1
|
Togawa S, Usui N, Doi M, Kobayashi Y, Koyama Y, Nakamura Y, Shinoda K, Kobayashi H, Shimada S. Neuroprotective effects of Si-based hydrogen-producing agent on 6-hydroxydopamine-induced neurotoxicity in juvenile mouse model. Behav Brain Res 2024; 468:115040. [PMID: 38723675 DOI: 10.1016/j.bbr.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.
Collapse
Affiliation(s)
- Shogo Togawa
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan.
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yuki Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
2
|
Tosta A, Fonseca AS, Messeder D, Ferreira ST, Lourenco MV, Pandolfo P. Effects of Gestational Exercise on Nociception, BDNF, and Irisin Levels in an Animal Model of ADHD. Neuroscience 2024; 543:37-48. [PMID: 38401710 DOI: 10.1016/j.neuroscience.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Abnormal cognitive and sensorial properties have been reported in patients with psychiatric and neurodevelopmental conditions, such as attention deficit hyperactivity disorder (ADHD). ADHD patients exhibit impaired dopaminergic signaling and plasticity in brain areas related to cognitive and sensory processing. The spontaneous hypertensive rat (SHR), in comparison to the Wistar Kyoto rat (WKY), is the most used genetic animal model to study ADHD. Brain neurotrophic factor (BDNF), critical for midbrain and hippocampal dopaminergic neuron survival and differentiation, is reduced in both ADHD subjects and SHR. Physical exercise (e.g. swimming) promotes neuroplasticity and improves cognition by increasing BDNF and irisin. Here we investigate the effects of gestational swimming on sensorial and behavioral phenotypes, striatal dopaminergic parameters, and hippocampal FNDC5/irisin and BDNF levels observed in WKY and SHR. Gestational swimming improved nociception in SHR rats (p = 0.006) and increased hippocampal BDNF levels (p = 0.02) in a sex-dependent manner in adolescent offspring. Sex differences were observed in hippocampal FNDC5/irisin levels (p = 0.002), with females presenting lower levels than males. Our results contribute to the notion that swimming during pregnancy is a promising alternative to improve ADHD phenotypes in the offspring.
Collapse
Affiliation(s)
- Andréa Tosta
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil
| | - Ariene S Fonseca
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Messeder
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil
| | - Sérgio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Pandolfo
- Program of Neurosciences, Federal Fluminense University, Niterói, Brazil; Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niterói, Brazil.
| |
Collapse
|
3
|
Elberling F, Spulber S, Bose R, Keung HY, Ahola V, Zheng Z, Ceccatelli S. Sex Differences in Long-term Outcome of Prenatal Exposure to Excess Glucocorticoids-Implications for Development of Psychiatric Disorders. Mol Neurobiol 2023; 60:7346-7361. [PMID: 37561236 PMCID: PMC10657788 DOI: 10.1007/s12035-023-03522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Exposure to prenatal insults, such as excess glucocorticoids (GC), may lead to pathological outcomes, including neuropsychiatric disorders. The aim of the present study was to investigate the long-term effects of in utero exposure to the synthetic GC analog dexamethasone (Dex) in adult female offspring. We monitored spontaneous activity in the home cage under a constant 12 h/12 h light/dark cycle, as well as the changes following a 6-h advance of dark onset (phase shift). For comparison, we re-analysed data previously recorded in males. Dex-exposed females were spontaneously more active, and the activity onset re-entrained slower than in controls. In contrast, Dex-exposed males were less active, and the activity onset re-entrained faster than in controls. Following the phase shift, control females displayed a transient reorganisation of behaviour in light and virtually no change in dark, while Dex-exposed females showed limited variations from baseline in both light and dark, suggesting weaker photic entrainment. Next, we ran bulk RNA-sequencing in the suprachiasmatic nucleus (SCN) of Dex and control females. SPIA pathway analysis of ~ 2300 differentially expressed genes identified significantly downregulated dopamine signalling, and upregulated glutamate and GABA signalling. We selected a set of candidate genes matching the behaviour alterations and found consistent differential regulation for ~ 73% of tested genes in SCN and hippocampus tissue samples. Taken together, our data highlight sex differences in the outcome of prenatal exposure to excess GC in adult mice: in contrast to depression-like behaviour in males, the phenotype in females, defined by behaviour and differential gene expression, is consistent with ADHD models.
Collapse
Affiliation(s)
- Frederik Elberling
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Raj Bose
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| |
Collapse
|
4
|
Kohe SE, Gowing EK, Seo S, Oorschot DE. A Novel Rat Model of ADHD-like Hyperactivity/Impulsivity after Delayed Reward Has Selective Loss of Dopaminergic Neurons in the Right Ventral Tegmental Area. Int J Mol Sci 2023; 24:11252. [PMID: 37511013 PMCID: PMC10379272 DOI: 10.3390/ijms241411252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In attention deficit hyperactivity disorder (ADHD), hyperactivity and impulsivity occur in response to delayed reward. Herein we report a novel animal model in which male Sprague-Dawley rats exposed to repeated hypoxic brain injury during the equivalent of extreme prematurity were ADHD-like hyperactive/impulsive in response to delayed reward and attentive at 3 months of age. Thus, a unique animal model of one of the presentations/subtypes of ADHD was discovered. An additional finding is that the repeated hypoxia rats were not hyperactive in the widely used open field test, which is not ADHD specific. Hence, it is recommended that ADHD-like hyperactivity and ADHD-like impulsivity, specifically in response to delayed reward, be a primary component in the design of future experiments that characterize potential animal models of ADHD, replacing open field testing of hyperactivity. Unknown is whether death and/or activity of midbrain dopaminergic neurons contributed to the ADHD-like hyperactivity/impulsivity detected after delayed reward. Hence, we stereologically measured the absolute number of dopaminergic neurons in four midbrain subregions and the average somal/nuclear volume of those neurons. Repeated hypoxia rats had a significant specific loss of dopaminergic neurons in the right ventral tegmental area (VTA) at 2 weeks of age and 18 months of age, providing new evidence of a site of pathology. No dopaminergic neuronal loss occurred in three other midbrain regions. Fewer VTA dopaminergic neurons correlated with increased ADHD-like hyperactivity and impulsivity. Novel early intervention therapies to rescue VTA dopaminergic neurons and potentially prevent ADHD-like hyperactivity/impulsivity can now be investigated.
Collapse
Affiliation(s)
- Sarah E Kohe
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Emma K Gowing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Steve Seo
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Xu X, Zhuo L, Zhang L, Peng H, Lyu Y, Sun H, Zhai Y, Luo D, Wang X, Li X, Li L, Zhang Y, Ma X, Wang Q, Li Y. Dexmedetomidine alleviates host ADHD-like behaviors by reshaping the gut microbiota and reducing gut-brain inflammation. Psychiatry Res 2023; 323:115172. [PMID: 36958092 DOI: 10.1016/j.psychres.2023.115172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders that affects children and even continues into adulthood. Dexmedetomidine (DEX), a short-term sedative, can selectively activate the α2-adrenoceptor. Treatment with α2-adrenergic agonists in patients with ADHD is becoming increasingly common. However, the therapeutic potential of DEX for the treatment of ADHD is unknown. Here, we evaluated the effect of DEX on ADHD-like behavior in spontaneously hypertensive rats (SHRs), a widely used animal model of ADHD. DEX treatment ameliorated hyperactivity and spatial working memory deficits and normalized θ electroencephalogram (EEG) rhythms in SHRs. We also found that DEX treatment altered the gut microbiota composition and promoted the enrichment of beneficial gut bacterial genera associated with anti-inflammatory effects in SHRs. The gut pathological scores and permeability and the level of inflammation observed in the gut and brain were remarkably improved after DEX administration. Moreover, transplantation of fecal microbiota from DEX-treated SHRs produced effects that mimicked the therapeutic effects of DEX administration. Therefore, DEX is a promising treatment for ADHD that functions by reshaping the composition of the gut microbiota and reducing inflammation in the gut and brain.
Collapse
Affiliation(s)
- Xiangzhao Xu
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, The People's Hospital of Nanchuan, Chongqing 408400, China
| | - Lixia Zhuo
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Linjuan Zhang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huan Peng
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yixuan Lyu
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huan Sun
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Danlei Luo
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaodan Wang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xinyang Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Liya Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ying Zhang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yan Li
- Department of Anesthesiology and Perioperative Medicine and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
6
|
Remonde CG, Gonzales EL, Adil KJ, Jeon SJ, Shin CY. Augmented impulsive behavior in febrile seizure-induced mice. Toxicol Res 2023; 39:37-51. [PMID: 36726823 PMCID: PMC9839938 DOI: 10.1007/s43188-022-00145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Febrile seizure (FS) is one of the most prevalent etiological events in childhood affecting 2-5% of children from 3 months to 5 years old. Debates on whether neurodevelopmental consequences rise in later life following a febrile seizure or not are still ongoing however there is limited evidence of its effect, especially in a laboratory setting. Moreover, the comparative study using both male and female animal models is sparse. To examine the effect of FS on the behavioral features of mice, both sexes of ICR mice were induced with hyperthermic seizures through exposure to an infrared heat lamp. The mice were divided into two groups, one receiving a single febrile seizure at postnatal day 11 (P11) and one receiving three FS at P11, P13, and P15. Starting at P30 the FS-induced mice were subjected to a series of behavioral tests. Mice with seizures showed no locomotor and motor coordination deficits, repetitive, and depressive-like behavior. However, the FS-induced mice showed impulsive-like behavior in both elevated plus maze and cliff avoidance tests, which is more prominent in male mice. A greater number of mice displayed impaired CAT in both males and females in the three-time FS-induced group compared to the single induction group. These results demonstrate that after induction of FS, male mice have a higher susceptibility to consequences of febrile seizure than female mice and recurrent febrile seizure has a higher chance of subsequent disorders associated with decreased anxiety and increased impulsivity. We confirmed the dysregulated expression of impulsivity-related genes such as 5-HT1A and tryptophan hydroxylase 2 from the prefrontal cortices of FS-induced mice implying that the 5-HT system would be one of the mechanisms underlying the increased impulsivity after FS. Taken together, these findings are useful in unveiling future discoveries about the effect of childhood febrile seizure and the mechanism behind it.
Collapse
Affiliation(s)
- Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Keremkleroo Jym Adil
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
7
|
Pai LF, Wang DS, Hsu WF, Huang SW, Chung CH, Chen SJ, Chien WC, Chu DM. New insights into precocious puberty and ADHD: a nationwide cohort study. Pediatr Res 2022; 92:1787-1794. [PMID: 35347278 DOI: 10.1038/s41390-022-02028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Attention deficit-hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders in children; however, studies delineating the association between ADHD and central precocious puberty are limited. This study aimed to understand whether children with ADHD are at a higher risk of central precocious puberty. METHODS This population-based retrospective cohort study was conducted using the National Health Insurance Research Database of Taiwan to investigate the association between ADHD and the incidence of central precocious puberty between 2000-2015. We identified ADHD individuals treated with methylphenidate, atomoxetine or not. The control cohort consisted of individuals without ADHD. The outcome measure was central precocious puberty diagnosis. RESULTS Among 290,148 children (mean age: 5.83 years), central precocious puberty incidence was 4.24 and 1.95 per 105 person-years in the ADHD and control groups, respectively. Children with ADHD treated with medication had a higher risk than those without ADHD. However, medication use did not affect the incidence of central precocious puberty among children with ADHD. CONCLUSION This study showed an association between ADHD and a higher risk of central precocious puberty. Early referral of children with ADHD to a pediatric endocrinologist for evaluation may facilitate correct diagnoses and early interventions. IMPACT ADHD is associated with a higher risk of central precocious puberty. This study provides relevant findings, as it is the first nationwide, population-based cohort study to investigate the association between ADHD and the risk of central precocious puberty with a 15-year follow-up. Early referral of children with ADHD to a pediatric endocrinologist for the evaluation of suspected precocious puberty could facilitate correct diagnosis. Early intervention treatment with gonadotropin-releasing hormone agonist might improve final height in children with central precocious puberty.
Collapse
Affiliation(s)
- Li-Fan Pai
- Department of Pediatrics, Tri-service General Hospital, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Der-Shiun Wang
- Department of Pediatrics, Tri-service General Hospital, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Fu Hsu
- Department of Pediatrics, Tri-service General Hospital, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Wei Huang
- Department of Pediatrics, Tri-service General Hospital, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-service General Hospital, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan. .,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan.
| | - Der-Ming Chu
- Department of Pediatrics, Tri-service General Hospital, Taipei, Taiwan. .,School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
8
|
Li Y, Sun H, Huang Y, Yin A, Zhang L, Han J, Lyu Y, Xu X, Zhai Y, Sun H, Wang P, Zhao J, Sun S, Dong H, Zhu F, Wang Q, Augusto Rohde L, Xie X, Sun X, Xiong L. Gut metagenomic characteristics of ADHD reveal low Bacteroides ovatus-associated host cognitive impairment. Gut Microbes 2022; 14:2125747. [PMID: 36128620 PMCID: PMC9519028 DOI: 10.1080/19490976.2022.2125747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous psychiatric disorder that can have three phenotypical presentations: inattentive (I-ADHD), hyperactive-impulsive (HI-ADHD), and combined (C-ADHD). Environmental factors correlated with the gut microbiota community have been implicated in the development of ADHD. However, whether different ADHD symptomatic presentations are associated with distinct microbiota compositions and whether patients could benefit from the correction of aberrant bacterial colonization are still largely unclear. We carried out metagenomic shotgun analysis with 207 human fecal samples to characterize the gut microbial profiles of patients with ADHD grouped according to their phenotypical presentation. Then, we transplanted the candidate low-abundance bacteria identified in patient subgroups into ADHD rats and evaluated ADHD-associated behaviors and neuronal activation in these rats. Patients with C-ADHD had a different gut microbial composition from that of healthy controls (HCs) (p = .02), but not from that of I-ADHD patients. Eight species became progressively attenuated or enriched when comparing the compositions of HCs to those of I-ADHD and C-ADHD; in particular, the abundance of Bacteroides ovatus was depleted in patients with C-ADHD. In turn, Bacteroides ovatus supplementation ameliorated spatial working memory deficits and reversed θ electroencephalogram rhythm alterations in ADHD rats. In addition, Bacteroides ovatus induced enhanced neuronal activation in the hippocampal CA1 subregion. These findings indicate that gut microbial characteristics that are unique to patients with C-ADHD may be masked when considering a more heterogeneous group of patients. We link the gut microbiota to brain function in an ADHD animal model, suggesting the relevance of testing a potential bacteria-based intervention for some aspects of ADHD.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi’an, China,CONTACT Yan Li Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University; Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haiting Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | | | - Anqi Yin
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Linjuan Zhang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiao Han
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yixuan Lyu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiangzhao Xu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Sun
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ping Wang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | | | | | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Feng Zhu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Luis Augusto Rohde
- ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil
| | - Xuefeng Xie
- BGI-Sanya, Sanya, China,Xuefeng Xie BGI-Sanya, Sanya, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China,Xin Sun Department of Pediatrics, Xijing Hospital the Fourth Military Medical University, Xi’an, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence & Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Lize Xiong Translational Research Institute of Brain and Brain-Like Intelligence & Department of Anesthesiology and Perioperative Medicine Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| |
Collapse
|
9
|
Véronneau-Veilleux F, Robaey P, Ursino M, Nekka F. A mechanistic model of ADHD as resulting from dopamine phasic/tonic imbalance during reinforcement learning. Front Comput Neurosci 2022; 16:849323. [PMID: 35923915 PMCID: PMC9342605 DOI: 10.3389/fncom.2022.849323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in children. Although the involvement of dopamine in this disorder seems to be established, the nature of dopaminergic dysfunction remains controversial. The purpose of this study was to test whether the key response characteristics of ADHD could be simulated by a mechanistic model that combines a decrease in tonic dopaminergic activity with an increase in phasic responses in cortical-striatal loops during learning reinforcement. To this end, we combined a dynamic model of dopamine with a neurocomputational model of the basal ganglia with multiple action channels. We also included a dynamic model of tonic and phasic dopamine release and control, and a learning procedure driven by tonic and phasic dopamine levels. In the model, the dopamine imbalance is the result of impaired presynaptic regulation of dopamine at the terminal level. Using this model, virtual individuals from a dopamine imbalance group and a control group were trained to associate four stimuli with four actions with fully informative reinforcement feedback. In a second phase, they were tested without feedback. Subjects in the dopamine imbalance group showed poorer performance with more variable reaction times due to the presence of fast and very slow responses, difficulty in choosing between stimuli even when they were of high intensity, and greater sensitivity to noise. Learning history was also significantly more variable in the dopamine imbalance group, explaining 75% of the variability in reaction time using quadratic regression. The response profile of the virtual subjects varied as a function of the learning history variability index to produce increasingly severe impairment, beginning with an increase in response variability alone, then accumulating a decrease in performance and finally a learning deficit. Although ADHD is certainly a heterogeneous disorder, these results suggest that typical features of ADHD can be explained by a phasic/tonic imbalance in dopaminergic activity alone.
Collapse
Affiliation(s)
- Florence Véronneau-Veilleux
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Florence Véronneau-Veilleux
| | - Philippe Robaey
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi,” University of Bologna, Bologna, Italy
| | - Fahima Nekka
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, QC, Canada
- Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Critical Role of Maternal Selenium Nutrition in Neurodevelopment: Effects on Offspring Behavior and Neuroinflammatory Profile. Nutrients 2022; 14:nu14091850. [PMID: 35565817 PMCID: PMC9104078 DOI: 10.3390/nu14091850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content—i.e., optimal, sub-optimal, and deficient—and neurodevelopmental, neuroinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in sub-optimal offspring. In addition, sub-optimal, more than deficient supply, reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, deficient and sub-optimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabolism and homeostasis. The finding that the Se sub-optimal was more detrimental than Se deficient diet may suggest that maternal Se deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by sub-optimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development.
Collapse
|
11
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
12
|
Abstract
The use of multiple species to model complex human psychiatric disorders, such as ADHD, can give important insights into conserved evolutionary patterns underlying multidomain behaviors (e.g., locomotion, attention, and impulsivity). Here we discuss the advantages and challenges in modelling ADHD-like phenotypes in zebrafish (Danio rerio), a vertebrate species that has been widely used in neuroscience and behavior research. Moreover, multiple behavioral tasks can be used to model the core symptoms of ADHD and its comorbidities. We present a critical review of current ADHD studies in zebrafish, and how this species might be used to accelerate the discovery of new drug treatments for this disorder.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK.
- Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
13
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
14
|
Meng HR, Suenaga T, Edamura M, Fukuda A, Ishida Y, Nakahara D, Murakami G. Functional MHCI deficiency induces ADHD-like symptoms with increased dopamine D1 receptor expression. Brain Behav Immun 2021; 97:22-31. [PMID: 34022373 DOI: 10.1016/j.bbi.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Inappropriate synaptic development has been proposed as a potential mechanism of neurodevelopmental disorders, including attention-deficit hyperactivity disorder (ADHD). Major histocompatibility complex class I (MHCI), an immunity-associated molecule expressed by neurons in the brain, regulates synaptic development; however, the involvement of MHCI in these disorders remains elusive. We evaluated whether functional MHCI deficiency induced by β2m-/-Tap1-/- double-knockout in mice leads to abnormalities akin to those seen in neurodevelopmental disorders. We found that functional MHCI deficiency induced locomotor hyperactivity, motor impulsivity, and attention deficits, three major symptoms of ADHD. In contrast, these mice showed normal spatial learning, behavioral flexibility, social behavior, and sensorimotor integration. In the analysis of the dopamine system, upregulation of dopamine D1 receptor (D1R) expression in the nucleus accumbens and a greater locomotor response to D1R agonist SKF 81297 were found in the functional MHCI-deficient mice. Low-dose methylphenidate, used for the treatment of ADHD patients, alleviated the three behavioral symptoms and suppressed c-Fos expression in the D1R-expressing medium spiny neurons of the mice. These findings reveal an unexpected role of MHCI in three major symptoms of ADHD and may provide a novel landmark in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Hong-Rui Meng
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshiko Suenaga
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; School of Psychology, Tokyo University of Social Welfare, Tokyo 114-0004, Japan
| | - Mitsuhiro Edamura
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yasushi Ishida
- Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan
| | - Daiichiro Nakahara
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Division of Psychiatry, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-16, Japan.
| | - Gen Murakami
- Division of Psychology, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan.
| |
Collapse
|
15
|
Kuwagata M, Muneoka K, Honda K, Miyazaki A. Hypothalamic Monoaminergic Pathology in a Neurodevelopmental Rat Model Showing Prenatal 5-Bromo-2'-Deoxyuridine Treatment-Induced Hyperactivity and Hyporeproductivity. Neuropsychobiology 2020; 79:161-169. [PMID: 31822012 DOI: 10.1159/000504552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/03/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Prenatal treatment of rats with 5-bromo-2'-deoxyuridine (BrdU) is a neurodevelopmental model showing hyperactivity and impaired sexual activity. Human neurodevelopmental disorders, such as autism, exhibit sex-related pathology, but sex-related neurodevelopment has not been fully investigated in this model. We conducted this study to facilitate the understanding of the pathophysiology of neurodevelopmental disorders. METHODS Pregnant rats received 50 mg/kg BrdU on gestational days 9-15. The tissue content of dopamine (DA), serotonin (5-HT), and their metabolites dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid were measured in male and female offspring at 3 weeks (juveniles) and 10 weeks (adults) of age. RESULTS Prenatally BrdU-treated rats had reduced DA metabolism or DA content in the hypothalamus from the juvenile through the adult period without sex differences, but sex-specific striatal DA abnormalities emerged after maturation. A reduction in 5-HT metabolism was measured in the hypothalamus without sex differences throughout development. Developmental alterations in the striatal 5-HT states were sex-dependent. Temporal changes in DA or 5-HT metabolism were found in the frontal cortex and midbrain. CONCLUSION The sex-specific influence of a genotoxic factor on the development of the DA and 5-HT systems was clarified in the hypothalamus and striatum. The results suggest that the observed sex dependence and region specificity are related to the pathology of social dysfunction in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makiko Kuwagata
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.,Laboratory of Safety Evaluation, Division of Safety, Hatano Research Institute, Food and Drug Safety Center, Hadano, Japan.,Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Science, Kawasaki, Japan
| | - Katsumasa Muneoka
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan, .,Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan,
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
GC-TOF-MS-Based Metabolomic Analysis and Evaluation of the Effects of HX106, a Nutraceutical, on ADHD-Like Symptoms in Prenatal Alcohol Exposed Mice. Nutrients 2020; 12:nu12103027. [PMID: 33023237 PMCID: PMC7600704 DOI: 10.3390/nu12103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in children characterized by inattention and hyperactivity. Prenatal alcohol exposure (PAE) can disrupt fetal neuronal development and cause an ADHD-like hyperactive behavior in the offspring. In this study, we hypothesized that metabolic disturbance would involve in ADHD neuropathology and aimed to investigate the changes in metabolite profile in PAE-induced ADHD-like model and the effects of HX106, a nutraceutical, on ADHD-like pathophysiology and metabolite changes. To this end, we administered HX106 to the mouse offspring affected by PAE (OPAE) and assessed the hyperactivity using the open field test. We observed that HX106-treated OPAE showed less hyperactive behavior than vehicle-treated OPAE. The effects of HX106 were found to be related to the regulation of dopamine transporter and D2 dopamine receptor expression. Furthermore, using gas chromatography time-of-flight mass spectrometry-based metabolomics, we explored the metabolite changes among the experimental groups. The metabolite profile, particularly related with the amino acids, linoleic acid and amino sugar pathways, was altered by PAE and reversed by HX106 treatment partially similar to that observed in the control group. Overall, this study suggest that metabolite alteration would be involved in ADHD pathology and that HX106 can be an efficient supplement to overcome ADHD by regulating dopamine signaling-related protein expression and metabolite changes.
Collapse
|
17
|
Fontana BD, Franscescon F, Rosemberg DB, Norton WH, Kalueff AV, Parker MO. Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev 2019; 100:9-18. [DOI: 10.1016/j.neubiorev.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/23/2023]
|
18
|
Martinhago F, Lavagnino NJ, Folguera G, Caponi S. Risk factors and genetic bases: the case of attention deficit hyperactivity disorder. Salud Colect 2019; 15:e1952. [PMID: 31664338 DOI: 10.18294/sc.2019.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/21/2018] [Indexed: 11/24/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is considered to be the most frequent mental disorder in childhood. Although its diagnosis in the most utilized handbook of psychiatry in the world today - the Diagnostic and statistical handbook of mental disorders (DSM-5) - is based on behaviors of inattention, hyperactivity and impulsivity, numerous attempts to describe the biological bases of the disorder can be found, to be used for and also as risk markers. In this paper, we will critically analyze the validity of studies associated with the search for genetic markers of ADHD. First, a characterization of ADHD by the DSM-5 handbook is presented. Subsequently, the link between ADHD, risk factors and genetic markers is developed. Finally, some conclusions are presented which highlight simplifications and omissions that could have significant consequences.
Collapse
Affiliation(s)
- Fernanda Martinhago
- Doctora en Ciencias Humanas. Doctora en Antropología y Comunicación. Posdoctoranda, Programa de Pós-Graduação Interdisciplinar em Ciências Humanas, Universidade Federal de Santa Catarina. Becaria, Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior, Programa Nacional de Pós-Doutorado; Florianópolis, Brasil.
| | - Nicolás José Lavagnino
- Licenciado en Ciencias Biológicas. Licenciado en Filosofía. Doctor en Ciencias Biológicas. Investigador Asistente, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Guillermo Folguera
- Licenciado en Ciencias Biológicas. Licenciado en Filosofía. Doctor en Ciencias Biológicas. Profesor, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Investigador Adjunto, Consejo Nacional de Investigaciones Científicas y Técnicas. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sandra Caponi
- Doctora en Filosofía. Profesora titular, Departamento de Sociologia e Ciência Política, Universidade Federal de Santa Catarina. Becaria Senior, Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior. Florianópolis, Brasil.
| |
Collapse
|
19
|
Katz JL, Kohut SJ, Soto P. Vigilance demand and the effects of stimulant drugs in a five-choice reaction-time procedure in mice. Behav Pharmacol 2018; 29:701-708. [PMID: 30418959 PMCID: PMC6234857 DOI: 10.1097/fbp.0000000000000435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Stimulant drugs used for treating attention-deficit hyperactivity disorder (ADHD) increase signal-detection accuracy in five-choice serial reaction-time procedures. These increases may result from drug-induced increases in control exerted by the stimuli that prompt responses, which was assessed in the present study. Mice were trained with food reinforcement to nose poke into one of five holes after its illumination (signal), and effects of methylphenidate, d-amphetamine, and pentobarbital were assessed. Subsequently, the time from trial onset to signal was changed from fixed to variable for one group of subjects. A 'warning' stimulus (change in ambient lighting) preceding the signal was added for a second group. Effects of the drugs were reassessed. Dose-related increases in accuracy of signal detection (nose pokes in hole where a signal was displayed) were obtained with methylphenidate and d-amphetamine, but not with pentobarbital. When the presignal time was variable, increases in signal detection were not obtained with either stimulant. When a warning stimulus preceded the signal, the increases in accuracy were similar to those obtained without the warning stimulus. Hence, a procedure that increased vigilance demand (using a variable prestimulus period) eliminated the effects of drugs useful in treating ADHD, whereas a procedure that decreased vigilance demand (adding the warning light) had no appreciable effects on the response to stimulant drugs. Taken together, the present results suggest that the five-choice serial reaction-time has predictive validity for selecting drugs effective for treating ADHD, although effects can depend critically on the stimulus conditions used and the vigilance required by the procedure.
Collapse
Affiliation(s)
- Jonathan L Katz
- Psychobiology Section Molecular Neuropsychiatry Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | | | | |
Collapse
|
20
|
Lopez-Franco A, Alanis AY, Lopez-Franco C, Arana-Daniel N, Lopez-Franco M. Emotional system in complex cognitive activities of working memory: A literature review of its role. J Integr Neurosci 2018; 17:679-693. [PMID: 30103346 DOI: 10.3233/jin-180095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cognitive processing is needed to elicit emotional responses. At the same time, emotional responses modulate and guide cognition to enable adaptive responses to the environment. However, most empirical studies and theoretical models of cognitive functions have been investigated without taking into account emotion, which is considered interference that is counterproductive to the correct functioning of the cognitive system. To understand how complex behaviors are carried out in the brain, an understanding of the interactions between emotion and cognition may be indispensable. Given the enormous scope of this topic for both cognition and emotion, these concepts will not be further defined here; instead, this review will be relatively narrow in scope and will emphasize several brain systems involved in the interactions between emotion and working memory because an important dimension of cognition involves working memory function. In attempting to understand the relationship between emotion and working memory, we will describe the projections of a set of brain structures that support our emotional life and the neuromodulator dopamine (which is also involved in emotion processing and incentive motivational behavior) in the prefrontal cortex. According to the literature, working memory engages the cortical regions. Thus, the prefrontal cortex, particularly the dorsolateral prefrontal cortex (DLPFC), although commonly viewed as a purely cognitive area, provides a test for the hypothesis that working memory and emotion are strongly integrated in the brain. In this review, we provide an overview of neuropsychological, neuroanatomical and molecular evidence, with the aim of establishing the extent to which working memory and emotion are related.
Collapse
Affiliation(s)
- Adriana Lopez-Franco
- CUCEI, Universidad de Gudalajara, Marcelino Garcia Barragan 1421, C. P. 44430, Guadalajara, Jalisco, Mexico
| | - Alma Y Alanis
- CUCEI, Universidad de Gudalajara, Marcelino Garcia Barragan 1421, C. P. 44430, Guadalajara, Jalisco, Mexico
| | - Carlos Lopez-Franco
- CUCEI, Universidad de Gudalajara, Marcelino Garcia Barragan 1421, C. P. 44430, Guadalajara, Jalisco, Mexico
| | - Nancy Arana-Daniel
- CUCEI, Universidad de Gudalajara, Marcelino Garcia Barragan 1421, C. P. 44430, Guadalajara, Jalisco, Mexico
| | - Michel Lopez-Franco
- CUCEI, Universidad de Gudalajara, Marcelino Garcia Barragan 1421, C. P. 44430, Guadalajara, Jalisco, Mexico
| |
Collapse
|
21
|
Yokota T, Struzik ZR, Jurica P, Horiuchi M, Hiroyama S, Li J, Takahara Y, Ogawa K, Nishitomi K, Hasegawa M, Cichocki A. Semi-Automated Biomarker Discovery from Pharmacodynamic Effects on EEG in ADHD Rodent Models. Sci Rep 2018; 8:5202. [PMID: 29581452 PMCID: PMC5980101 DOI: 10.1038/s41598-018-23450-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2018] [Indexed: 11/16/2022] Open
Abstract
We propose a novel semi-automatic approach to design biomarkers for capturing pharmacodynamic effects induced by pharmacological agents on the spectral power of electroencephalography (EEG) recordings. We apply this methodology to investigate the pharmacodynamic effects of methylphenidate (MPH) and atomoxetine (ATX) on attention deficit/hyperactivity disorder (ADHD), using rodent models. We inject the two agents into the spontaneously hypertensive rat (SHR) model of ADHD, the Wistar-Kyoto rat (WKY), and the Wistar rat (WIS), and record their EEG patterns. To assess individual EEG patterns quantitatively, we use an integrated methodological approach, which consists of calculating the mean, slope and intercept parameters of temporal records of EEG spectral power using a smoothing filter, outlier truncation, and linear regression. We apply Fisher discriminant analysis (FDA) to identify dominant discriminants to be heuristically consolidated into several new composite biomarkers. Results of the analysis of variance (ANOVA) and t-test show benefits in pharmacodynamic parameters, especially the slope parameter. Composite biomarker evaluation confirms their validity for genetic model stratification and the effects of the pharmacological agents used. The methodology proposed is of generic use as an approach to investigating thoroughly the dynamics of the EEG spectral power.
Collapse
Affiliation(s)
- Tatsuya Yokota
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | - Peter Jurica
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | | | - Junhua Li
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | - Yuji Takahara
- SHIONOGI & Co., Ltd., Futaba, Toyonaka, Osaka, Japan
| | - Koichi Ogawa
- SHIONOGI & Co., Ltd., Futaba, Toyonaka, Osaka, Japan.
| | | | | | | |
Collapse
|
22
|
Li Y, Yin A, Sun X, Zhang M, Zhang J, Wang P, Xie R, Li W, Fan Z, Zhu Y, Wang H, Dong H, Wu S, Xiong L. Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. J Clin Invest 2017; 127:4270-4284. [PMID: 29058689 DOI: 10.1172/jci94455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children. Although an imbalance of excitatory and inhibitory inputs has been proposed as contributing to this disorder, the mechanisms underlying this highly heterogeneous disease remain largely unknown. Here, we show that N-myc downstream-regulated gene 2 (NDRG2) deficiency is involved in the development of ADHD in both mice and humans. Ndrg2-knockout (Ndrg2-/-) mice exhibited ADHD-like symptoms characterized by attention deficits, hyperactivity, impulsivity, and impaired memory. Furthermore, interstitial glutamate levels and excitatory transmission were markedly increased in the brains of Ndrg2-/- mice due to reduced astroglial glutamate clearance. We developed an NDRG2 peptide that rescued astroglial glutamate clearance and reduced excitatory glutamate transmission in NDRG2-deficient astrocytes. Additionally, NDRG2 peptide treatment rescued ADHD-like hyperactivity in the Ndrg2-/- mice, while routine methylphenidate treatment had no effect on hyperactivity in these animals. Finally, children who were heterozygous for rs1998848, a SNP in NDRG2, had a higher risk of ADHD than children who were homozygous for rs1998848. Our results indicate that NDRG2 deficiency leads to ADHD phenotypes and that impaired astroglial glutamate clearance, a mechanism distinct from the well-established dopamine deficit hypothesis for ADHD, underlies the resultant behavioral abnormalities.
Collapse
Affiliation(s)
- Yan Li
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience.,3, Department of Biochemistry and Molecular Biology, and
| | - Anqi Yin
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Xin Sun
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ming Zhang
- 1, Department of Anesthesiology and Perioperative Medicine.,5, General Hospital of Chengdu Military Command, Chengdu, Sichuan, China
| | - Jianfang Zhang
- 6, Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ping Wang
- 4, Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rougang Xie
- 1, Department of Anesthesiology and Perioperative Medicine.,2, Institute of Neuroscience
| | - Wen Li
- 1, Department of Anesthesiology and Perioperative Medicine
| | - Ze Fan
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Han Wang
- 7, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Hailong Dong
- 1, Department of Anesthesiology and Perioperative Medicine
| | | | - Lize Xiong
- 1, Department of Anesthesiology and Perioperative Medicine
| |
Collapse
|
23
|
Robbins TW. Cross-species studies of cognition relevant to drug discovery: a translational approach. Br J Pharmacol 2017; 174:3191-3199. [PMID: 28432778 PMCID: PMC5595762 DOI: 10.1111/bph.13826] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023] Open
Abstract
This review advances the case that bidirectional, cross-species translation of findings from experimental animals to and from humans is an important strategy for drug discovery. Animal models of mental disorders require appropriate behavioural or cognitive outcome variables that can be generalized cross-species. One example is the treatment of impulsive behaviour in attention deficit hyperactivity disorder (ADHD) with stimulant drugs. Performance on the stop signal reaction task as an index of impulsivity is improved both in healthy human volunteers and in patients with adult ADHD by stimulant drugs and also by the selective noradrenaline reuptake blocker atomoxetine. Functional neuroimaging evidence suggests a modulation of circuitry including the inferior prefrontal cortex by this drug. Parallel work in rats had shown that atomoxetine improves stop signal performance by affecting possibly homologous regions of the rodent prefrontal cortex. This parallel effect of atomoxetine in rodents and humans could potentially be exploited in other disorders in which impulsivity plays a role, such as stimulant abuse and Parkinson's disease. A contrasting relative lack of involvement of 5-HT mechanisms in the stop signal reaction time task will also be described. Research in humans and experimental animals that demonstrate effects of serotoninergic agents such as the selective serotonin (5-HT) reuptake inhibitor citalopram on probabilistic learning and reversal (upon which atomoxetine has little effect) will also be reviewed, possibly relevant to the treatment of clinical depression, Finally, other promising examples of parallel studies of behavioural effects of CNS-active drugs in animals and humans will also be described. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- T W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
24
|
Davis GL, Stewart A, Stanwood GD, Gowrishankar R, Hahn MK, Blakely RD. Functional coding variation in the presynaptic dopamine transporter associated with neuropsychiatric disorders drives enhanced motivation and context-dependent impulsivity in mice. Behav Brain Res 2017; 337:61-69. [PMID: 28964912 DOI: 10.1016/j.bbr.2017.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Recent genetic analyses have provided evidence that clinical commonalities associated with different psychiatric diagnoses often have shared mechanistic underpinnings. The development of animal models expressing functional genetic variation attributed to multiple disorders offers a salient opportunity to capture molecular, circuit and behavioral alterations underlying this hypothesis. In keeping with studies suggesting dopaminergic contributions to attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BPD) and autism spectrum disorder (ASD), subjects with these diagnoses have been found to express a rare, functional coding substitution in the dopamine (DA) transporter (DAT), Ala559Val. We developed DAT Val559 knock-in mice as a construct valid model of dopaminergic alterations that drive multiple clinical phenotypes, and here evaluate the impact of lifelong expression of the variant on impulsivity and motivation utilizing the 5- choice serial reaction time task (5-CSRTT) and Go/NoGo as well as tests of time estimation (peak interval analysis), reward salience (sucrose preference), and motivation (progressive ratio test). Our findings indicate that the DAT Val559 variant induces impulsivity behaviors that are dependent upon the reward context, with increased impulsive action observed when mice are required to delay responding for a reward, whereas mice are able to withhold responding if there is a probability of reward for a correct rejection. Utilizing peak interval and progressive ratio tests, we provide evidence that impulsivity is likely driven by an enhanced motivational phenotype that also may drive faster task acquisition in operant tasks. These data provide critical validation that DAT, and more generally, DA signaling perturbations can drive impulsivity that can manifest in specific contexts and not others, and may rely on motivational alterations, which may also drive increased maladaptive reward seeking.
Collapse
Affiliation(s)
- Gwynne L Davis
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Adele Stewart
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, United States.
| | - Raajaram Gowrishankar
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Maureen K Hahn
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| |
Collapse
|
25
|
Cybulska-Klosowicz A, Laczkowska M, Zakrzewska R, Kaliszewska A. Attentional deficits and altered neuronal activation in medial prefrontal and posterior parietal cortices in mice with reduced dopamine transporter levels. Mol Cell Neurosci 2017; 85:82-92. [PMID: 28923595 DOI: 10.1016/j.mcn.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/29/2017] [Accepted: 09/15/2017] [Indexed: 01/30/2023] Open
Abstract
The executive control function of attention is regulated by the dopaminergic (DA) system. Dopamine transporter (DAT) likely plays a role in controlling the influence of DA on cognitive processes. We examined the effects of DAT depletion on cognitive processes related to attention. Mice with the DAT gene genetically deleted (DAT+/- heterozygotes) were compared to wild type (WT) mice on the Attentional Set-Shifting Task (ASST). Changes in neuronal activity during the ASST were shown with early growth response genes 1 and 2 (egr-1 and egr-2) immunohistochemistry in the medial prefrontal cortex (mPFC) and in the posterior parietal cortex (PPC). Heterozygotes were impaired in tasks that tax reversal learning, attentional-set formation and set-shifting. Densities of egr-2 labeled cells in the mPFC were lower in mutant mice when compared with wild-types in intradimensional shift of attention (IDS), extradimensional shift of attention and extradimensional shift of attention-reversal phases of the ASST task, and in PPC in the IDS phase of the task. The results demonstrate impairments of the areas associated with attentional functions in DAT+/- mice and show that an imbalance of the dopaminergic system has an impact on the complex attention-related executive functions.
Collapse
Affiliation(s)
- Anita Cybulska-Klosowicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, PAS, 02-093 Warsaw, Poland.
| | | | - Renata Zakrzewska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, PAS, 02-093 Warsaw, Poland
| | - Aleksandra Kaliszewska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
26
|
Yuan FF, Gu X, Huang X, Zhong Y, Wu J. SLC6A1 gene involvement in susceptibility to attention-deficit/hyperactivity disorder: A case-control study and gene-environment interaction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:202-208. [PMID: 28442423 DOI: 10.1016/j.pnpbp.2017.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with an estimated heritability of approximately 76%. We conducted a case-control study to explore the role of the SLC6A1 gene in ADHD. The genotypes of eight variants were determined using Sequenom MassARRAY technology. The participants in the study were 302 children with ADHD and 411 controls. ADHD symptoms were assessed using the Conners Parent Symptom Questionnaire. In our study, rs2944366 was consistently shown to be associated with the ADHD risk in the dominant model (odds ratio [OR]=0.554, 95% confidence interval [CI]=0.404-0.760), and nominally associated with Hyperactive index score (P=0.027). In addition, rs1170695 has been found to be associated with the ADHD risk in the addictive model (OR=1.457, 95%CI=1.173-1.809), while rs9990174 was associated with the Hyperactive index score (P=0.010). Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactions of rs1170695 with blood lead (Pmul=0.044) to modify the ADHD risk. Expression quantitative trait loci analysis suggested that these positive single nucleotide polymorphisms (SNPs) may mediate SLC6A1 gene expression. Therefore, our results suggest that selected SLC6A1 gene variants may have a significant effect on the ADHD risk.
Collapse
Affiliation(s)
- Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Yan Zhong
- Department of Child Health Care, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China.
| |
Collapse
|
27
|
Methylphenidate effects in the young brain: friend or foe? Int J Dev Neurosci 2017; 60:34-47. [PMID: 28412445 DOI: 10.1016/j.ijdevneu.2017.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 01/17/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatry disorders in children and adolescents, and methylphenidate (MPH) is a first-line stimulant drug available worldwide for its treatment. Despite the proven therapeutic efficacy, concerns have been raised regarding the possible consequences of chronic MPH exposure during childhood and adolescence. Disturbances in the neurodevelopment at these crucial stages are major concerns given the unknown future life consequences. This review is focused on the long-term adverse effects of MPH to the brain biochemistry. Reports conducted with young and/or adolescent animals and studies with humans are reviewed in the context of long-term consequences after early life-exposure. MPH pharmacokinetics is also reviewed as there are differences among laboratory animals and humans that may be relevant to extrapolate the findings. Studies reveal that exposure to MPH in laboratory animals during young and/or adolescent ages can impact the brain, but the outcomes are dependent on MPH dose, treatment period, and animal's age. Importantly, the female sex is largely overlooked in both animal and human studies. Unfortunately, human reports that evaluate adults following adolescent or child exposure to MPH are very scarce. In general, human data indicates that MPH is generally safe, although it can promote several brain changes in early ages. Even so, there is a lack of long course patient evaluation to clearly establish whether MPH-induced changes are friendly or foe to the brain and more human studies are needed to assess the adult brain changes that arise from early MPH treatment.
Collapse
|
28
|
Muñoz-Villegas P, Rodríguez VM, Giordano M, Juárez J. Risk-taking, locomotor activity and dopamine levels in the nucleus accumbens and medial prefrontal cortex in male rats treated prenatally with alcohol. Pharmacol Biochem Behav 2017; 153:88-96. [DOI: 10.1016/j.pbb.2016.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
29
|
Rojas-Mayorquín AE, Padilla-Velarde E, Ortuño-Sahagún D. Prenatal Alcohol Exposure in Rodents As a Promising Model for the Study of ADHD Molecular Basis. Front Neurosci 2016; 10:565. [PMID: 28018163 PMCID: PMC5156702 DOI: 10.3389/fnins.2016.00565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022] Open
Abstract
A physiological parallelism, or even a causal effect relationship, can be deducted from the analysis of the main characteristics of the “Alcohol Related Neurodevelopmental Disorders” (ARND), derived from prenatal alcohol exposure (PAE), and the behavioral performance in the Attention-deficit/hyperactivity disorder (ADHD). These two clinically distinct disease entities, exhibits many common features. They affect neurological shared pathways, and also related neurotransmitter systems. We briefly review here these parallelisms, with their common and uncommon characteristics, and with an emphasis in the subjacent molecular mechanisms of the behavioral manifestations, that lead us to propose that PAE in rats can be considered as a suitable model for the study of ADHD.
Collapse
Affiliation(s)
- Argelia E Rojas-Mayorquín
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Edgar Padilla-Velarde
- Departamento de Ciencias Ambientales, Centro Universitario de Ciencias Biológicas y Agropecuarias, Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
| | - Daniel Ortuño-Sahagún
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Mexico
| |
Collapse
|
30
|
Statistical Evidence Suggests that Inattention Drives Hyperactivity/Impulsivity in Attention Deficit-Hyperactivity Disorder. PLoS One 2016; 11:e0165120. [PMID: 27768717 PMCID: PMC5074570 DOI: 10.1371/journal.pone.0165120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/06/2016] [Indexed: 01/10/2023] Open
Abstract
Background Numerous factor analytic studies consistently support a distinction between two symptom domains of attention-deficit/hyperactivity disorder (ADHD), inattention and hyperactivity/impulsivity. Both dimensions show high internal consistency and moderate to strong correlations with each other. However, it is not clear what drives this strong correlation. The aim of this paper is to address this issue. Method We applied a sophisticated approach for causal discovery on three independent data sets of scores of the two ADHD dimensions in NeuroIMAGE (total N = 675), ADHD-200 (N = 245), and IMpACT (N = 164), assessed by different raters and instruments, and further used information on gender or a genetic risk haplotype. Results In all data sets we found strong statistical evidence for the same pattern: the clear dependence between hyperactivity/impulsivity symptom level and an established genetic factor (either gender or risk haplotype) vanishes when one conditions upon inattention symptom level. Under reasonable assumptions, e.g., that phenotypes do not cause genotypes, a causal model that is consistent with this pattern contains a causal path from inattention to hyperactivity/impulsivity. Conclusions The robust dependency cancellation observed in three different data sets suggests that inattention is a driving factor for hyperactivity/impulsivity. This causal hypothesis can be further validated in intervention studies. Our model suggests that interventions that affect inattention will also have an effect on the level of hyperactivity/impulsivity. On the other hand, interventions that affect hyperactivity/impulsivity would not change the level of inattention. This causal model may explain earlier findings on heritable factors causing ADHD reported in the study of twins with learning difficulties.
Collapse
|
31
|
Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning. Neurosci Biobehav Rev 2016; 71:633-656. [PMID: 27608958 DOI: 10.1016/j.neubiorev.2016.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 01/13/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is characterized by altered decision-making (DM) and reinforcement learning (RL), for which competing theories propose alternative explanations. Computational modelling contributes to understanding DM and RL by integrating behavioural and neurobiological findings, and could elucidate pathogenic mechanisms behind ADHD. This review of neurobiological theories of ADHD describes predictions for the effect of ADHD on DM and RL as described by the drift-diffusion model of DM (DDM) and a basic RL model. Empirical studies employing these models are also reviewed. While theories often agree on how ADHD should be reflected in model parameters, each theory implies a unique combination of predictions. Empirical studies agree with the theories' assumptions of a lowered DDM drift rate in ADHD, while findings are less conclusive for boundary separation. The few studies employing RL models support a lower choice sensitivity in ADHD, but not an altered learning rate. The discussion outlines research areas for further theoretical refinement in the ADHD field.
Collapse
|
32
|
Abstract
Children/adolescents with attention-deficit/hyperactivity disorder (ADHD) may have a poor or inadequate response to psychostimulants or be unable to tolerate their side-effects; furthermore, stimulants may be inappropriate because of co-existing conditions. Only one non-stimulant ADHD pharmacotherapy, the noradrenaline transporter inhibitor atomoxetine, is currently approved for use in Europe. We review recent advances in understanding of the pathophysiology of ADHD with a focus on the roles of catecholamine receptors in context of the α2A-adrenergic receptor agonist guanfacine extended release (GXR), a new non-stimulant treatment option in Europe. Neuroimaging studies of children/adolescents with ADHD show impaired brain maturation, and structural and functional anomalies in brain regions and networks. Neurobiological studies in ADHD and medication response patterns support involvement of monoaminergic neurotransmitters (primarily dopamine and noradrenaline). Guanfacine is a selective α2A-adrenergic receptor agonist that has been shown to improve prefrontal cortical cognitive function, including working memory. The hypothesized mode of action of guanfacine centres on direct stimulation of post-synaptic α2A-adrenergic receptors to enhance noradrenaline neurotransmission. Preclinical data suggest that guanfacine also influences dendritic spine growth and maturation. Clinical trials have demonstrated the efficacy of GXR in ADHD, and it is approved as monotherapy or adjunctive therapy to stimulants in Canada and the USA (for children and adolescents). GXR was approved recently in Europe for the treatment of ADHD in children and adolescents for whom stimulants are not suitable, not tolerated or have been shown to be ineffective. GXR may provide particular benefit for children/adolescents who have specific co-morbidities such as chronic tic disorders or oppositional defiant disorder (or oppositional symptoms) that have failed to respond to first-line treatment options.
Collapse
|
33
|
Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, Giacovazzo G, Mancinelli R, Tirassa P, Chaldakov GN, Pascale E, Ceccanti M, Codazzo C, Fiore M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21:776-87. [PMID: 25940002 DOI: 10.1111/adb.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.
Collapse
Affiliation(s)
- Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology (IFT); National Research Council of Italy (C.N.R.); Italy
| | - Giampiero Ferraguti
- Department of Cellular Biotechnologies and Hematology; Sapienza University of Rome; Italy
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Rosanna Mancinelli
- Centro Nazionale Sostanze Chimiche; Instituto Superiore di Sanità; Rome Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | | | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies; Sapienza University of Rome; Italy
| | - Marco Ceccanti
- Department of Neurology and Psychiatry; Sapienza University of Rome; Italy
| | - Claudia Codazzo
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| |
Collapse
|
34
|
Häge A, Banaschewski T, Buitelaar JK, Dijkhuizen RM, Franke B, Lythgoe DJ, Mechler K, Williams SCR, Dittmann RW. Glutamatergic medication in the treatment of obsessive compulsive disorder (OCD) and autism spectrum disorder (ASD) - study protocol for a randomised controlled trial. Trials 2016; 17:141. [PMID: 26983548 PMCID: PMC4794817 DOI: 10.1186/s13063-016-1266-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/29/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Compulsivity is a cross-disorder trait underlying phenotypically distinct psychiatric disorders that emerge in childhood or adolescence. Despite the effectiveness of serotonergic compounds in the treatment of obsessive-compulsive disorder, treatment-resistant symptoms remaining in 40 to 60 % of patients present a pressing clinical problem. There are currently no medications that effectively treat the core impairments of autism spectrum disorder. There is an urgent need for the development of conceptually novel pharmacological strategies. Agents targeting glutamate neurotransmission, such as memantine, represent promising candidates. This proof-of-concept clinical study will allow pilot-testing of memantine for both clinical effectiveness and tolerability/safety. Memantine is an N-methyl-D-aspartate receptor antagonist, approved for the treatment of Alzheimer's dementia in a number of countries. METHODS/DESIGN This 12-week study has an add-on, randomised, double-blind, placebo-controlled design of treatment with memantine, including an up-titration phase (forced flexible dose design, 5-15 mg/day), in patients aged 6-17 years and 9 months with obsessive-compulsive disorder or autism spectrum disorder. It is planned to include patients with obsessive-compulsive disorder (N = 50) or autism spectrum disorder (N = 50) across four centres in three European countries. Patients will be randomly assigned to memantine or placebo in a 1:1 ratio. Primary objectives are the investigation of the effectiveness of memantine in paediatric patients for improving symptoms of compulsivity (primary outcome measure: total score on the Children's Yale-Brown Obsessive-Compulsive Scale) and to explore its tolerability and safety. Secondary objectives are to explore the effects of memantine at the level of structure, function and biochemistry of the fronto-striatal circuits, and to collect blood for genetic analyses and biomarkers. Tertiary objectives are to explore the role of new candidate genes and pathways for compulsivity by linking genes to clinical phenotypes, response to treatment, neurocognitive test performance, and key structural and functional neuroimaging measures of the fronto-striatal circuits and to explore biomarkers/proteomics for compulsivity traits. DISCUSSION This study is part of the large, translational project TACTICS ( http://www.tactics-project.eu/ ) that is funded by the European Union and investigates the neural, genetic and molecular factors involved in the pathogenesis of compulsivity. Its results will provide clinically relevant solid information on potential new mechanisms and medication treatment in obsessive-compulsive and autism spectrum disorders. TRIAL REGISTRATION EudraCT Number: 2014-003080-38 , date of registration: 14 July 2014.
Collapse
Affiliation(s)
- Alexander Häge
- />Paediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, PO Box 12 21 20, 68072 Mannheim, Germany
| | - Tobias Banaschewski
- />Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jan K. Buitelaar
- />Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick M. Dijkhuizen
- />Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Barbara Franke
- />Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David J. Lythgoe
- />Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Konstantin Mechler
- />Paediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, PO Box 12 21 20, 68072 Mannheim, Germany
| | - Steven C. R. Williams
- />Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Ralf W. Dittmann
- />Paediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, PO Box 12 21 20, 68072 Mannheim, Germany
| | - the TACTICS Consortium
- />Paediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, PO Box 12 21 20, 68072 Mannheim, Germany
- />Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- />Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- />Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- />Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- />Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| |
Collapse
|
35
|
Kostrzewa JP, Kostrzewa RA, Kostrzewa RM, Brus R, Nowak P. Perinatal 6-Hydroxydopamine Modeling of ADHD. Curr Top Behav Neurosci 2016; 29:279-293. [PMID: 26475157 DOI: 10.1007/7854_2015_397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The neonatally 6-hydroxydopamine (n6-OHDA)-lesioned rat has been the standard for 40 years, as an animal model of attention-deficit hyperactivity disorder (ADHD). Rats so lesioned during postnatal ontogeny are characterized by ~99 % destruction of dopaminergic nerves in pars compacta substantia nigra, with comparable destruction of the nigrostriatal tract and lifelong ~99 % dopaminergic denervation of striatum, with lesser destructive effect on the ventral tegmental nucleus and associated lesser dopaminergic denervation of nucleus accumbens and prefrontal cortex. As a consequence of striatal dopaminergic denervation, reactive serotoninergic hyperinnervation of striatum ensues. The striatal extraneuronal milieu of DA and serotonin is markedly altered. Also, a variety of sensitization changes occur for dopaminergic D1 and D2 receptors, and for serotoninergic receptors. Behaviorally, these rats in adulthood display spontaneous hyperlocomotor activity, attentional deficits, and cognitive impairment-all of which are acutely attenuated by the psychostimulants amphetamine (AMPH) and methylphenidate (MPH) (i.e., opposite to the acute effects of AMPH and MPH in intact control rats). The acute behavioral effects of AMPH and MPH in intact and lesioned rats are analogous to their respective acute effects in non-ADHD and in ADHD humans. The neurochemical template of brain, and behavioral series of changes in n6-OHDA-lesioned rats, is described in the review. Despite the fact that nigrostriatal damage is not an underlying pathophysiological process of human ADHD (i.e., lacking construct validity), the described animal model has face validity (behavioral profile) and predictive validity (mirror of ADHD/MPH effects, as well as putative and new ADHD treatment effects). Also described in this review is a modification of the n6-OHDA rat, produced by adulthood partial lesioning of the serotoninergic fiber overgrowth. This ADHD model has even more accentuated hyperlocomotor and attentional deficits, counteracted by AMPH-thus providing a more robust means of animal modeling of ADHD. The n6-OHDA rat as a model of ADHD continues to be important in the search for new ADHD treatments.
Collapse
Affiliation(s)
| | | | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, 70577, Johnson City, TN, 37614, USA.
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Przemysław Nowak
- Public Health Faculty, Department of Toxicology and Occupational Health Protection, Medical University of Silesia, Medykow 18, 40-752, Katowice Ligota, Poland
| |
Collapse
|
36
|
Hyperactivity and impaired attention in Gamma aminobutyric acid transporter subtype 1 gene knockout mice. Acta Neuropsychiatr 2015; 27:368-74. [PMID: 26072958 DOI: 10.1017/neu.2015.37] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioural disorder. It is conceivable that Gamma aminobutyric acid (GABA) neurotransmission is implicated in the pathophysiology of ADHD. This study investigated the effect of GABA transporter 1 (GAT-1) on the anxiety-like behaviours and cognitive function in knockout mice. METHODS In all, 20 adult male mice were divided into two groups: wild-type (WT) group and GAT-1-/- group. The open field test, elevated O-maze (EZM) and Morris water maze were used to evaluate behavioural traits relevant to ADHD. RESULTS Compared with WT mice, the GAT-1-/- mice travelled longer and displayed an enhanced kinematic velocity with the significant reduction of rest time in the open field test (p<0.05). The EZM showed that GAT-1-/- mice displayed a significant increase in total entries into the open sectors and the closed sectors compared with the WT mice. The WT mice showed shorter latencies after the training session (p<0.01), whereas the GAT-1-/- mice made no difference during probe test, the GAT-1-/- mice spent less time in the target quadrant (p<0.01). CONCLUSION Our results demonstrated that GAT-1-/- mice have phenotypes of hyperactivity, impaired sustained attention and learning deficiency, and the performance of GAT-1-/- mice is similar to ADHD symptoms. So, the study of the GAT-1-/- mice may provide new insights into the mechanisms and the discovery of novel therapeutics for the treatment of ADHD.
Collapse
|
37
|
Oliveira-Pinto J, Paes-Branco D, Cristina-Rodrigues F, Krahe TE, Manhães AC, Abreu-Villaça Y, Filgueiras CC. GABAA overactivation potentiates the effects of NMDA blockade during the brain growth spurt in eliciting locomotor hyperactivity in juvenile mice. Neurotoxicol Teratol 2015; 50:43-52. [PMID: 26056730 DOI: 10.1016/j.ntt.2015.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
Both NMDA receptor blockade and GABAA receptor overactivation during the brain growth spurt may contribute to the hyperactivity phenotype reminiscent of attention-deficit/hyperactivity disorder. Here, we evaluated the effects of exposure to MK801 (a NMDA antagonist) and/or to muscimol (a GABAA agonist) during the brain growth spurt on locomotor activity of juvenile Swiss mice. This study was carried out in two separate experiments. In the first experiment, pups received a single i.p. injection of either saline solution (SAL), MK801 (MK, 0.1, 0.3 or 0.5 mg/kg) or muscimol (MU, 0.02, 0.1 or 0.5 mg/kg) at the second postnatal day (PND2), and PNDs 4, 6 and 8. In the second experiment, we investigated the effects of a combined injection of MK (0.1 mg/kg) and MU (doses: 0.02, 0.1 or 0.5 mg/kg) following the same injection schedule of the first experiment. In both experiments, locomotor activity was assessed for 15 min at PND25. While MK promoted a dose-dependent increase in locomotor activity, exposure to MU failed to elicit significant effects. The combined exposure to the highest dose of MU and the lowest dose of MK induced marked hyperactivity. Moreover, the combination of the low dose of MK and the high dose of MU resulted in a reduced activity in the center of the open field, suggesting an increased anxiety-like behavior. These findings suggest that, during the brain growth spurt, the blockade of NMDA receptors induces juvenile locomotor hyperactivity whereas hyperactivation of GABAA receptors does not. However, GABAA overactivation during this period potentiates the effects of NMDA blockade in inducing locomotor hyperactivity.
Collapse
Affiliation(s)
- Juliana Oliveira-Pinto
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Fabiana Cristina-Rodrigues
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Thomas E Krahe
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil.
| |
Collapse
|
38
|
IRBIT regulates CaMKIIα activity and contributes to catecholamine homeostasis through tyrosine hydroxylase phosphorylation. Proc Natl Acad Sci U S A 2015; 112:5515-20. [PMID: 25922519 DOI: 10.1073/pnas.1503310112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with IP3 (IRBIT) contributes to various physiological events (electrolyte transport and fluid secretion, mRNA polyadenylation, and the maintenance of genomic integrity) through its interaction with multiple targets. However, little is known about the physiological role of IRBIT in the brain. Here we identified calcium calmodulin-dependent kinase II alpha (CaMKIIα) as an IRBIT-interacting molecule in the central nervous system. IRBIT binds to and suppresses CaMKIIα kinase activity by inhibiting the binding of calmodulin to CaMKIIα. In addition, we show that mice lacking IRBIT present with elevated catecholamine levels, increased locomotor activity, and social abnormalities. The level of tyrosine hydroxylase (TH) phosphorylation by CaMKIIα, which affects TH activity, was significantly increased in the ventral tegmental area of IRBIT-deficient mice. We concluded that IRBIT suppresses CaMKIIα activity and contributes to catecholamine homeostasis through TH phosphorylation.
Collapse
|
39
|
Huang F, Wang T, Lan Y, Yang L, Pan W, Zhu Y, Lv B, Wei Y, Shi H, Wu H, Zhang B, Wang J, Duan X, Hu Z, Wu X. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior. Front Behav Neurosci 2015; 9:70. [PMID: 25870546 PMCID: PMC4378301 DOI: 10.3389/fnbeh.2015.00070] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity.
Collapse
Affiliation(s)
- Fei Huang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Tingting Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yunyi Lan
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Li Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center Baton Rouge, LA, USA
| | - Yonghui Zhu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Boyang Lv
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yuting Wei
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hailian Shi
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hui Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Beibei Zhang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Jie Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaofeng Duan
- Pharmacy Department, Shanghai East Hospital Shanghai, China
| | - Zhibi Hu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaojun Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| |
Collapse
|
40
|
Ookubo M, Sadamatsu M, Yoshimura A, Suzuki S, Kato N, Kojima H, Yamada N, Kanai H. Aberrant Monoaminergic System in Thyroid Hormone Receptor-β Deficient Mice as a Model of Attention-Deficit/Hyperactivity Disorder. Int J Neuropsychopharmacol 2015; 18:pyv004. [PMID: 25612897 PMCID: PMC4540106 DOI: 10.1093/ijnp/pyv004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Thyroid hormone receptors are divided into 2 functional types: TRα and TRβ. Thyroid hormone receptors play pivotal roles in the developing brain, and disruption of thyroid hormone receptors can produce permanent behavioral abnormality in animal models and humans. METHODS Here we examined behavioralchanges, regional monoamine metabolism, and expression of epigenetic modulatory proteins, including acetylated histone H3 and histone deacetylase, in the developing brain of TRα-disrupted (TRα (0/0) ) and TRβ-deficient (TRβ (-/-) ) mice. Tissue concentrations of dopamine, serotonin (5-hydroxytryptamine) and their metabolites in the mesocorticolimbic pathway were measured. RESULTS TRβ (-/-) mice, a model of attention-deficit/hyperactivity disorder, showed significantly high exploratory activity and reduced habituation, whereas TRα (0/0) mice showed normal exploratory activity. The biochemical profiles of dopamine and 5-hydroxytryptamine showed significantly low dopamine metabolic rates in the caudate putamen and nucleus accumbens and overall low 5-hydroxytryptamine metabolic rates in TRβ (-/-) mice, but not in TRα (0/0) mice. Furthermore, the expression of acetylated histone H3 was low in the dorsal raphe of TRβ (-/-) mice, and histone deacetylase 2/3 proteins were widely increased in the mesolimbic system. CONCLUSIONS These findings suggest that TRβ deficiency causes dysfunction of the monoaminergic system, accompanied by epigenetic disruption during the brain maturation process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hirohiko Kanai
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan (Drs Ookubo, Yoshimura, Yamada, and Kanai); Department of Psychiatry, Minakuchi Hospital, Shiga, Japan (Dr Ookubo); Department of Psychology and Psychiatry, Human Sciences, Kinjo Gakuin University, Aich, Japan (Dr Sadamatsu); Department of Thyroid and Endocrinology, Fukushima Medical University, Fukushima, Japan (Dr Suzuki); Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan (Dr Kato); Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Shiga, Japan (Dr. Kojima); Department of Psychiatry, Japanese Red Cross Society Nagahama Hospital, Shiga, Japan (Dr. Kanai).
| |
Collapse
|
41
|
Gorbatova DM, Litvinova SA, Durnev AD, Seredenin SB. Afobazole protects rats exposed to peat smoke in utero. Bull Exp Biol Med 2015; 158:664-9. [PMID: 25778655 DOI: 10.1007/s10517-015-2830-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Indexed: 11/29/2022]
Abstract
Female outbred albino rats were daily subjected to forced inhalations of peat smoke (4 cores packed with a mixture of peat (70%) and wood pulp (30%); 0.46 g, pH at least 5.5, core burning time 6 min,; total exposure 44 min) per se and in combination with oral afobazole (anxiolytic) in doses of 1 and 10 mg/kg on days 1-20 of pregnancy. Some groups of females received oral afobazole (200 mg/kg) after delivery, due to which their newborn rats received the drug in doses of 1-10 mg/kg with maternal milk on days 1-20 of life. Exposure to peat smoke inhibited body weight gain in the progeny on days 5-60 of life. Afobazole treatment during the pre- and postnatal periods prevented this effect. Open field testing showed that exposure to peat smoke prolonged the motor activity in the progeny and impaired the loss of orientation and exploratory behavior during repeated testing. Oral afobazole (1 and 10 mg/kg) during the prenatal and/or postnatal period (with maternal milk) prevented the effects of peat smoke.
Collapse
Affiliation(s)
- D M Gorbatova
- Laboratory of Drug Toxicology, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia,
| | | | | | | |
Collapse
|
42
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
43
|
The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants. Proc Natl Acad Sci U S A 2014; 111:E4779-88. [PMID: 25331903 DOI: 10.1073/pnas.1417294111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Collapse
|
44
|
Mathis C, Savier E, Bott JB, Clesse D, Bevins N, Sage-Ciocca D, Geiger K, Gillet A, Laux-Biehlmann A, Goumon Y, Lacaud A, Lelièvre V, Kelche C, Cassel JC, Pfrieger FW, Reber M. Defective response inhibition and collicular noradrenaline enrichment in mice with duplicated retinotopic map in the superior colliculus. Brain Struct Funct 2014; 220:1573-84. [PMID: 24647754 PMCID: PMC4409641 DOI: 10.1007/s00429-014-0745-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 10/27/2022]
Abstract
The superior colliculus is a hub for multisensory integration necessary for visuo-spatial orientation, control of gaze movements and attention. The multiple functions of the superior colliculus have prompted hypotheses about its involvement in neuropsychiatric conditions, but to date, this topic has not been addressed experimentally. We describe experiments on genetically modified mice, the Isl2-EphA3 knock-in line, that show a well-characterized duplication of the retino-collicular and cortico-collicular axonal projections leading to hyperstimulation of the superior colliculus. To explore the functional impact of collicular hyperstimulation, we compared the performance of homozygous knock-in, heterozygous knock-in and wild-type mice in several behavioral tasks requiring collicular activity. The light/dark box test and Go/No-Go conditioning task revealed that homozygous mutant mice exhibit defective response inhibition, a form of impulsivity. This defect was specific to attention as other tests showed no differences in visually driven behavior, motivation, visuo-spatial learning and sensorimotor abilities among the different groups of mice. Monoamine quantification and gene expression profiling demonstrated a specific enrichment of noradrenaline only in the superficial layers of the superior colliculus of Isl2-EphA3 knock-in mice, where the retinotopy is duplicated, whereas transcript levels of receptors, transporters and metabolic enzymes of the monoaminergic pathway were not affected. We demonstrate that the defect in response inhibition is a consequence of noradrenaline imbalance in the superficial layers of the superior colliculus caused by retinotopic map duplication. Our results suggest that structural abnormalities in the superior colliculus can cause defective response inhibition, a key feature of attention-deficit disorders.
Collapse
Affiliation(s)
- Chantal Mathis
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Elise Savier
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Jean-Bastien Bott
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Daniel Clesse
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Nicholas Bevins
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, San Diego, CA 92037 USA
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92039 USA
| | | | - Karin Geiger
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Anaïs Gillet
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Alexis Laux-Biehlmann
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Yannick Goumon
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Adrien Lacaud
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Vincent Lelièvre
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Christian Kelche
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Jean-Christophe Cassel
- Laboratory of Adaptative and Cognitive Neurosciences, CNRS, University of Strasbourg UMR 7364, 67000 Strasbourg, France
| | - Frank W. Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| | - Michael Reber
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 5, rue blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
45
|
Maltezos S, Horder J, Coghlan S, Skirrow C, O'Gorman R, Lavender TJ, Mendez MA, Mehta M, Daly E, Xenitidis K, Paliokosta E, Spain D, Pitts M, Asherson P, Lythgoe DJ, Barker GJ, Murphy DG. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry 2014; 4:e373. [PMID: 24643164 PMCID: PMC3966039 DOI: 10.1038/tp.2014.11] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence that abnormalities in glutamate signalling may contribute to the pathophysiology of attention-deficit hyperactivity disorder (ADHD). Proton magnetic resonance spectroscopy ([1H]MRS) can be used to measure glutamate, and also its metabolite glutamine, in vivo. However, few studies have investigated glutamate in the brain of adults with ADHD naive to stimulant medication. Therefore, we used [1H]MRS to measure the combined signal of glutamate and glutamine (Glu+Gln; abbreviated as Glx) along with other neurometabolites such as creatine (Cr), N-acetylaspartate (NAA) and choline. Data were acquired from three brain regions, including two implicated in ADHD-the basal ganglia (caudate/striatum) and the dorsolateral prefrontal cortex (DLPFC)-and one 'control' region-the medial parietal cortex. We compared 40 adults with ADHD, of whom 24 were naive for ADHD medication, whereas 16 were currently on stimulants, against 20 age, sex and IQ-matched healthy controls. We found that compared with controls, adult ADHD participants had a significantly lower concentration of Glx, Cr and NAA in the basal ganglia and Cr in the DLPFC, after correction for multiple comparisons. There were no differences between stimulant-treated and treatment-naive ADHD participants. In people with untreated ADHD, lower basal ganglia Glx was significantly associated with more severe symptoms of inattention. There were no significant differences in the parietal 'control' region. We suggest that subcortical glutamate and glutamine have a modulatory role in ADHD adults; and that differences in glutamate-glutamine levels are not explained by use of stimulant medication.
Collapse
Affiliation(s)
- S Maltezos
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - J Horder
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, PO Box 50, London SE5 8AF, UK. E-mail:
| | - S Coghlan
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - C Skirrow
- King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - R O'Gorman
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - T J Lavender
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - M A Mendez
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - M Mehta
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - E Daly
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - K Xenitidis
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK
| | - E Paliokosta
- Adult ADHD Service, The Maudsley Hospital, London, UK
| | - D Spain
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - M Pitts
- Adult ADHD Service, The Maudsley Hospital, London, UK
| | - P Asherson
- Adult ADHD Service, The Maudsley Hospital, London, UK,King's College London, MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - D J Lythgoe
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - G J Barker
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - D G Murphy
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, UK,Autism Assessment and Behavioural Genetics Clinic, South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
46
|
Hyperlocomotor activity and stress vulnerability during adulthood induced by social isolation after early weaning are prevented by voluntary running exercise before normal weaning period. Behav Brain Res 2014; 264:197-206. [PMID: 24534713 DOI: 10.1016/j.bbr.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/20/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
In rodents, the disruption of social-rearing conditions before normal weaning induces emotional behavioral abnormalities, such as anxiety, motor activity dysregulation, and stress vulnerability. The beneficial effects of exercise after normal weaning on emotional regulation have been well documented. However, effects of exercise before normal weaning on emotion have not been reported. We examined whether voluntary wheel running (R) during social isolation after early weaning (early weaning/isolation; EI) from postnatal day (PD) 14-30 could prevent EI-induced emotional behavioral abnormalities in Sprague-Dawley rats. Compared with control rats reared with their dam and siblings until PD30, rats performed R during EI (EI+R) and EI rats demonstrated greater locomotion and lower grooming activity in the open-field test (OFT) during the juvenile period. Juvenile EI ± R rats showed greater learned helplessness (LH) after exposure to inescapable stress (IS; electric foot shock) than IS-exposed control and EI rats. In contrast, EI rats showed increased locomotion in the OFT and LH after exposure to IS compared with control rats during adulthood; this was not observed in EI ± R rats. Both EI and EI ± R rats exhibited greater rearing activity in the OFT than controls during adulthood. EI did not increase anxiety in the OFT and elevated plus-maze. These results suggested that R during EI until normal weaning prevented some of the EI-induced behavioral abnormalities, including hyperlocomotor activity and greater LH, during adulthood but not in the juvenile period.
Collapse
|
47
|
Genro JP, Kieling C, Rohde LA, Hutz MH. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother 2014; 10:587-601. [DOI: 10.1586/ern.10.17] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Ruocco LA, Romano E, Treno C, Lacivita E, Arra C, Gironi-Carnevale UA, Travaglini D, Leopoldo M, Laviola G, Sadile AG, Adriani W. Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in Naples High Excitability rats. Synapse 2013; 68:159-67. [PMID: 24273138 DOI: 10.1002/syn.21724] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/14/2013] [Accepted: 11/15/2013] [Indexed: 12/17/2022]
Abstract
We report here the results of studies aimed to investigate the involvement of serotonin receptor 7 subtype (5-HT7-R) in the modulation of emotional response in Naples High-Excitability (NHE) rat, a validated model for hyperactivity and impaired attention. A range of dosages (0.0, 0.125, 0.250, or 0.500 mg/kg) of LP-211, a selective agonist of 5-HT7-Rs, has been evaluated in animals at different age (adolescence and adulthood). Male NHE and random bred (NRB) control rats were tested in an Elevated Zero-Maze (EZM) after LP-211 treatment in two different regimens: at the issue of adolescent, subchronic exposure (14 intraperitoneal [i.p.] injections, once/day, pnd 31-44, tested on pnd 45--Exp. 1) or as adult, acute effect (15 min after i.p. injection--Exp. 2). Adolescent, subchronic LP-211 at 0.500 mg/kg dosage increased the frequency of head-dips only in NHE rats. Drug effect on time spent and entries in open EZM quadrants were revealed with adult, acute administration of 0.125 mg/kg LP-211 (both strains), indicating a tendency toward anxiolytic effects. In conclusion, data demonstrate that subchronic stimulation of 5-HT7-Rs during prepuberal period increases novelty-seeking/risk-taking propensity in NHE adults. These sequels are revealing increased disinhibition and/or motivation to explore in the NHE rats, which are characterized by a hyperactive dopaminergic system. These data may open new perspectives in studying mechanism of risk-seeking behavior.
Collapse
Affiliation(s)
- Lucia A Ruocco
- Department of Experimental Medicine, School of Medicine, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dolan J, Mitchell KJ. Mutation of Elfn1 in mice causes seizures and hyperactivity. PLoS One 2013; 8:e80491. [PMID: 24312227 PMCID: PMC3842350 DOI: 10.1371/journal.pone.0080491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/12/2013] [Indexed: 02/02/2023] Open
Abstract
A growing number of proteins with extracellular leucine-rich repeats (eLRRs) have been implicated in directing neuronal connectivity. We previously identified a novel family of eLRR proteins in mammals: the Elfns are transmembrane proteins with 6 LRRs, a fibronectin type-3 domain and a long cytoplasmic tail. The recent discovery that Elfn1 protein, expressed postsynaptically, can direct the elaboration of specific electrochemical properties of synapses between particular cell types in the hippocampus strongly reinforces this hypothesis. Here, we present analyses of an Elfn1 mutant mouse line and demonstrate a functional requirement for this gene in vivo. We first carried out detailed expression analysis of Elfn1 using a β-galactosidase reporter gene in the knockout line. Elfn1 is expressed in distinct subsets of interneurons of the hippocampus and cortex, and also in discrete subsets of cells in the habenula, septum, globus pallidus, dorsal subiculum, amygdala and several other regions. Elfn1 is expressed in diverse cell types, including local GABAergic interneurons as well as long-range projecting GABAergic and glutamatergic neurons. Elfn1 protein localises to axons of excitatory neurons in the habenula, and long-range GABAergic neurons of the globus pallidus, suggesting the possibility of additional roles for Elfn1 in axons or presynaptically. While gross anatomical analyses did not reveal any obvious neuroanatomical abnormalities, behavioural analyses clearly illustrate functional effects of Elfn1 mutation. Elfn1 mutant mice exhibit seizures, subtle motor abnormalities, reduced thigmotaxis and hyperactivity. The hyperactivity is paradoxically reversible by treatment with the stimulant amphetamine, consistent with phenotypes observed in animals with habenular lesions. These analyses reveal a requirement for Elfn1 in brain function and are suggestive of possible relevance to the etiology and pathophysiology of epilepsy and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Jackie Dolan
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
50
|
Timple JMV, Magalhães LG, Souza Rezende KC, Pereira AC, Cunha WR, Andrade e Silva ML, Mortensen OV, Fontana ACK. The lignan (-)-hinokinin displays modulatory effects on human monoamine and GABA transporter activities. JOURNAL OF NATURAL PRODUCTS 2013; 76:1889-95. [PMID: 24112084 DOI: 10.1021/np400452n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The neurotransmitter transporters of the SLC6 family play critical roles in the regulation of neurotransmission and are the primary targets of therapeutic agents used to treat clinical disorders involving compromised neurotransmitter signaling. The dopamine and norepinephrine transporters have been implicated in clinical disorders such as attention deficit hyperactivity disorder (ADHD) and substance abuse. The GABA transporters (GATs) serve as a target for anxiolytic, antidepressant, and antiepileptic therapies. In this work, the interaction with neurotransmitter transporters was characterized for a derivative of the lignan (-)-cubebin (1), namely, (-)-hinokinin (2). Using in vitro pharmacological assays, 2 selectively inhibited the human dopamine and norepinephrine transporters, in a noncompetitive manner possibly mediated by binding to a novel site within the transporters, and displayed low affinity for the serotonin transporter. Compound 2 also specifically inhibited the GAT-1 GABA transporter subtype. Compound 2 is not a substrate of the carriers as it had no effect on the efflux of either of the neurotransmitters investigated. This compound is inactive toward glutamate and glycine transporters. These results suggest that 2 may serve as a tool to develop new therapeutic drugs for ADHD and anxiety that target the DAT, NET, and GAT-1 transporters.
Collapse
Affiliation(s)
- Julie Marie V Timple
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | | | | | | | | | | | | | | |
Collapse
|