1
|
Templeton-Jager TJ, Diarra S, Kelley LK, Gilpin NW. Systemic bupropion treatment reduces long-access cocaine self-administration in male and female rats. J Psychopharmacol 2025; 39:282-294. [PMID: 39881654 DOI: 10.1177/02698811241312680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BACKGROUND More than 1 million people in the United States meet the criteria for cocaine use disorder (CUD), and over 19,000 people died from cocaine-related overdoses in 2020, but there are currently no FDA-approved medications for the treatment of CUD. Bupropion is an antidepressant currently prescribed to treat depression and nicotine addiction that acts by inhibiting norepinephrine and dopamine transporters. METHODS In this study, we tested the effect of several doses of systemic bupropion on cocaine self-administration in male and female Wistar rats. In our first experiment, rats self-administered cocaine solution intravenously and were pretreated with systemic bupropion before self-administration sessions. In our second experiment, rats were pre-treated with bupropion before completing tests of locomotor activity and anxiety-like behavior. RESULTS We found that high doses of systemically administered bupropion (60 mg/kg) attenuated cocaine self-administration in male and female rats during extended-access (6 h) sessions. We also found that the highest dose (60 mg/kg) of systemic bupropion was more efficacious in females relative to males during the first hour of operant sessions. Systemic bupropion did not alter locomotor activity, inactive lever presses, or food intake. The Estrous cycle did not influence cocaine intake with or without bupropion. CONCLUSION Our finding that bupropion attenuates cocaine self-administration suggests that bupropion may have promise for reducing cocaine use in humans.
Collapse
Affiliation(s)
- Taylor J Templeton-Jager
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| | - Siga Diarra
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| | - Leslie K Kelley
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, USA
| |
Collapse
|
2
|
Walsh BE, Schlauch RC. Differential impact of emotional and social loneliness on daily alcohol consumption in individuals with alcohol use disorder. Drug Alcohol Depend 2024; 264:112433. [PMID: 39265209 DOI: 10.1016/j.drugalcdep.2024.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Loneliness is a predisposing and maintaining factor of alcohol use behavior. Several studies have linked loneliness to daily drinking and elevated alcohol use disorder (AUD) risk; however, operationalizations of both loneliness and drinking have varied greatly. METHODS The current study adopted a multidimensional framework of loneliness (i.e., emotional and social subtypes) to examine daily prospective relations between loneliness and drinking among non-treatment seeking individuals with AUD. Participants (N= 60) reported on current loneliness and drinking twice daily for 14-days. Scores on emotional and social loneliness were disaggregated into within- and between-person predictors, and a multilevel hurdle model proxy was fitted with drinking likelihood (logistic) and quantity (zero truncated negative binomial) specified as separate outcomes. RESULTS Emotional loneliness (within-person) was associated with increased drinking likelihood (OR=1.05, 95 % BCI [1.01, 1.10]) and quantity (IRR=1.05, 95 % BCI [1.02, 1.09]), while social loneliness (within-person) was associated with decreases in both drinking likelihood (OR=.94, 95 % BCI [.89,.99]) and quantity (IRR=.96, 95 % BCI [.93,.99]). Between-person loneliness scores were unrelated to both outcomes. CONCLUSIONS These discrepant findings by loneliness subtype may be ascribed to differences in subjective manifestations, in that emotional loneliness is a more severe form of loneliness that overlaps significantly with other negative affective states and promotes a coping response, while social loneliness may be readily alleviated by adaptive behavioral strategies for some, and social withdrawal for others. These findings offer insight into the nuances of loneliness-drinking relations and their clinical implications.
Collapse
Affiliation(s)
- Brendan E Walsh
- Department of Psychology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States.
| | - Robert C Schlauch
- Department of Psychology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States.
| |
Collapse
|
3
|
Serretti A. Venlafaxine for tramadol dependence and medical cannabis therapy for generalized anxiety disorder. Int Clin Psychopharmacol 2024; 39:339-340. [PMID: 39328148 DOI: 10.1097/yic.0000000000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
- Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Enna
- Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
4
|
Huang S, Shi C, Tao D, Yang C, Luo Y. Modulating reward and aversion: Insights into addiction from the paraventricular nucleus. CNS Neurosci Ther 2024; 30:e70046. [PMID: 39295107 PMCID: PMC11410887 DOI: 10.1111/cns.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Drug addiction, characterized by compulsive drug use and high relapse rates, arises from complex interactions between reward and aversion systems in the brain. The paraventricular nucleus (PVN), located in the anterior hypothalamus, serves as a neuroendocrine center and is a key component of the hypothalamic-pituitary-adrenal axis. OBJECTIVE This review aimed to explore how the PVN impacts reward and aversion in drug addiction through stress responses and emotional regulation and to evaluate the potential of PVN as a therapeutic target for drug addiction. METHODS We review the current literature, focusing on three main neuron types in the PVN-corticotropin-releasing factor, oxytocin, and arginine vasopressin neurons-as well as other related neurons, to understand their roles in modulating addiction. RESULTS Existing studies highlight the PVN as a key mediator in addiction, playing a dual role in reward and aversion systems. These findings are crucial for understanding addiction mechanisms and developing targeted therapies. CONCLUSION The role of PVN in stress response and emotional regulation suggests its potential as a therapeutic target in drug addiction, offering new insights for addiction treatment.
Collapse
Affiliation(s)
- Shihao Huang
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence ResearchPeking UniversityBeijingChina
- Department of Neurobiology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Cuijie Shi
- College of Forensic MedicineHebei Medical UniversityShijiazhuangChina
| | - Dan Tao
- School of MedicineHunan Normal UniversityChangshaChina
| | - Chang Yang
- School of MedicineHunan Normal UniversityChangshaChina
| | - Yixiao Luo
- Hunan Province People's HospitalThe First‐Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Key Laboratory for Birth Defects Research and Prevention of the National Health CommissionHunan Provincial Maternal and Child Health Care HospitalChangshaChina
| |
Collapse
|
5
|
Smith AC, Ghoshal S, Centanni SW, Heyer MP, Corona A, Wills L, Andraka E, Lei Y, O’Connor RM, Caligiuri SP, Khan S, Beaumont K, Sebra RP, Kieffer BL, Winder DG, Ishikawa M, Kenny PJ. A master regulator of opioid reward in the ventral prefrontal cortex. Science 2024; 384:eadn0886. [PMID: 38843332 PMCID: PMC11323237 DOI: 10.1126/science.adn0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/17/2024] [Indexed: 06/16/2024]
Abstract
In addition to their intrinsic rewarding properties, opioids can also evoke aversive reactions that protect against misuse. Cellular mechanisms that govern the interplay between opioid reward and aversion are poorly understood. We used whole-brain activity mapping in mice to show that neurons in the dorsal peduncular nucleus (DPn) are highly responsive to the opioid oxycodone. Connectomic profiling revealed that DPn neurons innervate the parabrachial nucleus (PBn). Spatial and single-nuclei transcriptomics resolved a population of PBn-projecting pyramidal neurons in the DPn that express μ-opioid receptors (μORs). Disrupting μOR signaling in the DPn switched oxycodone from rewarding to aversive and exacerbated the severity of opioid withdrawal. These findings identify the DPn as a key substrate for the abuse liability of opioids.
Collapse
Affiliation(s)
- Alexander C.W. Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Present address: Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Soham Ghoshal
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Samuel W. Centanni
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mary P. Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Alberto Corona
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Emma Andraka
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Richard M. O’Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Stephanie P.B. Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Sohail Khan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigitte L. Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada, and INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Danny G. Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| |
Collapse
|
6
|
Li Y, Yang B, Ma J, Gao S, Zeng H, Wang W. Assessment of rTMS treatment effects for methamphetamine use disorder based on EEG microstates. Behav Brain Res 2024; 465:114959. [PMID: 38494128 DOI: 10.1016/j.bbr.2024.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Microstates have been proposed as topographical maps representing large-scale resting-state networks and have recently been suggested as markers for methamphetamine use disorder (MUD). However, it is unknown whether and how they change after repetitive transcranial magnetic stimulation (rTMS) intervention. This study included a comprehensive subject population to investigate the effect of rTMS on MUD microstates. 34 patients with MUD underwent a 4-week randomized, double-blind rTMS intervention (active=17, sham=17). Two resting-state EEG recordings and VAS evaluations were conducted before and after the intervention period. Additionally, 17 healthy individuals were included as baseline controls. The modified k-means clustering method was used to calculate four microstates (MS-A∼MS-D) of EEG, and the FC network was also analyzed. The differences in microstate indicators between groups and within groups were compared. The durations of MS-A and MS-B microstates in patients with MUD were significantly lower than that in HC but showed significant improvements after rTMS intervention. Changes in microstate indicators were found to be significantly correlated with changes in craving level. Furthermore, selective modulation of the resting-state network by rTMS was observed in the FC network. The findings indicate that changes in microstates in patients with MUD are associated with craving level improvement following rTMS, suggesting they may serve as valuable evaluation markers.
Collapse
Affiliation(s)
- Yongcong Li
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Banghua Yang
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Jun Ma
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Shouwei Gao
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hui Zeng
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Shaanxi 710038, China.
| |
Collapse
|
7
|
Duratkar A, Patel R, Jain NS. Neuronal nicotinic acetylcholine receptor of the central amygdala modulates the ethanol-induced tolerance to anxiolysis and withdrawal-induced anxiety in male rats. Behav Pharmacol 2024; 35:132-146. [PMID: 38451025 DOI: 10.1097/fbp.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The nicotine acetylcholinergic receptor (nAchR) in the central nucleus of the amygdala (CeA) is known to modulate anxiety traits as well as ethanol-induced behavioral effects. Therefore, the present study investigated the role of CeA nAChR in the tolerance to ethanol anxiolysis and withdrawal-induced anxiety-related effects in rats on elevated plus maze (EPM). To develop ethanol dependence, rats were given free access to an ethanol-containing liquid diet for 10 days. To assess the development of tolerance, separate groups of rats were challenged with ethanol (2 g/kg, i.p.) on days 1, 3, 5, 7 and 10 during the period of ethanol exposure, followed by an EPM assessment. Moreover, expression of ethanol withdrawal was induced after switching ethanol-dependent rats to a liquid diet on day 11, and withdrawal-induced anxiety-like behavior was noted at different post-withdrawal time points using the EPM test. The ethanol-dependent rats were pretreated with intra-CeA (i.CeA) (bilateral) injections of nicotine (0.25 µg/rat) or mecamylamine (MEC) (5 ng/rat) before the challenge dose of ethanol on subthreshold tolerance on the 5th day or on peak tolerance day, that is, 7th or 10th, and before assessment of postwithdrawal anxiety on the 11th day on EPM. Bilateral i.CeA preadministration of nicotine before the challenge dose of ethanol on days 5, 7 and 10 exhibited enhanced tolerance, while injection of MEC, completely mitigated the tolerance to the ethanol-induced antianxiety effect. On the other hand, ethanol-withdrawn rats pretreated i.CeA with nicotine exacerbated while pretreatment with MEC, alleviated the ethanol withdrawal-induced anxiety on all time points. Thus, the present investigation indicates that stimulation of nAChR in CeA negatively modulates the ethanol-induced chronic behavioral effects on anxiety in rats. It is proposed that nAChR antagonists might be useful in the treatment of alcohol use disorder and ethanol withdrawal-related anxiety-like behavior.
Collapse
Affiliation(s)
- Antariksha Duratkar
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
8
|
Kupnicka P, Listos J, Tarnowski M, Kolasa A, Kapczuk P, Surówka A, Kwiatkowski J, Janawa K, Chlubek D, Baranowska-Bosiacka I. The Effect of Prenatal and Neonatal Fluoride Exposure to Morphine-Induced Neuroinflammation. Int J Mol Sci 2024; 25:826. [PMID: 38255899 PMCID: PMC10815549 DOI: 10.3390/ijms25020826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Physical dependence is associated with the formation of neuroadaptive changes in the central nervous system (CNS), both at the molecular and cellular levels. Various studies have demonstrated the immunomodulatory and proinflammatory properties of morphine. The resulting neuroinflammation in drug dependence exacerbates substance abuse-related behaviors and increases morphine tolerance. Studies prove that fluoride exposure may also contribute to the development of neuroinflammation and neurodegenerative changes. Morphine addiction is a major social problem. Neuroinflammation increases tolerance to morphine, and neurodegenerative effects caused by fluoride in structures related to the development of dependence may impair the functioning of neuronal pathways, change the concentration of neurotransmitters, and cause memory and learning disorders, which implies this element influences the development of dependence. Therefore, our study aimed to evaluate the inflammatory state of selected brain structures in morphine-dependent rats pre-exposed to fluoride, including changes in cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression as well as microglial and astroglial activity via the evaluation of Iba1 and GFAP expression. We provide evidence that both morphine administration and fluoride exposure have an impact on the inflammatory response by altering the expression of COX-1, COX-2, ionized calcium-binding adapter molecule (Iba1), and glial fibrillary acidic protein (GFAP) in brain structures involved in dependence development, such as the prefrontal cortex, striatum, hippocampus, and cerebellum. We observed that the expression of COX-1 and COX-2 in morphine-dependent rats is influenced by prior fluoride exposure, and these changes vary depending on the specific brain region. Additionally, we observed active astrogliosis, as indicated by increased GFAP expression, in all brain structures of morphine-dependent rats, regardless of fluoride exposure. Furthermore, the effect of morphine on Iba1 expression varied across different brain regions, and fluoride pre-exposure may influence microglial activation. However, it remains unclear whether these changes are a result of the direct or indirect actions of morphine and fluoride on the factors analyzed.
Collapse
Affiliation(s)
- Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland
| | - Jakub Kwiatkowski
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Kamil Janawa
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
9
|
Wu X, Wu C, Zhou T. No significant change of N 6 -methyladenosine modification landscape in mouse brain after morphine exposure. Brain Behav 2024; 14:e3350. [PMID: 38376052 PMCID: PMC10757896 DOI: 10.1002/brb3.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVES N6 -methyladenosine (m6 A) plays a crucial role in regulating neuroplasticity and different brain functions at the posttranscriptional level. However, it remains unknown whether m6 A modification is involved in acute and chronic morphine exposure. MATERIALS AND METHODS In this study, we conducted a direct comparison of m6 A levels and mRNA expression of m6 A-associated factors between morphine-treated and nontreated C57BL/6 wild-type mice. We established animal models of both acute and chronic morphine treatment and confirmed the rewarding effects of chronic morphine treatment using the conditioned place preference (CPP) assay. The activation status of different brain regions in response to morphine was assessed by c-fos staining. To assess overall m6 A modification levels, we employed the m6 A dot blot assay, while mRNA levels of m6 A-associated proteins were measured using a quantitative polymerase chain reaction (qPCR) assay. These analyses were performed to investigate whether and how m6 A modification and m6 A-associated protein expression will change following morphine exposure. RESULTS The overall m6 A methylation and mRNA levels of m6 A-associated proteins were not significantly altered in brain regions that were either activated or not activated during acute morphine stimulation. Similarly, the overall m6 A modification and mRNA levels of m6 A-associated proteins remained unaffected in several key brain regions associated with reward following chronic morphine exposure. CONCLUSION This study showed that the overall m6 A modification level and mRNA expression levels of m6 A-associated factors were not affected after acute and chronic morphine exposure in different brain regions, indicating m6 A modification may not be involved in brain response to morphine exposure.
Collapse
Affiliation(s)
- Xiaoli Wu
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Cuiting Wu
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Tao Zhou
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
- CAS Key Laboratory of Brain Connectome and Manipulation, Faculty of Life and Health Sciences, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
10
|
Kallupi M, Ciccocioppo R. Cue-induced reinstatement of seeking behavior in male rats is independent from the rewarding value of the primary reinforcer: Effect of mGluR5 blockade. Neuropharmacology 2023; 240:109694. [PMID: 37659439 PMCID: PMC11094430 DOI: 10.1016/j.neuropharm.2023.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Environmental conditioning factors have a profound impact on alcohol-seeking behavior and the maintenance of alcohol use in individuals with alcohol dependence. Cues associated with alcohol, depending on the perceived value of the primary reinforcer, gain salience and can trigger relapse. This study investigates the correlation between the reward magnitude of the primary reinforcer and the reinstatement evoked by cues predictive of their availability in male rats. Rat self-administration procedures were used to test reinstatement, with reinforcers consisting of 10% alcohol, 10% sucrose, or 2% sodium chloride (NaCl) experienced under need-state conditions. The effect of MTEP ([(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine), a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, on motivation and reinstatement behaviors was also evaluated. RESULTS: demonstrate that under Fixed Ratio 1 (FR1) schedule, the three reinforcers maintain operant responding with the following order of magnitude 10% sucrose >2% NaCl >10% alcohol > water. Under a progressive ratio (PR) schedule of reinforcement, rats exhibit a significantly higher breakpoint for 2% NaCl (under Na-depletion), followed by 10% sucrose and 10% alcohol. After extinction, a significant reinstatement is observed with the magnitude order of 10% sucrose >10% alcohol >2% NaCl. However, only re-exposure to alcohol-paired cues induced significant reinstatement of alcohol-seeking after 4 and 8 months. Treatment with MTEP significantly reduces reinstatement of responding across all reinforcers, with the strongest effect observed on alcohol-seeking. These findings suggest that mGluR5 plays a general role in controlling cue-reactivity, but the effect is prominent in the case of alcohol compared to natural rewards. In conclusion, the results demonstrate a remarkable dissociation between the rewarding magnitude of the primary reinforcer and its ability to trigger relapse upon presentation of a cue previously associated with it. Importantly, alcohol, despite having lower intrinsic motivational value compared to a natural reward (sucrose) or a consummatory stimulus experienced under need state conditions (NaCl), can elicit more robust and longer-term reinstatement of seeking responses. Finally, our data demonstrate a significant involvement of the mGluR5 system in the regulation of seeking behavior.
Collapse
Affiliation(s)
- Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, USA.
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
11
|
Milivojevic V, Sinha R. Laboratory and Real-World Experimental Approaches to Understanding Alcohol Relapse. Curr Top Behav Neurosci 2023. [PMID: 37985542 DOI: 10.1007/7854_2023_456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Alcohol use disorder is highly prevalent and high risk of relapse remains a significant treatment challenge. Therefore, the utility of human laboratory models of relapse to further the understanding of psychobiological mechanisms that precipitate relapse risk and allow testing of novel interventions could be of benefit in expediting the development of effective treatments to target high relapse risk. Stress is a risk factor for the development of AUD and for relapse, and furthermore, chronic alcohol use leads to adaptations in central and peripheral stress biology. Here, we review our efforts to assess the integrity of these stress pathways in individuals with alcohol use disorder and whether adaptations in these systems play a role in relapse risk. Using validated human laboratory procedures to model two of the most common situations that contribute to relapse risk, namely stress and alcohol cues, we review how such models in the laboratory can predict subsequent relapse, and how we can measure specific identified biobehavioral markers of relapse effectively and ecologically in the real world. Finally, we discuss the significant implications of these findings for the development of novel and effective interventions that target stress dysregulation and craving as risk factors to treatment.
Collapse
Affiliation(s)
- Verica Milivojevic
- Department of Psychiatry, The Yale Stress Center, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, The Yale Stress Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Dyar C, Kaysen D. Event-level positive and negative reinforcement risk factors for alcohol use: Moderation by individual-level alcohol consequences and post-traumatic stress disorder symptom severity. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2068-2080. [PMID: 38226757 PMCID: PMC10794026 DOI: 10.1111/acer.15188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The multistage model of drug addiction posits that risk processes contributing to alcohol use change as individuals develop alcohol use disorders. However, few studies have tested this theory outside of the lab or at the event level. We assessed whether event-level associations between positive reinforcement (e.g., positive affect, sociability expectancies) and negative reinforcement risk factors (e.g., negative affect, tension reduction expectancies) and same-/next-day alcohol consumption varied as a function of an individual's level of alcohol consequences. Given elevated alcohol use consequences among individuals with post-traumatic stress disorder (PTSD) and disruptions in reward processing that affect this population, we also tested whether these processes differed based on the presence and severity of PTSD. METHODS We used data from a 30-day ecological momentary assessment study with 174 undergraduate women who regularly engaged in heavy episodic drinking. A majority (78%) of the sample had experienced sexual assault and 44% had current PTSD. Analyses used Bayesian multilevel structural equation modeling with diffuse (non-informative) priors. We used markov chain monte carlo (MCMC) algorithms to generate a series of 10,000 random draws from the multivariate posterior distribution of our sample for each model. RESULTS Results partially supported the multistage model. Event-level negative reinforcement risk factors only predicted more alcohol consumption among individuals who experienced more alcohol consequences. Findings for positive reinforcement risk factors were partially consistent with hypotheses. Overall, findings appear to operate similarly across PTSD symptom severity. CONCLUSIONS Results suggest that interventions for heavy episodic drinking could benefit from attending to an individual's level of alcohol consequences. For example, preventive interventions for individuals who tend to experience few consequences may benefit more from addressing positive reinforcement risk factors, while treatment interventions for those who experience more consequences may benefit from attending to both positive and negative reinforcement.
Collapse
Affiliation(s)
| | - Debra Kaysen
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| |
Collapse
|
13
|
Fan JQ, Miller H, Adams A, Bryan R, Salzman M. Allostatic load in opioid use disorder: a scoping review protocol. BMJ Open 2023; 13:e060522. [PMID: 36931678 PMCID: PMC10030489 DOI: 10.1136/bmjopen-2021-060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Opioid use disorder affects 2.1 million individuals in the USA, causing more than 100 000 overdose-related deaths annually. While the neurobiological model of addiction is well described and accepted, there is a lack of morbidity and mortality prognosticators for patients struggling with opioid use disorder. Allostatic load index is a promising candidate for the basis of a prognostication tool. Previous studies show that allostatic load predicts both morbidity and mortality in a variety of cohorts. This scoping review protocol provides the rationale and steps for summarising and presenting existing evidence surrounding allostatic load in the context of opioid use disorder. Identification of current knowledge gaps will pave the way for subsequent prospective studies. METHODS AND ANALYSIS This scoping review protocol will follow the five-step method designed by Arksey and O'Malley. All studies written in English on allostatic load in the context of opioid use disorder, as defined in our inclusion criteria, will be included. There will be no limit on the year of publication. We will search PubMed, Embase, CINAHL, PsycINFO and Google Scholar. We will hand-review reference lists of included articles, and we will hand search grey literature. We will then group, analyse and present the data in narrative, tabular and diagrammatic format according to themes identified in the scoping review. ETHICS AND DISSEMINATION Ethics approval is not necessary, as data are gathered from publicly accessible sources. The results will be disseminated through a peer-reviewed journal and reported at conferences related to addiction medicine. TRIAL REGISTRATION NUMBER 10.17605/OSF.IO/4J6DQ.
Collapse
Affiliation(s)
| | | | - Amanda Adams
- Department of Medical Library, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | | | - Matthew Salzman
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
14
|
Musial MPM, Beck A, Rosenthal A, Charlet K, Bach P, Kiefer F, Vollstädt-Klein S, Walter H, Heinz A, Rothkirch M. Reward Processing in Alcohol-Dependent Patients and First-Degree Relatives: Functional Brain Activity During Anticipation of Monetary Gains and Losses. Biol Psychiatry 2023; 93:546-557. [PMID: 35863919 DOI: 10.1016/j.biopsych.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND According to the reward deficiency syndrome and allostatic hypotheses, hyposensitivity of mesocorticolimbic regions to non-alcohol-related stimuli predisposes to dependence or is long-lastingly enhanced by chronic substance use. To date, no study has directly compared mesocorticolimbic brain activity during non-drug reward anticipation between alcohol-dependent, at risk, and healthy subjects. METHODS Seventy-five abstinent alcohol-dependent human subjects (mean abstinence duration 957.66 days), 62 healthy first-degree relatives of alcohol-dependent individuals, and 76 healthy control subjects without family history of alcohol dependence performed a monetary incentive delay task. Functional magnetic resonance imaging data of the anticipation phase were analyzed, during which visual cues predicted that fast response to a target would result in monetary gain, avoidance of monetary loss, or a neutral outcome. RESULTS During gain anticipation, there were no significant group differences. During loss anticipation, abstinent alcohol-dependent subjects showed lower activity in the left anterior insula compared with healthy control subjects without family history of alcohol dependence only (Montreal Neurological Institute [MNI] -25 19 -5; t206 = 4.17, familywise error corrected p = .009). However, this effect was no longer significant when age was included as a covariate. There were no group differences between abstinent alcohol-dependent subjects and healthy first-degree relatives or between healthy first-degree relatives and healthy control subjects during loss anticipation, respectively. CONCLUSIONS Neither the neural reward deficiency syndrome nor the allostatic hypotheses are supported by the results. Future studies should investigate whether the incentive salience hypothesis allows for more accurate predictions regarding mesocorticolimbic brain activity of subjects with alcohol dependence and healthy individuals during reward and loss anticipation and further examine the neural substrates underlying a predisposition to dependence.
Collapse
Affiliation(s)
- Milena P M Musial
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany.
| | - Anne Beck
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany; Health and Medical University, Campus Potsdam, Faculty of Health, Potsdam, Germany
| | - Annika Rosenthal
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Katrin Charlet
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Marcus Rothkirch
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| |
Collapse
|
15
|
Testing the efficacy of real-time fMRI neurofeedback for training people who smoke daily to upregulate neural responses to nondrug rewards. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:440-456. [PMID: 36788202 DOI: 10.3758/s13415-023-01070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 02/16/2023]
Abstract
Although the use of nondrug rewards (e.g., money) to facilitate smoking cessation is widespread, recent research has found that such rewards may be least effective when people who smoke cigarettes are tempted to do so. Specifically, among people who smoke, the neural response to nondrug rewards appears blunted when access to cigarettes is anticipated, and this blunting is linked to a decrease in willingness to refrain from smoking to earn a monetary incentive. Accordingly, methods to enhance the value of nondrug rewards may be theoretically and clinically important. The current proof-of-concept study tested if real-time fMRI neurofeedback training augments the ability to upregulate responses in reward-related brain areas relative to a no-feedback control condition in people who smoke. Adults (n = 44, age range = 20-44) who reported smoking >5 cigarettes per day completed the study. Those in the intervention group (n = 22, 5 females) were trained to upregulate brain responses using feedback of ongoing striatal activity (i.e., a dynamic "thermometer" that reflected ongoing changes of fMRI signal intensity in the striatum) in a single neurofeedback session with three training runs. The control group (n = 22, 5 females) underwent a nearly identical procedure but received no neurofeedback. Those who received neurofeedback training demonstrated significantly greater increases in striatal BOLD activation while attempting to think about something rewarding compared to controls, but this effect was present only during the first training run. Future neurofeedback research with those who smoke should explore how to make neurofeedback training more effective for the self-regulation of reward-related brain activities.
Collapse
|
16
|
Amchova P, Ruda-Kucerova J. Depressive-like phenotype enhances relapse of nicotine seeking after forced abstinence in rats. World J Biol Psychiatry 2023; 24:46-57. [PMID: 35473452 DOI: 10.1080/15622975.2022.2070665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Comorbidity of depression and drug addiction is common, but effective treatment is missing. A rat model combining the olfactory bulbectomy (OBX) model and IV drug self-administration has provided evidence of differential reactivity of the OBX rats towards drugs of abuse. This study evaluates nicotine taking and seeking behaviour in this model. METHODS Adult male Wistar rats were used; in one group, the OBX was performed while the other group was sham-operated. After three weeks of nicotine self-administration (fixed ratio-1 schedule), rats underwent two weeks of forced abstinence followed by a drug-free relapse-like session. Two doses of nicotine were studied: 0.019 and 0.030 mg/kg per infusion. The locomotor test took place before the self-administration protocol and on the first day of abstinence. RESULTS OBX induced characteristic hyperactive locomotor phenotype. OBX rats self-administered more nicotine in the experiment using 0.019 mg/kg per infusion, but they reached lower drug intake in the study using 0.030 mg/kg per infusion. However, relapse of nicotine seeking after forced abstinence was significantly higher in the OBX groups in both cohorts. CONCLUSION These results are in line with previous studies showing OBX-induced dissimilarities in drug-seeking and drug-taking and represent complementary information to reports on other substances.
Collapse
Affiliation(s)
- Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Kołosowska K, Lehner M, Skórzewska A, Gawryluk A, Tomczuk F, Sobolewska A, Turzyńska D, Liguz-Lęcznar M, Bednarska-Makaruk M, Maciejak P, Wisłowska-Stanek A. Molecular pattern of a decrease in the rewarding effect of cocaine after an escalating-dose drug regimen. Pharmacol Rep 2023; 75:85-98. [PMID: 36586075 PMCID: PMC9889529 DOI: 10.1007/s43440-022-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Long-term cocaine exposure leads to dysregulation of the reward system and initiates processes that ultimately weaken its rewarding effects. Here, we studied the influence of an escalating-dose cocaine regimen on drug-associated appetitive behavior after a withdrawal period, along with corresponding molecular changes in plasma and the prefrontal cortex (PFC). METHODS We applied a 5 day escalating-dose cocaine regimen in rats. We assessed anxiety-like behavior at the beginning of the withdrawal period in the elevated plus maze (EPM) test. The reinforcement properties of cocaine were evaluated in the Conditioned Place Preference (CPP) test along with ultrasonic vocalization (USV) in the appetitive range in a drug-associated context. We assessed corticosterone, proopiomelanocortin (POMC), β-endorphin, CART 55-102 levels in plasma (by ELISA), along with mRNA levels for D2 dopaminergic receptor (D2R), κ-receptor (KOR), orexin 1 receptor (OX1R), CART 55-102, and potential markers of cocaine abuse: miRNA-124 and miRNA-137 levels in the PFC (by PCR). RESULTS Rats subjected to the escalating-dose cocaine binge regimen spent less time in the cocaine-paired compartment, and presented a lower number of appetitive USV episodes. These changes were accompanied by a decrease in corticosterone and CART levels, an increase in POMC and β-endorphin levels in plasma, and an increase in the mRNA for D2R and miRNA-124 levels, but a decrease in the mRNA levels for KOR, OX1R, and CART 55-102 in the PFC. CONCLUSIONS The presented data reflect a part of a bigger picture of a multilevel interplay between neurotransmitter systems and neuromodulators underlying processes associated with cocaine abuse.
Collapse
Affiliation(s)
- Karolina Kołosowska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Gawryluk
- grid.419305.a0000 0001 1943 2944Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Filip Tomczuk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Danuta Turzyńska
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- grid.419305.a0000 0001 1943 2944Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Bednarska-Makaruk
- grid.418955.40000 0001 2237 2890Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Piotr Maciejak
- grid.418955.40000 0001 2237 2890Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- grid.13339.3b0000000113287408Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
18
|
Savage JE, Dick DM. Internalizing and externalizing subtypes of alcohol misuse and their relation to drinking motives. Addict Behav 2023; 136:107461. [PMID: 36063573 DOI: 10.1016/j.addbeh.2022.107461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Several typologies have proposed two etiological pathways involved in the development of alcohol misuse which are associated with the internalizing and externalizing domains of psychopathology, respectively. This study's aim was to investigate this typology in a young adult sample, and test whether drinking motives, specifically drinking for negative or positive reinforcement, may provide a plausible mechanism characterizing these pathways. METHOD Mixture modeling was conducted on a set of internalizing (anxiety, depression, neuroticism), externalizing (antisocial behavior, conscientiousness, sensation seeking, drug use), and alcohol misuse items (binge drinking, alcohol use disorder symptoms [AUDsx]) measured by self-report in a sample of 9,807 college students. Linear regression and chi-square tests were used to determine how latent class membership was associated with drinking motives, demographics, and personality characteristics. RESULTS The model identified 3 latent classes: a Low Risk class (70%), an Internalizing class (19%) with elevated levels of internalizing traits/symptoms and AUDsx, and an Externalizing class (10%) with elevated levels of externalizing traits/symptoms and both binge drinking and AUDsx. All drinking motives were substantially elevated in the Internalizing and Externalizing (vs Low Risk) classes (p < 3.0E-10), while positive reinforcement motives were specifically elevated in the Externalizing (vs Internalizing) class (p < 2.0E-55). Personality comparisons further emphasized the relevance of class distinctions. CONCLUSIONS These findings provide additional support for both a specific internalizing and a broadband externalizing association with subtypes of alcohol misuse. Drinking motives may be useful intermediate indicators of these different risk processes.
Collapse
Affiliation(s)
- Jeanne E Savage
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Present Address: Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands.
| | | | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA; Present address: Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
19
|
Eskandari K, Fattahi M, Yazdanian H, Haghparast A. Is Deep Brain Stimulation an Effective Treatment for Psychostimulant Dependency? A Preclinical and Clinical Systematic Review. Neurochem Res 2022; 48:1255-1268. [PMID: 36445490 DOI: 10.1007/s11064-022-03818-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
Addiction to psychostimulants significantly affects public health. Standard medical therapy is often not curative. Deep brain stimulation (DBS) is a promising treatment that has attracted much attention for addiction treatment in recent years. The present review aimed to systematically identify the positive and adverse effects of DBS in human and animal models to evaluate the feasibility of DBS as a treatment for psychostimulant abuse. The current study also examined the possible mechanisms underlying the therapeutic effects of DBS. In February 2022, a comprehensive search of four databases, including Web of Science, PubMed, Cochrane, and Scopus, was carried out to identify all reports that DBS was a treatment for psychostimulant addiction. The selected studies were extracted, summarized, and evaluated using the appropriate methodological quality assessment tools. The results indicated that DBS could reduce relapse and the desire for the drug in human and animal subjects without any severe side effects. The underlying mechanisms of DBS are complex and likely vary from region to region in terms of stimulation parameters and patterns. DBS seems a promising therapeutic option. However, clinical experiences are currently limited to several uncontrolled case reports. Further studies with controlled, double-blind designs are needed. In addition, more research on animals and humans is required to investigate the precise role of DBS and its mechanisms to achieve optimal stimulation parameters and develop new, less invasive methods.
Collapse
|
20
|
Narendra S, Klengel C, Hamzeh B, Patel D, Otten J, Lardenoije R, Newman EL, Miczek KA, Klengel T, Ressler KJ, Suh J. Genome-wide transcriptomics of the amygdala reveals similar oligodendrocyte-related responses to acute and chronic alcohol drinking in female mice. Transl Psychiatry 2022; 12:476. [PMID: 36371333 PMCID: PMC9653459 DOI: 10.1038/s41398-022-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition, analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly in women.
Collapse
Affiliation(s)
- Sharvari Narendra
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Claudia Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Bilal Hamzeh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Drasti Patel
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Joy Otten
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roy Lardenoije
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Emily L Newman
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Klaus A Miczek
- Psychology and Neuroscience Departments, Tufts University, Medford, MA, 02155, USA
| | - Torsten Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
21
|
Effects of isoflurane anesthesia on addictive behaviors in rats. Psychopharmacology (Berl) 2022; 239:3621-3632. [PMID: 36109391 DOI: 10.1007/s00213-022-06236-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE Recently, it has been suggested that isoflurane might reduce dopamine release from rat midbrain dopaminergic neurons, the neurobiological substrate implicated in the reinforcing effects of abused drugs and nondrug rewards. However, little is known about effects of isoflurane on neurobehavioral activity associated with chronic exposure to psychoactive substances. OBJECTIVE The present study was designed to investigate the effects of isoflurane on cocaine-reinforced behavior. Using behavioral paradigm in rats, we evaluated the effects of isoflurane on cocaine self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. We also tested the effects of isoflurane on lever responding by nondrug reinforcers (sucrose and food) in drug-naive rats to control for the nonselective effects of isoflurane on cocaine- and nicotine-taking behavior. To further assess the ability of isoflurane to modulate the motivation for taking a drug, we evaluated the effects of isoflurane on nicotine self-administration. Using different groups of rats, the effects of isoflurane on the locomotor activity induced by a single intraperitoneal injection of cocaine (15 mg/kg) were also examined. RESULTS Isoflurane significantly suppressed the self-administration of cocaine and nicotine without affecting food consumption. Unlike food-reinforced responding, responding for sucrose reinforcement was decreased by isoflurane. Isoflurane reduced breaking points under a PR schedule of reinforcement in a dose-dependent manner, indicating its efficacy in decreasing the incentive value of cocaine. Isoflurane also attenuated acute cocaine-induced hyperlocomotion. CONCLUSIONS The results provided evidence that isoflurane decreases cocaine- and nicotine-reinforced responses, while isoflurane effect is not selective for cocaine- and nicotine-maintained responding. These results suggest that isoflurane inhibitions of cocaine- and nicotine-maintenance responses may be related to decreased effects of dopamine, and further investigation will need to elucidate this relationship.
Collapse
|
22
|
Effects of linagliptin on morphine dependence in larval zebrafish ( Danio rerio). CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Drug addiction is a chronic, recurrent disease of the central nervous system that leads to the development of comorbidities and premature death. Despite extensive scientific research concerning addiction, no effective method of addiction pharmacotherapy has been known so far. Glucagon-like peptide 1 has been suggested to play a role in the rewarding effect of addictive drugs. Linagliptin is a selective dipeptidyl peptidase-4 inhibitor that suppresses the rapid degradation of endogenous glucagon-like peptide-1. In clinical practice, it is used as an antidiabetic drug, but recent studies have confirmed its role in the activity of the central nervous system. This pilot study was conducted to ascertain whether linagliptin might influence morphine dependence – a locomotor activity test was carried out to assess the intensity of morphine withdrawal symptom. The obtained results clearly confirmed that linagliptin (0.01 and 0.1 mM) reduced the locomotor activity in morphine-dependent larval zebrafish. The undertaken experiments clearly indicates that linagliptin is involved in the addictive effects of morphine, thus, further studies on higher organisms should be carried out.
Collapse
|
23
|
Tian G, Hui M, Macchia D, Derdeyn P, Rogers A, Hubbard E, Liu C, Vasquez JJ, Taniguchi L, Bartas K, Carroll S, Beier KT. An extended amygdala-midbrain circuit controlling cocaine withdrawal-induced anxiety and reinstatement. Cell Rep 2022; 39:110775. [PMID: 35508124 PMCID: PMC9225486 DOI: 10.1016/j.celrep.2022.110775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/29/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Although midbrain dopamine (DA) circuits are central to motivated behaviors, our knowledge of how experience modifies these circuits to facilitate subsequent behavioral adaptations is limited. Here we demonstrate the selective role of a ventral tegmental area DA projection to the amygdala (VTADA→amygdala) for cocaine-induced anxiety but not cocaine reward or sensitization. Our rabies virus-mediated circuit mapping approach reveals a persistent elevation in spontaneous and task-related activity of inhibitory GABAergic cells from the bed nucleus of the stria terminalis (BNST) and downstream VTADA→amygdala cells that can be detected even after a single cocaine exposure. Activity in BNSTGABA→midbrain cells is related to cocaine-induced anxiety but not reward or sensitization, and silencing this projection prevents development of anxiety during protracted withdrawal after cocaine administration. Finally, we observe that VTADA→amygdala cells are strongly activated after a challenge exposure to cocaine and that activity in these cells is necessary and sufficient for reinstatement of cocaine place preference.
Collapse
Affiliation(s)
- Guilian Tian
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Desiree Macchia
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA 92617, USA
| | - Alexandra Rogers
- Interdepartmental Neuroscience Program, University of California, Irvine, Irvine, CA 92617, USA
| | - Elizabeth Hubbard
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Chengfeng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Jose J Vasquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Lara Taniguchi
- Interdepartmental Neuroscience Program, University of California, Irvine, Irvine, CA 92617, USA
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA 92617, USA
| | - Sean Carroll
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92617, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92617, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92617, USA; UCI Mind, University of California, Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
24
|
Bonfiglio NS, Renati R, Agus M, Penna MP. Development of the motivation to use substance questionnaire. Drug Alcohol Depend 2022; 234:109414. [PMID: 35344878 DOI: 10.1016/j.drugalcdep.2022.109414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The use of a substance is always accompanied by a motivation that pushes the subject to use and abuse the substance. This work reports the validation data of the MUS (Motivation to Use Substance), which measures and evaluates the motivation to use substances based on the dimension of resistance, confidence, pleasure, and relaxation. METHODS The validation process involved 605 subjects belonging to a clinical sample of patients who used substances. The sample was divided into two groups: on the first, consisting of 342 subjects, an exploratory analysis was carried out, and on the second, consisting of 263 subjects, a confirmatory analysis was carried out. For concurrent and convergent validation, the SCL-90 test (Symptom Check List-90) was administered for the measurement of addiction-related psychiatric symptoms, and the ASI (Addiction Severity Index) test was administered for the measurement of the severity of the addiction. RESULTS AND CONCLUSIONS The MUS was found to be a robust test of construct validity, convergent, and concurrent. The results highlight gender and age differences for some of the MUS scales. Ultimately, MUS can be considered an excellent tool for structuring treatment programs for addiction services.
Collapse
Affiliation(s)
| | - Roberta Renati
- Institute for Educational Technology, National Research Council of Italy (CNR-ITD), Italy
| | - Mirian Agus
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
25
|
Fu Y, Lorrai I, Zorman B, Mercatelli D, Shankula C, Marquez Gaytan J, Lefebvre C, de Guglielmo G, Kim HR, Sumazin P, Giorgi FM, Repunte-Canonigo V, Sanna PP. Escalated (Dependent) Oxycodone Self-Administration Is Associated with Cognitive Impairment and Transcriptional Evidence of Neurodegeneration in Human Immunodeficiency Virus (HIV) Transgenic Rats. Viruses 2022; 14:669. [PMID: 35458399 PMCID: PMC9030762 DOI: 10.3390/v14040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Substance use disorder is associated with accelerated disease progression in people with human immunodeficiency virus (HIV; PWH). Problem opioid use, including high-dose opioid therapy, prescription drug misuse, and opioid abuse, is high and increasing in the PWH population. Oxycodone is a broadly prescribed opioid in both the general population and PWH. Here, we allowed HIV transgenic (Tg) rats and wildtype (WT) littermates to intravenously self-administer oxycodone under short-access (ShA) conditions, which led to moderate, stable, "recreational"-like levels of drug intake, or under long-access (LgA) conditions, which led to escalated (dependent) drug intake. HIV Tg rats with histories of oxycodone self-administration under LgA conditions exhibited significant impairment in memory performance in the novel object recognition (NOR) paradigm. RNA-sequencing expression profiling of the medial prefrontal cortex (mPFC) in HIV Tg rats that self-administered oxycodone under ShA conditions exhibited greater transcriptional evidence of inflammation than WT rats that self-administered oxycodone under the same conditions. HIV Tg rats that self-administered oxycodone under LgA conditions exhibited transcriptional evidence of an increase in neuronal injury and neurodegeneration compared with WT rats under the same conditions. Gene expression analysis indicated that glucocorticoid-dependent adaptations contributed to the gene expression effects of oxycodone self-administration. Overall, the present results indicate that a history of opioid intake promotes neuroinflammation and glucocorticoid dysregulation, and excessive opioid intake is associated with neurotoxicity and cognitive impairment in HIV Tg rats.
Collapse
Affiliation(s)
- Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Chase Shankula
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Jorge Marquez Gaytan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- 92160 Antony, France
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Hyunjae Ryan Kim
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| |
Collapse
|
26
|
Abdullah M, Huang LC, Lin SH, Yang YK. Dopaminergic and glutamatergic biomarkers disruption in addiction and regulation by exercise: a mini review. Biomarkers 2022; 27:306-318. [PMID: 35236200 DOI: 10.1080/1354750x.2022.2049367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Drug addiction is associated with disruption of a multitude of biomarkers in various brain regions, particularly in the reward center. The most pronounced are dopaminergic and glutamatergic biomarkers, which are affected at various levels. Neuropathological changes in biomarkers alter the homeostasis of the glutamatergic and dopaminergic nervous systems and promote addiction-associated characteristics such as repeated intake, maintenance, withdrawal, reinstatement, and relapse. Exercise has been shown to have a buffering effect on such biomarkers and reverse the effects of addictive substances. METHODS A review of the literature searched in PubMed, examining drug addiction and physical exercise in relation to dopaminergic and glutamatergic systems at any of the three biomarker levels (i.e., neurotransmitter, receptor, or transporter). RESULTS We review the collective impact of addictive substances on the dopaminergic and glutamatergic systems and the beneficial effect of exercise in terms of reversing the damage to these systems. We propose future directions, including implications of exercise as an add-on therapy, substance use disorder (SUD) prognosis and diagnosis and designing of optimized exercise and pharmaceutical regimens based on the aforementioned biomarkers. CONCLUSION Exercise is beneficial for all types of drug addiction at all stages, by reversing molecular damages caused to dopaminergic and glutamatergic systems.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Chia-Yi Branch, Taichung Veterans General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| |
Collapse
|
27
|
Rezaei Z, Alaei H, Reisi P. Effects of electrical stimulation and temporary inactivation of basolateral amygdala on morphine-induced conditioned place preference in rats. Neurosci Lett 2022; 774:136519. [DOI: 10.1016/j.neulet.2022.136519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
28
|
Peltz G, Tan Y. What Have We Learned (or Expect to) From Analysis of Murine Genetic Models Related to Substance Use Disorders? Front Psychiatry 2022; 12:793961. [PMID: 35095607 PMCID: PMC8790171 DOI: 10.3389/fpsyt.2021.793961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The tremendous public health problem created by substance use disorders (SUDs) presents a major opportunity for mouse genetics. Inbred mouse strains exhibit substantial and heritable differences in their responses to drugs of abuse (DOA) and in many of the behaviors associated with susceptibility to SUD. Therefore, genetic discoveries emerging from analysis of murine genetic models can provide critically needed insight into the neurobiological effects of DOA, and they can reveal how genetic factors affect susceptibility drug addiction. There are already indications, emerging from our prior analyses of murine genetic models of responses related to SUDs that mouse genetic models of SUD can provide actionable information, which can lead to new approaches for alleviating SUDs. Lastly, we consider the features of murine genetic models that enable causative genetic factors to be successfully identified; and the methodologies that facilitate genetic discovery.
Collapse
Affiliation(s)
- Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
29
|
Agarwal K, Manza P, Chapman M, Nawal N, Biesecker E, McPherson K, Dennis E, Johnson A, Volkow ND, Joseph PV. Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Front Psychiatry 2022; 13:863734. [PMID: 35558424 PMCID: PMC9086785 DOI: 10.3389/fpsyt.2022.863734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to addictive drugs in substance use disorders and stressors in mood disorders render the brain more vulnerable to inflammation. Inflammation in the brain, or neuroinflammation, is characterized by gliosis, microglial activation, and sustained release of cytokines, chemokines, and pro-inflammatory factors compromising the permeability of the blood-brain barrier. There is increased curiosity in understanding how substance misuse and/or repeated stress exposure affect inflammation and contribute to abnormal neuronal activity, altered neuroplasticity, and impaired cognitive control, which eventually promote compulsive drug-use behaviors and worsen mood disorders. This review will emphasize human imaging studies to explore the link between brain function and peripheral markers of inflammation in substance use disorders and mood disorders.
Collapse
Affiliation(s)
- Khushbu Agarwal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Peter Manza
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Marquis Chapman
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nafisa Nawal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Erin Biesecker
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Katherine McPherson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Evan Dennis
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Allison Johnson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Paule V Joseph
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Avegno EM, Gilpin NW. Reciprocal midbrain-extended amygdala circuit activity in preclinical models of alcohol use and misuse. Neuropharmacology 2022; 202:108856. [PMID: 34710467 PMCID: PMC8627447 DOI: 10.1016/j.neuropharm.2021.108856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Alcohol dependence is characterized by a shift in motivation to consume alcohol from positive reinforcement (i.e., increased likelihood of future alcohol drinking based on its rewarding effects) to negative reinforcement (i.e., increased likelihood of future alcohol drinking based on alcohol-induced reductions in negative affective symptoms, including but not limited to those experienced during alcohol withdrawal). The neural adaptations that occur during this transition are not entirely understood. Mesolimbic reinforcement circuitry (i.e., ventral tegmental area [VTA] neurons) is activated during early stages of alcohol use, and may be involved in the recruitment of brain stress circuitry (i.e., extended amygdala) during the transition to alcohol dependence, after chronic periods of high-dose alcohol exposure. Here, we review the literature regarding the role of canonical brain reinforcement (VTA) and brain stress (extended amygdala) systems, and the connections between them, in acute, sub-chronic, and chronic alcohol response. Particular emphasis is placed on preclinical models of alcohol use.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Corresponding author: Correspondence should be addressed to Elizabeth Avegno, 1901 Perdido St, Room 7205, New Orleans, LA 70112,
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA
| |
Collapse
|
31
|
Ruda-Kucerova J, Amchova P, Siska F, Tizabi Y. NBQX attenuates relapse of nicotine seeking but not nicotine and methamphetamine self-administration in rats. World J Biol Psychiatry 2021; 22:733-743. [PMID: 33787469 DOI: 10.1080/15622975.2021.1907714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Pharmacological manipulations of glutamatergic ionotropic receptors have been suggested as a promising target for addiction treatment. Antagonists of AMPA/kainate receptors were shown to reduce alcohol intake or alcohol-seeking in various animal models. In this study, we evaluated the effect of NBQX, an AMPA/kainate receptor antagonist, on methamphetamine (METH) and nicotine self-administration in rats. METHODS Male Wistar rats were trained to self-administer METH (0.08 mg/kg per infusion, session of 90 min) and nicotine (0.03 mg/kg per infusion, session of 60 min) under the fixed ratio 1 schedule of reinforcement. The maintenance training was 2 weeks. During the second week, NBQX was injected subcutaneously at doses of 5 or 10 mg/kg 20 min before the session or intravenously (IV) at doses of 1 and 5 mg/kg 10 min before the session. Following the maintenance training, rats were subjected to forced abstinence for 2 weeks and 1 day of the drug-free relapse-like session with IV NBQX treatment performed as before. RESULTS Although NBQX did not affect nicotine maintenance, it significantly suppressed the drug-paired responding in the relapse session. Regarding METH, NBQX did not exert a significant effect at either phase of the study. CONCLUSIONS These findings suggest selective involvement of AMPA/kainate receptors in the relapse of nicotine seeking after a period of forced abstinence.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Petra Amchova
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Filip Siska
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
32
|
Garcia EJ, Cain ME. Isolation housing elevates amphetamine seeking independent of nucleus accumbens glutamate receptor adaptations. Eur J Neurosci 2021; 54:6382-6396. [PMID: 34481424 PMCID: PMC9869284 DOI: 10.1111/ejn.15441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
Overdose death rates caused by psychostimulants have increased by 22.3% annually from 2008 to 2017. Cue-evoked drug craving progressively increases and contributes to perpetual relapse. Preclinical models have determined that glutamate receptor plasticity within the nucleus accumbens (NAc) drives amplified cue-evoked drug seeking after prolonged abstinence (>40 days). Isolated condition (IC) rearing increases cocaine and amphetamine (AMP) self-administration and cue-induced reinstatement. We tested the hypothesis that housing in the IC will augment AMP seeking after short and prolonged abstinence from AMP self-administration when compared with rats reared in the enrichment condition (EC). EC and IC male rats acquired stable AMP or SAL self-administration and were tested in a cue-induced AMP-seeking test after 1 and 40 days of abstinence. After the seeking test, the whole NAc was extracted and prepared for western blot analysis. Results indicate that IC rats had more active lever presses during a brief extinction interval and during the cue-induced seeking test. After 40 days of abstinence, IC rats had more active lever presses than EC rats during the cue-induced seeking test. Western blots indicated that the expression ratio between GluA1:mGlur5 was reduced only in IC-AMP-trained rats and the ratio between GluA1:mGlur1 was positively correlated with AMP seeking after prolonged abstinence in IC-AMP rats. These results indicate that IC housing engenders a vulnerable phenotype prone to persistent AMP seeking. The behavioural momentum of this vulnerable phenotype is further revealed when AMP-associated cues are presented following prolonged abstinence.
Collapse
Affiliation(s)
- Erik J. Garcia
- Department of Psychological Sciences Kansas State University Manhattan Kansas USA
| | - Mary E. Cain
- Department of Psychological Sciences Kansas State University Manhattan Kansas USA
| |
Collapse
|
33
|
Ewing ST, Dorcely C, Maidi R, Paker G, Schelbaum E, Ranaldi R. Low-dose polypharmacology targeting dopamine D1 and D3 receptors reduces cue-induced relapse to heroin seeking in rats. Addict Biol 2021; 26:e12988. [PMID: 33496050 DOI: 10.1111/adb.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Chemical compounds that target dopamine (DA) D1 or D3 receptors have shown promise as potential interventions in animal models of cue-induced relapse. However, undesirable side effects or pharmacodynamic profiles have limited the advancement of new compounds in preclinical studies when administered as independent treatments. In this series of experiments, we explored the effects of coadministration of a D1-receptor partial agonist (SKF 77434) and a D3-receptor antagonist (NGB 2904) in heroin-seeking rats within a "conflict" model of abstinence and cue-induced relapse. Rats were first trained to press a lever to self-administer heroin, and drug delivery was paired contingently with cues (e.g., light and pump noise). Self-initiated abstinence was facilitated by applying electrical current to the flooring in front of the levers. Lastly, a relapse response was provoked by noncontingent presentation of conditioned cues. Prior to provocation, rats received a systemic injection of SKF 77434, NGB 2904, or a combination of both compounds to assess treatment effects on lever pressing. Results indicated that the coadministration of low (i.e., independently ineffective) doses of both compounds was more effective in reducing cue-induced relapse to heroin seeking than either compound alone, with some evidence of drug synergism. Follow-up studies indicated that this reduction was not due to motoric impairment nor enhanced sensitivity to the electrified flooring and that this treatment did not significantly affect motivation for food. Implications for the treatment of opiate use disorder and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Scott T. Ewing
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Chris Dorcely
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Rivka Maidi
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Gulsah Paker
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Eva Schelbaum
- Psychology Department Queens College of the City University of New York Flushing New York USA
| | - Robert Ranaldi
- Psychology Department Queens College of the City University of New York Flushing New York USA
| |
Collapse
|
34
|
Non-coding RNA: insights into the mechanism of methamphetamine neurotoxicity. Mol Cell Biochem 2021; 476:3319-3328. [PMID: 33895910 DOI: 10.1007/s11010-021-04160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Chronic exposure of the methamphetamine has been shown to lead to neurotoxicity in rodents and humans. The manifestations of methamphetamine neurotoxicity include methamphetamine use disorder, methamphetamine abuse, methamphetamine addiction and methamphetamine behavioral sensitization. Repeated use of methamphetamine can cause methamphetamine use disorder. The abuse and addiction of methamphetamine are growing epidemic worldwide. Repeated intermittent exposure to methamphetamine can cause behavioral sensitization. In addition, many studies have shown that changes in the expression of non-coding RNA in the ventral tegmental area and nucleus accumbens will affect the behavioral effects of methamphetamine. Non-coding RNA plays an important role in the behavioral effects of methamphetamine. Therefore, it is important to study the relationship between methamphetamine and non-coding RNA. The purpose of this review is to study the non-coding RNA associated with methamphetamine neurotoxicity to search for the possible therapeutic target of the methamphetamine neurotoxicity.
Collapse
|
35
|
Eitan S, Madison CA, Kuempel J. The self-serving benefits of being a good host: A role for our micro-inhabitants in shaping opioids' function. Neurosci Biobehav Rev 2021; 127:284-295. [PMID: 33894242 DOI: 10.1016/j.neubiorev.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Opioids are highly efficacious in their ability to relieve pain, but they are liable for abuse, dependence, and addiction. Risk factors to develop opioid use disorders (OUD) include chronic stress, socio-environment, and preexisting major depressive disorders (MDD) and posttraumatic stress disorders (PTSD). Additionally, opioids reduce gut motility, induce loss of gut barrier function, and alter the composition of the trillions of microbes hosted in the gastrointestinal tract, known as the gut microbiota. The microbiota are significant contributors to the reciprocal communication between the central nervous system (CNS) and the gut, termed the gut-brain axis. They have strong influences on their host behaviors, including the ability to cope with stress, sociability, affect, mood, and anxiety. Thus, they are implicated in the etiology of MDD and PTSD. Here we review the latest studies demonstrating that intestinal flora can, directly and indirectly, by affecting sociability levels, responses to stress, and mental state, alter the responses to opioids. It suggests that microbiota can potentially be used to increase the resilience to develop analgesic tolerance and OUD.
Collapse
Affiliation(s)
- Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA.
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
36
|
Soravia LM, Moggi F, de Quervain DJF. Effects of cortisol administration on craving during in vivo exposure in patients with alcohol use disorder. Transl Psychiatry 2021; 11:6. [PMID: 33414435 PMCID: PMC7791020 DOI: 10.1038/s41398-020-01180-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol-associated memories and craving play a crucial role in the development and maintenance of alcohol use disorder (AUD). As treatment options are limited in AUD, novel treatment strategies focus on the manipulation of alcohol-associated memories. The stress hormone cortisol affects various memory processes, and first clinical studies have shown that it inhibits the retrieval of disorder-specific memories and enhances extinction memory. This study aimed to investigate the effects of a single oral administration of cortisol on craving in patients with AUD during repeated in vivo exposure to alcohol pictures and the preferred alcoholic drink. In a double-blind, block-randomized, placebo-controlled cross-over design, 46 patients with AUD were treated with two sessions of in vivo exposure to alcohol. Cortisol (20 mg) or placebo was orally administered 1 h before each test day. Craving, stress, and cortisol were repeatedly measured during exposure sessions. Results show, that cortisol administration had distinct effects on craving depending on the severity of AUD and test day. While cortisol administration significantly enhanced craving during exposure on the first test day in patients with less severe AUD, it reduced craving in patients with more severe AUD. Independent of the cortisol administration, repeated in vivo exposure reduced craving from test day 1 to test day 2. In conclusion, adding cortisol to in vivo exposure might be a promising approach for reducing the strength of alcohol-associated memories and might promote the consolidation of extinction memory in patients with severe AUD. However, the differential effect of cortisol on craving depending on AUD severity cannot be conclusively explained and highlights the need for future studies elucidating the underlying mechanism.
Collapse
Affiliation(s)
- Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
- Südhang Clinic, Kirchlindach, Switzerland.
| | - Franz Moggi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | | |
Collapse
|
37
|
Yuferov V, Butelman ER, Randesi M, van den Brink W, Blanken P, van Ree JM, Kreek MJ. Association of Serotonin Transporter (SERT) Polymorphisms with Opioid Dependence and Dimensional Aspects of Cocaine Use in a Caucasian Cohort of Opioid Users. Neuropsychiatr Dis Treat 2021; 17:659-670. [PMID: 33658787 PMCID: PMC7920580 DOI: 10.2147/ndt.s286536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION A functional tandem repeat polymorphism in the promoter of the serotonin transporter (SERT) gene (SLC6A4) has been studied for association to neuropsychiatric conditions, including substance use disorders. Short (S) forms of this repeat result in reduced transcription, and presumably greater synaptic levels of serotonin, which are involved in opioid and cocaine-induced reward. Dual exposure to heroin and cocaine is a common pattern of poly-drug use and is associated with considerable morbidity. We hypothesize that SLC6A4 variants are associated with cocaine exposure in subjects with an opioid dependence diagnosis (OD), and also in non-dependent opioid users (NOD). Other single nucleotide polymorphisms (SNPs) of SLC6A4 may also be likewise associated. MATERIALS AND METHODS This study determined whether variants of the SLC6A4 promoter repeats and two intronic SNPs, rs16965628 and rs2066713, are associated with categorical diagnoses of opioid dependence (DSM-IV criteria) and with dimensional aspects of cocaine use, in a Caucasian cohort (n=591). Three groups of subjects were examined: (1) 276 subjects with opioid dependence diagnosis (OD); (2) 163 subjects who had used opioids for non-medical reasons but never had an opioid dependence diagnosis (NOD); (3) 152 healthy controls (HC). RESULTS Aside from high exposure to heroin in the OD group, relatively high exposure to cocaine was detected in both OD and NOD groups. The SERT repeat genotype (classified as "long-long" [LL] versus "short-long" plus "short-short" [SL+SS]) was not associated with categorical opioid dependence diagnoses. A nominally significant association was identified with the [SL+SS] genotype of SLC6A4 and cocaine KMSK scores ≥"cutpoint" for a cocaine dependence diagnosis (p=0.026). The [SL+SS] genotype was associated with more rapid cocaine escalation than the LL genotype. No significant associations of rs16965628 and rs2066713 SNPs were found overall. CONCLUSION The functional SERT promoter tandem repeat genotype may be associated to heavy cocaine exposure and more rapid escalation of cocaine use, in persons with and without opioid dependence diagnosis.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Wim van den Brink
- Amsterdam University Medical Centers, Location Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Blanken
- Parnassia Addiction Research Centre, The Hague, The Netherlands
| | - Jan M van Ree
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
38
|
Hardon A. Chemical 24/7. CRITICAL STUDIES IN RISK AND UNCERTAINTY 2021. [PMCID: PMC7552726 DOI: 10.1007/978-3-030-57081-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This chapter shines a light on what happens in the dark: specifically, we present ethnographic insights from the nightlife economy and how chemicals enable youth to work “24/7.” Producers, promoters, DJs, hosts, artists, performers, drag queens, musicians, stage managers, bartenders, hospitality girls, and dancers from Amsterdam, Brooklyn, Bira (Indonesia), and Puerto Princesa (the Philippines) share with the ChemicalYouth team the various stimulants they use to stay awake and perform their jobs during non-typical working hours, and the other chemicals that they take in order to be able to sleep and recover afterwards. In Chemical 24/7 we compare and contrast the chemical practices of youth working at leisure industry sites in the global North to those of the low-income service sector and manual workers in the global South, and discuss how these different working conditions perpetuate chemical use. Our interlocutors rely on a range of chemicals for their work and social lives, and they develop practices to moderate their use in order to avoid adverse effects. Yet their practices differ depending on the availability, marketing, and policing of the substances.
Collapse
Affiliation(s)
- Anita Hardon
- University of Amsterdam, Amsterdam, Noord-Holland the Netherlands
| |
Collapse
|
39
|
Abstract
Alcohol is one of the oldest pharmacological agents used for its sedative/hypnotic effects, and alcohol abuse and alcohol use disorder (AUD) continues to be major public health issue. AUD is strongly indicated to be a brain disorder, and the molecular and cellular mechanism/s by which alcohol produces its effects in the brain are only now beginning to be understood. In the brain, synaptic plasticity or strengthening or weakening of synapses, can be enhanced or reduced by a variety of stimulation paradigms. Synaptic plasticity is thought to be responsible for important processes involved in the cellular mechanisms of learning and memory. Long-term potentiation (LTP) is a form of synaptic plasticity, and occurs via N-methyl-D-aspartate type glutamate receptor (NMDAR or GluN) dependent and independent mechanisms. In particular, NMDARs are a major target of alcohol, and are implicated in different types of learning and memory. Therefore, understanding the effect of alcohol on synaptic plasticity and transmission mediated by glutamatergic signaling is becoming important, and this will help us understand the significant contribution of the glutamatergic system in AUD. In the first part of this review, we will briefly discuss the mechanisms underlying long term synaptic plasticity in the dorsal striatum, neocortex and the hippocampus. In the second part we will discuss how alcohol (ethanol, EtOH) can modulate long term synaptic plasticity in these three brain regions, mainly from neurophysiological and electrophysiological studies. Taken together, understanding the mechanism(s) underlying alcohol induced changes in brain function may lead to the development of more effective therapeutic agents to reduce AUDs.
Collapse
Affiliation(s)
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
40
|
Avchalumov Y, Piña-Crespo JC, Woodward JJ, Mandyam CD. Acute Ethanol Exposure Enhances Synaptic Plasticity in the Dorsal Striatum in Adult Male and Female Rats. Brain Plast 2020; 6:113-122. [PMID: 33680850 PMCID: PMC7903017 DOI: 10.3233/bpl-190097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Acute (ex vivo) and chronic (in vivo) alcohol exposure induces neuroplastic changes in the dorsal striatum, a
critical region implicated in instrumental learning. Objective: Sex differences are evident in alcohol reward and reinforcement, with
female rats consuming higher amount of alcohol in operant paradigms compared to male rats. However, sex differences in
the neuroplastic changes produced by acute alcohol in the dorsal striatum have been unexplored. Methods: Using electrophysiological
recordings from dorsal striatal slices obtained from adult male and female rats, we investigated the effects of ex vivo ethanol
exposure on synaptic transmission and synaptic plasticity. Ethanol (44 mM) enhanced basal synaptic transmission in both
sexes. Ethanol also enhanced long-term potentiation in both sexes. Other measures of synaptic plasticity including paired-pulse
ratio were unaltered by ethanol in both sexes. Results: The results suggest that alterations in synaptic plasticity induced by acute
ethanol, at a concentration associated with intoxication, could play an important role in alcohol-induced experience-dependent
modification of corticostriatal circuits underlying the learning of goal-directed instrumental actions and formation of habits
mediating alcohol seeking and taking. Conclusions: Taken together, understanding the mechanism(s) underlying alcohol induced changes
in corticostriatal function may lead to the development of more effective therapeutic agents to reduce habitual drinking and
seeking associated with alcohol use disorders.
Collapse
Affiliation(s)
| | - Juan C Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
41
|
Parise LF, Sial OK, Warren BL, Sattler CR, Duperrouzel JC, Parise EM, Bolaños-Guzmán CA. Nicotine treatment buffers negative behavioral consequences induced by exposure to physical and emotional stress in adolescent male mice. Psychopharmacology (Berl) 2020; 237:3125-3137. [PMID: 32594187 PMCID: PMC7819755 DOI: 10.1007/s00213-020-05598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
Early life stress influences adult psychopathology and is associated with an increase in the propensity for drug use/seeking throughout the lifespan. Animal models corroborate that stress exposure exacerbates maladaptive reactivity to stressful stimuli while also shifting the rewarding properties of many drugs of abuse, including nicotine (NIC), a stimulant commonly misused by adolescents. Interestingly, NIC treatment can also normalize some stress-induced behavioral deficits in adult rodents; however, little is known about NIC's therapeutic efficacy following stress experienced during adolescence. The goal of the following experiments was to elucidate NIC's ability to buffer the negative consequences of stress exposure, and to further assess behavioral responsivity while on the drug. Given that stress often occurs in both physical and non-physical forms, we employed the vicarious social defeat stress (VSDS) model which allows for investigation of both physical (PS) and emotional stress (ES) exposure. After 10 days, exposure to PS and ES decreased interaction with a social target in the social interaction test (SIT), confirming social avoidance. Groups were further divided and given NIC (0.0 or 160 mg/L) in their drinking water. After 1 month of NIC consumption, the mice were exposed to the SIT, elevated plus maze (EPM), and the forced swim test (FST), respectively. NIC-treated mice showed a reversal of stress-induced deficits in the EPM and FST. Surprisingly, the mice did not show improvement in the SIT regardless of treatment condition. Together, these data confirm NIC's ability to normalize some stress-induced behavioral deficits; however, NIC's effects on social behavior need further investigation.
Collapse
Affiliation(s)
- Lyonna F Parise
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai. 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Omar K Sial
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
| | - Brandon L Warren
- Department of Pharmacodynamics, Department of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Carley R Sattler
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
| | - Jacqueline C Duperrouzel
- Department of Psychology, Florida International University, 11200 S.W. 8th St., Miami, FL, 33199, USA
| | - Eric M Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai. 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
42
|
Smith LC, Kimbrough A. Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sci 2020; 10:E578. [PMID: 32825739 PMCID: PMC7565429 DOI: 10.3390/brainsci10090578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques. Network-based approaches can be applied to imaging data to create neural networks that model the functional and structural connectivity of the brain. These networks can be used to changes to brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can be further used to identify key brain regions or neural "hubs" involved in alcohol drinking. Here, we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss clinical and preclinical studies using network-based approaches related to substance use disorders and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network approaches can be applied alone and in combination with other approaches to better understand alcohol drinking.
Collapse
Affiliation(s)
- Lauren C. Smith
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
| | - Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
43
|
Screen-Printed Electrodes (SPE) for In Vitro Diagnostic Purpose. Diagnostics (Basel) 2020; 10:diagnostics10080517. [PMID: 32722552 PMCID: PMC7460409 DOI: 10.3390/diagnostics10080517] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Due to rapidly spreading infectious diseases and the high incidence of other diseases such as cancer or metabolic syndrome, there is a continuous need for the development of rapid and accurate diagnosis methods. Screen-printed electrodes-based biosensors have been reported to offer reliable results, with high sensitivity and selectivity and, in some cases, low detection limits. There are a series of materials (carbon, gold, platinum, etc.) used for the manufacturing of working electrodes. Each version comes with advantages, as well as challenges for their functionalization. Thus, the aim is to review the most promising biosensors developed using screen-printed electrodes for the detection/quantification of proteins, biomarkers, or pathogenic microorganisms.
Collapse
|
44
|
Nestor LJ, Suckling J, Ersche KD, Murphy A, McGonigle J, Orban C, Paterson LM, Reed L, Taylor E, Flechais R, Smith D, Bullmore ET, Elliott R, Deakin B, Rabiner I, Hughes AL, Sahakian BJ, Robbins TW, Nutt DJ. Disturbances across whole brain networks during reward anticipation in an abstinent addiction population. NEUROIMAGE-CLINICAL 2020; 27:102297. [PMID: 32505119 PMCID: PMC7270610 DOI: 10.1016/j.nicl.2020.102297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Analytical methods can capture key features of whole brain networks in addiction. We compared reward network connectivity in addiction (ADD) and control (CON) groups. The ADD group showed disruptions in global network connectivity. Global network measures may be more sensitive than traditional voxel-wise analyses.
The prevalent spatial distribution of abnormalities reported in cognitive fMRI studies in addiction suggests there are extensive disruptions across whole brain networks. Studies using resting state have reported disruptions in network connectivity in addiction, but these studies have not revealed characteristics of network functioning during critical psychological processes that are disrupted in addiction populations. Analytic methods that can capture key features of whole brain networks during psychological processes may be more sensitive in revealing additional and widespread neural disturbances in addiction, that are the provisions for relapse risk, and targets for medication development. The current study compared a substance addiction (ADD; n = 83) group in extended abstinence with a control (CON; n = 68) group on functional MRI (voxel-wise activation) and global network (connectivity) measures related to reward anticipation on a monetary incentive delay task. In the absence of group differences on MID performance, the ADD group showed reduced activation predominantly across temporal and visual regions, but not across the striatum. The ADD group also showed disruptions in global network connectivity (lower clustering coefficient and higher characteristic path length), and significantly less connectivity across a sub-network comprising frontal, temporal, limbic and striatal nodes. These results show that an addiction group in extended abstinence exhibit localised disruptions in brain activation, but more extensive disturbances in functional connectivity across whole brain networks. We propose that measures of global network functioning may be more sensitive in highlighting latent and more widespread neural disruptions during critical psychological processes in addiction and other psychiatric disorders.
Collapse
Affiliation(s)
- Liam J Nestor
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom; Department of Psychiatry, University of Cambridge, United Kingdom
| | - John Suckling
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - John McGonigle
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Csaba Orban
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Louise M Paterson
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Laurence Reed
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Eleanor Taylor
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Remy Flechais
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Dana Smith
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | | | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Ilan Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anne-Lingford Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | | | - Trevor W Robbins
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - David J Nutt
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | | |
Collapse
|
45
|
Kimbrough A, Kononoff J, Simpson S, Kallupi M, Sedighim S, Palomino K, Conlisk D, Momper JD, de Guglielmo G, George O. Oxycodone self-administration and withdrawal behaviors in male and female Wistar rats. Psychopharmacology (Berl) 2020; 237:1545-1555. [PMID: 32114633 PMCID: PMC7269712 DOI: 10.1007/s00213-020-05479-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Over the last decade, oxycodone has become one of the most widely abused drugs in the USA. Oxycodone use disorder (OUD) is a serious health problem that has prompted a need to develop animal models of OUD that have both face and predictive validity. Oxycodone use in humans is more prevalent in women and leads to pronounced hyperalgesia and irritability during withdrawal. However, unclear is whether current animal models of oxycodone self-administration recapitulate these characteristics in humans. OBJECTIVES We assessed the face validity of a model of extended-access oxycodone self-administration in rats by examining the escalation of oxycodone intake and behavioral symptoms of withdrawal, including irritability-like behavior and mechanical nociception, in male and female Wistar rats. RESULTS Both male and female rats escalated their oxycodone intake over fourteen 12-h self-administration sessions. After escalation, female rats administered more drug than male rats. No differences in plasma oxycodone levels were identified, but males had a significantly higher level of oxycodone in the brain at 30 min. Extended access to oxycodone significantly decreased aggressive-like behavior and increased defensive-like behaviors when tested immediately after a 12-h self-administration session, followed by a rebound increase in aggressive-like behavior 12 h into withdrawal. Tests of mechanical nociception thresholds during withdrawal indicated pronounced hyperalgesia. No sex differences in irritability-like behavior or pain sensitivity were observed. CONCLUSIONS The present study demonstrated the face validity of the extended access model of oxycodone self-administration by identifying sex differences in the escalation of oxycodone intake and pronounced changes in pain and affective states.
Collapse
Affiliation(s)
- Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, MC 0714, La Jolla, CA 92093-0737, USA
| | - Jenni Kononoff
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sierra Simpson
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, MC 0714, La Jolla, CA 92093-0737, USA,Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marsida Kallupi
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, MC 0714, La Jolla, CA 92093-0737, USA
| | - Sharona Sedighim
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, MC 0714, La Jolla, CA 92093-0737, USA
| | - Kenia Palomino
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dana Conlisk
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, MC 0714, La Jolla, CA 92093-0737, USA
| | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, MC 0714, La Jolla, CA, 92093-0737, USA.
| |
Collapse
|
46
|
Borisenkov MF, Popov SV, Tserne TA, Bakutova LA, Pecherkina AA, Dorogina OI, Martinson EA, Vetosheva VI, Gubin DG, Solovieva SV, Turovinina EF, Symanyuk EE. Food addiction and symptoms of depression among inhabitants of the European North of Russia: Associations with sleep characteristics and photoperiod. EUROPEAN EATING DISORDERS REVIEW 2020; 28:332-342. [PMID: 32153116 DOI: 10.1002/erv.2728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/23/2019] [Accepted: 02/16/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Mikhail F. Borisenkov
- Department of Molecular Immunology and BiotechnologyInstitute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences Syktyvkar Russia
- Ural Institute of HumanitiesUral Federal University Yekaterinburg Russia
| | - Sergey V. Popov
- Department of Molecular Immunology and BiotechnologyInstitute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences Syktyvkar Russia
- Ural Institute of HumanitiesUral Federal University Yekaterinburg Russia
| | - Tatyana A. Tserne
- Department of Molecular Immunology and BiotechnologyInstitute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences Syktyvkar Russia
| | - Larisa A. Bakutova
- Department of Molecular Immunology and BiotechnologyInstitute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences Syktyvkar Russia
| | - Anna A. Pecherkina
- Ural Institute of HumanitiesUral Federal University Yekaterinburg Russia
| | - Olga I. Dorogina
- Ural Institute of HumanitiesUral Federal University Yekaterinburg Russia
| | | | - Valentina I. Vetosheva
- Institute of Pedagogy and PsychologyPitirim Sorokin Syktyvkar State University Syktyvkar Russia
| | - Denis G. Gubin
- Department of BiologyTyumen Medical University Tyumen Russia
- Tyumen Cardiology Research Centre, Tomsk National Research Medical CenterRussian Academy of Science Tyumen Russia
| | | | | | - Elvira E. Symanyuk
- Ural Institute of HumanitiesUral Federal University Yekaterinburg Russia
| |
Collapse
|
47
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
48
|
de Guglielmo G, Fu Y, Chen J, Larrosa E, Hoang I, Kawamura T, Lorrai I, Zorman B, Bryant J, George O, Sumazin P, Lefebvre C, Repunte-Canonigo V, Sanna PP. Increases in compulsivity, inflammation, and neural injury in HIV transgenic rats with escalated methamphetamine self-administration under extended-access conditions. Brain Res 2020; 1726:146502. [PMID: 31605699 PMCID: PMC7195807 DOI: 10.1016/j.brainres.2019.146502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
The abuse of stimulants, such as methamphetamine (METH), is associated with treatment non-compliance, a greater risk of viral transmission, and the more rapid clinical progression of immunological and central nervous system human immunodeficiency virus (HIV) disease. The behavioral effects of METH in the setting of HIV remain largely uncharacterized. We used a state-of-the-art paradigm of the escalation of voluntary intravenous drug self-administration in HIV transgenic (Tg) and wildtype rats. The rats were first allowed to self-administer METH under short-access (ShA) conditions, which is characterized by a nondependent and more "recreational" pattern of METH use, and then allowed to self-administer METH under long-access (LgA) conditions, which leads to compulsive (dependent) METH intake. HIV Tg and wildtype rats self-administered equal amounts of METH under ShA conditions. HIV Tg rats self-administered METH under LgA conditions following a 4-week enforced abstinence period to model the intermittent pattern of stimulant abuse in humans. These HIV Tg rats developed greater motivation to self-administer METH and self-administered larger amounts of METH. Impairments in function of the medial prefrontal cortex (mPFC) contribute to compulsive drug and alcohol intake. Gene expression profiling of the mPFC in HIV Tg rats with a history of escalated METH self-administration under LgA conditions showed transcriptional evidence of increased inflammation, greater neural injury, and impaired aerobic glucose metabolism than wildtype rats that self-administered METH under LgA conditions. The detrimental effects of the interaction between neuroHIV and escalated METH intake on the mPFC are likely key factors in the greater vulnerability to excessive drug intake in the setting of HIV.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Estefania Larrosa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivy Hoang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Bryant
- University of Maryland and Institute of Human Virology, Baltimore, MD, United States
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Bioinformatics and Computational Biology, Servier, Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
49
|
Nonhuman animal models of substance use disorders: Translational value and utility to basic science. Drug Alcohol Depend 2020; 206:107733. [PMID: 31790978 PMCID: PMC6980671 DOI: 10.1016/j.drugalcdep.2019.107733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The National Institute on Drug Abuse (NIDA) recently released a Request for Information (RFI) soliciting comments on nonhuman animal models of substance use disorders (SUD). METHODS A literature review was performed to address the four topics outlined in the RFI and one topic inspired by the RFI: (1) animal models that best recapitulate SUD, (2) animal models that best balance the trade-offs between resources and ecological validity, (3) animal models whose translational value are frequently misrepresented or overrepresented by the scientific community, (4) aspects of SUD that are not currently being modeled in animals, and (5) animal models that are optimal for examining the basic mechanisms by which drugs produce their abuse-related effects. RESULTS Models that employ response-contingent drug administration, use complex schedules of reinforcement, measure behaviors that mimic the distinguishing features of SUD, and use animals that are phylogenetically similar to humans have the greatest translational value. Models that produce stable and reproducible baselines of behavior, lessen the number of uncontrolled variables, and minimize the influence of extraneous factors are best at examining basic mechanisms contributing to drug reward and reinforcement. CONCLUSIONS Nonhuman animal models of SUD have undergone significant refinements to increase their utility for basic science and translational value for SUD. The existing literature describes numerous examples of how these models may best be utilized to answer mechanistic questions of drug reward and identify potential therapeutic interventions for SUD. Progress in the field could be accelerated by further collaborations between researchers using animals versus humans.
Collapse
|
50
|
Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The Mechanisms Involved in Morphine Addiction: An Overview. Int J Mol Sci 2019; 20:ijms20174302. [PMID: 31484312 PMCID: PMC6747116 DOI: 10.3390/ijms20174302] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Opioid use disorder is classified as a chronic recurrent disease of the central nervous system (CNS) which leads to personality disorders, co-morbidities and premature death. It develops as a result of long-term administration of various abused substances, along with morphine. The pharmacological action of morphine is associated with its stimulation of opioid receptors. Opioid receptors are a group of G protein-coupled receptors and activation of these receptors by ligands induces significant molecular changes inside the cell, such as an inhibition of adenylate cyclase activity, activation of potassium channels and reductions of calcium conductance. Recent data indicate that other signalling pathways also may be involved in morphine activity. Among these are phospholipase C, mitogen-activated kinases (MAP kinases) or β-arrestin. The present review focuses on major mechanisms which currently are considered as essential in morphine activity and dependence and may be important for further studies.
Collapse
Affiliation(s)
- Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Małgorzata Łupina
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Antonina Mazur
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| | - Jolanta Kotlińska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland.
| |
Collapse
|