai A. Development of Novel Imipridones with Alkyne- and Triazole-Linked Warheads on the Tricyclic Skeleton, Showing Superior Ability to Eradicate PANC-1 and Fadu Cells Compared to ONC201. Int J Mol Sci 2024; 25:13176. [PMID: 39684886 DOI: 10.3390/ijms252313176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Our ongoing research focuses on the development of new imipridone derivatives. We aim to design compounds that can completely and selectively eradicate cancer cells after relatively short treatment. We have synthetized systematically designed novel hybrids and evaluated their antiproliferative activity against PANC-1 and Fadu cell lines. We have also conducted preliminary studies on the mechanism, including colony formation as well as dose-response tests in HEK293T wild-type (WT) and HEK293T CLPP-/- cells. Following gradual structural fine-tuning based on high throughput screening, we identified two imipridone hybrids as the most potent derivatives. Their unique substitution pattern includes N-methylated propargylamine and ferrocenyl/phenyltriazole moieties on the benzyl groups attached to opposite sides of the imipridone core. We found that the compounds with IC50 values similar to those of ONC201 completely eradicated cancer cells at about 4 μM, while ONC201 treatment at even higher concentrations left 30-50% of viable cells behind. Both compounds exerted equal activity in WT and CLPP-/- HEK293T cells, indicating a ClpP-independent mechanism. Further development is needed to improve the tumor selectivity of the two potent imipridone derivatives. By preserving tumor cytotoxicity, we aim to generate new drug candidates that evade resistance and can be applied in a sufficiently broad therapeutic window.
Collapse
Affiliation(s)
- Tamás Czuczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| | - József Murányi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| | - István Móra
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Bianka Gurbi
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Attila Varga
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Zhang Y, Jiang J, Ding H, Li Q, Xiao Y, Sun H. Development of novel imipridone derivatives with potent anti-cancer activities as human caseinolytic peptidase P (hClpP) activators. Bioorg Chem 2024; 153:107765. [PMID: 39243740 DOI: 10.1016/j.bioorg.2024.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Based on a clinically staged small molecular hClpP activator ONC201, a class of imipridone derivatives was designed and synthesized. These compounds were evaluated in a protease hydrolytic assay, as well as cell growth inhibition assays in three cancer cell lines, MIA PACA-2, HCT116, and MV4-11. A number of compounds that can more potently activate hClpP and more effectively inhibit cell growth in the three cancer cell lines than ONC201 were identified. The most potent compound, ZYZ-17, activated hClpP with an EC50 value of 0.24 µM and inhibited the growth of the three cancer cell lines with IC50 values of less than 10 nM. Mechanism studies for ZYZ-17 revealed that it potently activates cellular hClpP, efficiently induces the degradation of hClpP substrates, and robustly induces apoptosis in the three cancer cell lines. Furthermore, ZYZ-17 demonstrated a promising pharmacokinetic (PK) profile and exhibited highly potent in vivo antitumor activity in a pancreatic cancer MIA PACA-2 xenograft model in BALB/c nude mice.
Collapse
Affiliation(s)
- Yanzhi Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiannan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Chattopadhyay C, Roszik J, Bhattacharya R, Alauddin M, Mahmud I, Yadugiri S, Ali MM, Khan FS, Prabhu VV, Lorenzi PL, Wei B, Burton E, Morey RR, Lazcano R, Davies MA, Patel SP, Grimm EA. Imipridones inhibit tumor growth and improve survival in an orthotopic liver metastasis mouse model of human uveal melanoma. Br J Cancer 2024; 131:1846-1857. [PMID: 39394450 PMCID: PMC11589887 DOI: 10.1038/s41416-024-02866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, which are CLPP activators, which inhibit OXPHOS indirectly and have demonstrated safety in patients. METHODS We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201 and ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic efficacy in vivo in UM liver metastasis models. RESULTS CLPP expression was detected in primary and mUM patient samples. ONC201 and 212 decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis in human UM cell lines in vitro. ONC212 inhibited OXPHOS, increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. CONCLUSIONS Imipridones are a promising strategy for further testing and development in mUM.
Collapse
Affiliation(s)
- Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Md Alauddin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sirisha Yadugiri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mir Mustafa Ali
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fatima S Khan
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rohini R Morey
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Monzer A, Ghamlouche F, Wakimian K, Ballout F, Al Bitar S, Yehya A, Kanso M, Saheb N, Tawil A, Doughan S, Hussein M, Mukherji D, Faraj W, Allen JE, Prabhu VV, Abou-Antoun T, Gali-Muhtasib H, Abou-Kheir W. ONC206, an imipridone derivative, demonstrates anti-colorectal cancer activity against stem/progenitor cells in 3D cell cultures and in patient-derived organoids. Pharmacol Rep 2024:10.1007/s43440-024-00676-4. [PMID: 39551911 DOI: 10.1007/s43440-024-00676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most frequently diagnosed and life-threatening malignancies worldwide. CRC's high recurrence rates and drug resistance have been correlated with a subpopulation of dormant slowly dividing cells termed CRC stem cells (CCSCs). Consequently, there is a pressing need to identify novel therapeutics that can effectively and specifically target CCSCs. Imipridones are promising structurally related anticancer molecules that showed efficacy in several solid and hematological preclinical models and phase I/II/III clinical trials. This study mainly aimed to assess the potential anticancer effects of ONC206, an imipridone derivative, on CRC three-dimensional in vitro culture systems using HCT116 and HT29 cells. Importantly, the study aimed at using CRC patient-derived organoids (PDOs) to test the potential therapeutic effect of ONC206. METHODS Two-dimensional cell proliferation, viability, migration, and invasion assays were used to assess the effects of ONC206 on two colorectal cancer cell lines, HCT116 and HT29, in vitro. Immunofluorescence imaging, flow cytometry, and western blot analysis were also performed to investigate the mechanism of action of this drug. Sphere formation assay and CRC PDOs were employed to evaluate the effect of ONC206 on CRC cells in a 3D setting and specifically its potency in targeting the CRC stem/progenitor subpopulation of cells. RESULTS Our results showed that ONC206 was more potent than its parental molecule ONC201 in inhibiting the proliferation and viability of HCT116 and HT29 cells. Moreover, ONC206 significantly reduced the migration and invasion indices of CRC cells. These effects were accompanied by an increase in reactive oxygen species (ROS) production, sub-G1 phase accumulation, and apoptosis in HCT116 and HT29 cells. Furthermore, ONC206 significantly inhibited the 3D colonospheres growth and self-renewal ability of CCSCs more potently than ONC201, which was associated with a decrease in the expression of CSC-related markers. Lastly, ONC206 significantly reduced the growth of organoids derived from CRC patients. CONCLUSION Collectively, our findings demonstrate that ONC206 is an effective anticancer molecule capable of targeting CCSCs, which may represent a novel therapeutic strategy that can overcome CRC resistance and recurrence.
Collapse
Affiliation(s)
- Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Mariam Kanso
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Nour Saheb
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Maher Hussein
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | - Walid Faraj
- Department of Surgery, American University of Beirut Medical Center, Beirut, 1107-2020, Lebanon
| | | | | | - Tamara Abou-Antoun
- Pediatric Hematology-Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110-101, USA
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
6
|
Chen DN, Ye DD, Chen LN, Xia PJ. Nitrogen-Nitrogen Radical Coupling-Enabled Precise Difunctionalization of Carbon-Nitrogen Double Bonds. Org Lett 2024. [PMID: 39526584 DOI: 10.1021/acs.orglett.4c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, we have developed a metal-free, photoinduced energy transfer strategy for the efficient difunctionalization of carbon-nitrogen double bonds (C═N). Utilizing oxime ester-based bifunctional reagents, we have achieved direct radical difunctionalization of C═N bonds through nitrogen-nitrogen radical coupling, with over 35 examples and yields up to 96%. This method exhibits broad substrate scope, being compatible with a variety of carboxylic acids and biologically active molecules, thus offering a novel approach for the difunctionalization of heteroatom-containing unsaturated bonds in synthetic chemistry.
Collapse
Affiliation(s)
- Dan-Na Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dan-Dan Ye
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Li-Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
7
|
Fu Y, Yuan Y, Tan R, Jiang J, Li Z, Li T, Xie G, Xiao Y, Sun H. Development of Small Molecular Hyper-activators of Human Caseinolytic Peptidase P (hClpP) with a [1,8]-naphthyridinone Scaffold as Novel Anti-cancer Agents. ChemMedChem 2024:e202400528. [PMID: 39505831 DOI: 10.1002/cmdc.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Based on a clinical staged small molecular hClpP activator ONC201, a class of novel hClpP agonists with a [1,8]naphthyridinone scaffold was designed, synthesized and evaluated in a series of biochemical and biological assays. Mechanism studies for the representative compound F20 indicated that it can potently bind to and activate hClpP, efficiently promote the degradation of hClpP substrates, robustly induce ATF4/CHOP regulated integrated stress responses, strongly inhibit cell growth and effectively induce apoptosis in a subset of cancer cell lines. F20 showed good PK profiles when dosed by intravenous injection and exhibited moderate oral bioavailability in mice.
Collapse
Affiliation(s)
- Yuantao Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yinan Yuan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongliang Tan
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinxin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhilong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Tong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangjun Xie
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
8
|
Jiang J, Xie G, Li T, Ding H, Tang R, Luo J, Li Q, Lu W, Xiao Y, Sun H. Discovery of Dehydrogenated Imipridone Derivatives as Activators of Human Caseinolytic Protease P. J Med Chem 2024; 67:15328-15352. [PMID: 39172943 DOI: 10.1021/acs.jmedchem.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Based on the founding member of imipridones, ONC201, a class of dehydrogenated imipridone derivatives was designed, synthesized, and evaluated in a series of biochemical and biological assays as human caseinolytic protease P (hClpP) activators. Mechanism studies for one of the most potent compounds, XT6, indicated that it can potently bind to both recombinant and cellular hClpP, effectively promote the formation of hClpP tetradecamer, efficiently induce the degradation of hClpP substrates, robustly upregulate the expression of ATF4, and strongly inhibit the phosphorylations of AKT and ERK. More importantly, XT6 exhibited a promising pharmacokinetic profile in rats and could penetrate the blood brain barrier. It showed highly potent in vivo antitumor activity in a MIAPACA2 cell line derived pancreatic cancer model in BALB/c nude mice.
Collapse
Affiliation(s)
- Jinxin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangjun Xie
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Tang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jiajun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qiannan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wugang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Cao J, Cao F, Wang C, Jiao Z, You Y, Wang X, Zhao W. ONC206 targeting ClpP induces mitochondrial dysfunction and protective autophagy in hepatocellular carcinoma cells. Neoplasia 2024; 55:101015. [PMID: 38944913 PMCID: PMC11267062 DOI: 10.1016/j.neo.2024.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for approximately 90 % of all cases. ONC201, a member of the imipridone drug family, has shown promising therapeutic potential and a good safety profile in both malignant pediatric central nervous system tumors (diffuse midline glioma [DMG]) and hematologic malignancies. ONC206 is a more potent analog of ONC201. However, the ONC206 potential and mechanism of action in HCC remain to be elucidated. We found that ONC206 hindered HCC growth by suppressing cell proliferation and inducing apoptosis. Moreover, ONC206 induced cytoprotective autophagy, and blocking autophagy enhanced the proapoptotic effect of ONC206. Additionally, ONC206 induced mitochondrial swelling, reduced the mitochondrial membrane potential (MMP), and led to the accumulation of mitochondrial ROS in HCC cells, ultimately resulting in mitochondrial dysfunction. The HCC patient samples exhibited notably elevated levels of caseinolytic protease proteolytic subunit (ClpP), which serves as a mediator of ONC206-induced mitochondrial dysfunction and the activation of protective autophagy. knockdown of ClpP reversed the cytotoxic effects of ONC206 on HCC cells. In summary, our results provide the first insight into the mechanism by which ONC206 exerts its anti-HCC effects and induces protective autophagy in HCC cells through ClpP.
Collapse
Affiliation(s)
- Jiahao Cao
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, PR China; Department of Thyroid Head and Neck Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314099, PR China
| | - Fei Cao
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Chuanzheng Wang
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Zhen Jiao
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Yuting You
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, PR China
| | - Xiaomin Wang
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, PR China.
| | - Wenxiu Zhao
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, PR China.
| |
Collapse
|
10
|
Del Bufalo D, Damia G. Overview of BH3 mimetics in ovarian cancer. Cancer Treat Rev 2024; 129:102771. [PMID: 38875743 DOI: 10.1016/j.ctrv.2024.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Ovarian carcinoma is the leading cause of gynecological cancer-related death, still with a dismal five-year prognosis, mainly due to late diagnosis and the emergence of resistance to cytotoxic and targeted agents. Bcl-2 family proteins have a key role in apoptosis and are associated with tumor development/progression and response to therapy in different cancer types, including ovarian carcinoma. In tumors, evasion of apoptosis is a possible mechanism of resistance to therapy. BH3 mimetics are small molecules that occupy the hydrophobic pocket on pro-survival proteins, allowing the induction of apoptosis, and are currently under study as single agents and/or in combination with cytotoxic and targeted agents in solid tumors. Here, we discuss recent advances in targeting anti-apoptotic proteins of the Bcl-2 family for the treatment of ovarian cancer, focusing on BH3 mimetics, and how these approaches could potentially offer an alternative/complementary way to treat patients and overcome or delay resistance to current treatments.
Collapse
Affiliation(s)
- Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy.
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy.
| |
Collapse
|
11
|
Purcell C, Srinivasan PR, Pinho-Schwermann M, MacDonald WJ, Ding E, El-Deiry WS. Neuroendocrine Prostate Cancer Drivers SOX2 and BRN2 Confer Differential Responses to Imipridones ONC201, ONC206, and ONC212 in Prostate Cancer Cell Lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610184. [PMID: 39257809 PMCID: PMC11383667 DOI: 10.1101/2024.08.28.610184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Prostate cancer (PCa) is the leading cause death from cancer in men worldwide. Approximately 30% of castrate-resistant PCa's become refractory to therapy due to neuroendocrine differentiation (NED) that is present in <1% of androgen-sensitive tumors. First-in-class imipridone ONC201/TIC10 has shown clinical activity against midline gliomas, neuroendocrine tumors and PCa. We explored the question of whether NED promotes sensitivity to imipridones ONC201 and ONC206 by inducible overexpression of SOX2 and BRN2, well-known neuroendocrine drivers, in human PCa cell lines DU145 or LNCaP. Slight protection from ONC201 or ONC206 with SOX2 and BRN2 overexpression was observed in the inducible LNCaP cells but not in the DU145 cells. At 2 months, there was an apparent increase in CLpP expression in LNCaP SOX2-overexpressing cells but this did not confer enhanced sensitivity to ONC201. DU145 SOX2-overexpressing cells had a significantly reduced ONC201 sensitivity than DU145 control cells. The results support the idea that treatment of castrate-resistant prostate cancer by imipridones may not be significantly impacted by neuroendocrine differentiation as a therapy-resistance mechanism. The results support further testing of imipridones across subtypes of androgen-sensitive and castrate-resistant prostate cancer.
Collapse
Affiliation(s)
- Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Elizabeth Ding
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| |
Collapse
|
12
|
Ding E, Pinho-Schwermann M, Zhang S, Purcell C, El-Deiry WS. Neuroendocrine differentiation (ND) in sensitivity of neuroendocrine tumor (NET) cells to ONC201/TIC10 cancer therapeutic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610183. [PMID: 39257758 PMCID: PMC11383655 DOI: 10.1101/2024.08.28.610183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Prostate cancer (PCa) neuroendocrine tumor (NET)-like cells with low or absent androgen receptor (AR) signaling cause hormone therapy resistance and poor prognosis. Small cell lung carcinoma (SCLC), a high-grade NET, presents with metastasis early and has poor survival. ONC201/TIC10 is a first-in-class cancer therapeutic with clinical activity in diffuse gliomas and neuroendocrine tumors. We hypothesized that markers of neuroendocrine differentiation, activation of the integrated stress response (ISR) and the TRAIL pathway, as well as the expression of ClpP, contribute to neuroendocrine tumor cell death and sensitivity to ONC201. We show that PCa and SCLC cell lines (N=6) are sensitive to ONC201, regardless of the extent of neuroendocrine differentiation. Endogenous levels of some NET markers (CgA, FoxO1, ENO2, PGP9.5, SOX2) are present in a spectrum in PCa and SCLC cell lines. Overexpression of neural transcription factor BRN2 in DU145 PCa cells does not increase expression of NET differentiation markers FoxO1, ENO2, PGP9.5, and CgA at 48 hours. However, the transient BRN2 overexpression showed slight decreases in some NET markers on the spectrum while maintaining sensitivity of PCa cells to ONC201 before any phenotypic change related to NET differentiation. Our results show that ONC201 has preclinical activity against PCa including those without NET markers or in PCa cells with transient overexpression of neural transcription factor BRN2. Our results have relevance to activity of ONC201 in PCa where most castrate-resistant androgen-independent cancers are not therapy resistant due to NET differentiation. Importantly, NET differentiation does not promote resistance to ONC201 supporting further clinical investigations across the spectrum of PCa.
Collapse
Affiliation(s)
- Elizabeth Ding
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, RI
- Legorreta Cancer Center, Brown University, Providence, RI
| | - Maximillian Pinho-Schwermann
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, RI
- Legorreta Cancer Center, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, RI
- Legorreta Cancer Center, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Connor Purcell
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, RI
- Legorreta Cancer Center, Brown University, Providence, RI
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, RI
- Legorreta Cancer Center, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
- Hematology/Oncology Division, Department of Medicine, Lifespan and Brown University, Providence, RI
| |
Collapse
|
13
|
Masum AA, Aoki S, Rahman MM, Hisamatsu Y. Chemical synthetic approaches to mimic the TRAIL: promising cancer therapeutics. RSC Med Chem 2024; 15:d4md00183d. [PMID: 39246747 PMCID: PMC11376135 DOI: 10.1039/d4md00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Apoptosis is programmed cell death that eliminates undesired cells to maintain homeostasis in metazoan. Aberration of this process may lead to cancer genesis. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) induces apoptosis in cancer cells after ligation with death receptors (DR4/DR5) while sparing most normal cells. Therefore, strategies to induce apoptosis in cancer cells by mimicking the TRAIL emerge as a promising therapeutic tool. Hence, approaches are taken to develop TRAIL/DR-based cancer therapeutics. The recombinant soluble TRAIL (rhTRAIL) and death receptor agonistic antibodies were produced and tested pre-clinically and clinically. Pre-clinical and clinical trial data demonstrate that these therapeutics are safe and relatively well tolerated. But some of these therapeutics failed to exert adequate efficacy in clinical settings. Besides these biotechnologically derived therapeutics, a few chemically synthesized therapeutics are reported. Some of these therapeutics exert considerable efficacy in vitro and in vivo. In this review, we will discuss chemically synthesized TRAIL/DR-based therapeutics, their chemical and biological behaviour, design concepts and strategies that may contribute to further improvement of TRAIL/DR-based therapeutics.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University Mizuho-Ku Nagoya 467-8603 Japan
| |
Collapse
|
14
|
Tian X, Srinivasan PR, Tajiknia V, Sanchez Sevilla Uruchurtu AF, Seyhan AA, Carneiro BA, De La Cruz A, Pinho-Schwermann M, George A, Zhao S, Strandberg J, Di Cristofano F, Zhang S, Zhou L, Raufi AG, Navaraj A, Zhang Y, Verovkina N, Ghandali M, Ryspayeva D, El-Deiry WS. Targeting apoptotic pathways for cancer therapy. J Clin Invest 2024; 134:e179570. [PMID: 39007268 PMCID: PMC11245162 DOI: 10.1172/jci179570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Apoptosis is a form of programmed cell death that is mediated by intrinsic and extrinsic pathways. Dysregulation of and resistance to cell death are hallmarks of cancer. For over three decades, the development of therapies to promote treatment of cancer by inducing various cell death modalities, including apoptosis, has been a main goal of clinical oncology. Apoptosis pathways also interact with other signaling mechanisms, such as the p53 signaling pathway and the integrated stress response (ISR) pathway. In addition to agents directly targeting the intrinsic and extrinsic pathway components, anticancer drugs that target the p53 and ISR signaling pathways are actively being developed. In this Review, we discuss selected and promising anticancer therapies in various stages of development, including drug targets, mechanisms, and resistance to related treatments, focusing especially on B cell lymphoma 2 (BCL-2) inhibitors, TRAIL analogues, DR5 antibodies, and strategies that target p53, mutant p53, and the ISR.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Ashley F. Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Alexander G. Raufi
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| | - Arunasalam Navaraj
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics and
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Batsios G, Udutha S, Taglang C, Gillespie AM, Lau B, Ji S, Phoenix T, Mueller S, Venneti S, Koschmann C, Viswanath P. GABA production induced by imipridones is a targetable and imageable metabolic alteration in diffuse midline gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597982. [PMID: 38915617 PMCID: PMC11195108 DOI: 10.1101/2024.06.07.597982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diffuse midline gliomas (DMGs) are lethal primary brain tumors in children. The imipridones ONC201 and ONC206 induce mitochondrial dysfunction and have emerged as promising therapies for DMG patients. However, efficacy as monotherapy is limited, identifying a need for strategies that enhance response. Another hurdle is the lack of biomarkers that report on drug-target engagement at an early timepoint after treatment onset. Here, using 1 H-magnetic resonance spectroscopy, which is a non-invasive method of quantifying metabolite pool sizes, we show that accumulation of ψ-aminobutyric acid (GABA) is an early metabolic biomarker that can be detected within a week of ONC206 treatment, when anatomical alterations are absent, in mice bearing orthotopic xenografts. Mechanistically, imipridones activate the mitochondrial protease ClpP and upregulate the stress-responsive transcription factor ATF4. ATF4, in turn, upregulates glutamate decarboxylase, which synthesizes GABA, and downregulates ABAT , which degrades GABA, leading to GABA accumulation in DMG cells and tumors. Functionally, GABA secreted by imipridone-treated cells acts in an autocrine manner via the GABAB receptor to induce expression of superoxide dismutase (SOD1), which mitigates imipridone-induced oxidative stress and, thereby, curbs apoptosis. Importantly, blocking autocrine GABA signaling using the clinical stage GABAB receptor antagonist SGS-742 exacerbates oxidative stress and synergistically induces apoptosis in combination with imipridones in DMG cells and orthotopic tumor xenografts. Collectively, we identify GABA as a unique metabolic adaptation to imipridones that can be leveraged for non-invasive assessment of drug-target engagement and therapy. Clinical translation of our studies has the potential to enable precision metabolic therapy and imaging for DMG patients. One Sentence Summary Imipridones induce GABA accumulation in diffuse midline gliomas, an effect that can be leveraged for therapy and non-invasive imaging.
Collapse
|
16
|
Richard SA. Advances in synthetic lethality modalities for glioblastoma multiforme. Open Med (Wars) 2024; 19:20240981. [PMID: 38868315 PMCID: PMC11167713 DOI: 10.1515/med-2024-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by a high mortality rate, high resistance to cytotoxic chemotherapy, and radiotherapy due to its highly aggressive nature. The pathophysiology of GBM is characterized by multifarious genetic abrasions that deactivate tumor suppressor genes, induce transforming genes, and over-secretion of pro-survival genes, resulting in oncogene sustainability. Synthetic lethality is a destructive process in which the episode of a single genetic consequence is tolerable for cell survival, while co-episodes of multiple genetic consequences lead to cell death. This targeted drug approach, centered on the genetic concept of synthetic lethality, is often selective for DNA repair-deficient GBM cells with restricted toxicity to normal tissues. DNA repair pathways are key modalities in the generation, treatment, and drug resistance of cancers, as DNA damage plays a dual role as a creator of oncogenic mutations and a facilitator of cytotoxic genomic instability. Although several research advances have been made in synthetic lethality modalities for GBM therapy, no review article has summarized these therapeutic modalities. Thus, this review focuses on the innovative advances in synthetic lethality modalities for GBM therapy.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Volta Region, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
17
|
Chiou JT, Chang LS. ONC212 enhances YM155 cytotoxicity by triggering SLC35F2 expression and NOXA-dependent MCL1 degradation in acute myeloid leukemia cells. Biochem Pharmacol 2024; 224:116242. [PMID: 38679209 DOI: 10.1016/j.bcp.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.
Collapse
MESH Headings
- Humans
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- U937 Cells
- Imidazoles/pharmacology
- Naphthoquinones/pharmacology
- HL-60 Cells
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Drug Synergism
- Benzyl Compounds
- Heterocyclic Compounds, 3-Ring
- Sulfonamides
- Bridged Bicyclo Compounds, Heterocyclic
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
18
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
20
|
Key J, Gispert S, Auburger G. Knockout Mouse Studies Show That Mitochondrial CLPP Peptidase and CLPX Unfoldase Act in Matrix Condensates near IMM, as Fast Stress Response in Protein Assemblies for Transcript Processing, Translation, and Heme Production. Genes (Basel) 2024; 15:694. [PMID: 38927630 PMCID: PMC11202940 DOI: 10.3390/genes15060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.
Collapse
Affiliation(s)
| | | | - Georg Auburger
- Experimental Neurology, Clinic of Neurology, University Hospital, Goethe University Frankfurt, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.)
| |
Collapse
|
21
|
Arrillaga-Romany I, Lassman A, McGovern SL, Mueller S, Nabors B, van den Bent M, Vogelbaum MA, Allen JE, Melemed AS, Tarapore RS, Wen PY, Cloughesy T. ACTION: a randomized phase 3 study of ONC201 (dordaviprone) in patients with newly diagnosed H3 K27M-mutant diffuse glioma. Neuro Oncol 2024; 26:S173-S181. [PMID: 38445964 PMCID: PMC11066938 DOI: 10.1093/neuonc/noae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND H3 K27M-mutant diffuse glioma primarily affects children and young adults, is associated with a poor prognosis, and no effective systemic therapy is currently available. ONC201 (dordaviprone) has previously demonstrated efficacy in patients with recurrent disease. This phase 3 trial evaluates ONC201 in patients with newly diagnosed H3 K27M-mutant glioma. METHODS ACTION (NCT05580562) is a randomized, double-blind, placebo-controlled, parallel-group, international phase 3 study of ONC201 in newly diagnosed H3 K27M-mutant diffuse glioma. Patients who have completed standard frontline radiotherapy are randomized 1:1:1 to receive placebo, once-weekly dordaviprone, or twice-weekly dordaviprone on 2 consecutive days. Primary efficacy endpoints are overall survival (OS) and progression-free survival (PFS); PFS is assessed by response assessment in neuro-oncology high-grade glioma criteria (RANO-HGG) by blind independent central review. Secondary objectives include safety, additional efficacy endpoints, clinical benefit, and quality of life. Eligible patients have histologically confirmed H3 K27M-mutant diffuse glioma, a Karnofsky/Lansky performance status ≥70, and completed first-line radiotherapy. Eligibility is not restricted by age; however, patients must be ≥10 kg at time of randomization. Patients with a primary spinal tumor, diffuse intrinsic pontine glioma, leptomeningeal disease, or cerebrospinal fluid dissemination are not eligible. ACTION is currently enrolling in multiple international sites.
Collapse
Affiliation(s)
- Isabel Arrillaga-Romany
- Mass General Cancer Center, Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew Lassman
- Columbia University Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York-Presbyterian Hospital, New York City, New York, USA
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sabine Mueller
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Burt Nabors
- Department of Neuro-Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Timothy Cloughesy
- Bowyer Oncology Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
22
|
Jackson ER, Persson ML, Fish CJ, Findlay IJ, Mueller S, Nazarian J, Hulleman E, van der Lugt J, Duchatel RJ, Dun MD. A review of current therapeutics targeting the mitochondrial protease ClpP in diffuse midline glioma, H3 K27-altered. Neuro Oncol 2024; 26:S136-S154. [PMID: 37589388 PMCID: PMC11066926 DOI: 10.1093/neuonc/noad144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein. In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic DMG, H3 K27-altered, showed a remarkable clinical and radiological response to dordaviprone (ONC201). This response in an H3 K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA identifying the mitochondrial protease "ClpP" as a biomarker of response, and discuss other ClpP agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP agonists, and their immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patient response.
Collapse
Affiliation(s)
- Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Cameron J Fish
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Sabine Mueller
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, UCSF, San Francisco, California, USA
| | - Javad Nazarian
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
23
|
Mueller S, Kline C, Franson A, van der Lugt J, Prados M, Waszak SM, Plasschaert SLA, Molinaro AM, Koschmann C, Nazarian J. Rational combination platform trial design for children and young adults with diffuse midline glioma: A report from PNOC. Neuro Oncol 2024; 26:S125-S135. [PMID: 38124481 PMCID: PMC11066905 DOI: 10.1093/neuonc/noad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 12/23/2023] Open
Abstract
Background Diffuse midline glioma (DMG) is a devastating pediatric brain tumor unresponsive to hundreds of clinical trials. Approximately 80% of DMGs harbor H3K27M oncohistones, which reprogram the epigenome to increase the metabolic profile of the tumor cells. Methods We have previously shown preclinical efficacy of targeting both oxidative phosphorylation and glycolysis through treatment with ONC201, which activates the mitochondrial protease ClpP, and paxalisib, which inhibits PI3K/mTOR, respectively. Results ONC201 and paxalisib combination treatment aimed at inducing metabolic distress led to the design of the first DMG-specific platform trial PNOC022 (NCT05009992). Conclusions Here, we expand on the PNOC022 rationale and discuss various considerations, including liquid biome, microbiome, and genomic biomarkers, quality-of-life endpoints, and novel imaging modalities, such that we offer direction on future clinical trials in DMG.
Collapse
Affiliation(s)
- Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, California, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Franson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Prados
- Department of Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Sebastian M Waszak
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Annette M Molinaro
- Division of Biomedical Statistics and Informatics, Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
24
|
Arrillaga-Romany I, Gardner SL, Odia Y, Aguilera D, Allen JE, Batchelor T, Butowski N, Chen C, Cloughesy T, Cluster A, de Groot J, Dixit KS, Graber JJ, Haggiagi AM, Harrison RA, Kheradpour A, Kilburn LB, Kurz SC, Lu G, MacDonald TJ, Mehta M, Melemed AS, Nghiemphu PL, Ramage SC, Shonka N, Sumrall A, Tarapore RS, Taylor L, Umemura Y, Wen PY. ONC201 (Dordaviprone) in Recurrent H3 K27M-Mutant Diffuse Midline Glioma. J Clin Oncol 2024; 42:1542-1552. [PMID: 38335473 PMCID: PMC11095894 DOI: 10.1200/jco.23.01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
PURPOSE Histone 3 (H3) K27M-mutant diffuse midline glioma (DMG) has a dismal prognosis with no established effective therapy beyond radiation. This integrated analysis evaluated single-agent ONC201 (dordaviprone), a first-in-class imipridone, in recurrent H3 K27M-mutant DMG. METHODS Fifty patients (pediatric, n = 4; adult, n = 46) with recurrent H3 K27M-mutant DMG who received oral ONC201 monotherapy in four clinical trials or one expanded access protocol were included. Eligible patients had measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma (HGG) criteria and performance score (PS) ≥60 and were ≥90 days from radiation; pontine and spinal tumors were ineligible. The primary end point was overall response rate (ORR) by RANO-HGG criteria. Secondary end points included duration of response (DOR), time to response (TTR), corticosteroid response, PS response, and ORR by RANO low-grade glioma (LGG) criteria. Radiographic end points were assessed by dual-reader, blinded independent central review. RESULTS The ORR (RANO-HGG) was 20.0% (95% CI, 10.0 to 33.7). The median TTR was 8.3 months (range, 1.9-15.9); the median DOR was 11.2 months (95% CI, 3.8 to not reached). The ORR by combined RANO-HGG/LGG criteria was 30.0% (95% CI, 17.9 to 44.6). A ≥50% corticosteroid dose reduction occurred in 7 of 15 evaluable patients (46.7% [95% CI, 21.3 to 73.4]); PS improvement occurred in 6 of 34 evaluable patients (20.6% [95% CI, 8.7 to 37.9]). Grade 3 treatment-related treatment-emergent adverse events (TR-TEAEs) occurred in 20.0% of patients; the most common was fatigue (n = 5; 10%); no grade 4 TR-TEAEs, deaths, or discontinuations occurred. CONCLUSION ONC201 monotherapy was well tolerated and exhibited durable and clinically meaningful efficacy in recurrent H3 K27M-mutant DMG.
Collapse
Affiliation(s)
| | | | - Yazmin Odia
- Miami Cancer Institute, part of Baptist Health South Florida, Miami, FL
| | - Dolly Aguilera
- Children's Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA
| | | | | | | | - Clark Chen
- University of Minnesota Medical Center, Minneapolis, MN
| | | | | | | | - Karan S. Dixit
- Northwestern Medical Lou and Jean Malnati Brain Tumor Institute, Chicago, IL
| | | | | | | | | | | | | | | | - Tobey J. MacDonald
- Children's Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA
| | - Minesh Mehta
- Miami Cancer Institute, part of Baptist Health South Florida, Miami, FL
| | | | | | | | | | | | | | - Lynne Taylor
- University of Washington Medical Center, Seattle, WA
| | | | - Patrick Y. Wen
- Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| |
Collapse
|
25
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Su Y, Carter JL, Li X, Fukuda Y, Gray A, Lynch J, Edwards H, Ma J, Schreiner P, Polin L, Kushner J, Dzinic SH, Buck SA, Pruett-Miller SM, Hege-Hurrish K, Robinson C, Qiao X, Liu S, Wu S, Wang G, Li J, Allen JE, Prabhu VV, Schimmer AD, Joshi D, Kalhor-Monfared S, Watson IDG, Marcellus R, Isaac MB, Al-awar R, Taub JW, Lin H, Schuetz JD, Ge Y. The Imipridone ONC213 Targets α-Ketoglutarate Dehydrogenase to Induce Mitochondrial Stress and Suppress Oxidative Phosphorylation in Acute Myeloid Leukemia. Cancer Res 2024; 84:1084-1100. [PMID: 38266099 PMCID: PMC11380567 DOI: 10.1158/0008-5472.can-23-2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.
Collapse
Affiliation(s)
- Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Jenna L. Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Ashley Gray
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38105
| | - John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Patrick Schreiner
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Sijana H. Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Steven A. Buck
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, 48201
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Katie Hege-Hurrish
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Camenzind Robinson
- St. Jude Children’s Research Hospital Shared Imaging Resource, Memphis, TN, 38105
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
| | | | | | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Dhananjay Joshi
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Shiva Kalhor-Monfared
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Iain D. G. Watson
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Methvin B. Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
| | - Rima Al-awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, M5G 0A3, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jeffrey W. Taub
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, 48201
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, 130012, P.R. China
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, 48201
| |
Collapse
|
27
|
Zhang J, Qiu Z, Liu S, Huang J, Luo B, Sui J, Dai Z, Xiang X, Yang T, Luo Y. Discovery of a Novel Series of Homo sapiens Caseinolytic Protease P Agonists for Colorectal Adenocarcinoma Treatment via ATF3-Dependent Integrated Stress Response. J Med Chem 2024; 67:2812-2836. [PMID: 38329974 DOI: 10.1021/acs.jmedchem.3c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Homo sapiens caseinolytic protease P (HsClpP) activation is a promising strategy for colon cancer treatment. In this study, CCG1423 was identified as a selective activator of HsClpP. After optimization, NCA029 emerged as the most potent compound, with an EC50 of 0.2 μM against HsClpP. Molecular dynamics revealed that the affinity of NCA029 for the YYW aromatic network is crucial for its selectivity toward HsClpP. Furthermore, NCA029 displayed favorable pharmacokinetics and safety profiles and significantly inhibited tumor growth in HCT116 xenografts, resulting in 83.6% tumor inhibition. Mechanistically, NCA029 targeted HsClpP, inducing mitochondrial dysfunction and activating the ATF3-dependent integrated stress response, ultimately causing cell death in colorectal adenocarcinoma. These findings highlight NCA029 as an effective HsClpP activator with potential for colon cancer therapy.
Collapse
Affiliation(s)
- Jiangnan Zhang
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Liu
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiasheng Huang
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baozhu Luo
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Sui
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyi Dai
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrong Xiang
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- Cancer Center and State Key Laboratory of Biotherapy, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
29
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
30
|
Mishukov A, Mndlyan E, Berezhnov AV, Kobyakova M, Lomovskaya Y, Holmuhamedov E, Odinokova I. TR-57 Treatment of SUM159 Cells Induces Mitochondrial Dysfunction without Affecting Membrane Potential. Int J Mol Sci 2024; 25:1193. [PMID: 38256264 PMCID: PMC10816083 DOI: 10.3390/ijms25021193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Recent works identified ClpXP, mitochondrial caseinolytic protease, as the only target of imipridones, a new class of antitumor agents. Our study of the mechanism of imipridone derivative TR-57 action in SUM159 human breast cancer cells demonstrated mitochondrial fragmentation, degradation of mitochondrial mtDNA and mitochondrial dysfunction due to inhibition of Complex I and Complex II activity. Complete inhibition of oxidative phosphorylation accompanied 90, 94, 88 and 87% decreases in the content of Complex I, II, III and IV proteins, respectively. The content of the FOF1-ATPase subunits decreased sharply by approximately 35% after 24 h and remained unchanged up to 72 h of incubation with TR-57. At the same time, a disappearance of the ATPIF1, the natural inhibitor of mitochondrial FOF1-ATPase, was observed after 24 h exposure to TR-57. ATPase inhibitor oligomycin did not affect the mitochondrial membrane potential in intact SUM159, whereas it caused a 65% decrease in TR-57-treated cells. SUM159 cells incubated with TR57 up to 72 h retained the level of proteins facilitating the ATP transfer across the mitochondrial membranes: VDAC1 expression was not affected, while expression of ANT-1/2 and APC2 increased by 20% and 40%, respectively. Thus, our results suggest that although TR-57 treatment leads to complete inhibition of respiratory chain activity of SUM159 cells, hydrolysis of cytoplasmic ATP by reversal activity of FOF1-ATPase supports mitochondrial polarization.
Collapse
Affiliation(s)
- Artem Mishukov
- Center of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 109029 Moscow, Russia;
| | - Ekaterina Mndlyan
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.); (M.K.); (Y.L.); (E.H.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Margarita Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.); (M.K.); (Y.L.); (E.H.)
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.); (M.K.); (Y.L.); (E.H.)
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.); (M.K.); (Y.L.); (E.H.)
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.); (M.K.); (Y.L.); (E.H.)
| |
Collapse
|
31
|
Chattopadhyay C, Roszik J, Bhattacharya R, Alauddin M, Mahmud I, Yadugiri S, Ali MM, Khan FS, Prabhu VV, Lorenzi P, Burton E, Morey RR, Lazcano R, Davies MA, Patel SP, Grimm EA. Imipridones inhibit tumor growth and improve survival in an orthotopic liver metastasis mouse model of human uveal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575058. [PMID: 38293232 PMCID: PMC10827043 DOI: 10.1101/2024.01.12.575058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Purpose Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients. Experimental Design We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201, ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic effects in vivo in UM liver metastasis models. Results CLPP expression was confirmed in primary and mUM patient samples. ONC201/212 treatment of UM cell lines in vitro decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis. ONC212 increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. Conclusion Imipridones are a promising strategy for further testing and development in mUM.
Collapse
|
32
|
Paraghamian SE, Qiu J, Hawkins GM, Zhao Z, Sun W, Fan Y, Zhang X, Suo H, Hao T, Prabhu VV, Allen JE, Zhou C, Bae-Jump V. A novel dopamine receptor D2 antagonist (ONC206) potentiates the effects of olaparib in endometrial cancer. Cancer Biol Ther 2023; 24:2202104. [PMID: 37069726 PMCID: PMC10115124 DOI: 10.1080/15384047.2023.2202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023] Open
Abstract
Poly ADP-ribose polymerase (PARP) inhibitors are effective therapies for cancer patients with homologous recombination (HR) deficient tumors. The imipridone ONC206 is an orally bioavailable dopamine receptor D2 antagonist and mitochondrial protease ClpP agonist that has anti-tumorigenic effects in endometrial cancer via induction of apoptosis, activation of the integrated stress response and modulation of PI3K/AKT signaling. Both PARP inhibitors and imipridones are being evaluated in endometrial cancer clinical trials but have yet to be explored in combination. In this manuscript, we evaluated the effects of the PARP inhibitor olaparib in combination with ONC206 in human endometrioid endometrial cancer cell lines and in a genetically engineered mouse model of endometrial cancer. Our results showed that simultaneous exposure of endometrial cancer cells to olaparib and ONC206 resulted in synergistic anti-proliferative effects and increased cellular stress and apoptosis in both cell lines, compared to either drug alone. The combination treatment also decreased expression of the anti-apoptotic protein Bcl-2 and reduced phosphorylation of AKT and S6, with greater effects compared to either drug alone. In the transgenic model of endometrial cancer, the combination of olaparib and ONC206 resulted in a more significant reduction in tumor weight in obese and lean mice compared to ONC206 alone or olaparib alone, together with a considerably decreased Ki-67 and enhanced H2AX expression in obese and lean mice. These results suggest that this novel dual therapy may be worthy of further exploration in clinical trials.
Collapse
Affiliation(s)
- Sarah E. Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, the Second Hospital of Shandong University, Jinan, China
| | - Gabrielle M. Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Obstetrics and Gynecology, the Second Hospital of Shandong University, Jinan, China
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hongyan Suo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Chang WI, Honeyman JN, Zhang J, Lin C, Sharma A, Zhou L, Oliveira J, Tapinos N, Lulla RR, Prabhu VV, El-Deiry WS. Novel combination of imipridones and histone deacetylase inhibitors demonstrate cytotoxic effect through integrated stress response in pediatric solid tumors. Am J Cancer Res 2023; 13:6241-6255. [PMID: 38187038 PMCID: PMC10767354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
There is a demonstrated need for new chemotherapy options in pediatric oncology, as pediatric solid tumors continue to plateau at 60% with event-free survival. Imipridones, a novel class of small molecules, represent a potential new therapeutic option, with promising pre-clinical data and emerging clinical trial data in adult malignancies. ONC201, ONC206, and ONC212 are imipridones showing pro-apoptotic anti-cancer response. Using cell viability assays, and protein immunoblotting, we were able to demonstrate single-agent efficacy of all 3 imipridones inducing cell death in pediatric solid tumor cell lines, including osteosarcoma, malignant peripheral nerve sheath tumors, Ewing sarcoma (EWS), and neuroblastoma. ONC201 displayed IC50 values for non-H3K27M-mutated EWS cell lines ranging from 0.86 µM (SK-N-MC) to 2.76 µM (RD-ES), which were comparable to the range of IC50 values for H3K27M-mutated DIPG cells lines (range 1.06 to 1.56 µM). ONC212 demonstrated the highest potency in single-agent cell killing, followed by ONC206, and ONC201. Additionally, pediatric solid tumor cells were treated with single-agent therapy with histone deacetylase inhibitors (HDACi) vorinostat, entinostat, and panobinostat, showing cell killing with all 3 HDACi drugs, with panobinostat showing the greatest potency. We demonstrate that dual-agent therapy with combinations of imipridones and HDACi lead to synergistic cell killing and apoptosis in all pediatric solid tumor cell lines tested, with ONC212 and panobinostat combinations demonstrating maximal potency. The imipridones induced the integrated stress response with ATF4 and TRAIL receptor upregulation, as well as reduced expression of ClpX. Hyperacetylation of H3K27 was associated with synergistic killing of tumor cells following exposure to imipridone plus HDAC inhibitor therapies. Our results introduce a novel class of small molecules to treat pediatric solid tumors in a precision medicine framework. Use of impridones in pediatric oncology is novel and shows promising pre-clinical efficacy in pediatric solid tumors, including in combination with HDAC inhibitors.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Joshua N Honeyman
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Division of Pediatric Surgery, Department of Surgery, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Jun Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Claire Lin
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Aditi Sharma
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Janice Oliveira
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Nikos Tapinos
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
| | - Rishi R Lulla
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | | | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan and Brown UniversityProvidence, RI, USA
| |
Collapse
|
34
|
Parker CS, Zhou L, Prabhu VV, Lee S, Miner TJ, Ross EA, El-Deiry WS. ONC201/TIC10 plus TLY012 anti-cancer effects via apoptosis inhibitor downregulation, stimulation of integrated stress response and death receptor DR5 in gastric adenocarcinoma. Am J Cancer Res 2023; 13:6290-6312. [PMID: 38187068 PMCID: PMC10767330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Gastric adenocarcinoma typically presents with advanced stage when inoperable. Chemotherapy options include non-targeted and toxic agents, leading to poor 5-year patient survival outcomes. Small molecule ONC201/TIC10 (TRAIL-Inducing Compound #10) induces cancer cell death via ClpP-dependent activation of the integrated stress response (ISR) and up-regulation of the TRAIL pathway. We previously found in breast cancer, pancreatic cancer and endometrial cancer that ONC201 primes tumor cells for TRAIL-mediated cell death through ISR-dependent upregulation of ATF4, CHOP and TRAIL death receptor DR5. We investigated the ability of ONC201 to induce apoptosis in gastric adenocarcinoma cells in combination with recombinant human TRAIL (rhTRAIL) or PEGylated trimeric TRAIL (TLY012). AGS (caspase 8-, KRAS-, PIK3CA-mutant, HER2-amplified), SNU-1 (KRAS-, MLH1-mutant, microsatellite unstable), SNU-5 (p53-mutant) and SNU-16 (p53-mutant) gastric adenocarcinoma cells were treated with ONC201 and TRAIL both in cell culture and in vivo. Gastric cancer cells showed synergy following dual therapy with ONC201 and rhTRAIL/TLY012 (combination indices < 0.6 at doses that were non-toxic towards normal fibroblasts). Synergy was observed with increased cells in the sub-G1 phase of the cell cycle with dual ONC201 plus TRAIL therapy. Increased PARP, caspase 8 and caspase 3 cleavage after ONC201 plus TRAIL further documented apoptosis. Increased cell surface expression of DR5 with ONC201 therapy was observed by flow cytometry, and immunoblotting revealed ONC201 upregulation of the ISR, ATF4, and CHOP. We observed downregulation of anti-apoptotic cIAP-1 and XIAP in all cells except AGS, and cFLIP in all cells except SNU-16. We tested the regimen in an organoid model of human gastric cancer, and in murine sub-cutaneous xenografts using AGS and SNU-1 cells. Our results suggest that ONC201 in combination with TRAIL may be an effective and non-toxic option for the treatment of gastric adenocarcinoma by inducing apoptosis via activation of the ISR, increased cell surface expression of DR5 and down-regulation of inhibitors of apoptosis. Our results demonstrate in vivo anti-tumor effects of ONC201 plus TLY012 against gastric cancer that could be further investigated in clinical trials.
Collapse
Affiliation(s)
- Cassandra S Parker
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | | | - Seulki Lee
- D&D Pharmatech Inc.Bundang-gu, Seongnam-si, Korea
| | - Thomas J Miner
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Eric A Ross
- Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan and Brown UniversityProvidence, RI, USA
| |
Collapse
|
35
|
Fan X, Huang T, Wang S, Yang Z, Song W, Zeng Y, Tong Y, Cai Y, Yang D, Zeng B, Zhang M, Ni Q, Li Y, Li D, Yang M. The adaptor protein 14-3-3zeta modulates intestinal immunity and aging in Drosophila. J Biol Chem 2023; 299:105414. [PMID: 37918806 PMCID: PMC10724694 DOI: 10.1016/j.jbc.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Wenhao Song
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yao Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Technology Institute of Silk and Mulberry, Chong Qing Academy of Animal Sciences, Chongqing, P. R. China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yujuan Cai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwang Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingyong Ni
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
36
|
Zhou LL, Zhang T, Xue Y, Yue C, Pan Y, Wang P, Yang T, Li M, Zhou H, Ding K, Gan J, Ji H, Yang CG. Selective activator of human ClpP triggers cell cycle arrest to inhibit lung squamous cell carcinoma. Nat Commun 2023; 14:7069. [PMID: 37923710 PMCID: PMC10624687 DOI: 10.1038/s41467-023-42784-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Chemo-activation of mitochondrial ClpP exhibits promising anticancer properties. However, we are currently unaware of any studies using selective and potent ClpP activators in lung squamous cell carcinoma. In this work, we report on such an activator, ZK53, which exhibits therapeutic effects on lung squamous cell carcinoma in vivo. The crystal structure of ZK53/ClpP complex reveals a π-π stacking effect that is essential for ligand binding selectively to the mitochondrial ClpP. ZK53 features on a simple scaffold, which is distinct from the activators with rigid scaffolds, such as acyldepsipeptides and imipridones. ZK53 treatment causes a decrease of the electron transport chain in a ClpP-dependent manner, which results in declined oxidative phosphorylation and ATP production in lung tumor cells. Mechanistically, ZK53 inhibits the adenoviral early region 2 binding factor targets and activates the ataxia-telangiectasia mutated-mediated DNA damage response, eventually triggering cell cycle arrest. Lastly, ZK53 exhibits therapeutic effects on lung squamous cell carcinoma cells in xenograft and autochthonous mouse models.
Collapse
Affiliation(s)
- Lin-Lin Zhou
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chuan Yue
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yihui Pan
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Pengyu Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Teng Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Meixia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kan Ding
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200120, China.
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
37
|
Albassam H, Ladin DA, Elhassanny A, Burns C, Van Dross-Anderson R. Apoptosis mechanisms induced by 15d-PMJ 2 in HCT116 colon cancer cells: insights into CHOP10/TRB3/Akt signaling. Front Pharmacol 2023; 14:1283677. [PMID: 38026967 PMCID: PMC10652392 DOI: 10.3389/fphar.2023.1283677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Agents that stimulate the endoplasmic reticulum (ER) stress pathway are being exploited pharmacologically to induce cancer cell death. Cytotoxic ER stress is typically regulated by the transcription factor, C/EBP homologous protein 10 (CHOP10). Products of CHOP10 transcription include the pro-apoptotic proteins: ER oxidoreductase 1α (ERO1α), death receptor-5 (DR5), and tribbles-related protein 3 (TRB3). Our previous findings showed cell death induced by 15-deoxy- Δ12,14 prostamide J2 (15d-PMJ2) occurred in an ER stress-dependent manner. However, the pathway by which 15d-PMJ2 regulates ER stress-mediated death downstream of CHOP10 has not been identified. Our results demonstrate 5 µM 15d-PMJ2 increased CHOP10 expression and apoptosis in HCT116 colon cancer cells. In cells treated with pharmacological inhibitors of ER stress, 15d-PMJ2-induced apoptosis was reliant upon the ER stress pathway. To investigate the role of CHOP10 and its transcriptional products in apoptosis, genetic deletion of CHOP10 (CHOP10-KO) was performed using the CRISPR/Cas9 system. The apoptotic action of 15d-PMJ2 was blunted in cells lacking CHOP10 expression. The deletion of CHOP10 reduced the expression of DR5, ERO1α, and TRB3 although only the expression of TRB3 was significantly reduced. Therefore, we overexpressed TRB3 in CHOP10-KO cells and observed that the activation of Akt was inhibited and 15d-PMJ2-induced apoptosis was restored. Thus, a mechanism of apoptosis elicited by 15d-PMJ2 includes the stimulation of CHOP10/TRB3/Akt inhibition. Given the important role these signaling molecules play in cancer cell fate, 15d-PMJ2 may be an effective inducer of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Hussam Albassam
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Daniel A. Ladin
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Ahmed Elhassanny
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Colin Burns
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Rukiyah Van Dross-Anderson
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
38
|
Al Sharie S, Abu Laban D, Al-Hussaini M. Decoding Diffuse Midline Gliomas: A Comprehensive Review of Pathogenesis, Diagnosis and Treatment. Cancers (Basel) 2023; 15:4869. [PMID: 37835563 PMCID: PMC10571999 DOI: 10.3390/cancers15194869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are a group of aggressive CNS tumors, primarily affecting children and young adults, which have historically been associated with dismal outcomes. As the name implies, they arise in midline structures in the CNS, primarily in the thalamus, brainstem, and spinal cord. In more recent years, significant advances have been made in our understanding of DMGs, including molecular features, with the identification of potential therapeutic targets. We aim to provide an overview of the most recent updates in the field of DMGs, including classification, molecular subtypes, diagnostic techniques, and emerging therapeutic strategies including a review of the ongoing clinical trials, thus providing the treating multidisciplinary team with a comprehensive understanding of the current landscape and potential therapeutic strategies for this devastating group of tumors.
Collapse
Affiliation(s)
- Sarah Al Sharie
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
39
|
Raghani NR, Shah DD, Shah TS, Chorawala MR, Patel RB. Combating relapsed and refractory Mantle cell lymphoma with novel therapeutic armamentarium: Recent advances and clinical prospects. Crit Rev Oncol Hematol 2023; 190:104085. [PMID: 37536448 DOI: 10.1016/j.critrevonc.2023.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare, aggressive subtype of non-Hodgkin's lymphoma (NHL), accounting for 5% of all cases. Due to its virulence factor, it is an incurable disease and keeps relapsing despite an intensive treatment regimen. Advancements in research and drug discovery have shifted the treatment strategy from conventional chemotherapy to targeted agents and immunotherapies. The establishment of the role of Bruton tyrosine kinase led to the development of ibrutinib, a first-generation BTK inhibitor, and its successors. A conditioning regimen based immunotherapeutic agent like ibritumumob, has also demonstrated a viable response with a favorable toxicity profile. Brexucabtagene Autoleucel, the only approved CAR T-cell therapy, has proven advantageous for relapsed/refractory MCL in both children and adults. This article reviews certain therapies that could help update the current approach and summarizes a few miscellaneous agents, which, seldom studied in trials, could alleviate the regression observed in traditional therapies. DATA AVAILABILITY: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Disha D Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Tithi S Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA 52242, USA.
| |
Collapse
|
40
|
Farmaki E, Nath A, Emond R, Karimi KL, Grolmusz VK, Cosgrove PA, Bild AH. ONC201/TIC10 enhances durability of mTOR inhibitor everolimus in metastatic ER+ breast cancer. eLife 2023; 12:e85898. [PMID: 37772709 PMCID: PMC10541180 DOI: 10.7554/elife.85898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
The mTOR inhibitor, everolimus, is an important clinical management component of metastatic ER+ breast cancer (BC). However, most patients develop resistance and progress on therapy, highlighting the need to discover strategies that increase mTOR inhibitor effectiveness. We developed ER+ BC cell lines, sensitive or resistant to everolimus, and discovered that combination treatment of ONC201/TIC10 with everolimus inhibited cell growth in 2D/3D in vitro studies. We confirmed increased therapeutic response in primary patient cells progressing on everolimus, supporting clinical relevance. We show that ONC201/TIC10 mechanism in metastatic ER+ BC cells involves oxidative phosphorylation inhibition and stress response activation. Transcriptomic analysis in everolimus resistant breast patient tumors and mitochondrial functional assays in resistant cell lines demonstrated increased mitochondrial respiration dependency, contributing to ONC201/TIC10 sensitivity. We propose that ONC201/TIC10 and modulation of mitochondrial function may provide an effective add-on therapy strategy for patients with metastatic ER+ BCs resistant to mTOR inhibitors.
Collapse
Affiliation(s)
- Elena Farmaki
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Rena Emond
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Kimya L Karimi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Vince K Grolmusz
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Patrick A Cosgrove
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| |
Collapse
|
41
|
Al Sharie S, Abu Laban D, Nazzal J, Iqneibi S, Ghnaimat S, Al-Ani A, Al-Hussaini M. Midline Gliomas: A Retrospective Study from a Cancer Center in the Middle East. Cancers (Basel) 2023; 15:4545. [PMID: 37760513 PMCID: PMC10527416 DOI: 10.3390/cancers15184545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Midline gliomas are tumors that occur in midline structures and can be circumscribed or diffuse. Classical midline structures include the thalamus, brainstem, and spinal cord. Other midline structures include the corpus callosum, basal ganglia, ventricles, paraventricular structures, and cerebellum. Diffuse midline glioma (DMG) is a diffuse glioma that occurs in the classical midline structures, characterized by a specific genetic alteration, and associated with grim outcome. This study was conducted at King Hussein Cancer Center and reviewed the medical records of 104 patients with circumscribed and diffuse gliomas involving midline structures that underwent biopsy between 2005 and 2022. We included a final cohort of 104 patients characterized by a median age of 23 years and a male-to-female ratio of 1.59-to-1. Diffuse high-grade glioma (DHGG) was the most common pathological variant (41.4%), followed by DMG (28.9%). GFAP was positive in most cases (71.2%). Common positive mutations/alterations detected by surrogate immunostains included H3 K27me3 (28.9%), p53 (25.0%), and H3 K27M (20.2%). Age group, type of treatment, and immunohistochemistry were significantly associated with both the location of the tumor and tumor variant (all; p < 0.05). DMGs were predominantly found in the thalamus, whereas circumscribed gliomas were most commonly observed in the spinal cord. None of the diffuse gliomas outside the classical location, or circumscribed gliomas harbored the defining DMG mutations. The median overall survival (OS) for the entire cohort was 10.6 months. Only the tumor variant (i.e., circumscribed gliomas) and radiotherapy were independent prognosticators on multivariate analysis.
Collapse
Affiliation(s)
- Sarah Al Sharie
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Jamil Nazzal
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Shahad Iqneibi
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Sura Ghnaimat
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (J.N.); (S.I.); (S.G.); (A.A.-A.)
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
42
|
Weiser A, Sanchez Bergman A, Machaalani C, Bennett J, Roth P, Reimann RR, Nazarian J, Guerreiro Stucklin AS. Bridging the age gap: a review of molecularly informed treatments for glioma in adolescents and young adults. Front Oncol 2023; 13:1254645. [PMID: 37781183 PMCID: PMC10533987 DOI: 10.3389/fonc.2023.1254645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas are the most common primary central nervous system (CNS) tumors and a major cause of cancer-related mortality in children (age <15 years), adolescents and young adults (AYA, ages 15-39 years), and adults (age >39 years). Molecular pathology has helped enhance the characterization of these tumors, revealing a heterogeneous and ever more complex group of malignancies. Recent molecular analyses have led to an increased appreciation of common genomic alterations prevalent across all ages. The 2021 World Health Organization (WHO) CNS tumor classification, 5th edition (WHO CNS5) brings forward a nomenclature distinguishing "pediatric-type" and "adult-type" gliomas. The spectrum of gliomas in AYA comprises both "pediatric-like" and "adult-like" tumor entities but remains ill-defined. With fragmentation of clinical management between pediatric and adult centers, AYAs face challenges related to gaps in medical care, lower rates of enrollment in clinical trials and additional psychosocial and economic challenges. This calls for a rethinking of diagnostic and therapeutic approaches, to improve access to appropriate testing and potentially beneficial treatments to patients of all ages.
Collapse
Affiliation(s)
- Annette Weiser
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Astrid Sanchez Bergman
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Charbel Machaalani
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Javad Nazarian
- Department of Pediatrics, Diffuse Midline Glioma (DMG) / Diffuse Intrinsic Pontine Glioma (DIPG) Center, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children's National Hospital, Washington, DC, United States
| | - Ana S. Guerreiro Stucklin
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Lines CL, McGrath MJ, Dorwart T, Conn CS. The integrated stress response in cancer progression: a force for plasticity and resistance. Front Oncol 2023; 13:1206561. [PMID: 37601686 PMCID: PMC10435748 DOI: 10.3389/fonc.2023.1206561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023] Open
Abstract
During their quest for growth, adaptation, and survival, cancer cells create a favorable environment through the manipulation of normal cellular mechanisms. They increase anabolic processes, including protein synthesis, to facilitate uncontrolled proliferation and deplete the tumor microenvironment of resources. As a dynamic adaptation to the self-imposed oncogenic stress, cancer cells promptly hijack translational control to alter gene expression. Rewiring the cellular proteome shifts the phenotypic balance between growth and adaptation to promote therapeutic resistance and cancer cell survival. The integrated stress response (ISR) is a key translational program activated by oncogenic stress that is utilized to fine-tune protein synthesis and adjust to environmental barriers. Here, we focus on the role of ISR signaling for driving cancer progression. We highlight mechanisms of regulation for distinct mRNA translation downstream of the ISR, expand on oncogenic signaling utilizing the ISR in response to environmental stresses, and pinpoint the impact this has for cancer cell plasticity during resistance to therapy. There is an ongoing need for innovative drug targets in cancer treatment, and modulating ISR activity may provide a unique avenue for clinical benefit.
Collapse
Affiliation(s)
| | | | | | - Crystal S. Conn
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
44
|
Lee I, Doepner M, Weissenrieder J, Majer AD, Mercado S, Estell A, Natale CA, Sung PJ, Foskett JK, Carroll MP, Ridky TW. LNS8801 inhibits Acute Myeloid Leukemia by Inducing the Production of Reactive Oxygen Species and Activating the Endoplasmic Reticulum Stress Pathway. CANCER RESEARCH COMMUNICATIONS 2023; 3:1594-1606. [PMID: 37599786 PMCID: PMC10438922 DOI: 10.1158/2767-9764.crc-22-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Despite recent therapeutic advances, the 5-year survival rate for adults with acute myeloid leukemia (AML) is poor and standard-of-care chemotherapy is associated with significant toxicity, highlighting the need for new therapeutic approaches. Recent work from our group and others established that the G protein-coupled estrogen receptor (GPER) is tumor suppressive in melanoma and other solid tumors. We performed a preliminary screen of human cancer cell lines from multiple malignancies and found that LNS8801, a synthetic pharmacologic agonist of GPER currently in early phase clinical trials, promoted apoptosis in human AML cells. Using human AML cell lines and primary cells, we show that LNS8801 inhibits human AML in preclinical in vitro models, while not affecting normal mononuclear cells. Although GPER is broadly expressed in normal and malignant myeloid cells, this cancer-specific LNS8801-induced inhibition appeared to be independent of GPER signaling. LNS8801 induced AML cell death primarily through a caspase-dependent apoptosis pathway. This was independent of secreted classical death receptor ligands, and instead required induction of reactive oxygen species (ROS) and activation of endoplasmic reticulum (ER) stress response pathways including IRE1α. These studies demonstrate a novel activity of LNS8801 in AML cells and show that targeting ER stress with LNS8801 may be a useful therapeutic approach for AML. Significance Previous work demonstrated that LNS8801 inhibits cancer via GPER activation, especially in solid tumors. Here we show that LNS8801 inhibits AML via GPER-independent mechanisms that include ROS induction and ER activation.
Collapse
Affiliation(s)
- Inyoung Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Miriam Doepner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jillian Weissenrieder
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ariana D. Majer
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sophia Mercado
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela Estell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher A. Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Linnaeus Therapeutics, Haddonfield, New Jersey
| | - Pamela J. Sung
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New Jersey
| | - J. Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin P. Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Badarni M, Gabbay S, Elkabets M, Rotblat B. Gene Expression and Drug Sensitivity Analysis of Mitochondrial Chaperones Reveals That HSPD1 and TRAP1 Expression Correlates with Sensitivity to Inhibitors of DNA Replication and Mitosis. BIOLOGY 2023; 12:988. [PMID: 37508418 PMCID: PMC10376793 DOI: 10.3390/biology12070988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Mitochondria-critical metabolic hubs in eukaryotic cells-are involved in a wide range of cellular functions, including differentiation, proliferation, and death. Mitochondria import most of their proteins from the cytosol in a linear form, after which they are folded by mitochondrial chaperones. However, despite extensive research, the extent to which the function of particular chaperones is essential for maintaining specific mitochondrial and cellular functions remains unknown. In particular, it is not known whether mitochondrial chaperones influence the sensitivity to drugs used in the treatment of cancers. By mining gene expression and drug sensitivity data for cancer cell lines from publicly available databases, we identified mitochondrial chaperones whose expression is associated with sensitivity to oncology drugs targeting particular cellular pathways in a cancer-type-dependent manner. Importantly, we found the expression of TRAP1 and HSPD1 to be associated with sensitivity to inhibitors of DNA replication and mitosis. We confirmed experimentally that the expression of HSPD1 is associated with an increased sensitivity of ovarian cancer cells to drugs targeting mitosis and a reduced sensitivity to drugs promoting apoptosis. Taken together, our results support a model in which particular mitochondrial pathways hinge upon specific mitochondrial chaperones and provide the basis for understanding selectivity in mitochondrial chaperone-substrate specificity.
Collapse
Affiliation(s)
- Mai Badarni
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shani Gabbay
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Faculty of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Barak Rotblat
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Faculty of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
46
|
Moura C, Vale N. The Role of Dopamine in Repurposing Drugs for Oncology. Biomedicines 2023; 11:1917. [PMID: 37509555 PMCID: PMC10377204 DOI: 10.3390/biomedicines11071917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a neurotransmitter that plays an important role within the brain by regulating a wide variety of cognitive and emotional processes. In cancer, its role is distinct and uncertain, but it is characterized by the interaction with its receptors that may be in the tumor cells; we have examples of different types of cancer with this characteristic, of which breast and colon cancer stand out. It is believed that dopamine and some of its receptors also influence other cellular processes such as cell proliferation, survival, migration, and invasion. The potential of these receptors has allowed the exploration of existing drugs, originally developed for non-oncological purposes, for the possible treatment of cancer. However, regarding the repurposing of drugs for cancer treatment, the role of dopamine is not so straightforward and needs to be clarified. For this reason, this review intends to present concepts associated with twelve drugs reused for oncology based on dopamine and its receptors. Some of them can behave as antagonists and inhibit tumor cell growth leading to cell death. Attention to this group of drugs may enhance the study of other pharmacological conditions such as signaling pathways related to cell proliferation and migration. Modulation of these pathways using drugs originally developed for other conditions may offer potential therapeutic opportunities in oncology. It is important to note that while the repurposing of oncology drugs based on dopamine signaling is promising, further studies are still needed to fully understand the mechanisms involved and determine the clinical efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Catarina Moura
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
47
|
Mann B, Zhang X, Bell N, Adefolaju A, Thang M, Dasari R, Kanchi K, Valdivia A, Yang Y, Buckley A, Lettry V, Quinsey C, Rauf Y, Kram D, Cassidy N, Vaziri C, Corcoran DL, Rego S, Jiang Y, Graves LM, Dunn D, Floyd S, Baldwin A, Hingtgen S, Satterlee AB. A living ex vivo platform for functional, personalized brain cancer diagnosis. Cell Rep Med 2023; 4:101042. [PMID: 37192626 PMCID: PMC10313921 DOI: 10.1016/j.xcrm.2023.101042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Functional precision medicine platforms are emerging as promising strategies to improve pre-clinical drug testing and guide clinical decisions. We have developed an organotypic brain slice culture (OBSC)-based platform and multi-parametric algorithm that enable rapid engraftment, treatment, and analysis of uncultured patient brain tumor tissue and patient-derived cell lines. The platform has supported engraftment of every patient tumor tested to this point: high- and low-grade adult and pediatric tumor tissue rapidly establishes on OBSCs among endogenous astrocytes and microglia while maintaining the tumor's original DNA profile. Our algorithm calculates dose-response relationships of both tumor kill and OBSC toxicity, generating summarized drug sensitivity scores on the basis of therapeutic window and allowing us to normalize response profiles across a panel of U.S. Food and Drug Administration (FDA)-approved and exploratory agents. Summarized patient tumor scores after OBSC treatment show positive associations to clinical outcomes, suggesting that the OBSC platform can provide rapid, accurate, functional testing to ultimately guide patient care.
Collapse
Affiliation(s)
- Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaopei Zhang
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah Bell
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adebimpe Adefolaju
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morrent Thang
- Department of Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rajaneekar Dasari
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krishna Kanchi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Valdivia
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Buckley
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vivien Lettry
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carolyn Quinsey
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasmeen Rauf
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Noah Cassidy
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen Rego
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuchao Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Denise Dunn
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Scott Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Albert Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Andrew B Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
48
|
Daglish SCD, Fennell EMJ, Graves LM. Targeting Mitochondrial DNA Transcription by POLRMT Inhibition or Depletion as a Potential Strategy for Cancer Treatment. Biomedicines 2023; 11:1598. [PMID: 37371693 PMCID: PMC10295849 DOI: 10.3390/biomedicines11061598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription of the mitochondrial genome is essential for the maintenance of oxidative phosphorylation (OXPHOS) and other functions directly related to this unique genome. Considerable evidence suggests that mitochondrial transcription is dysregulated in cancer and cancer metastasis and contributes significantly to cancer cell metabolism. Recently, inhibitors of the mitochondrial DNA-dependent RNA polymerase (POLRMT) were identified as potentially attractive new anti-cancer compounds. These molecules (IMT1, IMT1B) inactivate cancer cell metabolism through reduced transcription of mitochondrially-encoded OXPHOS subunits such as ND1-5 (Complex I) and COI-IV (Complex IV). Studies from our lab have discovered small molecule regulators of the mitochondrial matrix caseinolytic protease (ClpP) as probable inhibitors of mitochondrial transcription. These compounds activate ClpP proteolysis and lead to the rapid depletion of POLRMT and other matrix proteins, resulting in inhibition of mitochondrial transcription and growth arrest. Herein we present a comparison of POLRMT inhibition and ClpP activation, both conceptually and experimentally, and evaluate the results of these treatments on mitochondrial transcription, inhibition of OXPHOS, and ultimately cancer cell growth. We discuss the potential for targeting mitochondrial transcription as a cancer cell vulnerability.
Collapse
Affiliation(s)
| | | | - Lee M. Graves
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.C.D.D.); (E.M.J.F.)
| |
Collapse
|
49
|
Pimentel JM, Zhou JY, Wu GS. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers (Basel) 2023; 15:2752. [PMID: 37345089 DOI: 10.3390/cancers15102752] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that selectively induces apoptosis in tumor cells without harming normal cells, making it an attractive agent for cancer therapy. TRAIL induces apoptosis by binding to and activating its death receptors DR4 and DR5. Several TRAIL-based treatments have been developed, including recombinant forms of TRAIL and its death receptor agonist antibodies, but the efficacy of TRAIL-based therapies in clinical trials is modest. In addition to inducing cancer cell apoptosis, TRAIL is expressed in immune cells and plays a critical role in tumor surveillance. Emerging evidence indicates that the TRAIL pathway may interact with immune checkpoint proteins, including programmed death-ligand 1 (PD-L1), to modulate PD-L1-based tumor immunotherapies. Therefore, understanding the interaction between TRAIL and the immune checkpoint PD-L1 will lead to the development of new strategies to improve TRAIL- and PD-L1-based therapies. This review discusses recent findings on TRAIL-based therapy, resistance, and its involvement in tumor immunosurveillance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
50
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|