1
|
Vavřínová A, Behuliak M, Vodička M, Bencze M, Ergang P, Vaněčková I, Zicha J. More efficient adaptation of cardiovascular response to repeated restraint in spontaneously hypertensive rats: the role of autonomic nervous system. Hypertens Res 2024; 47:2377-2392. [PMID: 38956283 PMCID: PMC11374672 DOI: 10.1038/s41440-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
We hypothesized that sympathetic hyperactivity and parasympathetic insuficiency in spontaneously hypertensive rats (SHR) underlie their exaggerated cardiovascular response to acute stress and impaired adaptation to repeated restraint stress exposure compared to Wistar-Kyoto rats (WKY). Cardiovascular responses to single (120 min) or repeated (daily 120 min for 1 week) restraint were measured by radiotelemetry and autonomic balance was evaluated by power spectral analysis of systolic blood pressure variability (SBPV) and heart rate variability (HRV). Baroreflex sensitivity (BRS) was measured by the pharmacological Oxford technique. Stress-induced pressor response and vascular sympathetic activity (low-frequency component of SBPV) were enhanced in SHR subjected to single restraint compared to WKY, whereas stress-induced tachycardia was similar in both strains. SHR exhibited attenuated cardiac parasympathetic activity (high-frequency component of HRV) and blunted BRS compared to WKY. Repeated restraint did not affect the stress-induced increase in blood pressure. However, cardiovascular response during the post-stress recovery period of the 7th restraint was reduced in both strains. The repeatedly restrained SHR showed lower basal heart rate during the dark (active) phase and slightly decreased basal blood pressure during the light phase compared to stress-naive SHR. SHR subjected to repeated restraint also exhibited attenuated stress-induced tachycardia, augmented cardiac parasympathetic activity, attenuated vascular sympathetic activity and improved BRS during the last seventh restraint compared to single-stressed SHR. Thus, SHR exhibited enhanced cardiovascular and sympathetic responsiveness to novel stressor exposure (single restraint) compared to WKY. Unexpectedly, the adaptation of cardiovascular and autonomic responses to repeated restraint was more effective in SHR.
Collapse
Affiliation(s)
- Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Bencze
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
2
|
González-Barriga F, Orduña V. Incentive-salience attribution is attenuated in spontaneously hypertensive rats, an animal model of ADHD. Behav Processes 2024; 220:105068. [PMID: 38889852 DOI: 10.1016/j.beproc.2024.105068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Spontaneously Hypertensive Rats (SHR) have been extensively studied as an animal model of Attention Deficit Hyperactivity Disorder (ADHD) because they show some of the defining features of that disorder, like some forms of impulsivity and hyperactivity. However, other characteristics of the disorder, like a deficit in motivation, have been scarcely studied in the SHR strain. In the present report, we studied in 45 SHR and 45 Wistar rats as a comparison group, the capacity of attribution of incentive salience to a stimulus predictor of reinforcement, which has become a central concept in the study of motivation. We employed the Pavlovian Conditioned-Approach (PCA) task, in which a lever is presented 8 s before a pellet is delivered. The attribution of incentive salience is indicated by responses to the lever, in contrast to the absence of attribution of incentive salience, which is indicated by entrances to the pellet receptacle. For quantifying the attribution of incentive salience, we employed the PCA index, which integrates three related variables for each type of response, lever presses and entrances to the feeder: 1) the number of responses, 2) the latency to the first response, and 3) the probability that at least one response occurred during the presence of the lever. SHR showed lower levels of PCA, suggesting a deficit in the attribution of incentive salience to the lever. This finding replicates the results reported by previous research that compared SHR's performance in the PCA task against that of Sprague-Dawley rats.
Collapse
Affiliation(s)
| | - Vladimir Orduña
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
3
|
Blum K, Elman I, Bowirrat A, Baron D, Thanos PK, Hanna C, Badgaiyan RD, Gold MS. Futuristic Exploration of Addiction Neuroscience in the Genomic Era. Psychol Res Behav Manag 2023; 16:4989-4991. [PMID: 38094658 PMCID: PMC10717929 DOI: 10.2147/prbm.s439837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University Health Sciences, Pomona, CA, USA
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, Boonshoft School of Medicine, Wright University, Dayton, OH, USA
- Department of Psychiatry, Human Integrated Services Unit, University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA
- Sunder Foundation, Palm Springs, CA, USA
- PEAKLOGIC, LLC., Del Mar, CA, USA
| | - Igor Elman
- Department of Psychiatry, Harvard College of Medicine, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - David Baron
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Case Western Reserve University and MetroHealth System, Cleveland, OH, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Bakhshi S, Tehrani-Doost M, Batouli SAH. Fronto-Cerebellar Neurometabolite Alterations After Methylphenidate in Children and Adolescents With ADHD: A Proton Magnetic Resonance Spectroscopy Study. J Atten Disord 2023; 27:410-422. [PMID: 36635897 DOI: 10.1177/10870547221146238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The fronto-cerebellar circuit is involved in ADHD pathophysiology. Methylphenidate, as a first-line medication for ADHD, affects different brain regions, however, its effect on the fronto-cerebellar circuit is not investigated sufficiently. We aimed to investigate the effect of 8-week treatment with methylphenidate on neurometabolite ratios in the fronto-cerebellar circuit in ADHD participants using magnetic resonance spectroscopy (MRS). METHODS Fifteen drug-naïve ADHD children and adolescents were enrolled in the present study. Two single-voxel MR spectra were acquired from the right dorsolateral prefrontal cortex (DLPFC) and left Crus 1, before and after the medication. Also, neuropsychological and behavioral assessments were administered. RESULTS After medication, the glutamate/creatine in the DLPFC and the choline/creatine in the Crus 1 decreased in the ADHD participants. CONCLUSION These findings propose that methylphenidate-induced metabolite changes in the fronto-cerebellar circuit could be associated with improvement in cognitive/behavioral characteristics in ADHD. Also, results highlighted cerebellar engagement in ADHD pathophysiology.
Collapse
Affiliation(s)
- Soroush Bakhshi
- Institute for Cognitive Science Studies, Tehran, Iran
- Shahid Beheshti University, Tehran, Iran
| | - Mehdi Tehrani-Doost
- Institute for Cognitive Science Studies, Tehran, Iran
- Tehran University of Medical Sciences, Iran
| | | |
Collapse
|
5
|
Ding J, Ding Y, Wu J, Deng J, Yu Q, Wang J. "Jing-Ning Granules" Can Alleviate Attention Deficit Hyperactivity Disorder in Rats by Modulating Dopaminergic D2/D1-Like Receptor-Mediated Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9139841. [PMID: 36337583 PMCID: PMC9635972 DOI: 10.1155/2022/9139841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by attention deficit, hyperactivity, and impulsivity. Jing-Ning Granules (JNG) is a traditional Chinese medicine (TCM) that can alleviate ADHD. Although JNG is commonly used for the effective treatment of ADHD and has obtained the national invention patent, the exact mechanism of action remains unclear. Objective In this study, we examined the effect and mechanism of JNG in spontaneously hypertensive rats (SHRs). We hypothesized that JNG affects dopaminergic D2/D1-like receptors and related pathways. Materials and Methods Six rat groups were used in the experiment: Wistar-Kyoto rats (WKY, control group) and five SHR groups, including a model group; atomoxetine (ATX, positive control) group; and low, medium, and high-dose JNG groups. The corresponding treatments were daily administered to each group for 6 weeks. A behavioral test, including a step-down test and open field test (OFT), was carried out at the end of treatment. After the behavioral test, all animals were sacrificed, and the brain tissue was collected and analyzed ex vivo; histopathological analysis was performed to assess the pathological changes of the hippocampus; expression of D1-like and D2-like receptors, sensor protein calmodulin (CaM), protein kinase A (PKA), and calcium/calmodulin-dependent serine/threonine protein kinase (CaMKII) in the striatum and hippocampus was measured by western blot and real-time quantitative PCR (RT-PCR); cyclic adenosine monophosphate (cAMP) levels in the striatum were analyzed using an enzyme-linked immunosorbent assay (ELISA), while the level of Ca2+ in the striatum was analyzed by a calcium kit. Results Our results showed that ATX or JNG could ameliorate the hyperactive/impulsive behavior and cognitive function of ADHD by promoting neuroprotection. Mechanistically, ATX or JNG could prompt the expressions of Dl-like and D2-like receptors and improve the mRNA and protein levels of cAMP/PKA and Ca2+/CAM/CAMKII signaling pathways. Conclusion These results indicate that JNG can produce therapeutic effects by regulating the balance of D2/D1-like receptor-mediated cAMP/PKA and Ca2+/CaM/CaMKII signaling pathways.
Collapse
Affiliation(s)
- Jie Ding
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yiyun Ding
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Jingjing Wu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jialin Deng
- Department of Pediatrics, Beijing Huaxin Hospital, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| | - Qingyang Yu
- Department of TCM, Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junhong Wang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
6
|
de Sousa Macedo LLB, Antunes FTT, de Andrade Alvarenga W, Batista MCC, de Moura MSB, Farias MNL, Caminski ES, Dallegrave E, Grivicich I, de Souza AH. Curcumin for attention-deficit-hyperactivity disorder: a systematic review and preliminary behavioral investigation. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:803-813. [PMID: 35394134 DOI: 10.1007/s00210-022-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 12/08/2022]
Abstract
Curcumin has protective actions in neuropsychiatric disorders, acting as a neuroprotective agent. As a first approach, the study aimed at a systematic review of the potential effects of curcumin on cognitive performance for attention-deficit-hyperactivity disorder (ADHD). This research was carried out in the databases of PubMed, Embase, SciELO, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web of Science, and the Grey literature. Upon discovering the scarcity of relevant studies, and knowing that curcumin might have an ADHD hyperactive and anxious behavior, the study proposed to evaluate the effects of curcumin in an ADHD phenotype of spontaneously hypertensive Wistar rats (SHR). No studies were found that related to curcumin and ADHD. Fifteen SHRs were then divided into separate groups that received water (1 mg/kg/day), curcumin (50 mg/kg/day), or methylphenidate (1 mg/kg/day) for 42 days. Behavioral tests to assess activity (Open Field Test), anxiety and impulsivity (Elevated Plus-Maze, and Social Interaction), and memory (Y-Maze, and the Object Recognition Test) were all performed. The animals that were treated with curcumin showed less anxious and hyperactive behavior, as seen in the Open Field Test and the Social Interaction Test. Anxious behavior was measured by the EPM and was not modulated by any treatment. The results of the Y-Maze Test demonstrated that curcumin improved spatial memory. In the Object Recognition Test, neither the short nor the long-term memory was improved. The treatments that were used in this study beneficially modulated the anxious and hyperactive behavior of the SHR.
Collapse
Affiliation(s)
- Lélia Lilianna Borges de Sousa Macedo
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Flavia Tasmin Techera Antunes
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil.
| | | | | | | | | | - Emanuelle Sistherenn Caminski
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Eliane Dallegrave
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Ivana Grivicich
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Alessandra Hübner de Souza
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| |
Collapse
|
7
|
Puts NA, Ryan M, Oeltzschner G, Horska A, Edden RAE, Mahone EM. Reduced striatal GABA in unmedicated children with ADHD at 7T. Psychiatry Res Neuroimaging 2020; 301:111082. [PMID: 32438277 DOI: 10.1016/j.pscychresns.2020.111082] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Attention-deficit hyperactive disorder (ADHD) is characterized by inattention and increased impulsive and hypermotoric behaviors.Despite the high prevalence and impact of ADHD, little is known about the underlying neurophysiology of ADHD. The main inhibitory and excitatory neurotransmitters γ-aminobutyric acid (GABA) and glutamate are receiving increased attention in ADHD and can be measured using Magnetic Resonance Spectroscopy (MRS). However, MRS studies in ADHD are limited. We measured GABA and glutamate in young unmedicated participants, utilizing high magnetic field strength. Fifty unmedicated children (26 with ADHD, 24 controls) aged 5-9 years completed MRS at 7T and behavioral testing. GABA and glutamate were measured in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), premotor cortex (PMC), and striatum, and estimated using LCModel. Children with ADHD showed poorer inhibitory control and significantly reduced GABA/Cr in the striatum, but not in ACC, DLPFC, or PMC regions. There were no significant group differences for Glu/Cr levels, or correlations with behavioral manifestations of ADHD. The primary finding of this study is a reduction of striatal GABA levels in unmedicated children with ADHD at 7T. These findings provide guidance for future studies or interventions. Reduced striatal GABA may be a marker for specific GABA-related treatment for ADHD.
Collapse
Affiliation(s)
- Nicolaas A Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, United States; Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, United Kingdom.
| | - Matthew Ryan
- Department of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave., Baltimore, MD 21231 United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, United States
| | - Alena Horska
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, United States
| | - E Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, 1750 E. Fairmount Ave., Baltimore, MD 21231 United States; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, United States
| |
Collapse
|
8
|
Holton KF, Johnstone JM, Brandley ET, Nigg JT. Evaluation of dietary intake in children and college students with and without attention-deficit/hyperactivity disorder. Nutr Neurosci 2019; 22:664-677. [PMID: 29361884 PMCID: PMC6309508 DOI: 10.1080/1028415x.2018.1427661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: To evaluate dietary intake among individuals with and without attention-deficit hyperactivity disorder (ADHD), to evaluate the likelihood that those with ADHD have inadequate intakes. Methods: Children, 7-12 years old, with (n = 23) and without (n = 22) ADHD, and college students, 18-25 years old, with (n = 21) and without (n = 30) ADHD comprised the samples. Children's dietary intake was assessed by a registered dietitian using 24-hour recalls over 3 days. College students kept a detailed food record over three days. Dietary information for both groups was entered into the Nutrition Data Systems for Research database, and output was analyzed using SAS 9.4. Nutrient analyses included the Healthy Eating Index-2010, Micronutrient Index (as a measure of overall micronutrient intake), and individual amino acids necessary for neurotransmission. Logistic regression was used to model the association of nutrient intake with ADHD. Models were adjusted for age, sex, IQ (or GPA), and energy intake (or total protein intake) as appropriate. Significance was evaluated at P = 0.05, and using the Benjamini-Hochberg corrected P-value for multiple comparisons. Results: No evidence existed for reduced nutrient intake among those with ADHD compared to controls in either age group. Across both groups, inadequate intakes of vitamin D and potassium were reported in 95% of participants. Children largely met nutrient intake guidelines, while college students failed to meet these guidelines for nine nutrients. In regards to amino acid intake in children, an increased likelihood of having ADHD was associated with higher consumption of aspartate, OR = 12.61 (P = 0.01) and glycine OR = 11.60 (P = 0.05); and a reduced likelihood of ADHD with higher intakes of glutamate, OR = 0.34 (P = 0.03). Among young adults, none of the amino acids were significantly associated with ADHD, though glycine and tryptophan approached significance. Discussion: Results fail to support the hypothesis that ADHD is driven solely by dietary micronutrient inadequacy. However, amino acids associated with neurotransmission, specifically those affecting glutamatergic neurotransmission, differed by ADHD status in children. Amino acids did not reliably vary among college students. Future larger scale studies are needed to further examine whether or not dietary intake of amino acids may be a modulating factor in ADHD.
Collapse
Affiliation(s)
- Kathleen F. Holton
- Department of Health Studies, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Gray Hall 119, Washington, D.C. 20016; (202) 885-3797
| | - Jeanette M. Johnstone
- Departments of Neurology and Child and Adolescent Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, DC7P; (503) 494-7340,
| | - Elizabeth T. Brandley
- Department of Health Studies, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016; (603)313-9176;
| | - Joel T. Nigg
- Department of Child and Adolescent Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239; (503) 346-0640,
| |
Collapse
|
9
|
Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations. J Clin Med 2019; 8:jcm8060841. [PMID: 31212854 PMCID: PMC6617109 DOI: 10.3390/jcm8060841] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a complex symptomatology, and core symptoms as well as functional impairment often persist into adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional treatment most often includes pharmacotherapy with central nervous stimulants, but the number of non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive effects on several aspects of cognitive functions in the general child population. Here we review existing evidence that exercise affects cognitive functions in children with and without ADHD and present likely neurophysiological mechanisms of action. We find well-described associations between physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial effects following acute aerobic exercise on executive functions in children with ADHD. Despite large heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC) children, and our extracted effect sizes from long-term interventions suggest consistent positive effects in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise can improve cognitive performance intimately linked to ADHD presentations in children with and without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously provide recommendations for parameters of exercise.
Collapse
|
10
|
Eckernäs D, Hieronymus F, Carlsson T, Bergquist F. Acoustic white noise ameliorates reduced regional brain expression of CaMKII and ΔFosB in the spontaneously hypertensive rat model of ADHD. IBRO Rep 2019; 6:31-39. [PMID: 30656238 PMCID: PMC6302041 DOI: 10.1016/j.ibror.2018.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022] Open
Abstract
ΔFosB was reduced in the DL-PFC, DLS and nAc in SH rats. Acoustic noise normalized ΔFosB expression in the DL-PFC and nAc of SH rats. CaMKII expression was reduced in the TMN in SH rats. Acoustic noise increased CaMKII expression in the TMN in both strains.
Loud (≥70dBA) acoustic white noise improves cognitive performance in children with ADHD as well as skilled reach and rotarod performance in the spontaneously hypertensive (SH) rat model of ADHD. To investigate how acoustic noise influences the brain activity in the SH rat model of ADHD, immunohistochemical staining of two neuronal activity and plasticity markers, Ca2+/Calmodulin dependent protein kinase II (CaMKII) and ΔFosB, was evaluated in Wistar (n = 24) and SH (n = 16) rats after repeated exposure to acoustic noise or ambient silence. Other SH rats (n = 6) were treated with repeated methylphenidate (MPH). Expression of CaMKII was reduced in the tuberomammillary nucleus (TMN) of the SH rat compared to Wistar but not in the nucleus accumbens (nAc) or the dorsolateral prefrontal cortex (DL-PFC). In the TMN, the expression of CaMKII was increased by noise in both strains. ΔFosB expression was reduced in nAc, DL-PFC and the dorsolateral striatum (DLS) of the SH rat compared to Wistar. Exposure to acoustic white noise significantly increased ΔFosB expression in the nAc and DL-PFC but not in the DLS of SH rats. The results indicate that acoustic noise shifts a reduced neuronal activity in the nAc, TMN and DL-PFC in SH rats toward the normal levels of activity in outbred rats. This may explain why noise has benefit selectively in ADHD.
Collapse
Affiliation(s)
- Daniel Eckernäs
- Corresponding author at: University of Gothenburg, Institute of Neuroscience and Physiology, Department of Pharmacology, Box 431, 405 30, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
11
|
Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry 2019; 24:562-575. [PMID: 29892054 PMCID: PMC6477889 DOI: 10.1038/s41380-018-0070-0] [Citation(s) in RCA: 510] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Decades of research show that genes play an vital role in the etiology of attention deficit hyperactivity disorder (ADHD) and its comorbidity with other disorders. Family, twin, and adoption studies show that ADHD runs in families. ADHD's high heritability of 74% motivated the search for ADHD susceptibility genes. Genetic linkage studies show that the effects of DNA risk variants on ADHD must, individually, be very small. Genome-wide association studies (GWAS) have implicated several genetic loci at the genome-wide level of statistical significance. These studies also show that about a third of ADHD's heritability is due to a polygenic component comprising many common variants each having small effects. From studies of copy number variants we have also learned that the rare insertions or deletions account for part of ADHD's heritability. These findings have implicated new biological pathways that may eventually have implications for treatment development.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Kovács Z, D'Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature. Front Psychiatry 2019; 10:363. [PMID: 31178772 PMCID: PMC6543248 DOI: 10.3389/fpsyt.2019.00363] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-β-hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.
Collapse
Affiliation(s)
- Zsolt Kovács
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David Diamond
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,James A. Haley VA Medical Center, Tampa, FL, United States.,Shriners Hospital for Children, Tampa, FL, United States
| | - Christopher Rogers
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States
| |
Collapse
|
13
|
Li Y, Yin A, Sun X, Zhang M, Zhang J, Wang P, Xie R, Li W, Fan Z, Zhu Y, Wang H, Dong H, Wu S, Xiong L. Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. J Clin Invest 2017; 127:4270-4284. [PMID: 29058689 DOI: 10.1172/jci94455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children. Although an imbalance of excitatory and inhibitory inputs has been proposed as contributing to this disorder, the mechanisms underlying this highly heterogeneous disease remain largely unknown. Here, we show that N-myc downstream-regulated gene 2 (NDRG2) deficiency is involved in the development of ADHD in both mice and humans. Ndrg2-knockout (Ndrg2-/-) mice exhibited ADHD-like symptoms characterized by attention deficits, hyperactivity, impulsivity, and impaired memory. Furthermore, interstitial glutamate levels and excitatory transmission were markedly increased in the brains of Ndrg2-/- mice due to reduced astroglial glutamate clearance. We developed an NDRG2 peptide that rescued astroglial glutamate clearance and reduced excitatory glutamate transmission in NDRG2-deficient astrocytes. Additionally, NDRG2 peptide treatment rescued ADHD-like hyperactivity in the Ndrg2-/- mice, while routine methylphenidate treatment had no effect on hyperactivity in these animals. Finally, children who were heterozygous for rs1998848, a SNP in NDRG2, had a higher risk of ADHD than children who were homozygous for rs1998848. Our results indicate that NDRG2 deficiency leads to ADHD phenotypes and that impaired astroglial glutamate clearance, a mechanism distinct from the well-established dopamine deficit hypothesis for ADHD, underlies the resultant behavioral abnormalities.
Collapse
Affiliation(s)
- Yan Li
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience.,3, Department of Biochemistry and Molecular Biology, and
| | - Anqi Yin
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Xin Sun
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ming Zhang
- 1, Department of Anesthesiology and Perioperative Medicine.,5, General Hospital of Chengdu Military Command, Chengdu, Sichuan, China
| | - Jianfang Zhang
- 6, Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ping Wang
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rougang Xie
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience
| | - Wen Li
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Ze Fan
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Han Wang
- 7, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Hailong Dong
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Lize Xiong
- 1, Department of Anesthesiology and Perioperative Medicine
| |
Collapse
|
14
|
Kim JI, Kim JW, Park JE, Park S, Hong SB, Han DH, Cheong JH, Choi JW, Lee S, Kim BN. Association of the GRIN2B rs2284411 polymorphism with methylphenidate response in attention-deficit/hyperactivity disorder. J Psychopharmacol 2017; 31:1070-1077. [PMID: 27624150 DOI: 10.1177/0269881116667707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated the possible association between two NMDA subunit gene polymorphisms (GRIN2B rs2284411 and GRIN2A rs2229193) and treatment response to methylphenidate (MPH) in attention-deficit/hyperactivity disorder (ADHD). METHODS A total of 75 ADHD patients aged 6-17 years underwent 6 months of MPH administration. Treatment response was defined by changes in scores of the ADHD-IV Rating Scale (ADHD-RS), clinician-rated Clinical Global Impression-Improvement (CGI-I), and Continuous Performance Test (CPT). The association of the GRIN2B and GRIN2A polymorphisms with treatment response was analyzed using logistic regression analyses. RESULTS The GRIN2B rs2284411 C/C genotype showed significantly better treatment response as assessed by ADHD-RS inattention ( p=0.009) and CGI-I scores ( p=0.009), and there was a nominally significant association in regard to ADHD-RS hyperactivity-impulsivity ( p=0.028) and total ( p=0.023) scores, after adjusting for age, sex, IQ, baseline Clinical Global Impression-Severity (CGI-S) score, baseline ADHD-RS total score, and final MPH dose. The GRIN2B C/C genotype also showed greater improvement at the CPT response time variability ( p<0.001). The GRIN2A G/G genotype was associated with a greater improvement in commission errors of the CPT compared to the G/A genotype ( p=0.001). CONCLUSIONS The results suggest that the GRIN2B rs2284411 genotype may be an important predictor of MPH response in ADHD.
Collapse
Affiliation(s)
- Johanna I Kim
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jae-Won Kim
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jong-Eun Park
- 2 Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, Republic of Korea
| | - Subin Park
- 3 Department of Psychiatry, Seoul National Hospital, Seoul, Republic of Korea
| | - Soon-Beom Hong
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Doug Hyun Han
- 4 Department of Psychiatry, College of Medicine, Chung Ang University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- 5 Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Jae-Won Choi
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Sumin Lee
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| |
Collapse
|
15
|
Leão AHFF, Meurer YSR, da Silva AF, Medeiros AM, Campêlo CLC, Abílio VC, Engelberth RCGK, Cavalcante JS, Izídio GS, Ribeiro AM, Silva RH. Spontaneously Hypertensive Rats (SHR) Are Resistant to a Reserpine-Induced Progressive Model of Parkinson's Disease: Differences in Motor Behavior, Tyrosine Hydroxylase and α-Synuclein Expression. Front Aging Neurosci 2017; 9:78. [PMID: 28396635 PMCID: PMC5366354 DOI: 10.3389/fnagi.2017.00078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023] Open
Abstract
Reserpine is an irreversible inhibitor of vesicular monoamine transporter-2 (VMAT2) used to study Parkinson’s disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low-dose of reserpine was proposed as a progressive model of PD. Rats under this treatment show progressive catalepsy behavior, oral movements and spontaneous motor activity decrement. In parallel, compared to Wistar rats, spontaneously hypertensive rats (SHR) are resistant to acute reserpine-induced oral dyskinesia. We aimed to assess whether SHR would present differential susceptibility to repeated reserpine-induced deficits in the progressive model of PD. Male Wistar and SHR rats were administered 15 subcutaneously (s.c.) injections of reserpine (0.1 mg/kg) or vehicle, every other day and motor activity was assessed by the catalepsy, oral movements and open field tests. Only reserpine-treated Wistar rats presented increased latency to step down in the catalepsy test and impaired spontaneous activity in the open field. On the other hand, there was an increase in oral movements in both reserpine-treated strains, although with reduced magnitude and latency to instauration in SHR. After a 15-day withdrawn period, both strains recovered from motor impairment, but SHR animals expressed reduced latencies to reach control levels. Finally, we performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last injection or 15 days after withdrawn. Reserpine-treated animals presented a reduction in TH and an increase in α-syn immunoreactivity in the substantia nigra and dorsal striatum (dSTR), which were both recovered after 15 days of withdraw. Furthermore, SHR rats were resistant to reserpine-induced TH decrement in the substantia nigra, and presented reduced immunoreactivity to α-syn in the dSTR relative to Wistar rats, irrespective of treatment. This effect was accompanied by increase of malondaldhyde (MDA) in the striatum of reserpine-treated Wistar rats, while SHR presented reduced MDA in both control and reserpine conditions relative to Wistar strain. In conclusion, the current results show that SHR are resilient to motor and neurochemical impairments induced by the repeated low-dose reserpine protocol. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potential relevant targets to the study of susceptibility to PD.
Collapse
Affiliation(s)
- Anderson H F F Leão
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do NorteNatal, Brazil; Brain Institute, Federal University of Rio Grande do NorteNatal, Brazil; Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São PauloSão Paulo, Brazil
| | - Ywlliane S R Meurer
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | | | - André M Medeiros
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo São Paulo, Brazil
| | - Clarissa L C Campêlo
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo São Paulo, Brazil
| | - Rovena C G K Engelberth
- Neurochemical Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Jeferson S Cavalcante
- Neurochemical Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Geison S Izídio
- Laboratory of Behavioral Genetics, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina Florianopolis, Brazil
| | | | - Regina H Silva
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do NorteNatal, Brazil; Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São PauloSão Paulo, Brazil
| |
Collapse
|
16
|
Fasmer OB, Johansen EB. Patterns of motor activity in spontaneously hypertensive rats compared to Wistar Kyoto rats. Behav Brain Funct 2016; 12:32. [PMID: 27906019 PMCID: PMC5131462 DOI: 10.1186/s12993-016-0117-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased motor activity is a defining characteristic of patients with ADHD, and spontaneously hypertensive rats have been suggested to be an animal model of this disorder. In the present study, we wanted to use linear and non-linear methods to explore differences in motor activity patterns in SHR/NCrl rats compared to Wistar Kyoto (WKY/NHsd) rats. METHODS A total number of 42 rats (23 SHR/NCrl and 19 WKY/NHsd, male and female) were tested. At PND 51, the animals' movements were video-recorded during an operant test procedure that lasted 90 min. Total activity level and velocity (mean and maximum), standard deviation (SD) and root mean square successive differences (RMSSD) were calculated. In addition, we used Fourier analysis, autocorrelations and two measures of complexity to characterize the time series; sample entropy and symbolic dynamics. RESULTS The SHR/NCrl rats showed increased total activity levels in addition to increased mean and maximum velocity of movements. The variability measures, SD and RMSSD, were markedly lower in the SHR/NCrl compared to the WKY/NHsd rats. At the same time, the SHR/NCrl rats displayed a higher complexity of the time series, particularly with regard to the total activity level as evidenced by analyses of sample entropy and symbolic dynamics. Autocorrelation analyses also showed differences between the two strains. In the Fourier analysis, the SHR/NCrl rats had an increased variance in the high frequency part of the spectrum, corresponding to the time period of 9-17 s. CONCLUSION The findings show that in addition to increased total activity and velocity of movement, the organization of behavior is different in SHR/NCrl relative to WKY/NHsd controls. Compared to controls, behavioral variability is reduced in SHR/NCrl at an aggregate level, and, concomitantly, more complex and unpredictable from moment-to-moment. These finding emphasize the importance of the measures and methods used when characterizing behavioral variability. If valid for ADHD, the results indicate that decreased behavioral variability can co-exist with increased behavioral complexity, thus representing a challenge to current theories of variability in ADHD.
Collapse
Affiliation(s)
- Ole Bernt Fasmer
- Department of Clinical Medicine, Section for Psychiatry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Bergen, Norway
| | | |
Collapse
|
17
|
Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, Ko MJ, Han SH, Banerjee S, Shin CY. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 2016; 113:71-81. [PMID: 27638451 DOI: 10.1016/j.neuropharm.2016.09.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/26/2023]
Abstract
Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hana Seung
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Chan Kim
- KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck T Gonzales
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Ah Oh
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Min Yang
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Mee Jung Ko
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seol-Heui Han
- KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea
| | - Sourav Banerjee
- National Brain Research Center, NH-8, Nainwal Mode, Haryana, India
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; KU Open Innovation Center and IBST, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Íbias J, Miguéns M, Pellón R. Effects of dopamine agents on a schedule-induced polydipsia procedure in the spontaneously hypertensive rat and in Wistar control rats. J Psychopharmacol 2016; 30:856-66. [PMID: 27296274 DOI: 10.1177/0269881116652598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attention deficit hyperactivity disorder (ADHD), and typically develops excessive patterns of response under most behavioural protocols. Schedule-induced polydipsia (SIP) is the excessive water consumption that occurs as a schedule effect when food is intermittently delivered and animals are partially food- but not water-deprived. SIP has been used as a model of excessive behaviour, and considerable evidence has involved the dopaminergic system in its development and maintenance. The aim of this study was to evaluate the effects of the most common psychostimulants used in ADHD treatment on SIP, comparing their effects in SHRs with rats from control populations. SHR, Wistar Kyoto (WKY) and Wistar rats were submitted to a multiple fixed time (FT) food schedule with two components: 30 s and 90 s. The acute effects of different dopaminergic compounds were evaluated after 40 sessions of SIP acquisition. All animals showed higher adjunctive drinking under FT 30 s than FT 90 s, and SHRs displayed higher asymptotic SIP levels in FT 90 s compared to WKY and Wistar rats. SHRs were less sensitive to dopaminergic agents than control rats in terms of affecting rates of adjunctive drinking. These differences point to an altered dopaminergic system in the SHR and provide new insights into the neurobiological basis of ADHD pharmacological treatments.
Collapse
Affiliation(s)
- Javier Íbias
- Animal Behaviour Laboratories, Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Miguel Miguéns
- Animal Behaviour Laboratories, Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ricardo Pellón
- Animal Behaviour Laboratories, Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
19
|
Khadka S, Pearlson GD, Calhoun VD, Liu J, Gelernter J, Bessette KL, Stevens MC. Multivariate Imaging Genetics Study of MRI Gray Matter Volume and SNPs Reveals Biological Pathways Correlated with Brain Structural Differences in Attention Deficit Hyperactivity Disorder. Front Psychiatry 2016; 7:128. [PMID: 27504100 PMCID: PMC4959119 DOI: 10.3389/fpsyt.2016.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter (GM) volume, its specific genetic correlates are largely unknown. METHODS In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed). A multivariate parallel independent component analysis (Para-ICA) technique-identified imaging genetic relationships between regional GM volume and single nucleotide polymorphism data. RESULTS Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly chosen subsamples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. CONCLUSION Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems; others might reflect sources of shared liability to disturbances commonly found in ADHD, such as sleep abnormalities.
Collapse
Affiliation(s)
- Sabin Khadka
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford HealthCare , Hartford, CT , USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford HealthCare, Hartford, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Vince D Calhoun
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Jingyu Liu
- The Mind Research Network , Albuquerque, NM , USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Katie L Bessette
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford HealthCare , Hartford, CT , USA
| | - Michael C Stevens
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford HealthCare, Hartford, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Natsheh JY, Shiflett MW. The Effects of Methylphenidate on Goal-directed Behavior in a Rat Model of ADHD. Front Behav Neurosci 2015; 9:326. [PMID: 26635568 PMCID: PMC4659329 DOI: 10.3389/fnbeh.2015.00326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/13/2015] [Indexed: 01/09/2023] Open
Abstract
Although attentional and motor alterations in Attention Deficit Hyperactivity Disorder (ADHD) have been well characterized, less is known about how this disorder impacts goal-directed behavior. To investigate whether there is a misbalance between goal-directed and habitual behaviors in an animal model of ADHD, we tested adult [P75-P105] Spontaneously Hypertensive Rats (SHR; ADHD rat model) and Wistar-Kyoto rats (WKY), the normotensive control strain, on an instrumental conditioning paradigm with two phases: a free-operant training phase in which rats separately acquired two distinct action-outcome contingencies, and a choice test conducted in extinction prior to which one of the food outcomes was devalued through specific satiety. To assess the effects of Methylphenidate (MPH), a commonly used ADHD medication, on goal-directed behavior, we injected rats with either MPH or saline prior to the choice test. Both rat strains acquired an instrumental response, with SHR responding at greater rates over the course of training. During the choice test WKY demonstrated goal-directed behavior, responding more frequently on the lever that delivered, during training, the still-valued outcome. In contrast, SHR showed no goal-directed behavior, responding equally on both levers. However, MPH administration prior to the choice test restored goal-directed behavior in SHR, and disrupted this behavior in WKY rats. This study provides the first experimental evidence for selective impairment in goal-directed behavior in rat models of ADHD, and how MPH acts differently on SHR and WKY animals to restore or impair this behavior, respectively.
Collapse
Affiliation(s)
- Joman Y Natsheh
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark NJ, USA ; Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University Jerusalem, State of Palestine
| | - Michael W Shiflett
- Department of Psychology, Rutgers, The State University of New Jersey, Newark NJ, USA
| |
Collapse
|
21
|
Dervola KSN, Johansen EB, Walaas SI, Fonnum F. Gender-dependent and genotype-sensitive monoaminergic changes induced by polychlorinated biphenyl 153 in the rat brain. Neurotoxicology 2015. [PMID: 26215117 DOI: 10.1016/j.neuro.2015.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polychlorinated biphenyls (PCBs) are present as ortho- and non-ortho-substituted PCBs, with most of the ortho-substituted congeners being neurotoxic. The present study examined effects of the ortho-substituted PCB 153 on dopamine, serotonin and amino acid neurotransmitters in the neostriatum of both male and female Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR) genotypes. PCB 153 exposure at p8, p14 and p20 had no effects on levels of these transmitters when examined at p55, but led to increased levels of both homovanillic acid and 5-hydroxyindoleacetic acid, the degradation products of dopamine and serotonin, respectively, in all groups except the female SHR. Immunoblotting showed that PCB exposure induced gender-specific decreases in dopaminergic synaptic proteins. These included a novel finding of decreased levels of the dopamine D5 receptor in both genders and genotypes, whereas male-specific changes included decreases in the postsynaptic density (PSD)-95 protein in the WKY and SHRs and a decrease in the presynaptic dopamine transporter in both the WKY and, less clearly in the male SHR. A female-specific tendency of increased vesicular monoamine transporter-2 was observed in the SHRs after PCB exposure. No changes were seen in tyrosine hydroxylase, the cytoskeletal neurotubulin or the plasma membrane marker Na(+)/K(+)-ATPase in any strain. Hence, PCB-exposure led to increases in monoamine transmitter turnover in both male and female animals, whereas decreases in both pre- and postsynaptic dopaminergic proteins were predominantly seen in male animals. PCB 153 may therefore induce neostriatal toxicity through both presynaptic and postsynaptic mechanisms in both genotypes and genders, including effects on the aspiny interneurons, which employ the D5 receptor to mediate dopamine effects on interneurons in the basal ganglia.
Collapse
Affiliation(s)
- Kine S N Dervola
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway
| | - Espen B Johansen
- Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - S Ivar Walaas
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway.
| | - Frode Fonnum
- Department of Biochemistry, Division of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Norway
| |
Collapse
|
22
|
Urban KR, Gao WJ. Evolution of the Study of Methylphenidate and Its Actions on the Adult Versus Juvenile Brain. J Atten Disord 2015; 19:603-19. [PMID: 22923783 DOI: 10.1177/1087054712455504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Methylphenidate (MPH) is the most often prescribed medication for treatment of ADHD. However, many of its specific cellular and molecular mechanisms of action, as well as developmental consequences of treatment, are largely unknown. This review provides an overview of current understanding of MPH efficacy, safety, and dosage in adult and pediatric ADHD patients, as well as adult animal studies and pioneering studies in juvenile animals treated with MPH. METHOD A thorough review of the current literature on MPH efficacy and safety in children, adults, and animal models was included. Results of studies were compared and contrasted. RESULTS While MPH is currently considered safe, there is a lack of knowledge of potential developmental consequences of early treatment, as well as differences in drug actions in the developing versus mature brain system. CONCLUSION This review emphasizes the need for further research into the age-dependent activities and potency of MPH, and a need for tighter control and clinical relevance in future studies.
Collapse
Affiliation(s)
| | - Wen-Jun Gao
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
Stevens HE, Vaccarino FM. How animal models inform child and adolescent psychiatry. J Am Acad Child Adolesc Psychiatry 2015; 54:352-9. [PMID: 25901771 PMCID: PMC4407022 DOI: 10.1016/j.jaac.2015.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 01/29/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Every available approach should be used to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of nonhuman animals and the biology and behavior that they share with humans is an approach that must be used to advance the clinical work of child psychiatry. METHOD We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology, but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. RESULTS We present examples of how animal systems are used to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. CONCLUSION Animal models have clear advantages and disadvantages that must be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field.
Collapse
Affiliation(s)
- Hanna E. Stevens
- University of Iowa Carver College of Medicine, Iowa City and the Child Study Center, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
24
|
Naaijen J, Lythgoe DJ, Amiri H, Buitelaar JK, Glennon JC. Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: A review of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev 2015; 52:74-88. [DOI: 10.1016/j.neubiorev.2015.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 12/20/2014] [Accepted: 02/13/2015] [Indexed: 11/29/2022]
|
25
|
Watterson E, Mazur GJ, Sanabria F. Validation of a method to assess ADHD-related impulsivity in animal models. J Neurosci Methods 2015; 252:36-47. [PMID: 25840365 DOI: 10.1016/j.jneumeth.2015.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Response inhibition capacity (RIC), the ability to withhold instrumentally reinforced responses, is compromised in ADHD. Most standard methods for assessing RIC in rodents potentially confound motivational, motor, learning, and inhibitory processes, lack sensitivity to pharmacological treatment, and have unknown reliability. NEW METHOD The fixed minimum interval (FMI) schedule of reinforcement and its associated analytical techniques are designed to dissociate inhibitory processes from incentive-motivational and timing processes. This study is aimed at validating the FMI as a method for assessing RIC in animal models. FMI performance was compared across different withholding requirements (0.5, 3, 6 and 21s), deprivation levels, reinforcement rates, and reinforcer magnitudes. RESULTS AND COMPARISON WITH EXISTING METHODS Motivational manipulations differentially affected estimates of incentive motivation but not the FMI-derived index of RIC, θ. Changes in the withholding requirement influenced timed IRTs in a manner consistent with extant timing theories. Individual estimates of RIC were resilient to prolonged changes in motivation but not to changes in FMI schedule. Results indicate that the FMI schedule is not vulnerable to the same limitations associated with existing methods for assessing RIC. CONCLUSIONS These results support the use of the FMI schedule and associated analytic techniques as tools for assessing RIC in animal models.
Collapse
|
26
|
Hamed AM, Kauer AJ, Stevens HE. Why the Diagnosis of Attention Deficit Hyperactivity Disorder Matters. Front Psychiatry 2015; 6:168. [PMID: 26635643 PMCID: PMC4659921 DOI: 10.3389/fpsyt.2015.00168] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Attention Deficit Hyperactivity disorder (ADHD) is one of the most common and challenging childhood neurobehavioral disorders. ADHD is known to negatively impact children, their families, and their community. About one-third to one-half of patients with ADHD will have persistent symptoms into adulthood. The prevalence in the United States is estimated at 5-11%, representing 6.4 million children nationwide. The variability in the prevalence of ADHD worldwide and within the US may be due to the wide range of factors that affect accurate assessment of children and youth. Because of these obstacles to assessment, ADHD is under-diagnosed, misdiagnosed, and undertreated. OBJECTIVES We examined factors associated with making and receiving the diagnosis of ADHD. We sought to review the consequences of a lack of diagnosis and treatment for ADHD on children's and adolescent's lives and how their families and the community may be involved in these consequences. METHODS We reviewed scientific articles looking for factors that impact the identification and diagnosis of ADHD and articles that demonstrate naturalistic outcomes of diagnosis and treatment. The data bases PubMed and Google scholar were searched from the year 1995 to 2015 using the search terms "ADHD, diagnosis, outcomes." We then reviewed abstracts and reference lists within those articles to rule out or rule in these or other articles. RESULTS Multiple factors have significant impact in the identification and diagnosis of ADHD including parents, healthcare providers, teachers, and aspects of the environment. Only a few studies detailed the impact of not diagnosing ADHD, with unclear consequences independent of treatment. A more significant number of studies have examined the impact of untreated ADHD. The experience around receiving a diagnosis described by individuals with ADHD provides some additional insights. CONCLUSION ADHD diagnosis is influenced by perceptions of many different members of a child's community. A lack of clear understanding of ADHD and the importance of its diagnosis and treatment still exists among many members of the community including parents, teachers, and healthcare providers. More basic and clinical research will improve methods of diagnosis and information dissemination. Even before further advancements in science, strong partnerships between clinicians and patients with ADHD may be the best way to reduce the negative impacts of this disorder.
Collapse
Affiliation(s)
- Alaa M Hamed
- Child and Adolescent Psychiatry Division, Department of Psychiatry, University of Iowa Carver College of Medicine , Iowa City, IA , USA
| | - Aaron J Kauer
- Child and Adolescent Psychiatry Division, Department of Psychiatry, University of Iowa Carver College of Medicine , Iowa City, IA , USA
| | - Hanna E Stevens
- Child and Adolescent Psychiatry Division, Department of Psychiatry, University of Iowa Carver College of Medicine , Iowa City, IA , USA ; Neuroscience Program, Pappajohn Biomedical Institute, University of Iowa , Iowa City, IA , USA
| |
Collapse
|
27
|
Maltezos S, Horder J, Coghlan S, Skirrow C, O'Gorman R, Lavender TJ, Mendez MA, Mehta M, Daly E, Xenitidis K, Paliokosta E, Spain D, Pitts M, Asherson P, Lythgoe DJ, Barker GJ, Murphy DG. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry 2014; 4:e373. [PMID: 24643164 PMCID: PMC3966039 DOI: 10.1038/tp.2014.11] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence that abnormalities in glutamate signalling may contribute to the pathophysiology of attention-deficit hyperactivity disorder (ADHD). Proton magnetic resonance spectroscopy ([1H]MRS) can be used to measure glutamate, and also its metabolite glutamine, in vivo. However, few studies have investigated glutamate in the brain of adults with ADHD naive to stimulant medication. Therefore, we used [1H]MRS to measure the combined signal of glutamate and glutamine (Glu+Gln; abbreviated as Glx) along with other neurometabolites such as creatine (Cr), N-acetylaspartate (NAA) and choline. Data were acquired from three brain regions, including two implicated in ADHD-the basal ganglia (caudate/striatum) and the dorsolateral prefrontal cortex (DLPFC)-and one 'control' region-the medial parietal cortex. We compared 40 adults with ADHD, of whom 24 were naive for ADHD medication, whereas 16 were currently on stimulants, against 20 age, sex and IQ-matched healthy controls. We found that compared with controls, adult ADHD participants had a significantly lower concentration of Glx, Cr and NAA in the basal ganglia and Cr in the DLPFC, after correction for multiple comparisons. There were no differences between stimulant-treated and treatment-naive ADHD participants. In people with untreated ADHD, lower basal ganglia Glx was significantly associated with more severe symptoms of inattention. There were no significant differences in the parietal 'control' region. We suggest that subcortical glutamate and glutamine have a modulatory role in ADHD adults; and that differences in glutamate-glutamine levels are not explained by use of stimulant medication.
Collapse
Affiliation(s)
- S Maltezos
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - J Horder
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, PO Box 50, London SE5 8AF, UK. E-mail:
| | - S Coghlan
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - C Skirrow
- King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - R O'Gorman
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - T J Lavender
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - M A Mendez
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - M Mehta
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - E Daly
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - K Xenitidis
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - E Paliokosta
- Adult ADHD Service, The Maudsley Hospital, London, UK
| | - D Spain
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - M Pitts
- Adult ADHD Service, The Maudsley Hospital, London, UK
| | - P Asherson
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - D J Lythgoe
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - G J Barker
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - D G Murphy
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
28
|
Genro JP, Kieling C, Rohde LA, Hutz MH. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother 2014; 10:587-601. [DOI: 10.1586/ern.10.17] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Johansen EB, Fonnum F, Lausund PL, Walaas SI, Bærland NE, Wøien G, Sagvolden T. Behavioral changes following PCB 153 exposure in the spontaneously hypertensive rat - an animal model of Attention-Deficit/Hyperactivity Disorder. Behav Brain Funct 2014; 10:1. [PMID: 24405777 PMCID: PMC3896790 DOI: 10.1186/1744-9081-10-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/11/2013] [Indexed: 11/17/2022] Open
Abstract
Background Attention-Deficit/Hyperactivity Disorder (ADHD) is a behavioral disorder affecting 3-5% of children. Although ADHD is highly heritable, environmental factors like exposure during early development to various toxic substances like polychlorinated biphenyls (PCBs) may contribute to the prevalence. PCBs are a group of chemical industrial compounds with adverse effects on neurobiological and cognitive functioning, and may produce behavioral impairments that share significant similarities with ADHD. The present study examined the relation between exposure to PCB 153 and changes in ADHD-like behavior in an animal model of ADHD, the spontaneously hypertensive rats (SHR/NCrl), and in Wistar Kyoto (WKY/NHsd) controls. Methods SHR/NCrl and WKY/NHsd, males and females, were orally given PCB 153 dissolved in corn oil at around postnatal day (PND) 8, 14, and 20 at a dosage of 1, 3 or 6 mg/kg bodyweight at each exposure. The control groups were orally administered corn oil only. The animals were behaviorally tested for exposure effects from PND 37 to 64 using an operant procedure. Results Exposure to PCB 153 was associated with pronounced and long-lasting behavioral changes in SHR/NCrl. Exposure effects in the SHR/NCrl depended on dose, where 1 mg/kg tended to reduce ADHD-like behaviors and produce opposite behavioral effects compared to 3 mg/kg and 6 mg/kg, especially in the females. In the WKY/NHsd controls and for the three doses tested, PCB 153 exposure produced a few specific behavioral changes only in males. The data suggest that PCB 153 exposure interacts with strain and sex, and also indicate a non-linear dose–response relation for the behaviors observed. Conclusions Exposure to PCB 153 seems to interact with several variables including strain, sex, dose, and time of testing. To the extent that the present findings can be generalized to humans, exposure effects of PCB 153 on ADHD behavior depends on amount of exposure, where high doses may aggravate ADHD symptoms in genetically vulnerable individuals. In normal controls, exposure may not constitute an environmental risk factor for developing the full range of ADHD symptoms, but can produce specific behavioral changes.
Collapse
Affiliation(s)
- Espen Borgå Johansen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
30
|
Park CY, Lee SH, Kim BK, Shin MS, Kim CJ, Kim H. Treadmill exercise ameliorates impairment of spatial learning ability through enhancing dopamine expression in hypoxic ischemia brain injury in neonatal rats. J Exerc Rehabil 2013; 9:406-12. [PMID: 24278893 PMCID: PMC3836536 DOI: 10.12965/jer.130053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/18/2023] Open
Abstract
Substantia nigra and striatum are vulnerable to hypoxic ischemia brain injury. Physical exercise promotes cell survival and functional recovery after brain injury. However, the effects of treadmill exercise on nigro-striatal dopaminergic neuronal loss induced by hypoxic ischemia brain injury in neonatal stage are largely unknown. We determined the effects of treadmill exercise on survival of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum after hypoxic ischemia brain injury. On postnatal 7 day, left common carotid artery of the neonatal rats ligated for two hours and the neonatal rats were exposed to hypoxia conditions for one hour. The rat pups in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 12 weeks, starting 22 days after induction of hypoxic ischemia brain injury. Spatial learning ability in rat pups was determined by Morris water maze test after last treadmill exercise. The viability of dopamine neurons in the substantia nigra and dopamine fibers in the striatum were analyzed using immunohistochemistry. In this study, hypoxic ischemia injury caused loss of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum. Induction of hypoxic ischemia deteriorated spatial learning ability. Treadmill exercise ameliorated nigro-striatal dopaminergic neuronal loss, resulting in the improvement of spatial learning ability. The present study suggests the possibility that treadmill exercise in early adolescent period may provide a useful strategy for the recovery after neonatal hypoxic ischemia brain injury.
Collapse
Affiliation(s)
- Chang-Youl Park
- Department of Emergency Medical Technology, College of Health Service, Jeonju Vision University, Jeonju, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Dervola KS, Roberg BA, Wøien G, Bogen IL, Sandvik TH, Sagvolden T, Drevon CA, Johansen EB, Walaas SI. Marine Ο-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer-controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD. Behav Brain Funct 2012; 8:56. [PMID: 23228189 PMCID: PMC3573936 DOI: 10.1186/1744-9081-8-56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/28/2012] [Indexed: 01/19/2023] Open
Abstract
Background Previous reports suggest that omega-3 (n-3) polyunsaturated fatty acids (PUFA) supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD. Methods We used spontaneously hypertensive rats (SHR). SHR dams were given n-3 PUFA (EPA and DHA)-enriched feed (n-6/n-3 of 1:2.7) during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY) control rats were given control-feed (n-6/n-3 of 7:1). During postnatal days (PND) 25–50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55–60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography. Results n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover. Conclusions Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms in both sexes.
Collapse
Affiliation(s)
- Kine S Dervola
- Department of Biochemistry, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Adler LA, Kroon RA, Stein M, Shahid M, Tarazi FI, Szegedi A, Schipper J, Cazorla P. A translational approach to evaluate the efficacy and safety of the novel AMPA receptor positive allosteric modulator org 26576 in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 2012; 72:971-7. [PMID: 22771238 DOI: 10.1016/j.biopsych.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/21/2012] [Accepted: 05/07/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND It has been posited that glutamate dysregulation contributes to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Modulation of glutamate neurotransmission may provide alternative therapeutic options. The novel 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor positive allosteric modulator Org 26576 was investigated with a translational approach including preclinical and clinical testing. METHODS Neonatal rat 6-hydroxydopamine lesion-induced hyperactivity was used as preclinical model. Seventy-eight ADHD adults entered a multicenter, double-blind, placebo-controlled, two-period crossover trial. After 1 week placebo lead-in, 67 subjects were randomized into one of four treatment sequences: sequence A (n = 15) Org 26576 (100 mg b.i.d.) for 3 weeks, followed by a 2-week placebo crossover and 3 weeks placebo; sequence B (n = 16) 5 weeks placebo followed by 3 weeks Org 26576 (100 mg b.i.d.); sequence C (n = 18) Org 26576 flexible dose (100-300 mg b.i.d.) for 3 weeks, then 5 weeks placebo; sequence D (n = 18) 5 weeks placebo followed by 3 weeks Org 26576 (100-300 mg b.i.d.). The Adult ADHD Investigator Symptom Rating Scale was used to assess changes in ADHD symptomatology. RESULTS Org 26576 (1, 3, 10 mg/kg intraperitoneal) produced dose-dependent inhibition of locomotor hyperactivity in 6-hydroxydopamine-lesioned rats. Org 26576 (100 mg b.i.d.) was superior to placebo in treating symptoms of adult ADHD subjects. The primary Adult ADHD Investigator Symptom Rating Scale results were supported by some secondary analyses. However, Org 26576 (100-300 mg b.i.d.) did not confirm these results. Most frequently reported adverse events were nausea, dizziness, and headache. CONCLUSIONS These preclinical and clinical findings suggest that Org 25676 may have utility in the treatment of ADHD.
Collapse
Affiliation(s)
- Lenard A Adler
- Departments of Psychiatry and Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY 10017, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Urban KR, Waterhouse BD, Gao WJ. Distinct age-dependent effects of methylphenidate on developing and adult prefrontal neurons. Biol Psychiatry 2012; 72:880-8. [PMID: 22609367 PMCID: PMC3433628 DOI: 10.1016/j.biopsych.2012.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND Methylphenidate (MPH) has long been used to treat attention-deficit/hyperactivity disorder (ADHD); however, its cellular mechanisms of action and potential effects on prefrontal cortical circuitry are not well understood, particularly in the developing brain system. A clinically relevant dose range for rodents has been established in the adult animal; however, how this range will translate to juvenile animals has not been established. METHODS Juvenile (postnatal day [PD] 15) and adult (PD90) Sprague Dawley rats were treated with MPH or saline. Whole-cell patch clamp recording was used to examine the neuronal excitability and synaptic transmission in pyramidal neurons of prefrontal cortex. Recovery from MPH treatment was also examined at 1, 5, and 10 weeks following drug cessation. RESULTS A dose of 1 mg/kg intraperitoneal MPH, either single dose or chronic treatment (well within the accepted therapeutic range for adults), produced significant depressive effects on pyramidal neurons by increasing hyperpolarization-activated currents in juvenile rat prefrontal cortex, while exerting excitatory effects in adult rats. Minimum clinically-relevant doses (.03 to .3 mg/kg) also produced depressive effects in juvenile rats, in a linear dose-dependent manner. Function recovered within 1 week from chronic 1 mg/kg treatment, chronic treatment with 3 and 9 mg/kg resulted in depression of prefrontal neurons lasting 10 weeks and beyond. CONCLUSIONS These results suggest that the juvenile prefrontal cortex is supersensitive to methylphenidate, and the accepted therapeutic range for adults is an overshoot. Juvenile treatment with MPH may result in long-lasting, potentially permanent, changes to excitatory neuron function in the prefrontal cortex of juvenile rats.
Collapse
Affiliation(s)
| | | | - Wen-Jun Gao
- Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802,
| |
Collapse
|
34
|
Cheng JT, Li JS. Intra-orbitofrontal cortex injection of haloperidol removes the beneficial effect of methylphenidate on reversal learning of spontaneously hypertensive rats in an attentional set-shifting task. Behav Brain Res 2012; 239:148-54. [PMID: 23159707 DOI: 10.1016/j.bbr.2012.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/01/2022]
Abstract
Numerous studies suggest that attention-deficit/hyperactivity disorder (ADHD) is caused by deficits in catecholaminergic systems. Furthermore, dysfunctions of prefrontal cortex can impair inhibitory controls of ADHD patients, resulting in their impulsive behaviors. Researchers also find that rats with lesions in the orbitofrontal cortex show deficits in the reversal learning of attentional set-shifting task (ASST), a behavioral test frequently used in human studies to asses the inhibition system. However, the role of orbitofrontal dopamine system in the mechanism responsible for the dysfunctions of inhibitory controls in ADHD patients and animal models remains unknown. In the present study, we manipulated orbitofrontal dopamine activities of spontaneously hypertensive rats (SHR), a widely used ADHD animal model, through intra-peritoneal injection of methylphenidate (MPH) and central infusion of haloperidol, and observed their performances in ASST. The results show that juvenile SHRs learned slower than Wistar controls in the first and second reversal learnings of ASST. The deficits could be removed by intra-peritoneal injections of MPH. Furthermore, central infusions of haloperidol in the orbitofrontal cortex blocked the effects of MPH. In conclusions, dopamine activity in orbitofrontal cortex might play a crucial role in the neural mechanism of reversal learning deficits in this animal model of ADHD.
Collapse
Affiliation(s)
- Jen-Tang Cheng
- Department of Psychology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia Yi,Taiwan, ROC
| | | |
Collapse
|
35
|
Ohno Y, Okano M, Masui A, Imaki J, Egawa M, Yoshihara C, Tatara A, Mizuguchi Y, Sasa M, Shimizu S. Region-specific elevation of D1 receptor-mediated neurotransmission in the nucleus accumbens of SHR, a rat model of attention deficit/hyperactivity disorder. Neuropharmacology 2012; 63:547-54. [DOI: 10.1016/j.neuropharm.2012.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/21/2012] [Accepted: 04/28/2012] [Indexed: 11/16/2022]
|
36
|
Sani G, Serra G, Kotzalidis GD, Romano S, Tamorri SM, Manfredi G, Caloro M, Telesforo CL, Caltagirone SS, Panaccione I, Simonetti A, Demontis F, Serra G, Girardi P. The role of memantine in the treatment of psychiatric disorders other than the dementias: a review of current preclinical and clinical evidence. CNS Drugs 2012; 26:663-90. [PMID: 22784018 DOI: 10.2165/11634390-000000000-00000] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Memantine, a non-competitive NMDA receptor antagonist approved for Alzheimer's disease with a good safety profile, is increasingly being studied in a variety of non-dementia psychiatric disorders. We aimed to critically review relevant literature on the use of the drug in such disorders. We performed a PubMed search of the effects of memantine in animal models of psychiatric disorders and its effects in human studies of specific psychiatric disorders. The bulk of the data relates to the effects of memantine in major depressive disorder and schizophrenia, although more recent studies have provided data on the use of the drug in bipolar disorder as an add-on. Despite interesting preclinical data, results in major depression are not encouraging. Animal studies investigating the possible usefulness of memantine in schizophrenia are controversial; however, interesting findings were obtained in open studies of schizophrenia, but negative placebo-controlled, double-blind studies cast doubt on their validity. The effects of memantine in anxiety disorders have been poorly investigated, but data indicate that the use of the drug in obsessive-compulsive disorder and post-traumatic stress disorder holds promise, while findings relating to generalized anxiety disorder are rather disappointing. Results in eating disorders, catatonia, impulse control disorders (pathological gambling), substance and alcohol abuse/dependence, and attention-deficit hyperactivity disorder are inconclusive. In most psychiatric non-Alzheimer's disease conditions, the clinical data fail to support the usefulness of memantine as monotherapy or add-on treatment However, recent preclinical and clinical findings suggest that add-on memantine may show antimanic and mood-stabilizing effects in treatment-resistant bipolar disorder.
Collapse
Affiliation(s)
- Gabriele Sani
- NeSMOS Department (Neurosciences, Mental Health, and Sensory Organs), School of Medicine and Psychology, Sapienza University, UOC Psychiatry, SantAndrea Hospital, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Castelli M, Federici M, Rossi S, De Chiara V, Napolitano F, Studer V, Motta C, Sacchetti L, Romano R, Musella A, Bernardi G, Siracusano A, Gu HH, Mercuri NB, Usiello A, Centonze D. Loss of striatal cannabinoid CB1 receptor function in attention-deficit / hyperactivity disorder mice with point-mutation of the dopamine transporter. Eur J Neurosci 2012; 34:1369-77. [PMID: 22034972 DOI: 10.1111/j.1460-9568.2011.07876.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abnormal dopamine (DA) transmission in the striatum plays a pivotal role in attention-deficit/hyperactivity disorder (ADHD). As striatal DA signalling modulates the endocannabinoid system (ECS), the present study was aimed at investigating cannabinoid CB1 receptor (CB1R) function in a model of ADHD obtained by triple point-mutation in the dopamine transporter (DAT) gene in mice, making them insensitive to cocaine [DAT cocaine-insensitive (DAT-CI) mice]. DAT-CI mice had a marked hyperactive phenotype, and neurophysiological recordings revealed that the sensitivity of CB1Rs controlling GABA-mediated synaptic currents [CB1Rs((GABA)) ] in the striatum was completely lost. In contrast, CB1Rs modulating glutamate transmission [CB1Rs((Glu)) ], and GABA(B) receptors were not affected in this model of ADHD. In DAT-CI mice, the blockade of CB1R((GABA)) function was complete even after cocaine or environmental manipulations activating the endogenous DA-dependent reward system, which are known to sensitize these receptors in control animals. Conversely, the hedonic property of sucrose was intact in DAT-CI mice, indicating normal sweet perception in these animals. Our results point to CB1Rs as novel molecular players in ADHD, and suggest that therapeutic strategies aimed at interfering with the ECS might prove effective in this disorder.
Collapse
Affiliation(s)
- Maura Castelli
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Via Montpellier, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The stimulants, amphetamine and methylphenidate, have long been the mainstay of attention-deficit hyperactivity disorder (ADHD) therapy. They are rapidly effective and are generally the first medications selected by physicians. In the development of alternative pharmacological approaches, drug candidates have been evaluated with a wide diversity of mechanisms. All of these developments have contributed real progress in the field, but there is still much room for improvement and unmet clinical need in ADHD pharmacotherapy. The availability of a wide range of compounds with a high degree of specificity for individual monoamines (dopamine and noradrenaline) and/or different pharmacological mechanisms has refined our understanding of the essential elements for optimum pharmacological effect in managing ADHD. In this chapter, we review the pharmacology of the different classes of drug used to treat ADHD and provide a neurochemical rationale, predominantly from the use of in vivo microdialysis experiments, to explain their relative efficacy and potential to elicit side effects. In addition, we will consider how predictions based on results from animal models translate into clinical outcomes. The treatment of ADHD is also described from the perspective of the physician. Finally, the new research development for drugs to treat ADHD is discussed.
Collapse
Affiliation(s)
- David J Heal
- RenaSci Consultancy Ltd, BioCity, Nottingham, NG1 1GF, UK,
| | | | | |
Collapse
|
39
|
Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, Sleiman PMA, Zhang H, Kim CE, Robison R, Lyon GJ, Flory JH, Bradfield JP, Imielinski M, Hou C, Frackelton EC, Chiavacci RM, Sakurai T, Rabin C, Middleton FA, Thomas KA, Garris M, Mentch F, Freitag CM, Steinhausen HC, Todorov AA, Reif A, Rothenberger A, Franke B, Mick EO, Roeyers H, Buitelaar J, Lesch KP, Banaschewski T, Ebstein RP, Mulas F, Oades RD, Sergeant J, Sonuga-Barke E, Renner TJ, Romanos M, Romanos J, Warnke A, Walitza S, Meyer J, Pálmason H, Seitz C, Loo SK, Smalley SL, Biederman J, Kent L, Asherson P, Anney RJL, Gaynor JW, Shaw P, Devoto M, White PS, Grant SFA, Buxbaum JD, Rapoport JL, Williams NM, Nelson SF, Faraone SV, Hakonarson H. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet 2011; 44:78-84. [PMID: 22138692 PMCID: PMC4310555 DOI: 10.1038/ng.1013] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/28/2011] [Indexed: 12/11/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10(-9)). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10(-6)). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ∼10% of the cases (P = 4.38 × 10(-10)) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.
Collapse
Affiliation(s)
- Josephine Elia
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Acute administration of vinpocetine, a phosphodiesterase type 1 inhibitor, ameliorates hyperactivity in a mice model of fetal alcohol spectrum disorder. Drug Alcohol Depend 2011; 119:81-7. [PMID: 21689896 DOI: 10.1016/j.drugalcdep.2011.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Maternal alcohol use during pregnancy causes a continuum of long-lasting disabilities in the offspring, commonly referred to as fetal alcohol spectrum disorder (FASD). Attention-deficit/hyperactivity disorder (ADHD) is possibly the most common behavioral problem in children with FASD and devising strategies that ameliorate this condition has great clinical relevance. Studies in rodent models of ADHD and FASD suggest that impairments in the cAMP signaling cascade contribute to the hyperactivity phenotype. In this work, we investigated whether the cAMP levels are affected in a long-lasting manner by ethanol exposure during the third trimester equivalent period of human gestation and whether the acute administration of the PDE1 inhibitor vinpocetine ameliorates the ethanol-induced hyperactivity. METHODS From postnatal day (P) 2 to P8, Swiss mice either received ethanol (5g/kg i.p.) or saline every other day. At P30, the animals either received vinpocetine (20mg/kg or 10mg/kg i.p.) or vehicle 4h before being tested in the open field. After the test, frontal cerebral cortices and hippocampi were dissected and collected for assessment of cAMP levels. RESULTS Early alcohol exposure significantly increased locomotor activity in the open field and reduced cAMP levels in the hippocampus. The acute treatment of ethanol-exposed animals with 20mg/kg of vinpocetine restored both their locomotor activity and cAMP levels to control levels. CONCLUSIONS These data lend support to the idea that cAMP signaling system contribute to the hyperactivity induced by developmental alcohol exposure and provide evidence for the potential therapeutic use of vinpocetine in FASD.
Collapse
|
41
|
Carmona S, Hoekzema E, Ramos-Quiroga JA, Richarte V, Canals C, Bosch R, Rovira M, Soliva JC, Bulbena A, Tobeña A, Casas M, Vilarroya O. Response inhibition and reward anticipation in medication-naïve adults with attention-deficit/hyperactivity disorder: a within-subject case-control neuroimaging study. Hum Brain Mapp 2011; 33:2350-61. [PMID: 21826761 DOI: 10.1002/hbm.21368] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/15/2011] [Accepted: 05/02/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Previous research suggests that ADHD patients are characterized by both reduced activity in the inferior frontal gyrus (IFG) during response inhibition tasks (such as the Go-NoGo task), and reduced activity in the ventral striatum during reward anticipation tasks (such as the Monetary-Incentive-Delay [MID] task). However, no prior research has applied either of these paradigms in medication-naïve adults with ADHD, nor have these been implemented in an intrasubject manner. METHODS The sample consisted of 19 medication-naïve adults with ADHD and 19 control subjects. Main group analyses were based on individually defined regions of interest: the IFG and the VStr for the Go-NoGo and the MID task respectively. In addition, we analyzed the correlation between the two measures, as well as between these measures and the clinical symptoms of ADHD. RESULTS We observed reduced bilateral VStr activity in adults with ADHD during reward anticipation. No differences were detected in IFG activation on the Go-NoGo paradigm. Correlation analyses suggest that the two tasks are independent at a neural level, but are related behaviorally in terms of the variability of the performance reaction time. Activity in the bilateral VStr but not in the IFG was associated negatively with symptoms of hyperactivity/impulsivity. CONCLUSIONS Results underline the implication of the reward system in ADHD adult pathophysiology and suggest that frontal abnormalities during response inhibition performance may not be such a pivotal aspect of the phenotype in adulthood. In addition, our findings point toward response variability as a core feature of the disorder.
Collapse
Affiliation(s)
- Susana Carmona
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ningdong granule: a complementary and alternative therapy in the treatment of attention deficit/hyperactivity disorder. Psychopharmacology (Berl) 2011; 216:501-9. [PMID: 21416235 DOI: 10.1007/s00213-011-2238-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a common neurobehavioral and neuropsychiatric disorder in school-age children, and recent studies provide evidence implicating the metabolic abnormalities of dopamine (DA) for its pathophysiology. Methylphenidate, a kind of psychostimulant, is widely used in the treatment of ADHD, but some patients do not respond to it or cannot bear its side effects. As a traditional Chinese medicine preparation, Ningdong granule (NDG) has been used in the treatment of ADHD for several years in China. However, a systematical pharmacological study on its safety and mechanism still remains obscure. OBJECTIVE This paper aims to evaluate the efficiency, safety, and possible mechanism of NDG on ADHD children compared to methylphenidate. METHODS Seventy-two ADHD children were recruited to perform an 8-week, randomized, methylphenidate-controlled, doubled-blinded trial. The subjects were equally assigned to two groups receiving either NDG 5 mg/kg/day or methylphenidate 1 mg/kg/day for 8 weeks. The efficiency was assessed by the Teacher and Parent ADHD Rating Scales every 2 weeks for a total of 8 weeks. The side effects were recorded during the study. Blood, urine, and stool routine samples, liver and renal function test, and DA and homovanillic acid (HVA) concentration in sera were tested at the beginning and end of the trial. RESULTS NDG ameliorated ADHD symptoms after an 8-week medication with fewer side effects compared to methylphenidate (P < 0.05). The result also showed NDG to be safe and tolerable for ADHD children as monitored by the blood, urine, and stool analysis and liver and renal function for 8 weeks (P < 0.05). Moreover, the level of HVA in sera increased in NDG-treated group (P < 0.05), while the content of DA had no significant change during the study. An analysis of Pearson correlation coefficients also showed that the increased content of HVA in sera was associated with the improved scores of Teacher and Parent ADHD Rating Scales. CONCLUSIONS Compared to methylphenidate, NDG is effective and safe for ADHD children in the short term, increases the HVA concentration in sera to regulate DA metabolism, and promises to be an alternative medication, safely and effectively.
Collapse
|
43
|
De Brito Gariepy H, Couture R. Blockade of tachykinin NK3 receptor reverses hypertension through a dopaminergic mechanism in the ventral tegmental area of spontaneously hypertensive rats. Br J Pharmacol 2011; 161:1868-84. [PMID: 20804497 DOI: 10.1111/j.1476-5381.2010.01008.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Intracerebroventricularly injected tachykinin NK(3) receptor (R) antagonists normalize mean arterial blood pressure (MAP) in spontaneously hypertensive rats (SHR). This study was pursued to define the role played by NK(3)R located on dopamine neurones of the ventral tegmental area (VTA) in the regulation of MAP in SHR. EXPERIMENTAL APPROACH SHR (16 weeks) were implanted permanently with i.c.v. and/or VTA guide cannulae. Experiments were conducted 24 h after catheterization of the abdominal aorta to measure MAP and heart rate (HR) in freely behaving rats. Cardiovascular responses to i.c.v. or VTA-injected NK(3)R agonist (senktide) and antagonists (SB222200 and R-820) were measured before and after systemic administration of selective antagonists for D(1)R (SCH23390), D(2)R (raclopride) or non-selective D(2)R (haloperidol), and after destruction of the VTA with ibotenic acid. KEY RESULTS I.c.v. or VTA-injected SB222200 and R-820 (500 pmol) evoked anti-hypertension, which was blocked by raclopride. Senktide (10, 25, 65 and 100 pmol) elicited greater increases of MAP and HR when injected in the VTA, and the cardiovascular response was blocked by R-820, SCH23390 and haloperidol. VTA-injected SB222200 prevented the pressor response to i.c.v. senktide, and vice versa, i.c.v. senktide prevented the anti-hypertension to VTA SB222200. Destruction of the VTA prevented the pressor response to i.c.v. senktide and the anti-hypertension to i.c.v. R-820. CONCLUSIONS AND IMPLICATIONS The NK(3)R in the VTA is implicated in the maintenance of hypertension by increasing midbrain dopaminergic transmission in SHR. Hence, this receptor may represent a therapeutic target in the treatment of hypertension.
Collapse
Affiliation(s)
- Helaine De Brito Gariepy
- Département de Physiologie, Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada
| | | |
Collapse
|
44
|
Benicky J, Sánchez-Lemus E, Honda M, Pang T, Orecna M, Wang J, Leng Y, Chuang DM, Saavedra JM. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 2011; 36:857-70. [PMID: 21150913 PMCID: PMC3055735 DOI: 10.1038/npp.2010.225] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain inflammation has a critical role in the pathophysiology of brain diseases of high prevalence and economic impact, such as major depression, schizophrenia, post-traumatic stress disorder, Parkinson's and Alzheimer's disease, and traumatic brain injury. Our results demonstrate that systemic administration of the centrally acting angiotensin II AT(1) receptor blocker (ARB) candesartan to normotensive rats decreases the acute brain inflammatory response to administration of the bacterial endotoxin lipopolysaccharide (LPS), a model of brain inflammation. The broad anti-inflammatory effects of candesartan were seen across the entire inflammatory cascade, including decreased production and release to the circulation of centrally acting proinflammatory cytokines, repression of nuclear transcription factors activation in the brain, reduction of gene expression of brain proinflammatory cytokines, cytokine and prostanoid receptors, adhesion molecules, proinflammatory inducible enzymes, and reduced microglia activation. These effects are widespread, occurring not only in well-known brain target areas for circulating proinflammatory factors and LPS, that is, hypothalamic paraventricular nucleus and the subfornical organ, but also in the prefrontal cortex, hippocampus, and amygdala. Candesartan reduced the associated anorexic effects, and ameliorated associated body weight loss and anxiety. Direct anti-inflammatory effects of candesartan were also documented in cultured rat microglia, cerebellar granule cells, and cerebral microvascular endothelial cells. ARBs are widely used in the treatment of hypertension and stroke, and their anti-inflammatory effects contribute to reduce renal and cardiac failure. Our results indicate that these compounds may offer a novel and safe therapeutic approach for the treatment of brain disorders.
Collapse
Affiliation(s)
- Julius Benicky
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Enrique Sánchez-Lemus
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Honda
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tao Pang
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Martina Orecna
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Juan Wang
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yan Leng
- Molecular Neurobiology Section, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - De-Maw Chuang
- Molecular Neurobiology Section, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Masuo Y, Ishido M. Neurotoxicity of endocrine disruptors: possible involvement in brain development and neurodegeneration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:346-369. [PMID: 21790316 DOI: 10.1080/10937404.2011.578557] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Environmental chemicals that act as endocrine disruptors do not appear to pose a risk to human reproduction; however, their effects on the central nervous systems are less well understood. Animal studies suggested that maternal exposure to endocrine-disrupting chemicals (EDC) produced changes in rearing behavior, locomotion, anxiety, and learning/memory in offspring, as well as neuronal abnormalities. Some investigations suggested that EDC exert effects on central monoaminergic neurons, especially dopaminergic neurons. Our data demonstrated that EDC attenuate the development of dopaminergic neurons, which might be involved in developmental disorders. Perinatal exposure to EDC might affect neuronal plasticity in the hippocampus, thereby potentially modulating neuronal development, leading to impaired cognitive and memory functions. Endocrine disruptors also attenuate gender differences in brain development. For example, the locus ceruleus is larger in female rats than in males, but treatments with bisphenol-A (BPA) enlarge this region in males. Some reports indicated that EDC induce hypothyroidism, which might be evidenced as abnormal brain development. Endocrine disruptors might also affect mature neurons, resulting in neurodegenerative disorders such as Parkinson's disease. The current review focused on alterations in the brain induced by EDC, specifically on the possible involvement of EDC in brain development and neurodegeneration.
Collapse
Affiliation(s)
- Yoshinori Masuo
- Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, Chiba, Japan.
| | | |
Collapse
|
46
|
Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Gallegos-Cari A, Castillo C. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci 2011; 22:365-71. [DOI: 10.1515/rns.2011.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Hammerness P, Biederman J, Petty C, Henin A, Moore CM. Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-deficit hyperactivity disorder: a controlled pilot study. CNS Neurosci Ther 2010; 18:34-40. [PMID: 21143432 DOI: 10.1111/j.1755-5949.2010.00226.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION This study conducted spectroscopic analyses using proton (1H) Magnetic Resonance Spectroscopy (at 4 Tesla) in a sample of adolescents with Attention Deficit Hyperactivity Disorder (ADHD), before and after treatment with extended release methylphenidate (OROS MPH), as compared to a sample of healthy comparators. AIMS The main aim of this study is to use 1H MRS to measure differences in brain biochemistry between adolescents with and without ADHD, and to assess changes in cerebral biochemistry, before and after stimulant treatment in ADHD youth. RESULTS Subjects with ADHD were medically healthy adolescents treated in an open label fashion with OROS MPH (mean dose: 54 mg/day; 0.90 mg/kg/day). Subjects with ADHD were scanned before and after OROS MPH treatment. Healthy comparators were scanned once. Magnetic resonance (MR) spectroscopy studies were performed on a 4.0 T Varian Unity/Inova MR scanner; proton spectra were acquired from the Anterior Cingulate Cortex (ACC). Data were analyzed using MANOVA and repeated measurement ANOVA. Higher metabolite ratios (Glutamate/myo-inositol, Glutamine/myo-inositol, Glutamate + Glutamine/myo-inositol) were observed in the ACC in untreated ADHD subjects as compared to controls, and to treated ADHD youth; these group differences did not reach the a priori threshold for statistical significance. CONCLUSIONS These preliminary findings suggest the presence of glutamatergic abnormalities in adolescents with ADHD, which may normalize with MPH treatment. Larger sample, controlled studies are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Paul Hammerness
- Clinical and Research Program in Pediatric Psychopharmacology, Massachusetts General Hospital, Boston, 02138, USA.
| | | | | | | | | |
Collapse
|
48
|
Kern CH, Smith DR. Preweaning Mn exposure leads to prolonged astrocyte activation and lasting effects on the dopaminergic system in adult male rats. Synapse 2010; 65:532-44. [PMID: 20963817 DOI: 10.1002/syn.20873] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/28/2010] [Indexed: 01/18/2023]
Abstract
Little is known about the effects of manganese (Mn) exposure over neurodevelopment and whether these early insults result in effects lasting into adulthood. To determine if early Mn exposure produces lasting neurobehavioral and neurochemical effects, we treated neonate rats with oral Mn (0, 25, or 50 mg Mn/kg/d over PND 1-21) and evaluated (1) behavioral performance in the open arena in the absence (PND 97) and presence (PND 98) of a d-amphetamine challenge, (2) brain dopamine D1 and D2-like receptors and dopamine transporter densities in the prefrontal cortex, striatum, and nucleus accumbens (PND 107), and (3) astrocyte marker glial fibrillary acidic protein (GFAP) levels in these same brain regions (PND 24 and 107). We found that preweaning Mn exposure did not alter locomotor activity or behavior disinhibition in adult rats, though Mn-exposed animals did exhibit an enhanced locomotor response to d-amphetamine challenge. Preweaning Mn exposure led to increased D1 and D2 receptor levels in the nucleus accumbens and prefrontal cortex, respectively, compared with controls. We also found increased GFAP expression in the prefrontal cortex in Mn-exposed PND 24 weanlings, and increased GFAP levels in prefrontal cortex, medial striatum and nucleus accumbens of adult (PND 107) rats exposed to preweaning Mn, indicating an effect of Mn exposure on astrogliosis that persisted and/or progressed to other brain regions in adult animals. These data show that preweaning Mn exposure leads to lasting molecular and functional impacts in multiple brain regions of adult animals, long after brain Mn levels returned to normal.
Collapse
Affiliation(s)
- Cynthia H Kern
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
49
|
Hsu JW, Lee LC, Chen RF, Yen CT, Chen YS, Tsai ML. Striatal volume changes in a rat model of childhood attention-deficit/hyperactivity disorder. Psychiatry Res 2010; 179:338-41. [PMID: 20493538 DOI: 10.1016/j.psychres.2009.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 01/26/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common childhood neuropsychiatric disorders. Based on neuroimaging studies, the striatum is reported to be abnormal in size, but it is still not clear how they change during developmental stages. Spontaneously hypertensive rats (SHRs) are the commonly used animal model for ADHD. We investigated volume differences of the striatum at various ages before puberty in SHRs versus a control strain, Wistar-Kyoto rats (WKYs). Volumes of the bilateral striatum were measured using micrographs of Nissl-stained serial sections in both strains of rats at the ages of 4, 5, 6, 7, 8, 9, and 10weeks (n=4, each strain at each age). The results demonstrated that the age of a significant striatal volume difference between SHRs and WKYs was 5weeks; however, there was no significant difference for the corresponding total brain volume at each matched age. It suggested that the timing for striatal abnormalities in ADHD occurs during an early stage of childhood.
Collapse
Affiliation(s)
- Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Meneses A, Ponce-Lopez T, Tellez R, Gonzalez R, Castillo C, Gasbarri A. Effects of d-amphetamine on short- and long-term memory in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats. Behav Brain Res 2010; 216:472-6. [PMID: 20813138 DOI: 10.1016/j.bbr.2010.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/15/2010] [Accepted: 08/20/2010] [Indexed: 12/15/2022]
Abstract
Diverse studies indicate that the attention deficit hyperactivity disorder (ADHD) is associated with alterations in encoding processes, including working or short-term memory. Some ADHD dysfunctional domains are reflected in the spontaneously hypertensive rat (SHR). Here SHR-saline group showed significantly poor STM and LTM relative to SD and WKY saline rats. SD and WKY rats treated with d-amphetamine displayed better STM and LTM, compared to SD-vehicle, WKY-vehicle or SHR-d-amphetamine groups.
Collapse
Affiliation(s)
- A Meneses
- Department of Pharmacobiology, CINVESTAV, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|