1
|
Forestell CA. Does Maternal Diet Influence Future Infant Taste and Odor Preferences? A Critical Analysis. Annu Rev Nutr 2024; 44:313-337. [PMID: 38724030 DOI: 10.1146/annurev-nutr-121222-101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The dietary choices a mother makes during pregnancy offer her developing fetus its earliest exposure to the family's culinary preferences. This comprehensive literature review synthesizes five decades of research, which has provided valuable insights into fetal flavor learning. Converging evidence across various species supports the functionality of fetal chemoreceptive systems by the end of gestation, enabling the detection of an extensive array of chemosensory cues derived from the maternal diet and transmitted to the amniotic fluid. The fetus effectively encodes these flavors, resulting in their enhanced acceptance after birth. While existing studies predominantly concentrate on fetal learning about odor volatiles, limited evidence suggests a capacity for learning about gustatory (i.e., taste) properties. Examining whether these prenatal odor, taste, and flavor experiences translate into enduring shifts in dietary behaviors beyond weaning remains a crucial avenue for further investigation.
Collapse
|
2
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Marengo L, Barey A, Salguero A, Fabio MC, Cendán CM, Morón-Henche I, D'Addario C, Pautassi RM. Neurobehavioral alterations induced by third-trimester gestation-equivalent ethanol exposure are inhibited by folate administration. Dev Psychobiol 2023; 65:e22426. [PMID: 37860900 DOI: 10.1002/dev.22426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023]
Abstract
Prenatal ethanol exposure (PEE) causes several neurobehavioral impairments in the fetus. Postnatal days (PDs) 4-9 in rodents are considered equivalent to the third trimester of gestation in humans. This period is characterized by high rates of synaptogenesis and myelination and the maturation of key structures and transmitter systems. Nutritional supplements, such as folate, have gained attention as putative treatments to mitigate detrimental effects of PEE. Folate is crucial for DNA synthesis and amino acid metabolism and heightens antioxidant defenses. The present study examined neurobehavioral effects of the concurrent administration of folate (20 mg/kg/day) and ethanol (5 g/kg/day) during PDs 4-9 in male and female Wistar rats. During PDs 16-18, the rat pups were tested for anxiety-like and exploratory activity in the light-dark box (LDB), open field (OF), and concentric square field (CSF) tests. After weaning, they were tested for sucrose preference and ethanol intake. Neonatal ethanol exposure reduced body weight in infancy but did not enhance ethanol self-administration or significantly affect performance in the OF or LDB. Neonatal ethanol exposure also reduced sucrose intake in the preference test and increased shelter-seeking in the CSF, and folate significantly inhibited these effects. The present findings suggest that folate, a treatment that is devoid of serious side effects, can ameliorate some neurobehavioral effects of PEE.
Collapse
Affiliation(s)
- Leonardo Marengo
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agostina Barey
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustín Salguero
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cruz Miguel Cendán
- Department of Pharmacology, Institute of Neuroscience, Biomedical Research Center (CIBM), Faculty of Medicine, University of Granada and Biosanitary Research Institute ibs. Granada, Granada, Spain
| | - Ignacio Morón-Henche
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behaviour (CIMCYC), University of Granada, Granada, Spain
| | - Claudio D'Addario
- Dipartimento di Bioscienze e Tecnologie Agro-Alimentari e Ambientali, Università degli Studi di Teramo, Teramo, Italy
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Bake S, Rouzer SK, Mavuri S, Miranda RC, Mahnke AH. The interaction of genetic sex and prenatal alcohol exposure on health across the lifespan. Front Neuroendocrinol 2023; 71:101103. [PMID: 37802472 PMCID: PMC10922031 DOI: 10.1016/j.yfrne.2023.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Prenatal alcohol exposure (PAE) can reprogram the development of cells and tissues, resulting in a spectrum of physical and neurobehavioral teratology. PAE immediately impacts fetal growth, but its effects carry forward post-parturition, into adolescence and adulthood, and can result in a cluster of disabilities, collectively termed Fetal Alcohol Spectrum Disorders. Emerging preclinical and clinical research investigating neurological and behavioral outcomes in exposed offspring point to genetic sex as an important modifier of the effects of PAE. In this review, we discuss the literature on sex differences following PAE, with studies spanning the fetal period through adulthood, and highlight gaps in research where sex differences are likely, but currently under-investigated. Understanding how sex and PAE interact to affect offspring health outcomes across the lifespan is critical for identifying the full complement of PAE-associated secondary conditions, and for refining targeted interventions to improve the quality of life for individuals with PAE.
Collapse
Affiliation(s)
- Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Siara K Rouzer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Shruti Mavuri
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Medical Research and Education Building I, 8447 Riverside Parkway, Bryan, TX 77807-3620, United States.
| |
Collapse
|
5
|
D’aloisio G, Acevedo MB, Angulo-Alcalde A, Trujillo V, Molina JC. Moderate ethanol exposure during early ontogeny of the rat alters respiratory plasticity, ultrasonic distress vocalizations, increases brain catalase activity, and acetaldehyde-mediated ethanol intake. Front Behav Neurosci 2022; 16:1031115. [DOI: 10.3389/fnbeh.2022.1031115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Early ontogeny of the rat (late gestation and postnatal first week) is a sensitive period to ethanol’s positive reinforcing effects and its detrimental effects on respiratory plasticity. Recent studies show that acetaldehyde, the first ethanol metabolite, plays a key role in the modulation of ethanol motivational effects. Ethanol brain metabolization into acetaldehyde via the catalase system appears critical in modulating ethanol positive reinforcing consequences. Catalase system activity peak levels occur early in the ontogeny. Yet, the role of ethanol-derived acetaldehyde during the late gestational period on respiration response, ultrasonic vocalizations (USVs), and ethanol intake during the first week of the rat remains poorly explored. In the present study, pregnant rats were given a subcutaneous injection of an acetaldehyde-sequestering agent (D-penicillamine, 50 mg/kg) or saline (0.9% NaCl), 30 min prior to an intragastric administration of ethanol (2.0 g/kg) or water (vehicle) on gestational days 17–20. Respiration rates (breaths/min) and apneic episodes in a whole-body plethysmograph were registered on postnatal days (PDs) 2 and 4, while simultaneously pups received milk or ethanol infusions for 40-min in an artificial lactation test. Each intake test was followed by a 5-min long USVs emission record. On PD 8, immediately after pups completed a 15-min ethanol intake test, brain samples were collected and kept frozen for catalase activity determination. Results indicated that a moderate experience with ethanol during the late gestational period disrupted breathing plasticity, increased ethanol intake, as well brain catalase activity. Animals postnatally exposed to ethanol increased their ethanol intake and exerted differential affective reactions on USVs and apneic episodes depending on whether the experience with ethanol occur prenatal or postnatally. Under the present experimental conditions, we failed to observe, a clear role of acetaldehyde mediating ethanol’s effects on respiratory plasticity or affective states, nevertheless gestational acetaldehyde was of crucial importance in determining subsequent ethanol intake affinity. As a whole, results emphasize the importance of considering the participation of acetaldehyde in fetal programming processes derived from a brief moderate ethanol experience early in development, which in turn, argues against “safe or harmless” ethanol levels of exposure.
Collapse
|
6
|
Collier AD, Yasmin N, Chang GQ, Karatayev O, Khalizova N, Fam M, Abdulai AR, Yu B, Leibowitz SF. Embryonic ethanol exposure induces ectopic Hcrt and MCH neurons outside hypothalamus in rats and zebrafish: Role in ethanol-induced behavioural disturbances. Addict Biol 2022; 27:e13238. [PMID: 36301208 PMCID: PMC9625080 DOI: 10.1111/adb.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
Embryonic exposure to ethanol increases the risk for alcohol use disorder in humans and stimulates alcohol-related behaviours in different animal models. Evidence in rats and zebrafish suggests that this phenomenon induced by ethanol at low-moderate concentrations involves a stimulatory effect on neurogenesis and density of hypothalamic neurons expressing the peptides, hypocretin/orexin (Hcrt) and melanin-concentrating hormone (MCH), known to promote alcohol consumption. Building on our report in zebrafish showing that ethanol induces ectopic expression of Hcrt neurons outside the hypothalamus, we investigated here whether embryonic ethanol exposure also induces ectopic peptide neurons in rats similar to zebrafish and affects their morphological characteristics and if these ectopic neurons are functional and have a role in the ethanol-induced disturbances in behaviour. We demonstrate in rats that ethanol at a low-moderate dose, in addition to increasing Hcrt and MCH neurons in the lateral hypothalamus where they are normally concentrated, induces ectopic expression of these peptide neurons further anterior in the nucleus accumbens core and ventromedial caudate putamen where they have not been previously observed and causes morphological changes relative to normally located hypothalamic neurons. Similar to rats, embryonic ethanol exposure at a low-moderate dose in zebrafish induces ectopic Hcrt neurons anterior to the hypothalamus and alters their morphology. Notably, laser ablation of these ectopic Hcrt neurons blocks the behavioural effects induced by ethanol exposure, including increased anxiety and locomotor activity. These findings suggest that the ectopic peptide neurons are functional and contribute to the ethanol-induced behavioural disturbances related to the overconsumption of alcohol.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Abdul R. Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
7
|
Guttlein L, Molina JC, Abate P. Operant conditioning with a stimulus discrimination: An alternative method for evaluating alcohol reinforcement in preweaning rats. J Neurosci Methods 2021; 363:109345. [PMID: 34464651 DOI: 10.1016/j.jneumeth.2021.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Ethanol exposure at early ontogeny promotes further predisposition to consume the drug. Operant conditioning allows motivational alcohol properties to be assessed. To date, the operant conditioning approach used during infancy consisted in paired subjects being trained to learn an operant response, using simultaneously a yoked partner, which received reinforcer solution as a result of a paired animal instrumental response (OYS). NEW METHOD In our study, we attempted to evaluate ethanol reinforcing effects during PDs 15-18 in an operant conditioning schedule with a stimulus discrimination procedure (OSD), as an alternative control learning. This new proposal includes a single subject, who has to choose between an S+ nose-poke hole, which delivers the reinforcer into the mouth, or an S- nose-poke hole with no reinforcement effect. RESULTS The OSD results seemed to be more reliable than those obtained using the OYS procedure, since some data appeared to be more robust when using a yoked nose-poke hole than when employing a yoked subject, such as in control learning. Consequently, OSD has the following advantages compared to the OYS procedure: a) the operant response learned is controlled by the overall behavior of the same subject, resulting in a relatively clearer data; b) a yoked animal is not necessary, thereby reducing the number of rats used in the operant conditioning procedure. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS A novel technique of operant conditioning adapted to infancy was developed by training animals to emit a particular response to gain access to alcohol solution as a reinforcer.
Collapse
Affiliation(s)
- Larisa Guttlein
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Paula Abate
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina; Instituto de Investigaciones Psicológicas (IIPsi-CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| |
Collapse
|
8
|
Collier AD, Yasmin N, Khalizova N, Campbell S, Onoichenco A, Fam M, Albeg AS, Leibowitz SF. Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Sci Rep 2021; 11:16078. [PMID: 34373563 PMCID: PMC8352948 DOI: 10.1038/s41598-021-95707-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the hypothalamus promote reward-related behaviors including alcohol consumption and are shown in rodents and zebrafish to be stimulated by embryonic exposure to ethanol (EtOH). We used here in zebrafish three-dimensional analyses of the entire population of Hcrt neurons to examine how embryonic EtOH exposure at low-moderate concentrations (0.1% or 0.5% v/v) alters these neurons in relation to behavior. We found that EtOH in the water for 2 h (22-24 h post fertilization) increases the number of Hcrt neurons on the left but not right side of the brain through a stimulation of cell proliferation, this is accompanied by a decrease in locomotor activity under novel conditions but not after habituation, and these effects are evident in both larvae and adults indicating they are long lasting. Our analyses in adults revealed sexually dimorphic effects, with females consuming more EtOH-gelatin and exhibiting more freezing behavior along with an asymmetric increase in Hcrt neurons and males exhibiting increased aggression with no change in Hcrt. These findings suggest that a long lasting, asymmetric increase in Hcrt neurons induced by EtOH results from an asymmetric increase in proliferation specific to Hcrt and contributes to behavioral changes in females.
Collapse
Affiliation(s)
- Adam D. Collier
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nushrat Yasmin
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Nailya Khalizova
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Samantha Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Amanda Onoichenco
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Milisia Fam
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Avi S. Albeg
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah F. Leibowitz
- grid.134907.80000 0001 2166 1519Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
9
|
Zaso MJ, Youngentob SL, Park A. Characterizing the role of early alcohol reexposure in associations of prenatal alcohol exposure with adolescent alcohol outcomes. Alcohol Clin Exp Res 2021; 45:1436-1447. [PMID: 33977545 PMCID: PMC8295222 DOI: 10.1111/acer.14632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure has been linked to a host of negative outcomes, although it is largely unknown whether prenatal exposure leads to an earlier age of initiation of alcohol use or exacerbates early alcohol initiation. The current study examined whether adolescents exposed to heavy drinking during gestation began drinking earlier than their nonexposed peers and whether an earlier age of alcohol reexposure in adolescence exacerbated associations with adverse alcohol outcomes. METHODS Adolescents (17 years of age; 57% female; 96% White) from a longitudinal, population-based cohort study, the Avon Longitudinal Study of Parents and Children, reported on the age they first consumed a whole drink and other alcohol behaviors. Adolescents' mothers also reported on their own heavy drinking during pregnancy (i.e., any consumption of 4+ U.K. units in a drinking day at either 18 or 32 weeks of gestation). RESULTS Survival analyses indicated that prenatal heavy drinking exposure was not associated with an earlier initiation of alcohol use after controlling for potential demographic and parental mental health and substance use confounds. Generalized negative binomial models demonstrated that prenatal heavy drinking exposure moderated associations of the age of alcohol initiation with alcohol quantity and heavy drinking frequency (but not alcohol frequency or Alcohol Use Disorders Identification Test score), after controlling for the same demographic and parental confounds. Specifically, earlier alcohol initiation was associated with more adverse alcohol outcomes regardless of prenatal exposure. However, the protective associations of delayed alcohol initiation were lower among adolescents exposed to prenatal heavy drinking. CONCLUSIONS This study provides evidence for the interplay between prenatal and postnatal alcohol exposures. Importantly, adolescents who were prenatally exposed to heavy drinking appeared to be less protected by later alcohol initiation than those who were not exposed in utero.
Collapse
Affiliation(s)
- Michelle J. Zaso
- Syracuse University, Department of Psychology, Syracuse, NY, USA
- Clinical and Research Institute on Addictions, University at Buffalo – The State University of New York, Buffalo, NY, USA
| | | | - Aesoon Park
- Syracuse University, Department of Psychology, Syracuse, NY, USA
| |
Collapse
|
10
|
Kazemi T, Huang S, Avci NG, Akay YM, Akay M. Investigating the effects of chronic perinatal alcohol and combined nicotine and alcohol exposure on dopaminergic and non-dopaminergic neurons in the VTA. Sci Rep 2021; 11:8706. [PMID: 33888815 PMCID: PMC8062589 DOI: 10.1038/s41598-021-88221-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
The ventral tegmental area (VTA) is the origin of dopaminergic neurons and the dopamine (DA) reward pathway. This pathway has been widely studied in addiction and drug reinforcement studies and is believed to be the central processing component of the reward circuit. In this study, we used a well-established rat model to expose mother dams to alcohol, nicotine-alcohol, and saline perinatally. DA and non-DA neurons collected from the VTA of the rat pups were used to study expression profiles of miRNAs and mRNAs. miRNA pathway interactions, putative miRNA-mRNA target pairs, and downstream modulated biological pathways were analyzed. In the DA neurons, 4607 genes were differentially upregulated and 4682 were differentially downregulated following nicotine-alcohol exposure. However, in the non-DA neurons, only 543 genes were differentially upregulated and 506 were differentially downregulated. Cell proliferation, differentiation, and survival pathways were enriched after the treatments. Specifically, in the PI3K/AKT signaling pathway, there were 41 miRNAs and 136 mRNAs differentially expressed in the DA neurons while only 16 miRNAs and 20 mRNAs were differentially expressed in the non-DA neurons after the nicotine-alcohol exposure. These results depicted that chronic nicotine and alcohol exposures during pregnancy differentially affect both miRNA and gene expression profiles more in DA than the non-DA neurons in the VTA. Understanding how the expression signatures representing specific neuronal subpopulations become enriched in the VTA after addictive substance administration helps us to identify how neuronal functions may be altered in the brain.
Collapse
Affiliation(s)
- Tina Kazemi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuyan Huang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Naze G Avci
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
11
|
Sex- and age-dependent differences in nicotine susceptibility evoked by developmental exposure to tobacco smoke and/or ethanol in mice. J Dev Orig Health Dis 2020; 12:940-951. [PMID: 33292889 DOI: 10.1017/s2040174420001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Either tobacco smoking or alcohol consumption during pregnancy sex-selectively increases susceptibility to drugs of abuse later in life. Considering that pregnant smoking women are frequently intermittent consumers of alcoholic beverages, here, we investigated whether a short-term ethanol exposure restricted to the brain growth spurt period when combined with chronic developmental exposure to tobacco smoke aggravates susceptibility to nicotine in adolescent and adult mice. Swiss male and female mice were exposed to tobacco smoke (SMK; research cigarettes 3R4F, whole-body exposure, 8 h/daily) or ambient air during the gestational period and until the tenth postnatal day (PN). Ethanol (ETOH, 2 g/Kg, 25%, i.p.) or saline was injected in the pups every other day from PN2 to PN10. There were no significant differences in cotinine (nicotine metabolite) and ethanol serum levels among SMK, ETOH and SMK + ETOH groups. During adolescence (PN30) and adulthood (PN90), nicotine (NIC, 0.5 mg/Kg) susceptibility was evaluated in the conditioned place preference and open field tests. NIC impact was more evident in females: SMK, ETOH and SMK + ETOH adolescent females were equally more susceptible to nicotine-induced place preference than control animals. At adulthood, SMK and SMK + ETOH adult females exhibited a nicotine-evoked hyperlocomotor profile in the open field, with a stronger effect in the SMK + ETOH group. Our results indicate that ethanol exposure during the brain growth spurt, when combined to developmental exposure to tobacco smoke, increases nicotine susceptibility with stronger effects in adult females. This result represents a worsened outcome from the early developmental dual exposure and may predispose nicotine use/abuse later in life.
Collapse
|
12
|
Flannigan K, Coons-Harding KD, Anderson T, Wolfson L, Campbell A, Mela M, Pei J. A Systematic Review of Interventions to Improve Mental Health and Substance Use Outcomes for Individuals with Prenatal Alcohol Exposure and Fetal Alcohol Spectrum Disorder. Alcohol Clin Exp Res 2020; 44:2401-2430. [PMID: 33119894 PMCID: PMC7839542 DOI: 10.1111/acer.14490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/18/2020] [Indexed: 12/25/2022]
Abstract
Individuals with fetal alcohol spectrum disorder (FASD) experience remarkably high rates of mental health and substance use challenges, beginning early in life and extending throughout adulthood. Proactive intervention can help to mitigate some of these negative experiences. Although the literature on FASD intervention is growing, there is currently a lack of consolidated evidence on interventions that may improve mental health and substance use outcomes in this population. Informed by a life course perspective, we undertook a systematic review of the literature to identify interventions that improve mental wellness through all developmental stages for people with prenatal alcohol exposure (PAE) and FASD. A total of 33 articles were identified, most of which were focused on building skills or strategies that underlie the well‐being of children with PAE and FASD and their families. Other interventions were geared toward supporting child and family wellness and responding to risk or reducing harm. There was a notable lack of interventions that directly targeted mental health and substance use challenges, and a major gap was also noted in terms of interventions for adolescents and adults. Combined, these studies provide preliminary and emerging evidence for a range of intervention approaches that may support positive outcomes for individuals with FASD across the life course.
Collapse
Affiliation(s)
- Katherine Flannigan
- (KF, KDC-H, LW, MM, JP), Canada FASD Research Network, Vancouver, British Columbia, Canada
| | - Kelly D Coons-Harding
- (KF, KDC-H, LW, MM, JP), Canada FASD Research Network, Vancouver, British Columbia, Canada.,Psychology Department, (KDC-H), Laurentian University, Sudbury, Ontario, Canada
| | - Tara Anderson
- (TA), Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
| | - Lindsay Wolfson
- (KF, KDC-H, LW, MM, JP), Canada FASD Research Network, Vancouver, British Columbia, Canada.,(LW), Centre of Excellence for Women's Health, Vancouver, British Columbia, Canada
| | - Alanna Campbell
- (AC), Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Mansfield Mela
- (KF, KDC-H, LW, MM, JP), Canada FASD Research Network, Vancouver, British Columbia, Canada.,Department of Psychiatry, College of Medicine, (MM), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jacqueline Pei
- (KF, KDC-H, LW, MM, JP), Canada FASD Research Network, Vancouver, British Columbia, Canada.,Department of Educational Psychology, (JP), University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, (JP), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Respiratory and emotional reactivity to ethanol odor in human neonates is dependent upon maternal drinking patterns during pregnancy. Drug Alcohol Depend 2020; 213:108100. [PMID: 32590209 DOI: 10.1016/j.drugalcdep.2020.108100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Beyond the well-known deleterious effects of ethanol defining Fetal Alcohol Spectrum Disorders (FASD), the notion of fetal alcohol programming has gained scientific support. This phenomenon implies early neural plasticity relative to learning mechanisms comprising ethanol´s sensory cues and physiological effects of the drug; among others, its reinforcing properties and its depressant effects upon respiration. In this study, as a function of differential ethanol exposure during gestation, we analyzed neonatal physiological and behavioral responsiveness recruited by the odor of the drug. METHODS A factorial design defined by maternal ethanol intake during pregnancy (Low, n = 38; Moderate, n = 18 or High, n = 19) and olfactory stimulation (ethanol odor and/or or a novel scent) served as the basis of the study. Neonatal respiratory and cardiac frequencies, oxygen saturation levels and appetitive or aversive facial expressions, served as dependent variables. RESULTS Newborns of High drinkers exhibited significant physiological and behavioral signs indicative of alcohol odor recognition; specifically, respiratory depressions and exacerbated appetitive facial reactions coupled with diminished aversive expressions. Respiratory depressions were not accompanied by heart rate accelerations (cardiorespiratory dysautonomia). According to ROC curve analyses respiratory and behavioral reactivity were predictive of high maternal intake patterns. CONCLUSIONS These results validate the notion of human fetal alcohol programming that is detected immediately after birth. The reported early functional signs indicative of relatively high alcohol gestational exposure should broaden our capability of diagnosing FASD and lead to appropriate primary or secondary clinical interventions (Registry of Health Research N.3201- RePIS, Córdoba, Argentina).
Collapse
|
14
|
Miranda-Morales RS, D'Aloisio G, Anunziata F, Abate P, Molina JC. Fetal Alcohol Programming of Subsequent Alcohol Affinity: A Review Based on Preclinical, Clinical and Epidemiological Studies. Front Behav Neurosci 2020; 14:33. [PMID: 32210775 PMCID: PMC7077749 DOI: 10.3389/fnbeh.2020.00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
The anatomo-physiological disruptions inherent to different categories of the Fetal Alcohol Spectrum Disorder do not encompass all the negative consequences derived from intrauterine ethanol (EtOH) exposure. Preclinical, clinical and epidemiological studies show that prenatal EtOH exposure also results in early programming of alcohol affinity. This affinity has been addressed through the examination of how EtOH prenatally exposed organisms recognize and prefer the drug’s chemosensory cues and their predisposition to exhibit heightened voluntary EtOH intake during infancy and adolescence. In altricial species these processes are determined by the interaction of at least three factors during stages equivalent to the 2nd and 3rd human gestational trimester: (i) fetal processing of the drug’s olfactory and gustatory attributes present in the prenatal milieu; (ii) EtOH’s recruitment of central reinforcing effects that also imply progressive sensitization to the drug’s motivational properties; and (iii) an associative learning process involving the prior two factors. This Pavlovian learning phenomenon is dependent upon the recruitment of the opioid system and studies also indicate a significant role of EtOH’s principal metabolite (acetaldehyde, ACD) which is rapidly generated in the brain via the catalase system. The central and rapid accumulation of this metabolite represents a major factor involved in the process of fetal alcohol programming. According to recent investigations, it appears that ACD exerts early positive reinforcing consequences and antianxiety effects (negative reinforcement). Finally, this review also acknowledges human clinical and epidemiological studies indicating that moderate and binge-like drinking episodes during gestation result in neonatal recognition of EtOH’s chemosensory properties coupled with a preference towards these cues. As a whole, the studies under discussion emphasize the notion that even subteratogenic EtOH exposure during fetal life seizes early functional sensory and learning capabilities that pathologically shape subsequent physiological and behavioral reactivity towards the drug.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Genesis D'Aloisio
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Abate
- Instituto de Investigaciones Psicológicas, Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
15
|
Gaztañaga M, Angulo-Alcalde A, Chotro MG. Prenatal Alcohol Exposure as a Case of Involuntary Early Onset of Alcohol Use: Consequences and Proposed Mechanisms From Animal Studies. Front Behav Neurosci 2020; 14:26. [PMID: 32210773 PMCID: PMC7066994 DOI: 10.3389/fnbeh.2020.00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Prenatal alcohol exposure has been found to be an important factor determining later consumption of this drug. In humans, despite the considerable diversity of variables that might influence alcohol consumption, longitudinal studies show that maternal alcohol intake during gestation is one of the best predictors of later alcohol use from adolescence to young adulthood. Experimental studies with animals also provide abundant evidence of the effects of prenatal alcohol exposure on later alcohol intake. In addition to increased consumption, other effects include enhanced palatability and attractiveness of alcohol flavor as well as sensitization to its sensory and reinforcing effects. Most of these outcomes have been obtained after exposing rats to binge-like administrations of moderate alcohol doses during the last gestational period when the fetus is already capable of detecting flavors in the amniotic fluid and learning associations with aversive or appetitive consequences. On this basis, it has been proposed that one of the mechanisms underlying the increased acceptance of alcohol after its prenatal exposure is the acquisition (by the fetus) of appetitive learning via an association between the sensory properties of alcohol and its reinforcing pharmacological effects. It also appears that this prenatal appetitive learning is mediated by the activation of the opioid system, with fetal brain acetaldehyde playing an important role, possibly as the main chemical responsible for its activation. Here, we review and analyze together the results of all animal studies testing these hypotheses through experimental manipulation of the behavioral and neurochemical elements of the assumed prenatal association. Understanding the mechanisms by which prenatal alcohol exposure favors the early initiation of alcohol consumption, along with its role in the causal pathway to alcohol disorders, may allow us to find strategies to mitigate the behavioral effects of this early experience with the drug. We propose that prenatal alcohol exposure is regarded as a case of involuntary early onset of alcohol use when designing prevention policies. This is particularly important, given the notion that the sooner alcohol intake begins, the greater the possibility of a continued history of alcohol consumption that may lead to the development of alcohol use disorders.
Collapse
Affiliation(s)
- Mirari Gaztañaga
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU-Donostia-San Sebastián, San Sebastian, Spain
| | - Asier Angulo-Alcalde
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU-Donostia-San Sebastián, San Sebastian, Spain
| | - M Gabriela Chotro
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU-Donostia-San Sebastián, San Sebastian, Spain
| |
Collapse
|
16
|
Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109728. [PMID: 31394141 PMCID: PMC6815720 DOI: 10.1016/j.pnpbp.2019.109728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022]
Abstract
There are numerous clinical and pre-clinical studies showing that exposure of the embryo to ethanol markedly affects neuronal development and stimulates alcohol drinking and related behaviors. In rodents and zebrafish, our studies show that embryonic exposure to low-dose ethanol, in addition to increasing voluntary ethanol intake during adolescence, increases the density of hypothalamic hypocretin (hcrt) neurons, a neuropeptide known to regulate reward-related behaviors. The question addressed here in zebrafish is whether maternal ethanol intake before conception also affects neuronal and behavioral development, phenomena suggested by clinical reports but seldom investigated. To determine if preconception maternal ethanol consumption also affects these hcrt neurons and behavior in the offspring, we first standardized a method of measuring voluntary ethanol consumption in AB strain adult and larval zebrafish given gelatin meals containing 10% or 0.1% ethanol, respectively. We found the number of bites of gelatin to be an accurate measure of intake in adults and a strong predictor of blood ethanol levels, and also to be a reliable indicator of intake in larval zebrafish. We then used this feeding paradigm and live imaging to examine the effects of preconception maternal intake of 10% ethanol-gelatin compared to plain-gelatin for 14 days on neuronal development in the offspring. Whereas ethanol consumption by adult female HuC:GFP transgenic zebrafish had no impact on the number of differentiated HuC+ neurons at 28 h post-fertilization (hpf), preconception ethanol consumption by adult female hcrt:EGFP zebrafish significantly increased the number of hcrt neurons in the offspring, an effect observed at 28 hpf and confirmed at 6 and 12 days post-fertilization (dpf). This increase in hcrt neurons was primarily present on the left side of the brain, indicating asymmetry in ethanol's actions, and it was accompanied by behavioral changes in the offspring, including a significant increase in novelty-induced locomotor activity but not thigmotaxis measured at 6 dpf and also in voluntary consumption of 0.1% ethanol-gelatin at 12 dpf. Notably, these measures of ethanol intake and locomotor activity stimulated by preconception ethanol were strongly, positively correlated with the number of hcrt neurons. These findings demonstrate that preconception maternal ethanol consumption affects the brain and behavior of the offspring, producing effects similar to those caused by embryonic ethanol exposure, and they provide further evidence that the ethanol-induced increase in hcrt neurogenesis contributes to the behavioral disturbances caused by ethanol.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Soe S Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Samantha D Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mia Y Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
17
|
Wille-Bille A, Bellia F, Jiménez García AM, Miranda-Morales RS, D'Addario C, Pautassi RM. Early exposure to environmental enrichment modulates the effects of prenatal ethanol exposure upon opioid gene expression and adolescent ethanol intake. Neuropharmacology 2019; 165:107917. [PMID: 31926456 DOI: 10.1016/j.neuropharm.2019.107917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Prenatal ethanol exposure (PEE) promotes ethanol consumption in the adolescent offspring accompanied by the transcriptional regulation of kappa opioid receptor (KOR) system genes. This study analysed if environmental enrichment (EE, from gestational day 20 to postnatal day 26) exerts protective effects upon PEE-modulation of gene expression, ethanol intake and anxiety responses. Pregnant rats were exposed to PEE (0.0 or 2.0 g/kg ethanol, gestational days 17-20) and subsequently the dam and offspring were reared under EE or standard conditions. PEE upregulated KOR mRNA levels in amygdala (AMY) and prodynorphin (PDYN) mRNA levels in ventral tegmental area (VTA) with the latter effect associated with lower DNA methylation at the gene promoter. These effects were normalized by exposure to EE. PEE modulated BDNF mRNA levels in VTA and Nucleus accumbens (AcbN), and EE mitigated the changes in AcbN. EE induced a protective effect on ethanol intake and preference, an effect more noticeable in males than in females, and in prenatal vehicle-treated (PV) than in PEE rats. The male offspring drank significantly less ethanol than the female offspring. The latter result suggests that the protective effect of EE on ethanol drinking may only emerge at lower levels of drinking. In the dams, PEE induced an upregulation of PDYN and KOR in AcbN. PDYN gene expression was normalized by exposure to EE. These results suggest that EE is a promising treatment to inhibit the effects of PEE. The results confirm that PEE effects are mediated by alterations in the transcriptional regulation of KOR system genes.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina
| | - Fabio Bellia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Teramo, C.P. 64100, Italy
| | - Ana María Jiménez García
- Facultad de Medicina, Departamento de Farmacología, Universidad de Granada, Granada, C.P. 18071, Spain
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Teramo, C.P. 64100, Italy.
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, C.P. 5000, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| |
Collapse
|
18
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 Chemokine System in Embryonic Hypothalamus: Involvement in Sexually Dimorphic Stimulatory Effects of Prenatal Ethanol Exposure on Peptide-Expressing Neurons. Neuroscience 2019; 424:155-171. [PMID: 31705896 DOI: 10.1016/j.neuroscience.2019.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Maternal consumption of ethanol during pregnancy is known to increase the offspring's risk for developing alcohol use disorders and associated behavioral disturbances. Studies in adolescent and adult animals suggest the involvement of neuroimmune and neurochemical systems in the brain that control these behaviors. To understand the origin of these effects during early developmental stages, we examined in the embryo and neonate the effects of maternal intraoral administration of ethanol (2 g/kg/day) from embryonic day 10 (E10) to E15 on the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 in a specific, dense population of neurons in the lateral hypothalamus (LH), where they are closely related to an orexigenic neuropeptide, melanin-concentrating hormone (MCH), known to promote ethanol consumption and related behaviors. We found that prenatal ethanol exposure increases the expression and density of CCL2 and CCR2 cells along with MCH neurons in the LH and the colocalization of CCL2 with MCH. We also discovered that these effects are sexually dimorphic, consistently stronger in female embryos, and are blocked by maternal administration of a CCL2 antibody (1 and 5 µg/day, i.p., E10-E15) that neutralizes endogenous CCL2 and of a CCR2 antagonist INCB3344 (1 mg/day, i.p., E10-E15) that blocks CCL2's main receptor. These results, which in the embryo anatomically and functionally link the CCL2/CCR2 system to MCH neurons in the LH, suggest an important role for this neuroimmune system in mediating ethanol's sexually dimorphic, stimulatory effect on MCH neurons that may promote higher level of alcohol consumption described in females.
Collapse
|
19
|
Prenatal ethanol exposure attenuates sensitivity to the aversive effects of ethanol in adolescence and increases adult preference for a 5% ethanol solution in males, but not females. Alcohol 2019; 79:59-69. [PMID: 30597200 DOI: 10.1016/j.alcohol.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The present set of experiments investigated the effects of a moderate dose of ethanol (2 g/kg; 20% v/v intragastrically) during late gestation (G17-20 [gestational day]) on ethanol-induced conditioned taste aversion (CTA) in adolescence, and on ethanol consumption during adolescence and early adulthood. In experiment 1, male and female Sprague-Dawley rats were given 30-min access to a sweetened "supersaccharin" (SS) solution or sodium chloride (NaCl), followed by an intraperitoneal injection of 20% ethanol (0, 1, 1.25, or 1.5 g/kg) for three conditioning/test sessions. Among animals conditioned with SS, prenatally ethanol-exposed males exhibited attenuated ethanol-induced CTA relative to males prenatally gavaged with water or non-manipulated, whereas prenatal treatment had no effect on CTA in females. Among animals conditioned with NaCl, there were no exposure group differences in males, with modest evidence for attenuated CTA in prenatally ethanol-exposed females. In experiment 2, the effects of prenatal ethanol exposure on ethanol consumption in adolescents (P35 ± 1 day [postnatal day]) and adults (P56-60) were explored. At the beginning of the dark cycle, pair-housed rats were given three bottles containing 0, 5, and 10% ethanol for 18 h every other day (i.e., Monday, Wednesday, Friday) for 3 weeks. Relative to water controls, adult males prenatally exposed to ethanol showed greater preference and more intake (g/kg) of 5% ethanol, while showing lower intake of 10% ethanol. These intake and preference differences were not evident in adolescent males. Among females at both ages, ethanol-exposed animals showed lower preference and intake (g/kg) of 5% ethanol than their water-exposed controls. Thus, moderate ethanol exposure during late gestation produced a largely male-specific attenuation in the aversive effects of ethanol during adolescence that could contribute to later increases in preference and intake of a 5% ethanol solution, although this emergent effect was not evident in adolescence (or in females), but only manifested in adulthood.
Collapse
|
20
|
Bosse KE, Chiu VM, Lloyd SC, Conti AC. Neonatal alcohol exposure augments voluntary ethanol intake in the absence of potentiated anxiety-like behavior induced by chronic intermittent ethanol vapor exposure. Alcohol 2019; 79:17-24. [PMID: 30385201 DOI: 10.1016/j.alcohol.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Individuals fetally exposed to alcohol have a disproportionate risk for developing lifetime alcohol dependence, an association that may be confounded by the presence of comorbid conditions, such as anxiety. Anxiety is also observed following fetal alcohol exposure and is known to exacerbate ethanol consumption, highlighting the utility of animal models to assess this relationship. The present study evaluated the impact of third-trimester equivalent ethanol exposure on ethanol consumption and anxiety-like, marble burying behavior in adult, male C57BL/6 mice following exposure to chronic intermittent ethanol vapor, proposed to model dependence. Neonatal mice (P5-6, 2.5-3.0 g) were administered one injection of saline or ethanol (2.5 g/kg, subcutaneously [s.c.]). Pre-vapor marble burying and limited-access two-bottle choice ethanol intake (15% v/v, 2 h) were comparable in adults (8 weeks of age) across neonatal treatment groups. Five consecutive drinking sessions were repeated 72 h after each weekly ethanol vapor exposure procedure for a total of five vapor/drinking cycles. Consistent with prior research, an increase in voluntary ethanol drinking was observed in vapor-exposed, neonatal saline-treated mice throughout the study starting after the second vapor cycle compared to both air-exposed control groups. In neonatal ethanol-treated mice, this increase in ethanol intake and preference following vapor exposure was accelerated, being observed after the first vapor cycle, and observed at an augmented level compared to vapor-exposed, neonatal saline-treated mice and air controls for both neonatal conditions. Conversely, marble burying was enhanced equivalently in vapor-exposed mice from either neonatal treatment group relative to their respective air-exposed controls. These data recapitulate clinical observations of enhanced sensitivity for alcohol dependence following developmental alcohol exposure, which may reflect enhanced motivational drive rather than potentiated negative affect. The present model will facilitate the future exploration of mechanisms that underlie increased risk for alcohol use after early developmental exposure.
Collapse
Affiliation(s)
- K E Bosse
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States
| | - V M Chiu
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States
| | - S C Lloyd
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States
| | - A C Conti
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States.
| |
Collapse
|
21
|
Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019; 43:1702-1713. [PMID: 31206717 PMCID: PMC6677602 DOI: 10.1111/acer.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/03/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Embryonic ethanol (EtOH) exposure is known to increase alcohol drinking later in life and have long-term effects on neurochemical systems in the brain. With zebrafish having marked advantages for elucidating neural mechanisms underlying brain disorders, we recently tested and showed in these fish, similar to rodents, that low-dose embryonic EtOH stimulates voluntary consumption of EtOH while increasing expression of hypocretin/orexin (hcrt) neurons, a neuropeptide that promotes consummatory and reward-related behaviors. The goal of the present study was to characterize how embryonic EtOH affects early development of the hcrt system and produces persistent changes at older ages that may contribute to this increase in EtOH consumption. METHODS We utilized live imaging and Imaris software to investigate how low-dose embryonic EtOH (0.5%), administered from 22 to 24 hours postfertilization, affects specific properties of hcrt neurons in hcrt:EGFP transgenic zebrafish at different ages. RESULTS Time-lapse imaging from 24 to 28 hpf showed that embryonic EtOH increased the number of hcrt neurons, reduced the speed, straightness, and displacement of their migratory paths, and altered their direction early in development. At older ages up to 6 dpf, the embryonic EtOH-induced increase in hcrt neurons was persistent, and the neurons became more widely dispersed. These effects of embryonic EtOH were found to be asymmetric, occurring predominantly on the left side of the brain, and at 6 dpf, they resulted in marked changes in the anatomical location of the hcrt neurons, with some detected outside their normal position in the anterior hypothalamus again primarily on the left side. CONCLUSIONS Our findings demonstrate that low-dose embryonic EtOH has diverse, persistent, and asymmetric effects on the early development of hypothalamic hcrt neurons, which lead to abnormalities in their ultimate location that may contribute to behavioral disturbances, including an increase in EtOH consumption.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Viktoriya Halkina
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Soe S. Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Mia Y. Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | | | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| |
Collapse
|
22
|
Maternal ethanol exposure reshapes CART system in the rat brain: Correlation with development of anxiety, depression and memory deficits. Neuroscience 2019; 406:126-139. [DOI: 10.1016/j.neuroscience.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
|
23
|
Guttlein L, Macchione AF, Hernández-Fonseca K, Haymal OB, Molina JC, Méndez Ubach M, Abate P. Maternal manipulation during late gestation (GDs 17-20) enhances ethanol consumption and promotes changes and opioid mRNA expression in infant rats. Behav Brain Res 2019; 368:111908. [PMID: 30986490 DOI: 10.1016/j.bbr.2019.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Fetal ethanol experience generates learning and memories capable to increase ethanol consummatory behaviors during infancy. Opioid system seems to be involved in mediating those alcohol-related behaviors. In this work, we proposed to study the impact of prenatal exposure to a moderate ethanol dose, upon ingestion of the drug and possible ethanol-induced molecular changes on opioid precursor peptides (POMC, Pro-enk and Pro-DYN) and receptors (MOR, DOR and KOR) mRNA expression, in hypothalamus. Pregnant rats received during gestational days (GDs) 17-20, a daily intragastric (i.g.) administration with 2g/kg ethanol or water. A third group of dams was left undisturbed during pregnancy (Unmanipulated group). Intake test was conducted at postnatal days (PDs) 14-15. Three groups of pups were performed: control (no intake test), water (vehicle) and 5% ethanol. At the end of intake test blood samples were taken to quantify blood ethanol concentrations (BECs) and hypothalamus sections were obtained to perform qRT-PRC assessment of opioid precursor peptides and receptors. The analysis of the consummatory responses (% of consumption) and pharmacokinetic profiles (BECs) suggested that maternal manipulation induced by i.g. intubations, during the last four days of gestation (whenever ethanol or water), are sufficient to induce infantile ethanol intake during infancy. Gene expression from the hypothalamus of unmanipulated group revealed that infantile ingestive experiences with ethanol can down-regulate expression of mRNA Pro-Dyn and up-regulate mRNA expression of MOR and KOR. Finally, MOR mRNA expression was attenuated by prenatal i.g. manipulation in pups exposed to 5% ethanol.
Collapse
Affiliation(s)
- Larisa Guttlein
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina
| | - Ana Fabiola Macchione
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Karla Hernández-Fonseca
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México D.F., Mexico
| | - Olga Beatriz Haymal
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, C.P. 5016, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina
| | - Milagros Méndez Ubach
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México D.F., Mexico.
| | - Paula Abate
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina; Instituto de Investigaciones Psicológicas (IIPsi-CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, C.P. 5000, Argentina.
| |
Collapse
|
24
|
Prenatal ethanol exposure potentiates isolation-induced ethanol consumption in young adult rats. Alcohol 2019; 75:39-46. [PMID: 30342395 DOI: 10.1016/j.alcohol.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/29/2022]
Abstract
Prenatal and/or early postnatal ethanol exposure (PEE) is associated with significant behavioral and physiological deficits in offspring, including alterations in stress response systems and a greater likelihood of alcohol use disorders. Stress-induced ethanol drinking after PEE, however, has been largely unexplored. The present study analyzed ethanol intake in male Sprague-Dawley rats after protracted prenatal and early postnatal ethanol exposure and tested whether social isolation during the sensitive period of adolescence modulates the effects of PEE on ethanol drinking. The dams were given 10% ethanol (or its vehicle) as the sole drinking fluid from gestational day 0 (GD0) to postnatal day 7 (PD7). On PD21, male offspring were housed individually (isolated housing group) or in pairs in standard cages (standard housing group). From PD56 to PD84, these male rats were tested for ethanol intake in 24-h, intermittent two-bottle choice sessions that were conducted across 4 weeks. Maternal ethanol consumption during gestation and during the first week of life of the offspring averaged 6.10-8.20 g/kg/22 h. Isolation housing during adolescence increased free-choice ethanol drinking in young adulthood. The main novel finding was that this facilitative effect of isolation on absolute and percent ethanol intake was significantly greater in PEE rats than in control counterparts not exposed to the prenatal and early postnatal ethanol exposure (effect sizes [η2p]: 0.24-0.32). The present results suggest that PEE renders the individual sensitive to the facilitative effect of stress exposure on ethanol intake.
Collapse
|
25
|
Brimdyr K, Cadwell K. A plausible causal relationship between the increased use of fentanyl as an obstetric analgesic and the current opioid epidemic in the US. Med Hypotheses 2018; 119:54-57. [PMID: 30122491 DOI: 10.1016/j.mehy.2018.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Drug poisoning deaths have more than doubled in the United States since 2000 with fentanyl and fentanyl analogues primarily responsible for the jump in opioid deaths. Robust data indicate a convincing correlation between the exposure of the fetus to other labor medications (morphine, pethidine hydrochloride, barbiturates, phenobarbitone, meperidine, and secobarbital) and the later addiction of young adults to the same category of drug. We present the hypothesis that this effect is also true of the opioid, fentanyl: there is a causal relationship between the increased popularity of fentanyl as a labor anesthetic in the United States since the 1980's and the current epidemic of fentanyl abuse.
Collapse
Affiliation(s)
- Kajsa Brimdyr
- Healthy Children Project, Inc., 327 Quaker Meeting House Road, East Sandwich, MA 02537, United States.
| | - Karin Cadwell
- Healthy Children Project, Inc., 327 Quaker Meeting House Road, East Sandwich, MA 02537, United States
| |
Collapse
|
26
|
Fetal alcohol spectrum disorders: Zebrafish in the analysis of the milder and more prevalent form of the disease. Behav Brain Res 2017; 352:125-132. [PMID: 28988969 DOI: 10.1016/j.bbr.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) represent a large unmet medical need. Exposure of the developing human embryo to alcohol can lead to life-long suffering. Despite the well documented deleterious effects of alcohol on the developing fetus, pregnant women continue to drink alcohol, and FASD remains the leading cause of preventable mental retardation and other behavioral abnormalities. Particularly prevalent are the milder forms of the disease cluster, representing children who do not show obvious physical signs and who may be undiagnosed or misdiagnosed. To develop treatment and diagnostic tools, researchers have turned to animal models. The zebrafish is becoming one of the leading biomedical research organisms that may facilitate discovery of the biological mechanisms underlying this disease and the identification of biomarkers that may be used for diagnosis. Here we review the latest advances of this field, mostly focussing on the discoveries made in our own laboratory and others with zebrafish employed to analyze the effects of moderate to low level of exposure to alcohol. We argue that the zebrafish represents unique advantages, and adding information obtained with this species to the mix of other animal models will significantly increase translational relevance of animal biomedical research for the analysis of human FASD.
Collapse
|
27
|
Castelló S, Molina JC, Arias C. Long-term contextual memory in infant rats as evidenced by an ethanol conditioned tolerance procedure. Behav Brain Res 2017; 332:243-249. [DOI: 10.1016/j.bbr.2017.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 01/23/2023]
|
28
|
Gaztañaga M, Angulo-Alcalde A, Spear NE, Chotro MG. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure. Front Behav Neurosci 2017; 11:14. [PMID: 28197082 PMCID: PMC5281627 DOI: 10.3389/fnbeh.2017.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/16/2017] [Indexed: 01/10/2023] Open
Abstract
Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol’s flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat’s ontogeny brain catalases are functional, while the liver’s enzymatic system is still immature. In this study, rat dams were administered on GD 17–20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring’s responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the “odor crawling locomotion test” to measure ethanol’s odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure.
Collapse
Affiliation(s)
- Mirari Gaztañaga
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU, Donostia-San Sebastián Gipuzkoa, Spain
| | - Asier Angulo-Alcalde
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU, Donostia-San Sebastián Gipuzkoa, Spain
| | - Norman E Spear
- Department of Psychology, Centre for Development and Behavioral Neuroscience, Binghamton University Binghamton, NY, USA
| | - M Gabriela Chotro
- Departamento de Procesos Psicológicos Básicos y su Desarrollo, Facultad de Psicología, University of the Basque Country UPV/EHU, Donostia-San Sebastián Gipuzkoa, Spain
| |
Collapse
|
29
|
Castello S, D'Aloisio G, Arias C, Molina JC. Transition from ethanol-induced sensitization to tolerance across early and late infancy in the rat. Pharmacol Biochem Behav 2016; 150-151:68-75. [DOI: 10.1016/j.pbb.2016.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022]
|
30
|
Acevedo MB, Macchione AF, Anunziata F, Haymal OB, Molina JC. Neonatal experiences with ethanol intoxication modify respiratory and thermoregulatory plasticity and affect subsequent ethanol intake in rats. Dev Psychobiol 2016; 59:48-59. [PMID: 27540704 DOI: 10.1002/dev.21466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022]
Abstract
Different studies have focused on the deleterious consequences of binge-like or chronic exposure to ethanol during the brain growth spurt period (third human gestational trimester) that in the rat corresponds to postnatal days (PDs) 3-10. The present study analyzed behavioral and physiological disruptions caused by relatively brief binge-like exposures (PDs 3, 5, and 7) with an ethanol dose lower (3.0 g/kg) than those frequently employed to examine teratological effects during this stage in development. At PD 9, pups were exposed to ethanol doses ranging between .0-3.0 g/kg and tested in terms of breathing patterns and thermoregulation. At PDs 11 and 12, ethanol intake was examined. The main findings were as follows: i) pre-exposure to the drug resulted in brief depressions in breathing frequencies and an exacerbated predisposition toward apneic episodes; ii) these effects were not dependent upon thermoregulatory alterations; iii) early ethanol treatment increased initial consumption of the drug which also caused a marked hypothermia that appeared to regulate a subsequent decrement in ethanol consumption; and iv) ethanol exposure retarded overall body growth and even one exposure to the drug (PD 9) was sufficient to reduce brain weights although there were no indications of microcephaly. In conjunction with studies performed during the late gestational period in the rat, the results indicate that relatively brief binge-like episodes during a critical window of brain vulnerability disrupts the respiratory network and exacerbates initial acceptance of the drug. In addition, ethanol treatments were not found to induce tolerance relative to respiratory and thermal disruptions.
Collapse
Affiliation(s)
- María Belén Acevedo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana Fabiola Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Anunziata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Olga Beatriz Haymal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
31
|
O'Connor MJ, Quattlebaum J, Castañeda M, Dipple KM. Alcohol Intervention for Adolescents with Fetal Alcohol Spectrum Disorders: Project Step Up, a Treatment Development Study. Alcohol Clin Exp Res 2016; 40:1744-51. [DOI: 10.1111/acer.13111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Mary J. O'Connor
- Department of Psychiatry and Biobehavioral Sciences; Semel Institute for Neuroscience and Human Behavior; University of California, Los Angeles (UCLA); Los Angeles California
| | - Justin Quattlebaum
- Department of Psychiatry and Biobehavioral Sciences; Semel Institute for Neuroscience and Human Behavior; University of California, Los Angeles (UCLA); Los Angeles California
| | - Marleen Castañeda
- Department of Psychiatry and Biobehavioral Sciences; Semel Institute for Neuroscience and Human Behavior; University of California, Los Angeles (UCLA); Los Angeles California
| | - Katrina M. Dipple
- Departments of Human Genetics and Pediatrics; David Geffen School of Medicine at UCLA; Los Angeles California
| |
Collapse
|
32
|
Kühn S, Witt C, Banaschewski T, Barbot A, Barker GJ, Büchel C, Conrod PJ, Flor H, Garavan H, Ittermann B, Mann K, Martinot JL, Paus T, Rietschel M, Smolka MN, Ströhle A, Brühl R, Schumann G, Heinz A, Gallinat J. From mother to child: orbitofrontal cortex gyrification and changes of drinking behaviour during adolescence. Addict Biol 2016; 21:700-8. [PMID: 25913102 DOI: 10.1111/adb.12240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adolescence is a common time for initiation of alcohol use and alcohol use disorders. Importantly, the neuro-anatomical foundation for later alcohol-related problems may already manifest pre-natally, particularly due to smoking and alcohol consumption during pregnancy. In this context, cortical gyrification is an interesting marker of neuronal development but has not been investigated as a risk factor for adolescent alcohol use. On magnetic resonance imaging scans of 595 14-year-old adolescents from the IMAGEN sample, we computed whole-brain mean curvature indices to predict change in alcohol-related problems over the following 2 years. Change of alcohol use-related problems was significantly predicted from mean curvature in left orbitofrontal cortex (OFC). Less gyrification of OFC was associated with an increase in alcohol use-related problems over the next 2 years. Moreover, lower gyrification in left OFC was related to pre-natal alcohol exposure, whereas maternal smoking during pregnancy had no effect. Current alcohol use-related problems of the biological mother had no effect on offsprings' OFC gyrification or drinking behaviour. The data support the idea that alcohol consumption during pregnancy mediates the development of neuro-anatomical phenotypes, which in turn constitute a risk factor for increasing problems due to alcohol consumption in a vulnerable stage of life. Maternal smoking during pregnancy or current maternal alcohol/nicotine consumption had no significant effect. The OFC mediates behaviours known to be disturbed in addiction, namely impulse control and reward processing. The results stress the importance of pre-natal alcohol exposure for later increases in alcohol use-related problems, mediated by structural brain characteristics.
Collapse
Affiliation(s)
- Simone Kühn
- Max Planck Institute for Human Development; Germany
- University Clinic Hamburg-Eppendorf; Clinic and Policlinic for Psychiatry and Psychotherapy; Germany
| | | | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Alexis Barbot
- Neurospin; Commissariat à l'Energie Atomique; France
| | | | - Christian Büchel
- Universitaetsklinikum Hamburg Eppendorf; Germany
- Department of Psychiatry; University of Cambridge; UK
| | | | - Herta Flor
- Department of Cognitive and Clinical Neuroscience; Central Institute of Mental Health; Germany
| | - Hugh Garavan
- Institute of Neuroscience; Trinity College Dublin; Ireland
| | | | - Karl Mann
- Department of Addictive Behaviour and Addiction Medicine; Central Institute of Mental Health; Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale; INSERM Unit 1000 ‘Imaging and Psychiatry’; University Paris Sud; France
- AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn; University Paris Descartes; France
| | - Tomas Paus
- Rotman Research Institute; University of Toronto; Canada
- Montreal Neurological Institute; McGill University; Canada
- School of Psychology; University of Nottingham; UK
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health; Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy; Technische Universität Dresden; Germany
- Neuroimaging Center; Department of Psychology; Technische Universität Dresden; Germany
| | - Andreas Ströhle
- Charité University Medicine, St Hedwig Krankenhaus; Clinic for Psychiatry and Psychotherapy; Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB); Germany
| | | | - Andreas Heinz
- Charité University Medicine, St Hedwig Krankenhaus; Clinic for Psychiatry and Psychotherapy; Germany
| | - Jürgen Gallinat
- University Clinic Hamburg-Eppendorf; Clinic and Policlinic for Psychiatry and Psychotherapy; Germany
- Charité University Medicine, St Hedwig Krankenhaus; Clinic for Psychiatry and Psychotherapy; Germany
| | | |
Collapse
|
33
|
Sterling ME, Chang GQ, Karatayev O, Chang SY, Leibowitz SF. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides. Behav Brain Res 2016; 304:125-38. [PMID: 26778786 DOI: 10.1016/j.bbr.2016.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/03/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022]
Abstract
Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol.
Collapse
Affiliation(s)
- M E Sterling
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - S Y Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
34
|
Chang GQ, Karatayev O, Leibowitz SF. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring. Neuroscience 2015; 310:163-75. [PMID: 26365610 DOI: 10.1016/j.neuroscience.2015.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that these systems function together in promoting alcohol drinking during adolescence.
Collapse
Affiliation(s)
- G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
35
|
Hannigan JH, Chiodo LM, Sokol RJ, Janisse J, Delaney-Black V. Prenatal alcohol exposure selectively enhances young adult perceived pleasantness of alcohol odors. Physiol Behav 2015; 148:71-7. [PMID: 25600468 PMCID: PMC4591746 DOI: 10.1016/j.physbeh.2015.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/08/2015] [Accepted: 01/16/2015] [Indexed: 11/23/2022]
Abstract
Prenatal alcohol exposure (PAE) can lead to life-long neurobehavioral and social problems that can include a greater likelihood of early use and/or abuse of alcohol compared to older teens and young adults without PAE. Basic research in animals demonstrates that PAE influences later postnatal responses to chemosensory cues (i.e., odor & taste) associated with alcohol. We hypothesized that PAE would be related to poorer abilities to identify odors of alcohol-containing beverages, and would alter perceived alcohol odor intensity and pleasantness. To address this hypothesis we examined responses to alcohol and other odors in a small sample of young adults with detailed prenatal histories of exposure to alcohol and other drugs. The key finding from our controlled analyses is that higher levels of PAE were related to higher relative ratings of pleasantness for alcohol odors. As far as we are aware, this is the first published study to report the influence of PAE on responses to alcohol beverage odors in young adults. These findings are consistent with the hypothesis that positive associations (i.e., "pleasantness") to the chemosensory properties of alcohol (i.e., odor) are acquired prenatally and are retained for many years despite myriad interceding postnatal experiences. Alternate hypotheses may also be supported by the results. There are potential implications of altered alcohol odor responses for understanding individual differences in initiation of drinking, and alcohol seeking and high-risk alcohol-related behaviors in young adults.
Collapse
Affiliation(s)
- John H Hannigan
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, United States; Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, United States; Department of Psychology, Wayne State University, Detroit, MI, United States; C.S. Mott Center for Human Growth & Development, Wayne State University, Detroit, MI, United States.
| | - Lisa M Chiodo
- College of Nursing, University of Massachusetts, Amherst, MA, United States
| | - Robert J Sokol
- Department of Psychology, Wayne State University, Detroit, MI, United States; C.S. Mott Center for Human Growth & Development, Wayne State University, Detroit, MI, United States
| | - James Janisse
- Department of Family Medicine & Public Health Sciences, Wayne State University, Detroit, MI, United States
| | - Virginia Delaney-Black
- Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, MI, United States
| |
Collapse
|
36
|
Uban KA, Comeau WL, Bodnar T, Yu WK, Weinberg J, Galea LAM. Amphetamine sensitization and cross-sensitization with acute restraint stress: impact of prenatal alcohol exposure in male and female rats. Psychopharmacology (Berl) 2015; 232:1705-16. [PMID: 25420606 PMCID: PMC4412762 DOI: 10.1007/s00213-014-3804-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
RATIONALE Individuals with fetal alcohol spectrum disorder (FASD) are at increased risk for substance use disorders (SUD). In typically developing individuals, susceptibility to SUD is associated with alterations in dopamine and hypothalamic-pituitary-adrenal (HPA) systems, and their interactions. Prenatal alcohol exposure (PAE) alters dopamine and HPA systems, yet effects of PAE on dopamine-HPA interactions are unknown. Amphetamine-stress cross-sensitization paradigms were utilized to investigate sensitivity of dopamine and stress (HPA) systems, and their interactions following PAE. METHODS Adult Sprague-Dawley offspring from PAE, pair-fed, and ad libitum-fed control groups were assigned to amphetamine-(1-2 mg/kg) or saline-treated conditions, with injections every other day for 15 days. Fourteen days later, all animals received an amphetamine challenge (1 mg/kg) and 5 days later, hormones were measured under basal or acute stress conditions. Amphetamine sensitization (augmented locomotion, days 1-29) and cross-sensitization with acute restraint stress (increased stress hormones, day 34) were assessed. RESULTS PAE rats exhibited a lower threshold for amphetamine sensitization compared to controls, suggesting enhanced sensitivity of dopaminergic systems to stimulant-induced changes. Cross-sensitization between amphetamine (dopamine) and stress (HPA hormone) systems was evident in PAE, but not in control rats. PAE males exhibited increased dopamine receptor expression (medial prefrontal cortex (mPFC)) compared to controls. CONCLUSIONS PAE alters induction and expression of sensitization/cross-sensitization, as reflected in locomotor, neural, and endocrine changes, in a manner consistent with increased sensitivity of dopamine and stress systems. These results provide insight into possible mechanisms that could underlie increased prevalence of SUD, as well as the impact of widely prescribed stimulant medications among adolescents with FASD.
Collapse
Affiliation(s)
- Kristina A Uban
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada,
| | | | | | | | | | | |
Collapse
|
37
|
Bordner K, Deak T. Endogenous opioids as substrates for ethanol intake in the neonatal rat: The impact of prenatal ethanol exposure on the opioid family in the early postnatal period. Physiol Behav 2015; 148:100-10. [PMID: 25662024 DOI: 10.1016/j.physbeh.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite considerable knowledge that prenatal ethanol exposure can lead to devastating effects on the developing fetus, alcohol consumption by pregnant women remains strikingly prevalent. Both clinical and basic research has suggested that, in addition to possible physical, behavioral, and cognitive deficits, gestational exposure to alcohol may lead to an increased risk for the development of later alcohol-related use and abuse disorders. The current work sought to characterize alterations in endogenous opioid signaling peptides and gene expression produced by ethanol exposure during the last days of gestation. METHODS Experimental subjects were 4-, 8-, and 12-day old infant rats obtained from pregnant females that were given daily intubations of 0, 1, or 2g/kg ethanol during the last few days of gestation (GDs 17-20). Using real-time RT-PCR, western blotting analysis, and enzyme immunoassays, we examined mRNA and protein for three opioid receptors and ligands in the nucleus accumbens, ventral tegmental area, and hypothalamus. RESULTS Three main trends emerged - (1) mRNA for the majority of factors was found to upregulate across each of the three postnatal ages assessed, indicative of escalating ontogenetic expression of opioid-related genes; (2) prenatal ethanol significantly reduced many opioid peptides, suggesting a possible mechanism by which prenatal exposure can affect future responsiveness towards ethanol; and (3) the nucleus accumbens emerged as a key site for ethanol-dependent effects, suggesting a potential target for additional assessment and intervention towards understanding the ethanol's ability to program the developing brain. CONCLUSION We provide a global assessment of relatively long-term changes in both opioid gene expression and protein following exposure to only moderate amounts of ethanol during a relatively short window in the prenatal period. These results suggest that, while continuing to undergo ontogenetic changes, the infant brain is sensitive to prenatal ethanol exposure and that such exposure may lead to relatively long-lasting changes in the endogenous opioid system within the reward circuitry. These data indicate a potential mechanism and target for additional assessments of ethanol's ability to program the brain, affecting later responsiveness towards the drug.
Collapse
Affiliation(s)
- Kelly Bordner
- Department of Psychology, Southern Connecticut State University, New Haven, CT 06515, United States; Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center (DEARC), Center for Development and Behavioral Neuroscience, Binghamton University-SUNY, Binghamton, NY 13902, United States
| |
Collapse
|
38
|
Castello S, Revillo D, Molina J, Arias C. Ethanol-induced tolerance and sex-dependent sensitization in preweanling rats. Physiol Behav 2015; 139:50-8. [DOI: 10.1016/j.physbeh.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
|
39
|
Gaztañaga M, Aranda-Fernández PE, Chotro MG. Prenatal exposure to vanilla or alcohol induces crawling after these odors in the neonate rat: The role of mu and kappa opioid receptor systems. Physiol Behav 2014; 148:58-64. [PMID: 25554482 DOI: 10.1016/j.physbeh.2014.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022]
Abstract
Rat fetuses can perceive chemosensory stimuli derived from their mother's diet, and they may learn about those stimuli. In previous studies we have observed that prenatal exposure to alcohol during the last days of gestation increases the acceptance and liking of an alcohol flavor in infant and adolescent rats. While these results were not found after prenatal exposure to vanilla, cineole or anise, suggesting that the pharmacological properties of alcohol, mediated by the opioid system, underlie the effects observed with this drug. Considering that other studies report enhanced acceptance of non-alcohol flavors experienced prenatally when subjects were tested before infancy, we explore the possibility of observing similar results if testing 1-day old rats exposed prenatally to vanilla. Using an "odor-induced crawling" testing procedure, it was observed that neonates exposed prenatally to vanilla or alcohol crawl for a longer distance towards the experienced odor than to other odors or than control pups. Blocking mu, but not kappa opioid receptors, reduced the attraction of vanilla odor to neonates exposed to vanilla in utero, while the response to alcohol in pups exposed prenatally to this drug was affected by both antagonists. Results confirm that exposure to a non-alcohol odor enhances postnatal responses to it, observable soon after birth, while also suggesting that the mu opioid receptor system plays an important role in generating this effect. The results also imply that with alcohol exposure, the prenatal opioid system is wholly involved, which could explain the longer retention of the enhanced attraction to alcohol following prenatal experience with the drug.
Collapse
Affiliation(s)
- Mirari Gaztañaga
- Faculty of Psychology, University of the Basque Country UPV/EHU, Avda. de Tolosa, 70, 20018 San Sebastián, Spain
| | - P Ezequiel Aranda-Fernández
- Faculty of Psychology, University of the Basque Country UPV/EHU, Avda. de Tolosa, 70, 20018 San Sebastián, Spain
| | - M Gabriela Chotro
- Faculty of Psychology, University of the Basque Country UPV/EHU, Avda. de Tolosa, 70, 20018 San Sebastián, Spain.
| |
Collapse
|
40
|
Prenatal ethanol exposure alters met-enkephalin expression in brain regions related with reinforcement: possible mechanism for ethanol consumption in offspring. Behav Brain Res 2014; 274:194-204. [PMID: 25150040 DOI: 10.1016/j.bbr.2014.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022]
Abstract
The endogenous opioid system is involved in ethanol reinforcement. Ethanol-induced changes in opioidergic transmission have been extensively studied in adult organisms. However, the impact of ethanol exposure at low or moderate doses during early ontogeny has been barely explored. We investigated the effect of prenatal ethanol exposure on alcohol intake and Methionine-enkephalin (Met-enk) content in rat offspring. Met-enk content was assessed in the ventral tegmental area [VTA], nucleus accumbens [NAcc], prefrontal cortex [PFC], substantia nigra [SN], caudate-putamen [CP], amygdala, hypothalamus and hippocampus. Pregnant rats were treated with ethanol (2g/kg) or water during GDs 17-20. At PDs 14 and 15, preweanlings were evaluated in an intake test (5% and 10% ethanol, or water). Met-enk content in brain regions of infants prenatally exposed to ethanol was quantitated by radioimmunoassay. Ethanol consumption was facilitated by prenatal experience with the drug, particularly in females. Met-enk content in mesocorticolimbic regions - PFC and NAcc - was increased as a consequence of prenatal exposure to ethanol. Conversely, Met-enk levels in the VTA were reduced by prenatal ethanol manipulation. Prenatal ethanol also increased peptide levels in the medial-posterior zone of the CP, and strongly augmented Met-enk content in the hippocampus and hypothalamus. These findings show that prenatal ethanol exposure stimulates consumption of the drug in infant rats, and induces selective changes in Met-enk levels in regions of the mesocorticolimbic and nigrostriatal systems, the hypothalamus and hippocampus. Our results support the role of mesocorticolimbic enkephalins in ethanol reinforcement in offspring, as has been reported in adults.
Collapse
|
41
|
Aberrant Behavioral and Neurobiologic Profiles in Rodents Exposed to Ethanol or Red Wine Early in Development. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-014-0023-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
O’Connor MJ. Mental Health Outcomes Associated with Prenatal Alcohol Exposure: Genetic and Environmental Factors. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-014-0021-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Miranda-Morales RS, Nizhnikov ME, Waters DH, Spear NE. New evidence of ethanol's anxiolytic properties in the infant rat. Alcohol 2014; 48:367-74. [PMID: 24776303 DOI: 10.1016/j.alcohol.2014.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/16/2013] [Accepted: 01/28/2014] [Indexed: 12/24/2022]
Abstract
Ethanol induces appetitive, aversive, and anxiolytic effects that are involved in the development of ethanol use and dependence. Because early ethanol exposure produces later increased responsiveness to ethanol, considerable effort has been devoted to analysis of ethanol's appetitive and aversive properties during early ontogeny. Yet, there is a relative scarcity of research related to the anxiolytic effects of ethanol during early infancy, perhaps explained by a lack of age-appropriate tests. The main aim of this study was to validate a model for the assessment of ethanol's anxiolytic effects in the infant rat (postnatal days 13-16). The potentially anxiolytic effects of ethanol tested included: i) amelioration of conditioned place aversion, ii) ethanol intake in the presence of an aversive conditioned stimulus, iii) the inhibitory behavioral effect in an anxiogenic environment, and iv) innate aversion to a brightly illuminated area in a modified light/dark paradigm. Ethanol doses employed across experiments were 0.0, 0.5, and 2.0 g/kg. Results indicated that a low ethanol dose (0.5 g/kg) was effective in attenuating expression of a conditioned aversion. Ethanol intake, however, was unaffected by simultaneous exposure to an aversive stimulus. An anxiogenic environment diminished ethanol-induced locomotor stimulation. Finally, animals given 0.5 g/kg ethanol and evaluated in a light/dark box showed increased time spent in the illuminated area and increased latency to escape from the brightly lit compartment than rats treated with a higher dose of ethanol or vehicle. These new results suggest that ethanol doses as low as 0.5 g/kg are effective in ameliorating an aversive and/or anxiogenic state in preweanling rats. These behavioral preparations can be used to assess ethanol's anxiolytic properties during early development.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA.
| | - Michael E Nizhnikov
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Dustin H Waters
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Norman E Spear
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
44
|
Susick LL, Lowing JL, Bosse KE, Hildebrandt CC, Chrumka AC, Conti AC. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure. Behav Brain Res 2014; 269:66-74. [PMID: 24769171 DOI: 10.1016/j.bbr.2014.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/05/2023]
Abstract
Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the maturational parameters examined in the current study may not be sensitive enough to detect effects of a single ethanol exposure during the brain growth spurt period. Genetic deletion of AC1/8 reveals a role for these cylases in attenuating ethanol-induced behavioral effects in the neonatally-exposed adolescent.
Collapse
Affiliation(s)
- Laura L Susick
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Jennifer L Lowing
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Kelly E Bosse
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Clara C Hildebrandt
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Alexandria C Chrumka
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Alana C Conti
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
45
|
Culleré ME, Spear NE, Molina JC. Prenatal ethanol increases sucrose reinforcement, an effect strengthened by postnatal association of ethanol and sucrose. Alcohol 2014; 48:25-33. [PMID: 24398347 DOI: 10.1016/j.alcohol.2013.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 12/25/2022]
Abstract
Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14-17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy.
Collapse
|
46
|
Miranda-Morales RS, Nizhnikov ME, Spear NE. Prenatal exposure to ethanol during late gestation facilitates operant self-administration of the drug in 5-day-old rats. Alcohol 2014; 48:19-23. [PMID: 24355072 DOI: 10.1016/j.alcohol.2013.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/16/2013] [Indexed: 01/04/2023]
Abstract
Prenatal ethanol exposure modifies postnatal affinity to the drug, increasing the probability of ethanol use and abuse. The present study tested developing rats (5-day-old) in a novel operant technique to assess the degree of ethanol self-administration as a result of prenatal exposure to low ethanol doses during late gestation. On a single occasion during each of gestational days 17-20, pregnant rats were intragastrically administered ethanol 1 g/kg, or water (vehicle). On postnatal day 5, pups were tested on a novel operant conditioning procedure in which they learned to touch a sensor to obtain 0.1% saccharin, 3% ethanol, or 5% ethanol. Immediately after a 15-min training session, a 6-min extinction session was given in which operant behavior had no consequence. Pups were positioned on a smooth surface and had access to a touch-sensitive sensor. Physical contact with the sensor activated an infusion pump, which served to deliver an intraoral solution as reinforcement (Paired group). A Yoked control animal evaluated at the same time received the reinforcer when its corresponding Paired pup touched the sensor. Operant behavior to gain access to 3% ethanol was facilitated by prenatal exposure to ethanol during late gestation. In contrast, operant learning reflecting ethanol reinforcement did not occur in control animals prenatally exposed to water only. Similarly, saccharin reinforcement was not affected by prenatal ethanol exposure. These results suggest that in 5-day-old rats, prenatal exposure to a low ethanol dose facilitates operant learning reinforced by intraoral administration of a low-concentration ethanol solution. This emphasizes the importance of intrauterine experiences with ethanol in later susceptibility to drug reinforcement. The present operant conditioning technique represents an alternative tool to assess self-administration and seeking behavior during early stages of development.
Collapse
Affiliation(s)
- Roberto Sebastián Miranda-Morales
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA.
| | - Michael E Nizhnikov
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Norman E Spear
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
47
|
Fetal nicotine exposure increases preference for nicotine odor in early postnatal and adolescent, but not adult, rats. PLoS One 2013; 8:e84989. [PMID: 24358374 PMCID: PMC3866221 DOI: 10.1371/journal.pone.0084989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Human studies demonstrate a four-fold increased possibility of smoking in the children of mothers who smoked during pregnancy. Nicotine is the active addictive component in tobacco-related products, crossing the placenta and contaminating the amniotic fluid. It is known that chemosensory experience in the womb can influence postnatal odor-guided preference behaviors for an exposure stimulus. By means of behavioral and neurophysiologic approaches, we examined whether fetal nicotine exposure, using mini-osmotic pumps, altered the response to nicotine odor in early postnatal (P17), adolescent (P35) and adult (P90) progeny. Compared with controls, fetal exposed rats displayed an altered innate response to nicotine odor that was evident at P17, declined in magnitude by P35 and was absent at P90 - these effects were specific to nicotine odor. The behavioral effect in P17 rats occurred in conjunction with a tuned olfactory mucosal response to nicotine odor along with an untoward consequence on the epithelial response to other stimuli – these P17 neural effects were absent in P35 and P90 animals. The absence of an altered neural effect at P35 suggests that central mechanisms, such as nicotine-induced modifications of the olfactory bulb, bring about the altered behavioral response to nicotine odor. Together, these findings provide insights into how fetal nicotine exposure influences the behavioral preference and responsiveness to the drug later in life. Moreover, they add to a growing literature demonstrating chemosensory mechanisms by which patterns of maternal drug use can be conveyed to offspring, thereby enhancing postnatal vulnerability for subsequent use and abuse.
Collapse
|
48
|
Uban KA, Comeau WL, Ellis LA, Galea LAM, Weinberg J. Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress. Psychoneuroendocrinology 2013; 38:1953-66. [PMID: 23579081 PMCID: PMC3758462 DOI: 10.1016/j.psyneuen.2013.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Effects of prenatal alcohol exposure (PAE) on central nervous system function include an increased prevalence of mental health problems, including substance use disorders (SUD). The hypothalamic-pituitary-adrenal (HPA) and dopamine (DA) systems have overlapping neurocircuitries and are both implicated in SUD. PAE alters both HPA and dopaminergic activity and regulation, resulting in increased HPA tone and an overall reduction in tonic DA activity. However, effects of PAE on the interaction between HPA and DA systems have not been investigated. The present study examined PAE effects on basal regulation of central stress and DA systems in key brain regions where these systems intersect. Adult Sprague-Dawley male and female offspring from prenatal alcohol-exposed (PAE), pairfed (PF), and ad libitum-fed control (C) groups were subjected to chronic variable stress (CVS) or remained as a no stress (non-CVS) control group. Corticotropin releasing hormone (CRH) mRNA, as well as glucocorticoid and DA receptor (DA-R) expression were measured under basal conditions 24h following the end of CVS. We show, for the first time, that regulation of basal HPA and DA systems, and likely, HPA-DA interactions, are altered differentially in males and females by PAE and CVS. PAE augmented the typical attenuation in weight gain during CVS in males and caused increased weight loss in females. Increased basal corticosterone levels in control, but not PAE, females suggest that PAE alters the profile of basal hormone secretion throughout CVS. CVS downregulated basal CRH mRNA in the prefrontal cortex and throughout the bed nucleus of the stria terminalis (BNST) in PAE females but only in the posterior BNST of control females. PAE males and females exposed to CVS exhibited more widespread upregulation of basal mineralocorticoid receptor mRNA throughout the hippocampus, and an attenuated decrease in DA-R expression throughout the nucleus accumbens and striatum compared to CVS-exposed control males and females. Overall, these findings enhance our understanding of PAE effects on the cross-talk between HPA and DA systems, and provide insight into possible mechanisms underlying mental health problems that are related to stress and DA signaling, including SUD, which have a high prevalence among individuals with FASD.
Collapse
Affiliation(s)
- Kristina A Uban
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
49
|
Díaz-Cenzano E, Gaztañaga M, Gabriela Chotro M. Exposure to ethanol on prenatal days 19-20 increases ethanol intake and palatability in the infant rat: involvement of kappa and mu opioid receptors. Dev Psychobiol 2013; 56:1167-78. [PMID: 24037591 DOI: 10.1002/dev.21162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/31/2013] [Indexed: 11/05/2022]
Abstract
Prenatal exposure to ethanol on gestation Days 19-20, but not 17-18, increases ethanol acceptance in infant rats. This effect seems to be a conditioned response acquired prenatally, mediated by the opioid system, which could be stimulated by ethanol's pharmacological properties (mu-opioid receptors) or by a component of the amniotic fluid from gestation-day 20 (kappa-inducing factor). The latter option was evaluated administering non-ethanol chemosensory stimuli on gestation Days 19-20 and testing postnatal intake and palatability. However, prenatal exposure to anise or vanilla increased neither intake nor palatability of these tastants on postnatal Day 14. In experiment 2, the role of ethanol's pharmacological effect was tested by administering ethanol and selective antagonists of mu and kappa opioid receptors prenatally. Blocking the mu-opioid receptor system completely reversed the effects on intake and palatability, while antagonizing kappa receptors only partially reduced the effects on palatability. This suggests that the pharmacological effect of ethanol on the fetal mu opioid system is the appetitive reinforcer, which induces the prenatally conditioned preference detected in the preweanling period.
Collapse
Affiliation(s)
- Elena Díaz-Cenzano
- Faculty of Psychology, University of the Basque Country UPV/EHU, Avda. de Tolosa, 70, 20018, Donostia-San Sebastián, Spain
| | | | | |
Collapse
|
50
|
Pilatti A, Godoy JC, Brussino S, Pautassi RM. Underage drinking: prevalence and risk factors associated with drinking experiences among Argentinean children. Alcohol 2013; 47:323-31. [PMID: 23591270 DOI: 10.1016/j.alcohol.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 11/25/2022]
Abstract
The aim of this study was to describe the prevalence and predictors of alcohol drinking behavior in children. Data were obtained from 367 children, aged 8-12 years (M = 10.44 years, SD = 1.21 years; 61.9% female) from the city of Córdoba, Argentina. Several scales were used to assess risk factors, including personality traits, alcohol expectancy (i.e., beliefs about the consequences of using alcohol), and perceived peer alcohol use, for alcohol drinking and alcohol drinking experiences. Hierarchical regression analysis was used to determine the contribution of multiple risk factors to the quantity of alcohol consumed. The results showed that 58% of the children had tasted alcohol, and approximately one-third drank alcohol again after the first drinking experience. Twelve-year-old children had a significantly higher prevalence of tasting and drinking alcohol and a significantly greater frequency and quantity of alcohol consumed than younger children. Eighty percent of the children who liked alcohol during their first drinking experience reported that they drank alcohol again. Among the children who did not like alcohol during their first drinking experience, only 31% drank alcohol again. Underage drinking usually occurred under adult supervision in family settings when parents or other relatives allowed them to drink or were aware of their children's drinking. The hierarchical regression analysis showed that being older and male, having more peers that drink alcohol, having higher levels of extroversion, and having alcohol expectancy for social facilitation increased the risk for greater alcohol use. The final model explained 33% of the total variance.
Collapse
|